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Abstract. A sparsely connected associative memory model is tested with different 
pattern sets, and it is found that pattern recall is highly dependent on the type of 
patterns used. Performance is also found to depend critically on the connection 
strategy used to build the networks. Comparisons of topology reveal that connectivity 
matrices based on Gaussian distributions perform well for all pattern types tested, 
and that for best pattern recall at low wiring costs, the optimal value of Gaussian σ 
used in creating the connection matrix is dependent on properties of the pattern set. 

1 Introduction 

It has been established that the performance of sparsely connected associative 
memory models is strongly influenced by the connection strategy employed in 
creating the network [1-3]. In this respect, locally-connected networks, in which the 
input of each node is connected to its k nearest neighbours,  perform poorly, while 
randomly-connected networks perform the best [3]. 

a  

b  
Fig. 1: Samples from two of the image sets used: a. Shapes, b.  Faces [4]. The image size 
used in all cases was 60 x 60 pixels. Black pixels are considered to be on, white to be off. 

These results are based on the use of training sets made from randomly-generated 
patterns (containing random distributions of on and off pixels). We find, however, that 
when real-world images are used (with a more naturalistic distribution of pixels – see 
Figure 1), the relationship between connection strategy and performance is 
dramatically altered [5]. Unexpectedly, randomly-connected networks can give 
relatively poor results with certain types of naturalistic images, with the best 
performance achieved by networks which show a combination of local and distal 
connections. In the present study we extend this work to networks built with Gaussian 



connectivity, and investigate its implications for the optimal connection strategy for 
sparsely connected associative memory models. 

2 Network dynamics, training and performance measurement 

Our associative memory models consist of a network of perceptrons arranged in a 
two-dimensional structure with wrap-around at the edges, and the network is trained 
on sets of patterns of area N, where N is the number of  nodes in the network. The 
output of each node is connected to the inputs of a fixed number, k, of other  nodes. 
The networks used in the present studies have no symmetric connection requirement 
[6], and the recall process uses asynchronous random order updates, in which the 
local field of unit i is given by:  

  
hi = wijS j

j≠i
∑

where wij is the weight on the connection from unit j to unit i, and S  is the 
current state. The dynamics of the network is given by the standard update:    

, where  is the Heaviside function. Network training is based on the 
perceptron training rule [7] chosen for its higher resultant capacity than that of the 
standard Hopfield model. Further details may be found in [2, 8].  
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 Network performance is determined by measuring Effective Capacity [2]. This 
is a measure of the number of patterns which a network can restore under a specific 
set of conditions. The network is first trained on a set of patterns. Once training is 
complete, the patterns are each randomly degraded with 60% noise, before presenting 
them to the network. After convergence, a calculation is made of the degree of 
overlap between the output of the network, and the original learned pattern. The 
Effective Capacity of the network is the highest pattern loading at which this mean 
overlap for the pattern reaches a predetermined level. For the present work we use the 
most stringent version of Effective Capacity (EC-100), requiring 100% correction of 
the presented patterns. 

As in the earlier paper [5], our experiments compare performance using three 
types of pattern sets: the first is based on purely random patterns (random 
arrangements of on and off pixels). The second is a set of 132 hand-generated shapes, 
illustrated in Figure 1a. These were designed as bold patterns with large contiguous 
areas of on or off pixels, and with low correlation between individual patterns across 
the set. In contrast to this artificially created Shapes set, the third set consisted of 40 
digitised faces [4], each of a different individual, as illustrated in Figure 1b. The 
networks under test all have 3600 nodes, configured as a 60 x 60 two-dimensional 
associative memory. The networks are sparsely connected, with 40 afferent 
connections per node. 

3 Background and motivation 

We have previously shown that the way in which pattern recall changes when a 
locally connected network is progressively rewired depends critically on the 
properties of the pattern set on which the network is trained [5]. Our results are 



summarised in Figure 2. This illustrates the performance of three different pattern sets 
as a locally connected network is progressively rewired. The rewiring is to randomly 
selected nodes, so that once all the connections have been rewired, the network is 
randomly-connected. 
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Fig. 2:  Effective Capaciy (EC-100) as a function of the degree of rewiring of the network for the Shapes, 
Faces and random image sets. The network consists of 3600 nodes, with 40 connections per node. Results 
are averages over 30 runs. 

The performance obtained with the random pattern set follows the expected 
course (broadly echoing the findings of Bholand and Minai for 1D networks [3]), with 
performance improving as the network is progressively rewired, up to a point at 
around 50% or 60% rewiring, after which further rewiring gives little improvement. 
The performance of the Shapes pattern set was quite unexpected, peaking at an 
Effective Capacity (EC-100) of more than 45 at 80% rewiring. This is more than 
twice the number of random patterns that could be recalled under similar conditions. 

In the case of the Faces pattern set, performance was, by contrast, noticeably 
poorer than that of the random pattern set. In the paper referred to earlier [5], we 
argued that the difference in these results could be explained in terms of two factors: 
image coherence, and correlation between patterns in the set; and other experiments 
were performed to support this assertion. 

In that paper, however, we simply explored the performance of the pattern sets 
using progressively rewired networks. In the present paper, we use the same pattern 
sets, but the progressively rewired networks are replaced by more biologically 
plausible Gaussian networks, where the probability of a connection between any two 
nodes is a Gaussian function of the distance between them. Comparisons are then 
made between the performance of the two types of networks. Finally we proceed to 
examine which connection strategies give rise to the most efficient associative 
memories for different types of pattern set once wiring length is taken into account. 

