Transformation of Path Information for WCET Analysis during
Compilation

Raimund Kirner, Peter Puschner
Institut fiir Technische Informatik
Technische Universitat Wien
Treitlstrae 3/182/1
A-1040 Wien, Austria
{raimund,peter } @vmars.tuwien.ac.at

Abstract

Performing worst-case execution time (WCET)
analysis on machine code with program path annota-
tion provided at high-level source code level requires the
transformation of path annotations from the source-
code level to assembly/object-code level. This path-
information transformation can be done outside or in-
tegrated into the compiler during code compilation. The
first approach is easier to implement but lacks for the
support of strong code optimizations performed by the
compiler because the external tool would have to make
guesses about optimizations. In this paper we present
an approach for the program code compilation that inte-
grates the transformation of program path information
into the compiler. Path information is transformed
through all compiler stages to the adequate path infor-
mation for the corresponding assembly code level. The
WCET analysis tool processes the program at assembly
code level with the correctly transformed program-path
information to obtain accurate runtime bounds. Sev-
eral experiments were performed to demonstrate the
importance of supporting the transformation of path-
information in aggressively optimizing compilers.

1 Introduction

WCET analysis has to deal with two main subprob-
lems, the problem of determining feasible and infeasi-
ble execution paths of an application program and the
problem of modeling the worst-case behavior of exe-
cutable code on a given hardware platform.

Within the last years researchers produced valuable
solutions in both mentioned areas. With respect to
modeling of hardware, WCET research does not just

provide solutions for simple CPU and hardware archi-
tectures as documented in [10, 14, 17]. Recent work
produced a variety of results for modeling the effects
of performance-improving mechanisms of today’s pro-
cessors on WCET. The proposed techniques take into
account instruction pipelines [7, 12, 20], instruction and
data caches [12, 13, 20], parallel execution of instruc-
tions [20], and branch prediction [2].

A number of publications address the automatic
computation of loop bounds and information about fea-
sible and infeasible execution paths.Various approaches
have been taken in this area, including [8].

All techniques that derive path information auto-
matically have only a limited capability to do so. This
is due to the fact that the problem of determining ex-
ecution paths automatically is in general undecidable.
For those cases in which complete information about
feasible and infeasible paths cannot be generated au-
tomatically, the programmer (or code generation tools,
if code is produced automatically) has to provide the
missing information [12, 13, 14, 17].

The following representation problem occurs when
dealing with programmer-supplied information about
execution paths. The programmer communicates with
the WCET tools at the source-code level, i.e., he or she
describes information about (in)feasible paths in terms
of the source program. On the other hand, WCET
analysis needs to operate on the machine program as
produced by the compilation process. During the com-
pilation the program is usually transformed and op-
timized. Thus the logical structure of the machine
program differs significantly from the control struc-
ture of the source program. Due to the structural
changes caused by the code compilation, mapping path
information from the source-code representation to the
machine-level representation tends to be non-trivial.

Since the source codes of industrial-strength com-
pilers are not available to real-time researchers, cur-
rent solutions to the mapping problem are rather built
around existing compilers than into them. The follow-
ing overview shows some solutions of structure map-
ping during compilation.

Co-transformation [3] is an approach of mapping ex-
ecution information from the source code of a program
to the object code for the purpose of WCET analysis.
It analyses the source code to obtain information about
possible execution paths and loop bounds. A language
called Optimization Description Language (ODL) was
designed to describe the transformation effects of the
compiler. Additional information about the performed
transformations of the program structure are provided
by the slightly modified compiler. This approach can
handle several problems introduced by the use of opti-
mizing compilers. A similar approach for the structure
mapping is used in [13].

An example for the integration of the WCET anal-
ysis into the compiler is given by the academic Mod-
ula/R compiler [21] for the MARS architecture [4, 11,
19]. The programming language Modula/R is Mod-
ula with extensions like iteration bounds for loops and
marker/scopes [16] for WCET analysis and constructs
for tasks and messages to support the MARS environ-
ment.

An experiment for the structure mapping between
high-level source and assembly source code is described
by Exler [5]. Exler tries to map path information with-
out using additional information from the compiler.
Therefore the mapping cannot be done for several types
of compiler optimizations. The approach models a sub-
set of compiler optimizations to estimate the correct
mapping. Exler concludes, however, that it is not pos-
sible to find an universal mapping algorithm for map-
ping the program structure without the support by the
compiler.

