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Abstract

Worst-case execution time (WCET) analysis has become
an active research area over the last decade. Various tech-
niques have been developed to improve the WCET calcu-
lation methods for numerous features of the hardware. In
parallel, attention has been paid to integrate the analysis
techniques into modern software engineering processes.

In this paper we give an overview about the different as-
pects of WCET analysis. We clarify terms and categorise
features of WCET analysis tools. Therefore we present a
generic framework for WCET analysis and describe its fun-
damental operations. We present a classification scheme
to test the applicability of WCET analysis tools for certain
analysis requirements.

Keywords: Worst-Case Execution Time Analysis, Execu-
tion Times, Classification, Generic Framework

1 Introduction

Worst-Case Execution Time (WCET) analysis is about
calculating an upper bound of a program’s execution time.
The WCET bound depends on the input data space of the
program, the logic of the program code and the timing prop-
erties of the target hardware. In the last decade, extensive
research has developed methods and techniques for static
WCET analysis [28].

In general, static WCET analysis methods should pro-
vide safe and tight results. To avoid considering infeasi-
ble execution paths, several path descriptions and analysis
methods have been developed. Their usability depend on
their level of automation and the tightness of the results.

The increasing use of more advanced processor hardware
has raised the need for more complex hardware modeling
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techniques. For example, to express and model timing ef-
fects of caches or pipelines, extensions of other approaches
are needed.

There has been already a shift on the state of the art
of writing programs for embedded computing from cod-
ing directly in assembly code to the use of programming
languages like C. On top of the programming language,
there also exist modeling environments with facilities for
automatic code generation [13, 20]. The programming in-
terface has an influence on the analyzability of programs.
For example, high-level programming languages enforce a
more restricted programming style than assembly languages
and therefore may contain more precise implicit informa-
tion about feasible paths.

Currently, there exist plenty of different WCET analy-
sis approaches; each focusing on different hardware mech-
anisms of the target processor and providing different inter-
faces to specify the control flow behavior by code annota-
tions.

This paper presents a classification of the features of
WCET analysis tools in Section 2. It introduces terms for
several analysis steps to set an end to the existing ambigui-
ties between often used terms. In Section 3 it shows the fun-
damental components of each WCET analysis framework
and analyses their functions and properties.

Based on the observed classifications for WCET anal-
ysis tools, a scheme is shown to evaluate WCET analy-
sis tools for applicability under certain requirements (Sec-
tion 4). The application of this scheme is demonstrated in
Section 5.

2 Aspects of WCET Analysis

The goal of worst-case execution time (WCET) analysis
is to calculate the maximum execution time of a given piece
of code for a specific run-time environment (e.g., specific
hardware architecture).

To classify WCET analysis techniques, it is necessary to



define clear and intuitive terms. For example, the unfortu-
nate termlow-level analysisis used with different meanings
in the literature:

- One of its meanings isexec-time modeling, i.e., to
assign execution cycles to all statements of assembly
programs before calculating the final WCET value.

- In a different interpretation, the extraction of control
flow information and path analysis are subsumed as
high-level analysis. Low-level analysisis used to de-
scribe all aspects that are not part of thehigh-level
analysis. This interpretation oflow-level analysiscov-
ers more functionality than the first.

- Another meaning oflow-level analysiscomes from
representation levels, where for a source program to
be analyzed the WCET analysis tool operates on a dif-
ferent representation level of the program.

Calculating the WCET is a quite complex problem.
There are different orthogonal aspects that have to be con-
sidered. Some are related to the input format of the program
to be analyzed (e.g.: assembly code) or the target machine
for which the WCET is of interest.

Another point is the WCET analysis method used by
the tool. In general, the WCET analysis method cannot
be transparent to the user, since it is not possible to cal-
culate the WCET automatically for an arbitrary program.
This is due to the fact that the WCET calculation prob-
lem can be transformed to the well-knownHalting Problem
[24], which is provably not solveable in the generic case. To
overcome this limitation, two techniques can be used:

• Restricting the programming language, so that only an-
alyzable code can result. This approach limits the us-
ability of the language to domain-specific solutions.

