
Transformation of Path Information for WCET Analysis during

Compilation

Raimund Kirner� Peter Puschner
Institut f�ur Technische Informatik

Technische Universit�at Wien
Treitlstra�e �������
A	�
�
 Wien� Austria

fraimund�peterg�vmarstuwienacat

Abstract

Performing worst�case execution time �WCET�
analysis on machine code with program path annota�
tion provided at high�level source code level requires the
transformation of path annotations from the source�
code level to assembly�object�code level� This path�
information transformation can be done outside or in�
tegrated into the compiler during code compilation� The
�rst approach is easier to implement but lacks for the
support of strong code optimizations performed by the
compiler because the external tool would have to make
guesses about optimizations� In this paper we present
an approach for the program code compilation that inte�
grates the transformation of program path information
into the compiler� Path information is transformed
through all compiler stages to the adequate path infor�
mation for the corresponding assembly code level� The
WCET analysis tool processes the program at assembly
code level with the correctly transformed program�path
information to obtain accurate runtime bounds� Sev�
eral experiments were performed to demonstrate the
importance of supporting the transformation of path�
information in aggressively optimizing compilers�

� Introduction

WCET analysis has to deal with two main subprob�
lems� the problem of determining feasible and infeasi�
ble execution paths of an application program and the
problem of modeling the worst�case behavior of exe�
cutable code on a given hardware platform�

Within the last years researchers produced valuable
solutions in both mentioned areas� With respect to
modeling of hardware� WCET research does not just

provide solutions for simple CPU and hardware archi�
tectures as documented in ���� ��� ��	� Recent work
produced a variety of results for modeling the e
ects
of performance�improving mechanisms of today�s pro�
cessors on WCET� The proposed techniques take into
account instruction pipelines ��� ��� ��	� instruction and
data caches ���� �� ��	� parallel execution of instruc�
tions ���	� and branch prediction ��	�

A number of publications address the automatic
computation of loop bounds and information about fea�
sible and infeasible execution paths�Various approaches
have been taken in this area� including ��	�

All techniques that derive path information auto�
matically have only a limited capability to do so� This
is due to the fact that the problem of determining ex�
ecution paths automatically is in general undecidable�
For those cases in which complete information about
feasible and infeasible paths cannot be generated au�
tomatically� the programmer �or code generation tools�
if code is produced automatically� has to provide the
missing information ���� �� ��� ��	�

The following representation problem occurs when
dealing with programmer�supplied information about
execution paths� The programmer communicates with
the WCET tools at the source�code level� i�e�� he or she
describes information about �in�feasible paths in terms
of the source program� On the other hand� WCET
analysis needs to operate on the machine program as
produced by the compilation process� During the com�
pilation the program is usually transformed and op�
timized� Thus the logical structure of the machine
program di
ers signi�cantly from the control struc�
ture of the source program� Due to the structural
changes caused by the code compilation� mapping path
information from the source�code representation to the
machine�level representation tends to be non�trivial�



Since the source codes of industrial�strength com�
pilers are not available to real�time researchers� cur�
rent solutions to the mapping problem are rather built
around existing compilers than into them� The follow�
ing overview shows some solutions of structure map�
ping during compilation�

Co�transformation �	 is an approach of mapping ex�
ecution information from the source code of a program
to the object code for the purpose of WCET analysis�
It analyses the source code to obtain information about
possible execution paths and loop bounds� A language
called Optimization Description Language �ODL� was
designed to describe the transformation e
ects of the
compiler� Additional information about the performed
transformations of the program structure are provided
by the slightly modi�ed compiler� This approach can
handle several problems introduced by the use of opti�
mizing compilers� A similar approach for the structure
mapping is used in ��	�

An example for the integration of the WCET anal�
ysis into the compiler is given by the academic Mod�
ula�R compiler ���	 for the MARS architecture ��� ���
��	� The programming language Modula�R is Mod�
ula with extensions like iteration bounds for loops and
marker�scopes ���	 for WCET analysis and constructs
for tasks and messages to support the MARS environ�
ment�

An experiment for the structure mapping between
high�level source and assembly source code is described
by Exler ��	� Exler tries to map path information with�
out using additional information from the compiler�
Therefore the mapping cannot be done for several types
of compiler optimizations� The approach models a sub�
set of compiler optimizations to estimate the correct
mapping� Exler concludes� however� that it is not pos�
sible to �nd an universal mapping algorithm for map�
ping the program structure without the support by the
compiler�

This paper presents an approach that solves the
problem of structure mapping during compilation by
integrating the mapping process into the compiler�
Therefore an existing C compiler is extended to han�
dle �also� the information about the program timing
behaviour� The structure mapping is done completely
by the compiler� No assumptions about the compiler�s
compilation technique have to be made by the user�

The paper is structured as follows� Section � gives
an overview of the WCET analysis tool chain and the
syntax of the programming language that was de�ned
to include timing information� Section  presents the
integration of the structure mapping into the compiler�
Section � shows the translation of an example program
and the result of the WCET analysis for this program�

using our path�transformation technique� Finally� Sec�
tion � presents conclusions and plans for future work�

� Framework and Assumptions

��� General Structure of the WCET tool

The WCET analysis environment consists of several
logically separated function blocks� It is the aim of
this paper to propose a set of tools rather than a single
tool to enable composability and software re�use� So�
lutions of a monolithic WCET tool as described in ���	
can probably lead to simpler implementations since all
interfaces can be designed for WCET analysis and in�
tegrated into a single tool� But this approach tends
to produce much more implementation work since all
components have to be implemented for the designed
internal data structures�

high-level
source code

assembly
code

COMPILER

object code

DISASSEMBLER

ASSEMBLY CODE REFINEMENT

LOW-LEVEL 
WCET TOOL

ILP-
problem

ILP-
solution

ILP-SOLVER

WCET result
(assembly
code)

WCET result
(high-level
source)

ASSEMBLER

LINKER

executeable

STANDARD CODE GENERATIONWCET ANALYSIS

assembly
code

assembly
code

assembly
code

ASSEMBLER

object code

Figure �� Framework for WCET Analysis

As written above� the approach in this paper uses
several tools for speci�c functions inside the evaluation
process� Some of them are standard software tools with
slight or no modi�cations at all�



The whole framework for WCET analysis is shown
in Figure �� Tools that process information or data are
displayed as ovals� Rectangles represent the processed
information or data� The WCET analysis is shown in
the left part of the �gure� labeledWCET analysis� The
right part� called standard code generation� is the func�
tionality of a normal program development framework
without WCET analysis�

����� Translation of the Source Code

This part covers the translation of the high�level source
code and its WCET information into an annotated as�
sembly source �le� The corresponding tools in Figure �
are the compiler� assembler� disassembler and the in�
struction matching tool�

The Compiler� The compiler parses a program writ�
ten in wcetC �see Section ��� for details� which
is annotated with WCET path�information� The
compiler records and matches this information to
the corresponding intermediate code of the pro�
gram� The compiler also keeps track of this rela�
tionship through all transformation and optimiza�
tion steps up to the output of the assembly source�

The Assembler� The assembler produces the object
code of an assembly source �le� It is used in com�
bination with a disassembler to generate an assem�
bly source without pseudo instructions�

The Linker� The linker is only used for code genera�
tion but not for WCET analysis�

Assembly Code Re�nement� Some assembly in�
structions emitted by the compiler are pseudo in�
structions� They are resolved by the assembler�
Such a pseudo instruction can be translated into
di
erent machine codes dependent on the whole
program� Examples are branch instructions where
the substitutes for pseudo instructions depend on
how far the branch destination is located from the
branch�

����� WCET Analysis

WCET analysis calculates safe upper bounds for the
worst�case execution time of a program� The analysis
is done at machine�code level� The WCET results are
back�annotated both to the high�level source code and
the assembly code�

Low�Level WCET Tool� The low�level WCET tool
performs WCET calculations for given assem�
bly source �les� The source �les have to con�

tain WCET annotations similar to the hardware�
independent intermediate code of the compiler as
described in Section �

This tool parses the assembly source and all com�
ments that contain WCET annotations� With
these annotations it constructs a linear program�
ming problem�

ILP Solver� Integer linear programming �ILP� ��	 is
used to calculate the WCET of a program� The
number of restrictions of the ILP problem depend
on the number of basic blocks inside the program�

Back�Annotation� The back�annotation transforms
the WCET information calculated for a program
to a representation which is readable for the user�
The result could be for example embedded into the
source �le as it is shown in Figure ��

��� Programming Language and Notation for De�

scribing Path Information

The presented approach is based on additional infor�
mation about the runtime behaviour of the program to
enable automatic WCET analysis� This additional in�
formation is integrated into the programming language
which we call wcetC� The following criteria have di�
rected the design of the syntax of wcetC�

� The language should be derived from a commonly
used programming language to increase its accep�
tance and reduce the learning e
ort for program�
mers�

� It has to provide annotations to describe the exe�
cution paths of the program for static WCET anal�
ysis� The minimum annotations would be loop
bounds to describe the maximum execution fre�
quencies of loop statements�

� To enhance the quality of the calculated WCET�
the language should have additional annotations
to describe �in�feasible paths�

To meet the �rst requirement the syntax of wcetC
is derived from ANSI C with several extensions and re�
strictions �e�g�� no use of goto � � � � see ��	 for details��
More precisely it is a superset of a subset of ANSI C�
The annotations about the timing behaviour are used
to restrict the possible execution paths through the
program �ow graph� a dynamic data structure� which
is generated from the analyzed program code by the
WCET analysis tool�



   DO_LOOP: "do"
            "maximum" __int_const__ "iterations"
            C_STMT
            "while" "(" __expression__ ")" ";"
   C_STMT: __standard_C_stmt__ | SCOPE

Figure �� Syntax of do�Loops in wcetC�

   SCOPE: "scope" IDENTIFIER "{"
          MC_STMTS
          RESTRICTIONS
          "}"
   MC_STMTS: MC_STMT MC_STMTS | $
   MC_STMT:  MARKER | C_STMT
   MARKER:   "marker" IDENTIFIER ";"
   C_STMT:   __standard_C_stmt__ | SCOPE
 
   RESTRICTIONS: RESTRICTION RESTRICTIONS | $
   RESTRICTION:  SIMPLE_RESTRICTION | ALT_RESTRICTION
 
   SIMPLE_RESTRICTION: "restriction"     RESTRICTION_EXPR ";"
   ALT_RESTRICTION:    "alt_restriction" ALT_EXPR_LIST ";"
 
   ALT_EXPR_LIST: RESTRICTION_EXPR "," ALT_EXPR_LIST |
                  RESTRICTION_EXPR
   RESTRICTION_EXPR: RESTRICTION_LIST RESTRICTION_LIMIT
   RESTRICTION_LIST: MULT_MARKER "+" RESTRICTION_LIST |
                     MULT_MARKER
   RESTRICTION_LIMIT: RELOP RESTRICTION_LIST |
                      RELOP INT_CST
   MULT_MARKER: "(" INT_CST ")" "*" IDENTIFIER |
                IDENTIFIER

Figure �� Syntax of Markers�Scopes inwcetC�

����� Notation for Loops

For static WCET analysis the information about loop
bounds is mandatory� This information cannot be ex�
tracted from the source code in general� It is given
explicitly in the header of every loop by a constant
number� The language wcetC supports three types of
loops which are derived from the standard do�� while�
and for�loop�

An example of these extensions is given for the do�
loop in Figure ��

����� Notation for Feasible Paths

Information about �in�feasible program paths is used to
improve the quality of the calculated WCET of a pro�
gram� Infeasible paths are paths through the program
�ow graph that cannot occur during program execu�
tion� They are described by the use of markers and
scopes ���	�

The markers are used to label an edge of the exe�
cution path of the program �ow graph� These labels
are used to express restrictions for the execution count
of edges of program��ow paths for each WCET scope
�see below�� The declared markers are not bound to
a certain scope� They can be used for restrictions in
any scope enclosing them� The term scope used above
is di
erent from the standard scoping scheme of def�
initions as used in programming languages� Here� a
scope de�nes a code range� on which restrictions can
be de�ned�

The semantic of restrictions is to declare the maxi�
mum execution count of certain paths in the �ow graph

�indicated by a marker� in relation to the execution
count of the start node of the scope� Therefore it is�
for example� possible to surround two sequential loops
with a scope and declare the bound of both loops de�
pendent on each other� The latter concept was also
introduced as �loop�sequences�� see ���	�

Figure  shows the syntax of the annotations by
markers and scopes� The productions of the C STMT

�the C statements of ANSI C� are extended by the
SCOPE statement� which is like the standard block state�
ment given by curly brackets� The token INT CST is
used to express an integer constant�

� Transformation of Path Information

WCET analysis for the computation of execution
time bounds with high quality is in general based on
the analysis of machine code� To increase readability�
the machine code is usually represented as assembly
source code� For the analysis of high�level program�
ming language source code a mechanism is needed to
transform the knowledge about the execution behavior
of source statements into a timing description for the
corresponding assembly source�

Since manual transformation is infeasible and a
compiler�external transformation does not support
compiler optimizations� the chosen approach integrates
the transformation into the compiler� This requires
several modi�cations of the compiler but leads to a
more powerful transformation handling than the other�

The transformation method presented in this paper
realizes the third approach� The compiler GCC� was
enhanced with the capability of generating assembly
code annotated with timing information that is derived
from a wcetC source code� GCC was chosen� since its
source code is available under GNU GPL��

��� Overview of the Compiler Architecture

The GCC compiler works as a single�pass compiler�
It translates the source language statements to a GCC

speci�c intermediate code called RTL �Register Trans�
fer Language� ��	� RTL consists of a double linked list
of imperative statements which are in the �rst stage
hardware�independent�

Figure � gives a simple overview of the processing
steps of GCC for code generation� The syntax anal�
ysis is done with assistance from the lexical analysis
and generates the intermediate code for every function
inside a source �le� This intermediate code is then fur�
ther processed in a number of steps that transform the

�GNU Compiler Collection
�General Public License� details at http���www�gnu�org



Syntax Analysis

Intermediate Code Transformations 
and Optimizations

Lexical Analysis

I
n
t
e
r
m
e
d
i
a
t
e
 
c
o
d
e

Assembler Output

Figure �� Compiler Architecture Overview

hardware independent representation into a specialized
representation for the target hardware� Since all map�
pings from pseudo registers to hardware registers and
stack memory are done during this transformation it is
�nally a straight�forward process to emit the assembly
statements from the RTL representation�

��� Intermediate Code Statements for WCET An�

notations

The information about the WCET behaviour given
by the annotations in the source code is represented in
note�statements in the intermediate code� These note�
statements do not a
ect the behaviour of the compiled
program and are transformed without change during
the steps of compilation� If any optimizations are car�
ried out that also e
ect the note�statements� the note�
statements are changed� modi�ed or deleted in parallel
with the nodes that represent the code� The following
note�statements are used to express the information for
WCET analysis inside the intermediate code�

NOTE INSN WCET MARKER� name �� This
note assigns a path name to the current edge of
the program �ow graph� The path names are used
to express path restrictions for certain edges of the
�ow graph� This type of note is necessary for the
WCET analysis tool�

NOTE INSN WCET RESTRICTION
� restriction �� This type of note is used
at the end of blocks to express restrictions to
various edges of the �ow graph inside the block�
Here a block does not mean a basic block with
strictly sequentially executed statements� A
block refers to a functional block� e�g�� a whole
loop� There can be more than one restriction in
sequential order�

NOTE INSN WCET ALT RESTRICTION
� restrictions �� This type of note is used at
the end of blocks to express a set of alternative
constraints to various edges of the �ow graph

inside the block� During WCET analysis only
the restriction that leads to the worst�case ex�
ecution time is selected� This requires multiple
WCET evaluations of the program� depending
on the number of alternative constraints for each
alternative restrictions�

The following subsection describes the transforma�
tion of WCET annotations given by the programmer
inside the high�level source code into the intermediate
code� The type of intermediate code that is used in�
side the compiler to represent the WCET information
is shown� The representation is given at this level� be�
cause it is hardware independent� but still similar to the
representation used for WCET analysis� the assembly
language representation�

The following notation is used to describe further
statements that the compiler inserts into the interme�
diate code to describe the program path information�

code label� name �� This statement represents a la�
bel with a speci�ed name�

loop�body� This covers all the statements that are
representing the statements of the body of a loop�

test code� This statement calculates the end condi�
tion of a loop� Hardware dependent details are
not mentioned at this representation level�

cond jump label� name �� This statement repre�
sents a conditional jump instruction to the target
as given in name �

jmp label� name �� This statement is an uncondi�
tional jump to the given target name � A state�
ment like this implies a barrier inside the sequen�
tial order of the statements� This means the prede�
cessor of the following statement must be a jump
instruction or a conditional statement� Otherwise
the following statement belongs to unreachable
code and can be ignored for WCET analysis�

��� Program Structure Transformation

This section describes the transformation of annota�
tions in high�level constructs to a proper representation
as intermediate code� The transformation is described
for the do�loop �see Figure �� � and ��� The transfor�
mation of other program structures is similar�

The iteration bounds of loops are expressed with
annotations in the wcetC source code� These itera�
tion bounds are expressed at intermediate code level by
two markers and a restriction for them� Markers and



do maximum INT CST iterations
C STMT

while � EXPR � �

Figure �� Syntax for an Annotated do�Loop

restrictions are used to build constraints for WCET cal�
culation which is based on integer linear programming�
They are described in more depth in ���	�

The names of the markers are constructed in the
form LOOP MARKER xx where xx is a consecutive num�
ber� One marker is placed in front of the loop and the
second marker is placed inside the body of the loop�
The restriction on these markers is inserted after the
loop� It is derived from the loop�bound annotation of
the source code�

The �nal arrangement of the statements relating
to loops depends on the optimizations performend on
them� In the following example intermediate code ex�
amples are given both for full ��ag �O�� and no opti�
mizations ��O�� of the compiler�

   NOTE_INSN_WCET_MARKER(LOOP_MARKER_x)
   NOTE_INSN_LOOP_BEG
     code_label(a);
   NOTE_INSN_WCET_MARKER(LOOP_MARKER_y)
     loop-body;
   NOTE_INSN_LOOP_CONT
     test_code;
     cond_jump_label(b);
     jmp_label(c);
     code_label(b);
     jmp_label(a);
   NOTE_INSN_LOOP_END
   NOTE_INSN_WCET_RESTRICTION(LOOP_MARKER_y <= INT_CST*LOOP_MARKER_x)
     code_label(c);

Figure 	� Intermediate Code for an Annotated do�
Loop without Optimizations

   NOTE_INSN_WCET_MARKER(LOOP_MARKER_x)
   NOTE_INSN_LOOP_BEG
     code_label(a);
   NOTE_INSN_WCET_MARKER(LOOP_MARKER_y)
     loop-body;
   NOTE_INSN_LOOP_CONT
     test_code;
     cond_jump_label(a);
   NOTE_INSN_LOOP_END
   NOTE_INSN_WCET_RESTRICTION(LOOP_MARKER_y <= INT_CST*LOOP_MARKER_x)