This paper presents an approach that solves the
problem of structure mapping during compilation by
integrating the mapping process into the compiler.
Therefore an existing C compiler is extended to han-
dle (also) the information about the program timing
behaviour. The structure mapping is done completely
by the compiler. No assumptions about the compiler’s
compilation technique have to be made by the user.

The paper is structured as follows: Section 2 gives
an overview of the WCET analysis tool chain and the
syntax of the programming language that was defined
to include timing information. Section 3 presents the
integration of the structure mapping into the compiler.
Section 4 shows the translation of an example program
and the result of the WCET analysis for this program,

using our path-transformation technique. Finally, Sec-
tion 5 presents conclusions and plans for future work.

2 Framework and Assumptions
2.1 General Structure of the WCET tool

The WCET analysis environment consists of several
logically separated function blocks. It is the aim of
this paper to propose a set of tools rather than a single
tool to enable composability and software re-use. So-
lutions of a monolithic WCET tool as described in [21]
can probably lead to simpler implementations since all
interfaces can be designed for WCET analysis and in-
tegrated into a single tool. But this approach tends
to produce much more implementation work since all
components have to be implemented for the designed
internal data structures.

WCET ANALYSI S

hi gh-1 evel
source code

STANDARD CODE GENERATI ON

COVPI LER \
assenbl y assenbl y
| code code

ASSEMBLER

ASSEMBLER

DI SASSEMBLER LI NKER

e
code
(ASSENBLY CODE REFI NENENT) I LP-
probl em
assenbl y LOW LEVEL -
code _{ WCET TOOL ELP SO'VERJ
| LP-
sol ution
WCET resul t WCET resul t
(assenbly (hi gh-1evel
code) sour ce)

Figure 1. Framework for WCET Analysis

As written above, the approach in this paper uses
several tools for specific functions inside the evaluation
process. Some of them are standard software tools with
slight or no modifications at all.

The whole framework for WCET analysis is shown
in Figure 1. Tools that process information or data are
displayed as ovals. Rectangles represent the processed
information or data. The WCET analysis is shown in
the left part of the figure, labeled WCET analysis. The
right part, called standard code generation, is the func-
tionality of a normal program development framework
without WCET analysis.

2.1.1 Translation of the Source Code

This part covers the translation of the high-level source
code and its WCET information into an annotated as-
sembly source file. The corresponding tools in Figure 1
are the compiler, assembler, disassembler and the in-
struction matching tool.

The Compiler: The compiler parses a program writ-
ten in WCETC (see Section 2.2 for details) which
is annotated with WCET path-information. The
compiler records and matches this information to
the corresponding intermediate code of the pro-
gram. The compiler also keeps track of this rela-
tionship through all transformation and optimiza-
tion steps up to the output of the assembly source.

The Assembler: The assembler produces the object
code of an assembly source file. It is used in com-
bination with a disassembler to generate an assem-
bly source without pseudo instructions.

The Linker: The linker is only used for code genera-
tion but not for WCET analysis.

Assembly Code Refinement: Some assembly in-
structions emitted by the compiler are pseudo in-
structions. They are resolved by the assembler.
Such a pseudo instruction can be translated into
different machine codes dependent on the whole
program. Examples are branch instructions where
the substitutes for pseudo instructions depend on
how far the branch destination is located from the
branch.

2.1.2 WCET Analysis

WCET analysis calculates safe upper bounds for the
worst-case execution time of a program. The analysis
is done at machine-code level. The WCET results are
back-annotated both to the high-level source code and
the assembly code.

Low-Level WCET Tool: The low-level WCET tool
performs WCET calculations for given assem-
bly source files. The source files have to con-

tain WCET annotations similar to the hardware-
independent intermediate code of the compiler as
described in Section 3.

This tool parses the assembly source and all com-
ments that contain WCET annotations. With
these annotations it constructs a linear program-
ming problem.

ILP Solver: Integer linear programming (ILP) [1] is
used to calculate the WCET of a program. The
number of restrictions of the ILP problem depend
on the number of basic blocks inside the program.