• Adding additional knowledge about the possible pro-
gram control flow that cannot be derived automatically
from the program code. This approach supports the
use of generic programming languages but requires the
user to bring in domain-specific knowledge (e.g., loop
bounds, ranges for instantiation of input parameters).

To describe properties of programs to be analyzed, the
following definitions will be used throughout this work:

Definition 1 Control flow paths CFP (P) describe the set
of possible execution paths of programP with applied exe-
cution constraints. Such constraints are for example ranges
for the value instantiation of input parameters.CFP(P) is
a description of the set of different execution traces of pro-
gramP. In case a program has unbounded loops this set is
unbounded. We distinguish the following two types ofCFP :

• CFPopt(P) . . . Control flow paths for a programP as
seen by the omniscient observer.CFPopt(P) is an ab-
stract and exact description of all possible program
execution traces.CFPopt(P) includes only these exe-
cution traces that can really occur on program execu-
tion. One can reduceCFPopt(P) by specialization of
the program execution (e.g., by assuming input param-
eters of restricted shape or value range).

• CFPff (P) . . . Control flow paths of a programP de-
scribed by flow factsff . CFPff (P) is an approxima-
tion of CFPopt(P) by considering a set of flow facts
ff : CFPopt(P) ⊆ CFPff (P). CFPff (P) can be de-
scribed as the byff spawn closure of execution paths
for a programP.

Definition 2 CFPWCET ,opt is an execution trace that
yields the optimal solution of the WCET calculation.
CFPWCET ,opt is derived from CFPopt (analogously,
CFPWCET ,ff is an execution trace for the calculated
WCET, depending onff ).

Definition 3 Flow facts ff give hints about the possible
CFP of a program. The CFP overff is calledCFPff . Flow
facts can be expressed implicitely by the structure of the
program itself as also by additional user information.

Definition 4 Implicit flow facts ffimpl areff that are given
implicitely by the program structure and semantic. If the
CFPopt of a program does not depend on input variables
or external events, it can be completely described byffimpl .

A concrete WCET analysis tool may be only capable to
extract a subset ofFFI from the program code. We call
this setffimpl,tool .

Definition 5 Flow facts by annotations ffa are ff that
are given explicitely by code annotations.ffa are used to
simplify WCET tool implementation (avoiding complicated
code analysis) or to bring in additional information to make
WCET analysis feasible and tight.

The features of WCET analysis frameworks can be di-
vided into three orthogonal aspects as shown in Fig. 1. They
are calledrepresentation level, exec-time modelingandflow
facts. Along each axis typical examples are shown. The or-
dering along the axes show some kind of complexity level
(it increases from the center), but this is only to give an idea
of the magnitude and not to compare certain components.

The meanings of these three aspects are as follows:

2.1 Representation Level

The coding of a program and the WCET analysis may
be performed at differentrepresentation levels. To obtain
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Figure 1. Orthogonal Aspects of WCET
Analysis

accurate and tight time bounds, WCET analysis typically
operates at assembly/object code level.

Programming in assembly code should only be done
where it is strictly necessary, e.g., due to resource limita-
tions. Typical representations for program development are
in 3GL1. Actually, there has been done research on WCET
interfaces for 3GL like Euclid [21], Modula2 [34], Java [6],
C [19, 25], etc. Furthermore, tools to model an application
by its algorithm are for exampleMATLAB /Simulink2 or the
Statemate Statechart system [16].

As discussed above, it is required to have some flow in-
formation (ff ) about the possibleCFP . When the represen-
tation level of the programming language differs from that
where the WCET analysis is done, compilers have to trans-
form theff to the level of analysis (we use the term com-
piler here for all kind of program transformations). Com-
pilers typically provide powerful optimizations that change
the structure of the program down to assembly level dramat-
ically.

This leads to the challenge to transform theff from the
programming language down to assembly level. Therefore,
methods are required to keep theff useful even in the pres-
ence of optimizing code transformations.

Fig. 1 shows an example, where the program is coded in
C (marked asA1) and the analysis is done at assembly level
(marked asA2).

13GL. . . Third Generation Programming Language
2http://www.mathworks.com/

2.2 Flow Facts

Flow factsff are hints that describe constraints on the
possibleCFP of a program. Possible sources forff are
syntactic and semantic information of the program code or
additional annotations (ffa ). ffa can be given as annotations
inside the source code , on files that are separate from the
source code, or interactively.

Methods for characterizing flow facts can have different
level of automatism. In the optimal wayff are extracted
automatically from the programs syntax and semantic. Se-
mantic analysis for example can use data and control de-
pendence analysis [1] of the program, abstract interpreta-
tion [10] as well as symbolic evaluation [7]. Such methods
tend to be very complex when best quality offf is required.

In cases whereffimpl,tool are not sufficient to calculate a
WCET bound or achieve the desired quality in the WCET
calculation, additional flow facts are needed, that are given
manually (ffa ). At least,ff that are input-data dependent,
require additionalffa to be determined.

For a CFP that contains cycles (loops), the knowledge
of the maximum execution number of the backward edges
(loop bounds) is mandatory for WCET analysis. To ob-
tain tighter time bounds, further knowledge about infeasible
paths has to be brought in.

The following is a list of examples for different levels of
detail of execution frequency constraints (some kind offfa ):

• loop bounds (exact versus safe, upper bounds)

• loop bounds+ some additional constraints (e.g., loop
sequences [27], maximum execution count of a certain
operation within a specific scope)

• arbitrary constraints on execution count of blocks

• a single set of conjunctive constraints (versus disjunc-
tive sets of conjunctive constraints)

• one set of constraints (only conjunctive) versus also
disjunctive constraints (necessary for completeness of
constraints that model the algorithmic program behav-
ior)

Another type offfa are constraints that describe the execu-
tion order of operations. An example for this can be found
in [12] where the authors describe execution frequency con-
straints that also allow to address certain iteration ranges
within a loop.

Other types offfa are constraints on the ranges of value
instantiations of input parameters [15]. Transforming such
ffa require advanced analysis techniques to transform them
so that they can be used by the underlying WCET calcula-
tion method.

For domain-specific solutions the calculation of the CFP
can be simplified by using a programming language with a
very restrictive syntax.



2.3 Exec-Time Modeling

Exec-time modelingrefers to assessing the timing prop-
erties of the runtime environment. It models the behavior
of the constituents of the code (instructions/statements) on
the target machine (real hardware, virtual machine, . . . ) in
a way that is feasible and sufficient enough to get safe and
tight WCET bounds. In a simple case, the execution time of
each statement of the target hardware only depends on the
type of its arguments.

The execution time of statements in modern CPUs
that contain performance enhancing hardware features like
pipelines, caches or branch prediction typically depend on
the value of the arguments and the context inside the pro-
gram.

Precise exec-time modeling tends to result in complex
analysis algorithms and is often only feasible up to a cer-
tain limit. Therefore, the hardware characteristics are often
modelled only partially or in a simplified manner.

To give some examples, exec-time modeling of caches
has to deal with aspects like:

direct mapped caches,

set/fully associative caches,

instruction/jump caches,

data caches,

unified caches,

multiple cache hierarchies.

The effort required forexec-time modelingof pipelines
depends strongly on the concrete pipeline concept. Eng-
blom [11] has analyzed the following pipeline concepts for
exec-time modeling:

simple scalar pipelines,

scalar pipelines,

VLIW 3 (statically scheduled pipeline),

superscalar in-order pipeline (dynamically sched.),

superscalar out-of-order pipeline.

Engblom used a pragmatic approach to perform exec-time
modeling, that relies on a cycle-accurate trace-driven sim-
ulator. Proving the correctness of such a simulator experi-
mentally is not feasible. Still, this approach is a useful best-
effort method to overcome the conceptional limitations due
to complexity in practice.

3VLIW. . . very long instruction word

Colin et al. [9] modelled the branch-prediction behav-
ior of the Intel Pentium processor. They modelled the in-
struction cache, the branch prediction mechanism and the
pipeline. The authors use the tool Salto[32] to construct the
pipeline reservation table of each instruction.

Li et al. [22] modelled instruction caches (direct mapped
as well as set associative) and data caches. They constructed
a timing model by generating constraints, which represent
some kind of flow facts. The usage of this approach is
limited, because the resulting complexity of theexecution
scenario calculationbecomes infeasibly complex for real-
world programs. Theexecution scenario calculationis the
final analysis step where the flow facts and the exec-time
model are used to calculate the WCET bound.

2.4 Dependence of WCET Aspects

The three aspects of WCET analysis, as shown in the
“feature-space” in Fig. 1, are not completely independent.

For example, different levels of detail inexec-time mod-
eling require different sets offf . To allow retargetable
WCET analysis, the expressiveness of theff must be de-
signed powerful enough to cover all target hardware plat-
forms of interest. Otherwise it is not possible to model all
hardware features, even though the underlying method for
execution scenario calculationthe would support it.

After collecting all availableff , they are transformed
into the format required by theexecution scenario calcu-
lation. The format of theff must be compatible with the
calculation method. For example, calculating parametric
results [5], i.e., a timing formulae instead of a constant nu-
meric value, requires appropriateff . The same is true for
the exec-time modeling. Some approaches enforce strictly
separated analysis passes, where the result of theexec-time
modelingrepresents already resolved execution times for
single statements/blocks. Other approaches useexec-time
modelingto generate constraints that are considered in the
execution scenario calculation.

3 The Process of WCET Analysis

In this section we introduce the fundamental components
of a WCET analysis framework and analyze their function-
ality.

3.1 Generic WCET Analysis Framework

We now introduce a generic WCET analysis framework
to show its main components and how they are used. In the
following is shown, how existing WCET analysis frame-
works fit to this abstraction. Existing frameworks may look
simpler, because they use less complex and less powerful



methods. Other approaches only differ in the variety of fea-
tures and functionality inside the main components.

Fig. 2 shows the components of the generic WCET anal-
ysis framework. The input is the source representation of
the program. The representation level of the input program
and the level where the exec-time modeling of the analy-
sis has to be performed, together determine whether there
is additional information necessary about the compilation
process. For example, to maintain consistency of the flow
facts in case the compiler performs optimizing code trans-
formations it is required that thecompilationand thetrans-
formation of flow factswork tightly coupled (as indicated
by the dotted line).

Compilation

source
code

Extraction of
Flow Facts

Calculation
of Execution 
Scenarios

Exec-Time
Modelling

object
code

WCET
back-annotation

Transformation of
Flow Facts

Figure 2. Generic WCET Analysis Framework

Some frameworks directly read the compiled object code
as input and request the user interactively for the required
flow information [22]. In this case theextraction of flow
factsandtransformation of flow factsis left to the intellec-
tual power of the user.

3.2 Formal Definitions

We use the operator♦ from modal logic to model the
relation”it can be” (♦ doesnot mean that the expression
must be true under at least one interpretation or variable
instantiation).

Definition 6 (Intermediate Representations)The WCET
analysis can be divided into several phases. The following
operations and intermediate results are considered:

• src . . . source representation of the program

• obj = c(src) . . . object code of the program

• ff = e(src) . . . flow facts that give hints about the pos-
sible execution scenarios of the program.

• ffc = c̃(ff ) . . . transformed flow facts (from source to
object code, including symbolic or numeric calcula-
tions)

• mt = tM (obj ) . . . concrete hardware timing model.

• WCETcalc = ω(ffc ,mt) . . . calculated WCET

• SCω = βs(WCETcalc , src) . . . WCET, back-
annotated to source level

• OCω = βo(WCETcalc , obj ) . . . WCET, back-
annotated to object level

3.3 Extraction of Flow Facts

Calculating the WCET by only usingffimpl is in general
impossible. Therefore, the use of additionalffa is required:

ff = ffimpl ∪ ffa (1)

As shown in Equ. 2, redundantffa are often used to sim-
plify the extraction offf . The drawback is that specifying
ffa explicitely could be a source for errors if it is done man-
ually by the user.

♦(ffimpl ∩ ffa 6= {}) (2)

Definition 7 CP (ff ) is the byff generated closure of exe-
cution paths. “Byff generated” means that the set of all
the execution paths possible from the syntactic structure of
the program are taken, but constrained by the flow facts
ff . This is the same set as described byCFPff (Def. 3):
CFPff = CP (ff ).

3.3.1 The Dualism betweenff and CFPff

To perform WCET analysis, the minimum required set of
ff has to contain the syntactic structure and bounds for all
loops. We call this minimal set of flow factsffsyntax ,lb .
ffsyntax ,lb generates the maximal set of execution traces
CFPsyntax ,lb . The abstract flow facts that would be re-
quired to buildCFPopt (Def. 3) are calledffopt . All WCET
analysis frameworks support some kind offf within these
two extrema. It requires precise and flexibleff to minimize
one potential cause for WCET overestimation - the infeasi-
ble paths:CP (ff )− CFPopt .

TheCFPff x for differentff x are in partial order. Fig. 3
shows an example using aHasse Diagram. From the
structure of the partial order we can construct a lattice
L〈M,∩,∪,⊥,>〉 where M =

⋃
x∈X CFPff x, ⊥ =

CFPopt and> = CFPsyntax ,lb . This formalism shows
intuitively the effect of enrichingff .

Assuming that allff x are in normalized form without
redundancy, we can show the dualism between changes in
CFPff andff . This normalization is an abstract model as
it is in general not trivial to define a normalized form for
all kinds offf because it would also depend on the under-
lying method for calculating the execution scenarios. From
that we get the definition of the latticeLD〈MD,∩,∪,⊥,>〉
whereMD =

⋃
x∈X ff x,⊥ = ffsyntax ,lb and> = ffopt .
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ff z = ff x ∪ ff y ⇐⇒ CFPff z = CFPff x ∩ CFPff y

ff z = ff x ∩ ff y ⇐⇒ CFPff z = CFPff x ∪ CFPff y (3)

The dualism ofLD andL in modifying ff andCFPff

is shown in Equ. 3. It demonstrates how enrichingff will
bringCFPff closer toCFPopt . Additionally, we can derive
the following rules from Fig. 3:

• If (CFPff x = CFPopt), thenff x is optimal.

• If (CFPff x ∩ CFPopt ⊂ CFPopt), thenff x is an in-
valid path description and can cause an underestima-
tion of the WCET.

3.3.2 Methods

As already mentioned in Section 2.2, methods for charac-
terization offf can have different level of automatism. To
bring theff in a format useful for the WCET calculation
method,e(src) has to evaluate and convertff . e(src) pro-
vides implicit as well as explicitff available atsrc-level:
ffimpl ∪ ffa = ff = e(src).

The syntactic structure can be extracted easily. The same
is true forffa that act as simple structure information (e.g.,
loop bounds).ffa that describe the program behavior indi-
rectly, will be calledindirect ffa . An example forindirect
ffa are symbolic expressions that describe a loop bound in
an algorithmic way similar to the program code.

3.4 Compilation

In order to analyze a program for its WCET it is neces-
sary to transform it from its source representation (src) to
the representation where the analysis is done (obj ). This
transformationobj = c(src) (as defined in Def. 6) is in
common the program compilation. This compilation is a
surjective projection fromsrc to obj . The projection is de-
fined by the compiler version and the activated compiler
switches. Therefore, it is not possible to match the con-
trol structures fromobj directly with that fromsrc for all
kind of code optimizations of the compiler.

Obviously, for the case thatsrc andobj are on the same

representation level, no transformation is required. A typ-
ical example of this is writing and analyzing a program at
assembly level. Another case is described in [26], where
WCET analysis is done directly at the C language level (ac-
tually on a small subset of C).

3.5 Transformation of Flow Facts

Whenever a compiler transforms the program in such a
way that the control flow is changed, it is required to trans-
form the information about the control structure and otherff
of the program in accordance with the program compilation.
We have defined in Def. 6 the operation for transformingff
asffc = c̃(ff ).

c̃(ff ) must work in close connection with the compila-
tion processc(src). Using the debug information of the
compiler to implement̃c(ff ) can sometimes work as a sim-
ple mapping solution. In case of strong code optimizations
it is required to get additional support by the compiler.

The simplest approach would be to transformff manu-
ally from src down toobj , as done by Li et al. [22] (the
authors enforce the user of the tool to do this by interac-
tively requesting flow facts like loop bounds from the user).
This technique is simple to implement but for the user it
becomes time-consuming and error-prone.

Another approach would be to extend the compiler to
support the transformation offf in case of code optimiza-
tions [19].

3.6 Exec-Time Modeling

To perform WCET analysis, it is required to derive a con-
crete time modelmt for the programobj (not necessarily
the object code).

The operation to derivemt is tM (obj ) (Def. 6). As men-
tioned in Section 2.4, the semantic ofmt must be compati-
ble with the method for execution scenario calculation.

The construction of an accuratemt together with the
search for a minimalCFPff are most challenging to min-
imize the overestimation of the WCET.

To model some hardware features accurately, it may be
necessary to performtM (obj ) at inter-procedural level, es-
pecially for recursive or short callee functions.

3.7 Calculation of Execution Scenarios

As shown by Equ. 4, the calculation ofWCETcalc de-
pends on a sequence of previous operations.

WCETcalc = ω(c̃(e(src)), tM (c(src))) (4)



3.7.1 The Worst-Case Execution Trace

In Section 3.3 we have seen that allCFPff x are in partial
order and converge toCFPopt by enrichingff x (Fig. 3).

The WCETcalc calculated byω(ffc ,mt) has a cor-
responding execution traceCFPWCET ,ff which takes
WCETcalc to execute. There is a partial order between
CFPff andCFPWCET ,ff as shown in Equ. 5. The same
is true forCFPWCET ,opt . It is also interesting to note, that
if (CFPWCET ,opt = CFPopt) then the program has asin-
gle pathstructure.

CFPWCET ,opt ⊆ CFPopt

CFPWCET ,ff ⊆ CFPff (5)

ComparingCFPWCET ,ff and CFPWCET ,opt we get
some disappointing results. As shown in Fig. 4, the various
CFPWCET ,ff x do not converge intoCFPWCET ,opt . For
example,CFPff 1 and CFPff 12 yield to at least partially
differentCFPWCET ,ff . Furthermore,CFPff 23 shows that
we can get differentCFPWCET ,ff for the sameff . The
reason comes from the fact, thatexec-time modelingalso
influencesWCETcalc (Def. 6).

CFP SYNTAX,LB

CFP opt

CFP ff23

CFP ff1 CFP ff2 CFP ff3

CFP ff12 CFP ff13

CFP WCET,opt

CFP WCET,ff12

CFP WCET,ff1

CFP WCET,ff23a

CFP WCET,ff23b

Figure 4. Partial order of CFPff and
CFPWCET ,ff

The fact, that the calculatedCFPWCET ,ff can be differ-
ent than the execution trace for the optimal WCET solution
is formulated in Equ. 6. For the other case (CFPWCET ,ff =
CFPWCET ,opt ) we would have found theoptimal path
solution. But more important, Equ. 7 states that if we
have not found theoptimal path solution, we have found
a CFPWCET ,ff , outside of in reality possible execution
paths. Beside incomplete exec-time modeling this is a ma-
jor reason foroverestimatingthe WCET.