4 Networks built with Gaussian connectivity 

The results for the Gaussian networks appear in Figure 3, from where it may be seen 
that the performance measured for each of the three pattern sets is broadly in line with 
that obtained with the progressively rewired networks in Figure 2. The performance 
of the random pattern set increases from a low level as Gaussian σ is increased, and 



then flattens out just as it did with progressive rewiring at the 60% rewiring point. 
The Faces pattern set also keeps a similar profile to that seen in Figure 2, flattening 
out as σ is increased, at a level noticeably below the maximum achieved with the 
random pattern set. The Shapes pattern set also behaves similarly to the way it 
performs with progressive rewiring, reaching a slightly higher peak, at an EC-100 of 
just over 50, from where it drops back, just as in the progressive rewiring case. But 
the fall is less dramatic: even at a relatively high Gaussian σ of around 50, EC-100 
never drops to the levels seen with the progressively rewired network. We would 
suggest that this is because with a Gaussian distribution there is always a 
concentration of connections around each node, whereas at 100% rewiring of the 
progressively rewired network, this is not the case. 
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Fig. 3:  Effective Capacity (EC-100) as a function of Gaussian σ for the Shapes, Faces and random pattern 
sets. The network consists of 3600 nodes, with 40 connections per node, using a Gaussian connectivity 
strategy of varying σ. Results are averages over 30 runs. 

5 Assessing efficient connection strategies 

In any physical implementation of associative memory, the length of wiring involved 
will be  an important factor [9-11],  and  in seeking an  efficient connection  strategy
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Fig. 4:  Effective Capacity (EC-100) as a function of meean wiring length for Gaussian and progressively 
rewired networks, trained on the random pattern set (left), and trained on the Shapes image set (right). The 
network consists of 3600 nodes, with 40 connections per node. Results are averages over 30 runs. 



here we are concerned to find the topology which yields the best pattern recall for the 
least expenditure of wiring. To shed light on this we plot EC-100 against wiring 
length for networks built using the two different connection strategies. Figure 4 gives 
the results for the random pattern set, revealing that the Gaussian network is the most 
efficient of the two, and is able to achieve an EC-100 of around 18 patterns at a mean 
wiring length of 7 units. The equivalent progressively rewired network requires a 
mean wiring length of twice this value to achieve the same degree of pattern recall. 

If we perform a similar plot for the Shapes pattern set (Figure 4 - right), we can 
see that as well as achieving a slightly higher peak EC-100 value, the Gaussian 
network does this at a slightly lower mean wiring length of around 16 units compared 
to 19 units with the rewired network. For the Faces pattern set (Figure 5), the 
Gaussian network is again the more efficient performer, achieving an EC-100 of 
around 15 at a mean wiring length of 15. The optimum Gaussian σ for this pattern set 
would be around 20. 
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Fig. 5:  Effective Capaciy (EC-100) as a function of mean wiring length for Gaussian and progressively 
rewired networks, trained on the Faces image set. The network consists of 3600 nodes, with 40 connections 
per node. Results are averages over 30 runs. 
 

Thus the Gaussian network outperforms the progressively rewired network for all 
three types of pattern (random, shapes and faces) in terms of economy of wiring. 
Interestingly, the point at which the Gaussian networks achieve greatest efficiency 
depends on the type of pattern that they are trained on. For random patterns, 
connectivity based on a Gaussian distribution with a σ of 8 achieves greatest 
efficiency, but when working with the Faces or  the Shapes pattern sets, we need 
Gaussian distributions with a σ of 20 or 23 respectively for optimal recall. In the case 
of the shapes set, if σ differs to any extent from the value 23, performance is 
considerably worsened.  

6 Conclusion 

We have explored the performance of a sparsely connected associative memory 
model built using a connection strategy based on Gaussian distributions, and 
compared the results to those obtained with the less biologically plausible progressive 



rewiring strategy. Simulations with the Shapes, Faces and random pattern sets were 
performed, and results broadly similar to those using the progressive wiring strategy 
were obtained. The most significant difference between the two sets of results was 
that with the Gaussian network, the dramatic drop in performance with the Shapes set, 
seen in the progressive rewiring network at 100% rewiring, was not apparent even at 
relatively large values of Gaussian σ. This is likely to be because in a Gaussian 
network, even at relatively high values of σ, there will still be local connections, 
necessary for correcting faults in clustered groups of pixels. In the progressively 
rewired network at 100% rewiring, however, there will be virtually no local 
connections in our 3600 unit network  with only 40 connections per node.  

Finally we compared the mean wiring length of the different network 
configurations, and found that for all three pattern types, the Gaussian network was 
more efficient, recalling a similar number of patterns to the progressively rewired 
networks, but at a lower wiring cost. This was true for each pattern type tested. 
Interestingly the point of optimal performance, at which the network is able to recall 
the maximum number of patterns at the shortest mean wiring length, occurred at 
different values of Gaussian σ for the three different pattern types. Thus when 
designing an associative memory for maximum pattern recall at a minimum of wiring 
costs, one needs to take account of the type of patterns that are to be recalled. 
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