Back-Annotation: The back-annotation transforms
the WCET information calculated for a program
to a representation which is readable for the user.
The result could be for example embedded into the
source file as it is shown in Figure 1.

2.2 Programming Language and Notation for De-
scribing Path Information

The presented approach is based on additional infor-
mation about the runtime behaviour of the program to
enable automatic WCET analysis. This additional in-
formation is integrated into the programming language
which we call WCETC. The following criteria have di-
rected the design of the syntax of WCETC:

e The language should be derived from a commonly
used programming language to increase its accep-
tance and reduce the learning effort for program-
mers.

e It has to provide annotations to describe the exe-
cution paths of the program for static WCET anal-
ysis. The minimum annotations would be loop
bounds to describe the maximum execution fre-
quencies of loop statements.

e To enhance the quality of the calculated WCET,
the language should have additional annotations
to describe (in)feasible paths.

To meet the first requirement the syntax of wCceTC
is derived from ANSI C with several extensions and re-
strictions (e.g.: no use of goto ..., see [9] for details).
More precisely it is a superset of a subset of ANSI C.
The annotations about the timing behaviour are used
to restrict the possible execution paths through the
program flow graph, a dynamic data structure, which
is generated from the analyzed program code by the
WCET analysis tool.

DO_LOOP: "do"
"maxi unt __int_const__ "iterations"
C_STMI
“while" "(" __expression__ ")" ";"
C_STMI: __standard_C_stnt__ | SCOPE

Figure 2. Syntax of do-Loops in WCETC.

SCOPE: "scope” | DENTI FI ER "{"
MC_STMI'S
RESTRI CTI ONS

}
MC_STMIS: MC_STMT MC_STMTS | $
MC_STMI: MARKER | C_STMT

MARKER: "marker" |DENTIFIER ";"
C_STMI: __standard_C stnt__ | SCOPE

RESTRI CTI ONS: RESTRICTION RESTRICTIONS | $
RESTRI CTION: S| MPLE_RESTRI CTI ON | ALT_RESTRI CTI ON

SI MPLE_RESTRICTION: "restriction” RESTRI CTI ON_EXPR "; "
ALT_RESTRI CTI O\ "alt_restriction" ALT_EXPR LIST ";"
ALT_EXPR_LI ST: RESTRICTION_EXPR "," ALT_EXPR LI ST |
RESTRI CTI ON_EXPR
RESTRI CTI ON_EXPR: RESTRI CTI ON_LI ST RESTRICTION LIM T
RESTRI CTI ON_LI ST: MULT_MARKER "+" RESTRI CTI ON_LI ST |
MULT_MARKER
RESTRICTION_LIM T: RELOP RESTRI CTI ON_LI ST |
RELOP | NT_CST
MULT_MARKER: " (" INT_CST ")" "*" | DENTIFIER |
| DENTI FI ER

Figure 3. Syntax of Markers/Scopes in wcetC.

2.2.1 Notation for Loops

For static WCET analysis the information about loop
bounds is mandatory. This information cannot be ex-
tracted from the source code in general. It is given
explicitly in the header of every loop by a constant
number. The language WCETC supports three types of
loops which are derived from the standard do-, while-
and for-loop.

An example of these extensions is given for the do-
loop in Figure 2.

2.2.2 Notation for Feasible Paths

Information about (in)feasible program paths is used to
improve the quality of the calculated WCET of a pro-
gram. Infeasible paths are paths through the program
flow graph that cannot occur during program execu-
tion. They are described by the use of markers and
scopes [17].

The markers are used to label an edge of the exe-
cution path of the program flow graph. These labels
are used to express restrictions for the execution count
of edges of program-flow paths for each WCET scope
(see below). The declared markers are not bound to
a certain scope. They can be used for restrictions in
any scope enclosing them. The term scope used above
is different from the standard scoping scheme of def-
initions as used in programming languages. Here, a
scope defines a code range, on which restrictions can
be defined.

The semantic of restrictions is to declare the maxi-
mum execution count of certain paths in the flow graph

(indicated by a marker) in relation to the execution
count of the start node of the scope. Therefore it is,
for example, possible to surround two sequential loops
with a scope and declare the bound of both loops de-
pendent on each other. The latter concept was also
introduced as "loop-sequences”, see [15].

Figure 3 shows the syntax of the annotations by
markers and scopes. The productions of the C_STMT
(the C statements of ANSI C) are extended by the
SCOPE statement, which is like the standard block state-
ment given by curly brackets. The token INT_CST is
used to express an integer constant.

3 Transformation of Path Information

WCET analysis for the computation of execution
time bounds with high quality is in general based on
the analysis of machine code. To increase readability,
the machine code is usually represented as assembly
source code. For the analysis of high-level program-
ming language source code a mechanism is needed to
transform the knowledge about the execution behavior
of source statements into a timing description for the
corresponding assembly source.

Since manual transformation is infeasible and a
compiler-external transformation does not support
compiler optimizations, the chosen approach integrates
the transformation into the compiler. This requires
several modifications of the compiler but leads to a
more powerful transformation handling than the other.

The transformation method presented in this paper
realizes the third approach. The compiler GCC! was
enhanced with the capability of generating assembly
code annotated with timing information that is derived
from a WCETC source code. GCC was chosen, since its
source code is available under GNU GPL2.

3.1 Overview of the Compiler Architecture

The GCC compiler works as a single-pass compiler.
It translates the source language statements to a GCC
specific intermediate code called RTL (Register Trans-
fer Language) [6]. RTL consists of a double linked list
of imperative statements which are in the first stage
hardware-independent.

Figure 4 gives a simple overview of the processing
steps of GCC for code generation. The syntax anal-
ysis is done with assistance from the lexical analysis
and generates the intermediate code for every function
inside a source file. This intermediate code is then fur-
ther processed in a number of steps that transform the

LGNU Compiler Collection
2General Public License, details at http://www.gnu.org

Syntax Anal ysis («— Lexical Analysis

Internediate Code Transformations
and Optim zations

Assenbl er CQut put

[I nt er nedi at e code}

Figure 4. Compiler Architecture Overview

hardware independent representation into a specialized
representation for the target hardware. Since all map-
pings from pseudo registers to hardware registers and
stack memory are done during this transformation it is
finally a straight-forward process to emit the assembly
statements from the RTL representation.

3.2 Intermediate Code Statements for WCET An-
notations

The information about the WCET behaviour given
by the annotations in the source code is represented in
note-statements in the intermediate code. These note-
statements do not affect the behaviour of the compiled
program and are transformed without change during
the steps of compilation. If any optimizations are car-
ried out that also effect the note-statements, the note-
statements are changed, modified or deleted in parallel
with the nodes that represent the code. The following
note-statements are used to express the information for
WCET analysis inside the intermediate code:

NOTE_INSN_WCET_MARKER (_name_): This
note assigns a path name to the current edge of
the program flow graph. The path names are used
to express path restrictions for certain edges of the

flow graph. This type of note is necessary for the
WCET analysis tool.

NOTE_INSN_WCET_RESTRICTION
(-restriction_): This type of note is used
at the end of blocks to express restrictions to
various edges of the flow graph inside the block.
Here a block does not mean a basic block with
strictly sequentially executed statements. A
block refers to a functional block, e.g., a whole
loop. There can be more than one restriction in
sequential order.

NOTE_INSN_WCET_ALT _RESTRICTION
(-restrictions_): This type of note is used at
the end of blocks to express a set of alternative
constraints to various edges of the flow graph

inside the block. During WCET analysis only
the restriction that leads to the worst-case ex-
ecution time is selected. This requires multiple
WCET evaluations of the program, depending
on the number of alternative constraints for each
alternative restrictions.

The following subsection describes the transforma-
tion of WCET annotations given by the programmer
inside the high-level source code into the intermediate
code. The type of intermediate code that is used in-
side the compiler to represent the WCET information
is shown. The representation is given at this level, be-
cause it is hardware independent, but still similar to the
representation used for WCET analysis, the assembly
language representation.

The following notation is used to describe further
statements that the compiler inserts into the interme-
diate code to describe the program path information.

code_label(_name_): This statement represents a la-
bel with a specified name.

loop-body: This covers all the statements that are
representing the statements of the body of a loop.

test_code: This statement calculates the end condi-
tion of a loop. Hardware dependent details are
not mentioned at this representation level.

cond_jump_label(_-name_): This statement repre-
sents a conditional jump instruction to the target
as given in _name..

jmp_label(_name_): This statement is an uncondi-
tional jump to the given target name_. A state-
ment like this implies a barrier inside the sequen-
tial order of the statements. This means the prede-
cessor of the following statement must be a jump
instruction or a conditional statement. Otherwise
the following statement belongs to unreachable
code and can be ignored for WCET analysis.