Figure 
� Intermediate Code for an Annotated do�
Loop with Optimizations

Figure � shows the syntax of the do�loop� Figures �
and � provide the corresponding intermediate code for
the di
erent optimization levels of the compiler� The
comparison of these �gures shows the in�uence of using
di
erent compiler optimization levels� The path anno�
tations are adapted when the code structure is changed
during the compilation process�

� Experiments

 /* processor: m68000 */
 /* memory wait states (r/w):  0/ 0 */
 
 
 ----- CYCLES(bubble) = 47034 -----
   1|----------#define N_EL 10
   2|----------
   3|----------
   4|----------/* Sort an array of 10 elements with bubble-sort */
   5|----------void bubble (int arr[])
   6| 1|   16 -{
   7|----------  /* Definition of local variables */
   8|----------  int i, j, temp;
   9|----------
  10|----------  /* Main body */
  11| 3|   24 -  for (i=N_EL; 
  12| 4|  328 -          i > 1; 
  13| 2|  306 -          i--) 
  14|----------          maximum (N_EL - 1) iterations
  15|----------  {
  16| 2|  180 -          for (j = 2; 
  17| 4| 4032 -                  j <= i; 
  18| 2| 2754 -                  j++) 
  19|----------                  maximum (N_EL - 1) iterations
  20|----------          {
  21|16|13122 -                  if (arr[j-1] > arr[j])
  22|----------                  {
  23| 9| 7614 -                          temp = arr[j-1];
  24|14|11988 -                          arr[j-1] = arr[j];
  25| 6| 6642 -                          arr[j] = temp;
  26|----------                  }
  27|----------          }
  28|----------  }
  29| 2|   28 -}

Figure �� Bubble�Sort Algorithm �without opti�
mization

 /* processor: m68000 */
 /* memory wait states (r/w):  0/ 0 */
 
 
 ----- CYCLES(bubble) = 8210 -----
   1|----------#define N_EL 10
   2|----------
   3|----------
   4|----------/* Sort an array of 10 elements with bubble-sort */
   5|----------void bubble (int arr[])
   6| 4|   56 -{
   7|----------  /* Definition of local variables */
   8|----------  int i, j, temp;
   9|----------
  10|----------  /* Main body */
  11|----------  scope BS 
  12|----------  {
  13| 1|    4 -          for (i=N_EL; 
  14| 3|  178 -                  i > 1; 
  15| 1|   36 -                  i--) 
  16|----------                  maximum (N_EL - 1) iterations
  17|----------          {
  18|----------                  for (j = 2; 
  19|10| 1854 -                          j <= i; 
  20| 2| 1296 -                          j++) 
  21|----------                          maximum (N_EL - 1) iterations
  22|----------                  {
  23| 4| 3474 -                          if (arr[j-1] > arr[j])
  24|----------                          {
  25|----------                                  marker M;
  26|----------                                  temp = arr[j-1];
  27| 1|  540 -                                  arr[j-1] = arr[j];
  28| 1|  720 -                                  arr[j] = temp;
  29|----------                          }
  30|----------                  }
  31|----------          }
  32|----------          restriction M <= (N_EL*(N_EL-1)/2);
  33|----------  }
  34| 4|   52 -}

Figure �� Bubble�Sort Algorithm �optimization
and consideration of infeasible paths

This section describes the WCET calculations of
some sample programs� The evaluated programs are
standard algorithms for sorting and searching of data
in a data vector� These examples demonstrate the im�
portance of being able to transform path annotations
during compiler optimizations� Therefore the WCET
analysis was performed with and without strong op�
timizations� The WCET compiler supports powerful
annotations to describe �in�feasible paths� To demon�
strate the importance of such annotations a comparison
of the results between using simple iteration bounds for