♦(CFPWCET ,ff 6= CFPWCET ,opt) (6)

(CFPWCET ,ff 6= CFPWCET ,opt) −→
(CFPWCET ,ff /∈ CFPopt) (7)

Theorem 8 It is not safeto extrapolate from a calculated

WCETcalc value to the effects of additional hardware prop-
erties. Applying a different timing model can result in a dif-
ferentCFPWCET ,ff .

The main result of investigatingCFPWCET ,ff is given in
Theorem 8. From this theorem is also follows that different
exec-time modelingcan yield differentCFPWCET ,ff for the
sameff .

For example, it can be experienced that when adding
DRAM refresh cycles to the system that the previously cal-
culatedCFPWCET ,ff will change [4].

3.7.2 Calculation Methods

Typical calculation methods forWCETcalc = ω(ffc ,mt)
are integer linear programming (ILP) [30] (global algo-
rithm), tree based calculations (timing schema) [8, 29] (hi-
erarchical tree-based algorithm) or path-based calculations
[17, 33]. Also hybrid solutions could be useful. The re-
sult of theexecution scenario calculationis WCETcalc , but
some approaches also deliver additional information like
CFPWCET ,ff or the execution frequency of each statement.

3.7.3 Back-Annotation of Results

To examine the timing behavior of a program and looking
for best places to optimize code for a lower WCET, it is re-
quired to split theWCETcalc to its contribution to blocks
of certain granularity. It is desired to know the WCET con-
tribution for each single statement.

Back-annotation can be done on several representation
levels within src (SCω = βs(WCETcalc , src)) and obj
(OCω = βo(WCETcalc , obj )). It depends on the method
used forexecution scenario calculation, how much infor-
mation is available.

4 Classification Criteria for WCET Analysis
Tools

In this section we present a scheme to evaluate WCET
analysis tools for their useability on a certain target hard-
ware with requirements on the calculation quality. Once
each WCET analysis tool has been classified, anyone in-
terested in using WCET analysis can simply compare the
features required by him with the features provided by the
tools.

4.1 Representation

We propose a graphical method,kivat-diagrams4, to
show the features and requirements of the target hardware
and how a given WCET analysis framework does conform

4also known asradar diagram



to them. Therefore, we map the “feature-space” as shown
in Fig. 1 into a two-dimensional representation.

In principle, all subcategories of features are drawn as
extra beam in the kivat diagram. Each subcategory should
represent an increasing level of quality. To achieve this,
each of the three aspects in WCET analysis has to be sub-
divided, because the axis in Fig. 1 do not show a strict level
of quality.
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Figure 5. Kivat Diagram of WCET Analysis
Features

An interesting point is, how to divide the features to have
a strict order of quality on each feature beam in the diagram.
We demonstrate this for the categorization of caches. For
caches we differentiate between instruction and data caches,
which can also interfere in form of unified caches. A pos-
sible classification for data and instruction caches is given
in Table 1. To improve preciseness, criteria levelF andG
could also be modelled as separate criteria.

Quality Data Cache Instruction Cache

G unified cache unified cache
F multi-level multi-level
E fully-associative fully-associative
D set-associative set-associative
C direct-mapped direct-mapped
B no cache jump cache
A no cache no cache

Table 1. Quality Criteria for Data and Instruc-
tion Caches

This representation allows a tradeoff between simplicity

and preciseness.

4.2 How to Classify a WCET Analysis Frame-
work

After identifying all relevant features for a WCET anal-
ysis framework it is possible to construct akivat diagram
for all the features that are required for the current target
hardware and the program source format. In the sector of
flow facts, one can select the desired form offf to enable
WCET analysis. An example for such a specification on
the required features of a WCET analysis tool is shown in
Fig. 6a).

The capabilities of a concrete WCET analysis tool are
drawn by black sectors as in Fig. 6b).

Now it can be tested whether the tool is applicative to
the specification by overlapping both diagrams. The test for
the tool of Fig. 6b) is shown in Fig. 6c). This test shows
that there are still features of the specification that are not
covered by the tool. Using the tool anyway would introduce
additional pessimism in the analysis.

a) b) c) d)

Figure 6. Matching of WCET Analysis Fea-
tures

Fig. 6d) shows the test for a different WCET analysis
tool. As can be seen by the full coverage, this tool is appro-
priate for the desired specification of a WCET analysis tool
in Fig. 6a).

5 Case Study

After presenting these generic classification criteria for
a WCET analysis framework, we present a case study with
several WCET analysis frameworks. Of course, this cannot
be a complete list, but it should be sufficient to demonstrate
the classification according to the scheme in Fig. 5.

The features of the selected WCET analysis frameworks
are summarized in Table 2. This table describes the features
of each WCET aspect (exec-time modeling, flow factsand
representation level) and thepath analysismethod used by
thecalculation of execution scenarios.

It is important to note, that the provided quality of certain
features may not be at the same level for each approach.
Therefore, it is also necessary to study the quality aspects of
the features sufficiently. For example, pipeline analysis can
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Instr. Cache jump-cache set-assoc. none set-assoc. none set-assoc. set-a./unified
Data Cache none direct-mapped none none none set-assoc. set-a./unified
Branch Predict. none none none BTP (Pent.) none none none
Pipeline simple scalar simple scalar none superscalar none none superscalar
Mem. Access Loc. different (3) one one one one one different (2)
DRAM Refresh none none yes none none none none
Accuracy safe safe safe safe safe safe safe

Automatism syntax only dafaflow anal., syntax only symb. eval. syntax only syntax only abstr. interpr.
loop bounds

Exec.Frequ. Constr. yes none yes none yes yes n.a.
Infeas.Paths Constr. yes none yes none yes yes n.a.
Value Ranges none yes none none none none n.a.

Program Input MATLAB , C C, Ada C C ModulaR C C
Analysis Performed assembly object C assembly assembly object object
Spec. of Flow Facts C src. interactively spec.file C src. ModulaR interactively C src.
Tool User Interface graphically graphically cmd.line cmd.line cmd.line graphically cmd.line

Path Analysis ILP path-based tree-based tree-based ILP ILP ILP

Table 2. Case Study on Existing WCET Analysis Frameworks

be done globally (tighter results) or locally at basic block
level (more overestimation).

Using our classification criteria allows to evaluate and
compare WCET analysis frameworks on a fine granular-
ity. This eases the choice of the appropriate WCET anal-
ysis framework for certain requirements. For the purpose of
summarizing the features of several tools we have used the
representation of a single table. However, for the selection
of a proper WCET analysis tool one would preferably first
construct a kivat diagram showing all the required features
for the analysis (Fig. 6a). Then, one identifies adequate
WCET analysis tool by testing whether the kivat diagram
of the tool covers all the required features.

6 Summary and Conclusion

This paper has given a classification of existing WCET
analysis techniques. The focus has been on clarifying
terms related to WCET analysis and categorising features
of WCET analysis techniques.

Three fundamental orthogonal aspects of WCET anal-
ysis have been identified:representation level, flow facts
andexec-time modeling. A “feature-space” has been con-
structed that assigns the different features of WCET analy-
sis techniques to these three aspects.

Based on the different features and requirements of
WCET analysis frameworks a classification scheme has
been introduced. With this scheme it is easy to evaluate
and identify WCET analysis techniques that are appropriate
for the requirements of a certain target hardware and tool
interface.

A case study illustrated the use of our classification
scheme for a number of existing WCET analysis frame-
works.
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