3.3 Program Structure Transformation

This section describes the transformation of annota-
tions in high-level constructs to a proper representation
as intermediate code. The transformation is described
for the do-loop (see Figure 5, 6 and 7). The transfor-
mation of other program structures is similar.

The iteration bounds of loops are expressed with
annotations in the WCETC source code. These itera-
tion bounds are expressed at intermediate code level by
two markers and a restriction for them. Markers and

do maximum INT_CST iterations
C_STMT
while (EXPR) ;

Figure 5. Syntax for an Annotated do-Loop

restrictions are used to build constraints for WCET cal-
culation which is based on integer linear programming.
They are described in more depth in [18].

The names of the markers are constructed in the
form LOOP_MARKER_zz where zz is a consecutive num-
ber. One marker is placed in front of the loop and the
second marker is placed inside the body of the loop.
The restriction on these markers is inserted after the
loop. It is derived from the loop-bound annotation of
the source code.

The final arrangement of the statements relating
to loops depends on the optimizations performend on
them. In the following example intermediate code ex-
amples are given both for full (flag -03) and no opti-
mizations (-00) of the compiler.

NOTE_| NSN_WCET_MARKER(LOOP_MARKER_X)
NOTE_| NSN_LOOP_BEG

code | abel (a);

N_VWCET_MARKER(LOOP_MARKER y)

| oop body;
NOTE_| NSN_LOOP_CONT

test _code;

cond_| unp_| abel (b);

NOTE_| NSN_WCET_RESTRI CTl ON(LOOP_MARKER y <= | NT_CST*LOOP_MARKER x)
code_| abel (c);

Figure 6. Intermediate Code for an Annotated do-
Loop without Optimizations

NOTE_| NSN_WCET_ MARKER(LOOP_NMARKER_x)
NOTE_| NSN_LOOP_BEG
code | abel (a);
I'NSN_WCET_ MARKER(LOCP_MARKER _y)
| oop- body;
NOTE_| NSN_LOOP_CONT
test _code;
cond_j unp_| abel (a);
NOTE_| NSN_LOOP_END
NOTE_| NSN_WCET_RESTRI CT| ON(LOOP_MARKER y <= | NT_CST*LOOP_MARKER x)

Figure 7. Intermediate Code for an Annotated do-
Loop with Optimizations

Figure 5 shows the syntax of the do-loop. Figures 6
and 7 provide the corresponding intermediate code for
the different optimization levels of the compiler. The
comparison of these figures shows the influence of using
different compiler optimization levels. The path anno-
tations are adapted when the code structure is changed
during the compilation process.

4 Experiments

/* processor: n68000 */
/* nmenmory wait states (r/w): 0/ 0 */

----- CICLES(bUbe e) = 47034 -----
- -#define N_EL 10

:/* Sort an array of 10 el ements with bubble-sort */
-void bubble (int arr[])

/* Definition of local variables */
int i, j,

/* Main body */
for (i=N_EL;
P> 1

i--)
maxi num (N_EL - 1) iterations

maxi num (N_EL - 1) iterations

if (arr[j-1] > arr[j])

{
23| 9| 7614 - tenp -arr[] 1]
24| 14| 11988 - arr(j-1] = arr[J]
25| 6| 6642 - arr[j] = tenp;
26 }

Figure 8. Bubble-Sort Algorithm (without opti-
mization)

/* processor: m68000 */
/* nmemory wait states (r/w): 0/ 0 */

————— CVCLES(bubbl e) = 8210 -----
- def i ne N EL 10

Sort an array of 10 el ements with bubble-sort */
--void bubble (int arr[])

/* Definition of local variables */
int i, j, tenp;

/* Main body */
scope BS

for (i=N_EL;
T 1

i)
maxi num (N_EL - 1) iterations
for (j =2;
<=
144
maxi num (N_EL - 1) iterations
if (arr[j-1] > arr[j])
{

marker M
lerrp—arr[j-l]:
arr[j-1] =arr[j];
arr[j] :ten‘p;
}
}

}
restriction M<= (N_EL*(N_EL-1)/2);

}

34| 4 52 -}

Figure9. Bubble-Sort Algorithm (optimization
and consideration of infeasible paths)

This section describes the WCET calculations of
some sample programs. The evaluated programs are
standard algorithms for sorting and searching of data
in a data vector. These examples demonstrate the im-
portance of being able to transform path annotations
during compiler optimizations. Therefore the WCET
analysis was performed with and without strong op-
timizations. The WCET compiler supports powerful
annotations to describe (in)feasible paths. To demon-
strate the importance of such annotations a comparison
of the results between using simple iteration bounds for

Optimization level

Algorithm none (00) | full (03)
bubble sort 47034 9146
bubble sort, with markers 35442 8210
selection sort, with markers 44830 14948
binary search 2014 810

Table 1. Calculated WCET [cycles] of pro-
grams

nested loops and using an advanced description of the
iteration count by markers and scopes is given.

The experiments are performed by analyzing small
sample programs written in WCETC (Section 2.2).
Each program is analyzed twice, first without (flag -00)
and second with full code optimizations (flag -03) per-
formed by the compiler. The low-level WCET tool is
directly called by the compiler to calculate the WCET
of the compiled code. The results of the WCET tool
are mapped to the corresponding lines of the source
code. This mapping is called back-annotation.

For back-annotation, three data columns are added
on the left side of the source file:

e The line number in the source file.

e The number of assembly instructions that have
been produced for the constructs of this source
line.

e The absolute number of cycles of the source line
contributing to the worst-case execution time.

An additional header is placed to inform about the
hardware properties of the target system. The cho-
sen target platform was based on a MC68000 processor
from Motorola.

4.1 Results

Two sorting algorithms (bubble sort and selection
sort) and one search algorithm (binary search) were an-
alyzed to see effects of different compiler optimizations
and annotations. The bubble sort algorithm was ana-
lyzed both with complete and with basic annotations
to show the necessity of supporting transformation of
complete annotation constructs by the compiler.

The calculated WCET of all sample programs is
summarized in Table 1.

It is remarkable that the calculated execution time
improved up to 80 percent, when using full compiler
optimizations. This stresses the necessity of taking

compiler optimizations into account for WCET anal-
ysis.

The bubble sort algorithm was analyzed in further
detail to demonstrate also the importance of support-
ing the transformation of the full set of annotations
by the WCET analysis framework. Using only loop
bounds makes WCET analysis assume that the body
of the inner loop executes (N — 1)? times, where N
is the maximum length of the input vector. By tak-
ing into account path information that describes the
asymmetric iteration count of the inner loop, WCET
analysis can use the real number of executions of the
inner-loop body, N(N—1)/2 (see Figure 9 for the cor-
responding source code).

Figure 8 shows the WCET results for computation
without code optimizations. The further improvement
of WCET using more accurate annotations by speci-
fying additional (in)feasible paths and using compiler
optimization is given in Figure 9. Note that the calcu-
lated WCET for the code with additional annotations
by markers and scopes is reduced down to about 70
percent.

While it was quite straight-forward to build trans-
formation of path information into the compiler, it
would be arduous and complicated to design a WCET
framework for these requirements where the structure
transformation of the program is done outside the com-
piler. The optimization techniques used by a modern
compiler would require an enormous set of rules to be
modeled by the external transformation tool. On the
other hand, the examples have shown the importance
for WCET analysis to have effective annotations for
modeling the runtime behaviour of a program.

5 Summary and Conclusion

We described a technique for compiling programs
with path information for WCET analysis. We pre-
sented a WCET tool chain that is suitable for the
integration of program path transformation into the
compiler. This leads to the ability of handling more
complex program code optimizations instead of just
performing this transformation outside the compiler.
We introduced a programming language that supports
statements to annotate path information inside the
program and presented a compiler concept for trans-
forming this information down to the machine code.
The programming language was derived from ANSI C
with several restrictions and additional statements to
support the WCET analysis.

The experiments have shown the necessity of sup-
porting strong code optimizations during the compila-
tion process. The importance of an effective concept

for program path annotations for the programming lan-
guage was also pointed out by these experiments.

For the future work we plan to extend this WCET
analysis framework to support processors with perfor-
mance enhancing features such as pipelines or caches.

References

[1]

2]

[10]

R. E. Burkhard. Methoden der ganzzahligen Op-
timierung. Springer-Verlag, 1972.

A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Real-Time Systems, 18(2):249-274, May 2000.

J. Engblom, A. Ermedahl, and P. Altenbernd. Fa-
cilitating Worst-Case Execution Time Analysis for
Optimized Code. Technical report, Uppsala Uni-
versity, Uppsala, Sweden, 1998.

H. Kopetz et al. Real-Time System Development:
The Programming Model of MARS. In Proc. of
the International Symposium on Autonomous De-
centralized Systems, pages 290-299, 1993.

M. Exler. Propagierung von Pfadinformation
fiir die Analyse von Programmlaufzeiten. Mas-
ter’s thesis, Technische Universitdt Wien, Vienna,
Dezember 1999.

Free Software Foundation, editor. Using and Port-
ing GNU CC. Number 2.7.2 in ISBN 1-882114-
66-3. Free Software Foundation, Boston, USA,
November 1995.

C. A. Healy, R. D. Arnold, F. Mueller, D. Whal-
ley, and M. G. Harmon. Bounding Pipeline and
Instruction Cache Performance. In IEEE Trans-

actions on Computers, number 48 in 1, January
1999. old ID: HEALY:99.

C. A. Healy, M. Sjodin, and D. Whalley. Bound-
ing Loop Iterations for Timing Analysis. In Pro-
ceedings of the IEEE Real-Time Technology and
Aplications Symposium, pages 12-21, June 1998.
old ID: HEALY:IEEE9S.

R. Kirner. Integration of Static Runtime Analysis
and Program Compilation. Master’s thesis, Tech-
nische Universitit Wien, Vienna, Austria, May
2000.

E. Klingerman and A. Stoyenko. Real-Time Eu-
clid: A Language for Reliable Real-Time Sys-
tems. IEEE Transactions on Software Engineer-
ing, 12(9):941-989, September 1986.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz,
P. Puschner, and W. Schiitz. The Design of Real-
Time Systems: From Specification to Implementa-
tion and Verification. IEEE Software Engineering
Journal, 6(3):72-82, May 1991.

Y.-T. S. Li, S. Malik, and A. Wolfe. Perfor-
mance Estimation of Embedded Software with
Instruction Cache Modeling. In Proceedings
of the IEEE/ACM International Conference on
Computer-Aided Design, pages 380-387, Novem-
ber 1995.

D. Macos and F. Mueller. Integrating Gnat/Gce
into a Timing Analysis Environment. In Work-
in-Progress of EuroMicro Workshop on Real- Time
Systems, pages 15-18, June 1998.

C. Y. Park and A. C. Shaw. Experiments with
a Program Timing Tool based on a Source-Level
Timing Schema. Computer, 24(5):48-57, May
1991.

P. Puschner. Ermittlung der maximalen Abar-
beitungszeit von Programmen. Master’s thesis,
Technische Universitit Wien, Vienna, September
1988.

P. Puschner. Zeitanalyse von FEchtzeitprogram-
men. PhD thesis, Technische Universitdt Wien,
Vienna, December 1993. old ID: PUSCHNER:93.

P. Puschner and C. Koza. Calculating the Max-
imum Execution Time of Real-Time Programs.
The Journal of Real-Time Systems, 1:159-176,
1989.

P. Puschner and A. V. Schedl. A Tool for the
Computation of the Worst Case Task Execution
Times. In Proceedings Euromicro Workshop on
Real-Time Systems, pages 224-229, Oulu, Fin-
land, June 1993.

J. Reisinger. Konzeption und Analyse eines zeit-
gesteuerten Betriebssystems fir Echtzeitanwen-
dungen. PhD thesis, Technische Universitit Wien,
Vienna, Austria, April 1993.

F. Stappert and P. Altenbernd. Complete worst-
case execution time analysis of straight-line hard
real-time programs. Journal of Systems Architec-
ture, 46(4):339-355, 2000.

A. Vrchoticky. The Basis for Static Ezxecution
Time Prediction. PhD thesis, Technische Univer-
sitit Wien, Vienna, Austria, April 1994.