Optimization level
Algorithm none �O�� full �O��

bubble sort ����� ����

bubble sort� with markers �	��
 �
��

selection sort� with markers ����� �����

binary search 
��� ���

Table �� Calculated WCET �cycles� of pro�
grams

nested loops and using an advanced description of the
iteration count by markers and scopes is given�

The experiments are performed by analyzing small
sample programs written in wcetC �Section �����
Each program is analyzed twice� �rst without ��ag �O��
and second with full code optimizations ��ag �O�� per�
formed by the compiler� The low�level WCET tool is
directly called by the compiler to calculate the WCET
of the compiled code� The results of the WCET tool
are mapped to the corresponding lines of the source
code� This mapping is called back�annotation�

For back�annotation� three data columns are added
on the left side of the source �le�

� The line number in the source �le�

� The number of assembly instructions that have
been produced for the constructs of this source
line�

� The absolute number of cycles of the source line
contributing to the worst�case execution time�

An additional header is placed to inform about the
hardware properties of the target system� The cho�
sen target platform was based on a MC����� processor
from Motorola�

��� Results

Two sorting algorithms �bubble sort and selection
sort� and one search algorithm �binary search� were an�
alyzed to see e
ects of di
erent compiler optimizations
and annotations� The bubble sort algorithm was ana�
lyzed both with complete and with basic annotations
to show the necessity of supporting transformation of
complete annotation constructs by the compiler�

The calculated WCET of all sample programs is
summarized in Table ��

It is remarkable that the calculated execution time
improved up to �� percent� when using full compiler
optimizations� This stresses the necessity of taking

compiler optimizations into account for WCET anal�
ysis�

The bubble sort algorithm was analyzed in further
detail to demonstrate also the importance of support�
ing the transformation of the full set of annotations
by the WCET analysis framework� Using only loop
bounds makes WCET analysis assume that the body
of the inner loop executes �N � ��� times� where N
is the maximum length of the input vector� By tak�
ing into account path information that describes the
asymmetric iteration count of the inner loop� WCET
analysis can use the real number of executions of the
inner�loop body� N�N����� �see Figure � for the cor�
responding source code��

Figure � shows the WCET results for computation
without code optimizations� The further improvement
of WCET using more accurate annotations by speci�
fying additional �in�feasible paths and using compiler
optimization is given in Figure �� Note that the calcu�
lated WCET for the code with additional annotations
by markers and scopes is reduced down to about ��
percent�

While it was quite straight�forward to build trans�
formation of path information into the compiler� it
would be arduous and complicated to design a WCET
framework for these requirements where the structure
transformation of the program is done outside the com�
piler� The optimization techniques used by a modern
compiler would require an enormous set of rules to be
modeled by the external transformation tool� On the
other hand� the examples have shown the importance
for WCET analysis to have e
ective annotations for
modeling the runtime behaviour of a program�

� Summary and Conclusion

We described a technique for compiling programs
with path information for WCET analysis� We pre�
sented a WCET tool chain that is suitable for the
integration of program path transformation into the
compiler� This leads to the ability of handling more
complex program code optimizations instead of just
performing this transformation outside the compiler�
We introduced a programming language that supports
statements to annotate path information inside the
program and presented a compiler concept for trans�
forming this information down to the machine code�
The programming language was derived from ANSI C
with several restrictions and additional statements to
support the WCET analysis�

The experiments have shown the necessity of sup�
porting strong code optimizations during the compila�
tion process� The importance of an e
ective concept



for program path annotations for the programming lan�
guage was also pointed out by these experiments�

For the future work we plan to extend this WCET
analysis framework to support processors with perfor�
mance enhancing features such as pipelines or caches�

References

��	 R� E� Burkhard� Methoden der ganzzahligen Op�
timierung� Springer�Verlag� �����

��	 A� Colin and I� Puaut� Worst case execution time
analysis for a processor with branch prediction�
Real�Time Systems� �������������� May �����

�	 J� Engblom� A� Ermedahl� and P� Altenbernd� Fa�
cilitating Worst�Case Execution Time Analysis for
Optimized Code� Technical report� Uppsala Uni�
versity� Uppsala� Sweden� �����

��	 H� Kopetz et al� Real�Time System Development�
The Programming Model of MARS� In Proc� of
the International Symposium on Autonomous De�
centralized Systems� pages �������� ����

��	 M� Exler� Propagierung von Pfadinformation
f�ur die Analyse von Programmlaufzeiten� Mas�
ter�s thesis� Technische Universit�at Wien� Vienna�
Dezember �����

��	 Free Software Foundation� editor� Using and Port�
ing GNU CC� Number ����� in ISBN ���������
���� Free Software Foundation� Boston� USA�
November �����

��	 C� A� Healy� R� D� Arnold� F� Mueller� D� Whal�
ley� and M� G� Harmon� Bounding Pipeline and
Instruction Cache Performance� In IEEE Trans�
actions on Computers� number �� in �� January
����� old ID� HEALY����

��	 C� A� Healy� M� Sj�odin� and D� Whalley� Bound�
ing Loop Iterations for Timing Analysis� In Pro�
ceedings of the IEEE Real�Time Technology and
Aplications Symposium� pages ������ June �����
old ID� HEALY�IEEE���

��	 R� Kirner� Integration of Static Runtime Analysis
and Program Compilation� Master�s thesis� Tech�
nische Universit�at Wien� Vienna� Austria� May
�����

���	 E� Klingerman and A� Stoyenko� Real�Time Eu�
clid� A Language for Reliable Real�Time Sys�
tems� IEEE Transactions on Software Engineer�
ing� �������������� September �����

���	 H� Kopetz� R� Zainlinger� G� Fohler� H� Kantz�
P� Puschner� and W� Sch�utz� The Design of Real�
Time Systems� From Speci�cation to Implementa�
tion and Veri�cation� IEEE Software Engineering
Journal� ���������� May �����

���	 Y��T� S� Li� S� Malik� and A� Wolfe� Perfor�
mance Estimation of Embedded Software with
Instruction Cache Modeling� In Proceedings
of the IEEE�ACM International Conference on
Computer�Aided Design� pages ������ Novem�
ber �����

��	 D� Macos and F� Mueller� Integrating Gnat�Gcc
into a Timing Analysis Environment� In Work�
in�Progress of EuroMicro Workshop on Real�Time
Systems� pages ������ June �����

���	 C� Y� Park and A� C� Shaw� Experiments with
a Program Timing Tool based on a Source�Level
Timing Schema� Computer� ������������ May
�����

���	 P� Puschner� Ermittlung der maximalen Abar�
beitungszeit von Programmen� Master�s thesis�
Technische Universit�at Wien� Vienna� September
�����

���	 P� Puschner� Zeitanalyse von Echtzeitprogram�
men� PhD thesis� Technische Universit�at Wien�
Vienna� December ���� old ID� PUSCHNER���

���	 P� Puschner and C� Koza� Calculating the Max�
imum Execution Time of Real�Time Programs�
The Journal of Real�Time Systems� ����������
�����

���	 P� Puschner and A� V� Schedl� A Tool for the
Computation of the Worst Case Task Execution
Times� In Proceedings Euromicro Workshop on
Real�Time Systems� pages �������� Oulu� Fin�
land� June ����

���	 J� Reisinger� Konzeption und Analyse eines zeit�
gesteuerten Betriebssystems f	ur Echtzeitanwen�
dungen� PhD thesis� Technische Universit�at Wien�
Vienna� Austria� April ����

���	 F� Stappert and P� Altenbernd� Complete worst�
case execution time analysis of straight�line hard
real�time programs� Journal of Systems Architec�
ture� ����������� �����

���	 A� Vrchoticky� The Basis for Static Execution
Time Prediction� PhD thesis� Technische Univer�
sit�at Wien� Vienna� Austria� April �����


