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Abstract We have recently developed a princi-
pled approach to interactive non-linear hierarchi-
cal visualization [8] based on the Generative To-
pographic Mapping (GTM). Hierarchical plots are
needed when a single visualization plot is not suf-
ficient (e.g. when dealing with large quantities of
data). In this paper we extend our system by giving
the user a choice of initializing the child plots of
the current plot in either interactive, or automatic
mode. In the interactive mode the user interactively
selects “regions of interest” as in [8], whereas in the
automatic mode an unsupervised minimum message
length (MML)-driven construction of a mixture of
GTMs is used. The latter is particularly useful
when the plots are covered with dense clusters of
highly overlapping data projections, making it dif-
ficult to use the interactive mode. Such a situation
often arises when visualizing large data sets. We
illustrate our approach on a data set of 2300 18-
dimensional points and mention extension of our
system to accommodate discrete data types.

Keywords: Latent trait model, minimum message
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I. Introduction

In general, a single two-dimensional projec-
tion of high-dimensional data, even if it is non-
linear, may not be sufficient to capture all of
the interesting aspects of the data. Therefore,
we have developed a principled approach to in-
teractive construction of non-linear visualiza-
tion hierarchies [8], the basic building block of
which is the Generative Topographic Mapping
(GTM) [1].
Since GTM is a generative probabilistic

model, we were able to formulate training of

the visualization hierarchy in a unified and
principled framework of maximum likelihood
parameter estimation using the expectation-
maximization algorithm [8]. In this study, we
present a further development in this direc-
tion, again taking advantage of the probabilis-
tic character of GTM. When the user initializes
child plots of the current plot they can do so in
either interactive or automatic modes. In the
interactive mode user decides what subsets of
the data are interesting enough to be visualized
in a greater detail at lower level plots [8]. In
the automatic mode, the number and position
of children GTMs are determined in an unsu-
pervised manner using the minimum message
length (MML) methodology. This is impor-
tant, e.g. when dealing with large quantities
of data that make visualization plots at higher
levels so complicated that the interactive mode
cannot be used.

Using a data partitioning technique (e.g. [7])
for segmenting the data set, followed by con-
structing visualization plots in the individual
compartments is not a good alternative – there
is no direct connection between the criterion
for choosing the quantization regions and mak-
ing local low-dimensional projections. Using
GTM, however, such a connection can be es-
tablished. GTM is a generative probabilistic
model, which enables us to use a principled
minimum message length (MML)-based learn-
ing of mixture models with an embedded model
selection criterion [4]. Hence, given a parent
GTM, the number and position of its children
is based on the modeling properties of the chil-
dren themselves, and not some outside ad-hoc
criterion.



II. Generative Topographic
Mapping

The Generative Topographic Mapping (GTM)
is a latent space model, i.e. it models prob-
ability distributions in the (observable) data
space by means of latent (hidden) variables. In
GTM, the visualization space is identified with
the latent space (usually a bounded subset of
a two-dimensional Euclidean space).
In general, the L-dimensional latent space

H ⊂ �L, in which latent points x =
(x1, ..., xL)T live, is covered by a grid of K
latent space centers xi ∈ H, i = 1, 2, ...,K.
Let the data space D be the D-dimensional
Euclidean space �D. We define a non-linear
transformation f : H → D as a radial basis
function network by covering the latent space
with a set of M −1 fixed non-linear basis func-
tions φj : H → �, j = 1, 2, ...,M − 1. As usual
in the GTM literature, we work with spherical
Gaussian functions of the same width σ, po-
sitioned on a regular grid. The bias term is
included via an additional constant basis func-
tion φM (·) = 1. Latent space points x ∈ H,
are mapped into the data space via

f(x) = W φ(x), (1)

where W is a D×M matrix of weight param-
eters and φ(x) = (φ1(x), ..., φM (x))T .
GTM forms, in the data space, a constrained

mixture of K spherical Gaussians P (t|xi) with
inverse variance β, centered at the f -images,
f(xi), of the latent space centers xi ∈ H,

P (t| xi,W, β) =(
β

2π

)D/2

exp
{
−β

2
‖f(xi)− t‖2

}
. (2)

Imposing a uniform prior over xi, the density
model in D provided by the GTM is

P (t) = 1/K
K∑

i=1

P (t|xi). (3)

Given a data set ζ = {t1, t2, ..., tN} of in-
dependently generated points in D, the ad-
justable parameters W and β of the model are

determined by maximum likelihood using an
expectation-maximization (EM) algorithm [1].
For the purpose of data visualization, we use

Bayes’ theorem to “invert” the transformation
f . The posterior distribution on H, given a
data point tn ∈ D, is a sum of delta functions
centered at centers xi, with coefficients equal
to the posterior probability Rin that the i-th
Gaussian, corresponding to the latent space
center xi, generated tn [1]. The latent space
representation of the point tn, i.e. the projec-
tion of tn, is then the mean

∑K
i−1 Rin xi of

the posterior distribution on H.
Following [8], we refer to the f -image of the

latent space, f(H), as the projection manifold
of the GTM.

A. Hierarchical GTM

In [8], we extended GTM to hierarchies of
GTMs, organized in hierarchical trees and in-
teractively constructed in a top down fashion,
starting from a single Root plot. Let us first
concentrate on simple mixtures of GTMs, i.e.
on hierarchical trees of depth 1, where the mix-
ture components are children of the Root.
Consider a mixture of A GTMs. Each

mixture component P (t|a) has an associated
(non-negative) mixture coefficient πa satisfy-
ing

∑A
a=1 πa = 1. The mixture distribution is

then given by

P (t) =
A∑

a=1

πa P (t|a). (4)

The mixture is trained by an EM algorithm.
In the E-step, given each data point tn ∈ D,
we compute the model responsibilities corre-
sponding to the competition among the mix-
ture components

P (a|tn) =
πa P (tn|a)∑A
b=1 πb P (tn|b)

. (5)

Responsibilities R(a)
i,n of the latent space centers

xi, i = 1, 2, ...,K, corresponding to the compe-
tition among the latent space centers within
each GTM a, are calculated as in standard
GTM (see [1]).



The free parameters are estimated in the M-
step using the posterior over hidden variables
computed in the E-step. The mixture coeffi-
cients are determined by

πa =
∑N

n=1 P (a|tn)
N

. (6)

Weight matrices W(a) are calculated by solving

(ΦT B(a) Φ) (W(a))T = ΦT R(a) T, (7)

where Φ is a K × M matrix with elements
(Φ)ij = φj(xi), T is a N × D matrix stor-
ing the data points t1, ..., tN as rows, R(a) is a
K×N matrix containing, for each latent space
center xi, and each data point tn, scaled re-
sponsibilities (R(a))in = P (a|tn)R

(a)
i,n , and B(a)

is a K × K diagonal matrix with diagonal el-
ements corresponding to responsibilities of la-
tent space centers for the whole data sample,
(B)ii =

∑N
n=1(R

(a))in.
The inverse variances are re-estimated using

1
β(a)

= (
N∑

n=1

P (a| tn)
K∑

i=1

R
(a)
i,n

‖W(a) φ(xi)− tn‖2)

/(D
N∑

n=1

P (a| tn)). (8)

Training equations for a full hierarchy of
GTMs are more involved, but the only real
complication is that for nodes on levels > 2,
we also have to consider model responsibilities
of the parent nodes, and these are recursively
propagated as we incrementally build the hier-
archy. We refer the interested reader to [8].

III. MML formulation for
unsupervised learning of
mixtures and hierarchies of

GTMs

Given a set ζ = {t1, t2, ..., tN} of data
points, minimum message length (MML)
strategies select, among the models inferred
from ζ, the one which minimizes length of the
message transmitting ζ [9]. Given that the

data is modeled by a parametric probabilis-
tic model P (ζ|θ), the message consists of two
parts – one specifying the model parameters,
the other specifying the data given the model:

Length(θ, ζ) = Length(θ) + Length(ζ|θ).
(9)

By Shannon’s arguments, the first term is no
less than �− log p(θ)� (based on a prior P (θ)
over the model space), and the second one is
no less than �− log(P (ζ|θ))�.
Recently, Figueiredo and Jain [4] extended

the MML framework to unsupervised learn-
ing of mixture models. The particular form
of MML criterion adopted in [4] is of the form
θ̂ = argminθ L(θ, ζ), where

L(θ, ζ) =
Q

2

∑
a:πa>0

log
(
Nπa

12

)
+

A+

2
log

N

12

+
A+(Q+ 1)

2
− logP (ζ|θ), (10)

where Q is the number of free parameters of
each mixture component. We only code the
parameters of mixture components a with pos-
itive prior πa. The number of such compo-
nents is denoted by A+. For details concern-
ing derivation of (10), we refer the reader to
[4]. We briefly mention that the result follows
from adopting a specific form of MML, replac-
ing Fisher information matrix of the mixture
by the complete-data Fisher matrix (including
binary mixture component indicators), and im-
posing non-informative Jeffreys’ prior on both
the vector of mixing coefficients {πa} and the
parameters θa of individual mixture compo-
nents (we assume that these priors are inde-
pendent).
Minimization of (10), with A+ fixed, leads

to the following re-estimation of mixture coef-
ficients [4]: for a = 1, 2, . . . , A+,

π̂a(t+1) =
max

{
0, −Q

2 +
∑N

n=1 P (a|tn)
}

∑A+

b=1 max
{
0, −Q

2 +
∑N

n=1 P (b|tn)
} ,

(11)
where component responsibilities P (a|tn) are
computed using (5). Free parameters θa =



(W(a), β(a)) of the individual GTMs are fitted
to the data ζ using the EM algorithm outlined
in section II-A. Note that GTMs correspond-
ing to zero π̂a become irrelevant and so (11) ef-
fectively performs component annihilation [4].

To start the training process, we choose the
maximum number of components Amax we are
willing to consider. Then, we initiate the com-
ponent GTMs around randomly selected points
c1, ..., cAmax , from ζ. These “centers” induce
a Voronoi tessellation {Va} in the data space.
Following [8], each GTM a ∈ {1, ..., Amax} is
initialized to approximate the local eigenspace
E

(2)
a spanned by the first 2 eigenvectors of the

local covariance matrix of points from ζ be-
longing to the Voronoi compartment Va.

As in [4], we adopt the component-wise EM
(CEM) [3], i.e. rather than simultaneously
updating all the GTMs; we first update the
parameters θ1 of the first GTM (7–8), while
parameters of the remaining GTMs are fixed,
then we recompute the model responsibilities
{P (a|tn)}A

a=1 (5) for the whole mixture. Af-
ter this, we move to the second component,
update in the same manner θ2, and recom-
pute {P (a|tn)}A

a=1, etc., looping through the
mixture components. If one of the component
GTMs dies (π̂a = 0), redistribution of its prob-
ability mass to the remaining components in-
creases their chance of survival. After conver-
gence of CEM, we still have to check whether
a shorter message length can be achieved by
having a smaller number of mixture GTMs
(down to A+ = 1). This is done by iteratively
killing off the weakest GTM (with the small-
est π̂a) and re-running CEM until convergence.
Finally, the winning mixture of GTMs is the
one that leads to the shortest message length
L(θ, ζ) (10).
Empirically, we observed that “strong”

GTMs that survived for longer time periods
tended to be overtrained. One does not en-
counter such problems when dealing with sim-
ple mixtures of Gaussians, as was the case in
[4]. However, GTM is a constrained mixture
of Gaussians and the low-dimensional mani-
fold containing centers of Gaussian noise mod-

els (projection manifold [8]) tended to form
complicated folds. Simple introduction of a
stronger regularization term [1] was not of
much help, since then the individual GTMs
were rather stiff and did not realize the full
potential of having a mixture of nonlinear pro-
jections. Therefore, we adopted the following
technique: after a component GTM has been
eliminated and before starting a new competi-
tion of the remaining GTMs for the data ex-
plained by it, we re-initialize the remaining
GTMs so that they remain in their respective
positions, but have a “fresh start” with less
complicated projection manifolds. For each
GTM we collect the data points for which that
GTM has responsibility (eq. (5)) higher than
a threshold ∆ = 0.85. We then initialize and
train individual GTMs for 1 epoch in the tra-
ditional way [1], each on the corresponding
model-restricted set, as if they were not mem-
bers of a mixture. After this re-initialization
step, the CEM algorithm is applied to the mix-
ture on the whole data set.

The proposed system for constructing hier-
archies of non-linear visualization plots is sim-
ilar to the one described in [8]. The important
difference is that now, given a parent plot, its
children are not always constructed in the in-
teractive way by letting the user identify “re-
gions of interest” for the sub-plots. In densely
populated higher-level plots with many over-
lapping projections, this may not be possi-
ble. Instead, we let the user decide whether
he wants the children to be constructed in the
interactive or unsupervised way. In the unsu-
pervised case, we use the MML technique to
decide the “appropriate” number and approxi-
mate position of children GTMs1 and view the
resulting local mixture as an initialization for
the full EM algorithm for training hierarchies
of GTMs [8].

1We collect data points from ζ for which the parent
GTM has responsibility higher than the threshold ∆.
We then run MML-based learning of mixtures of GTMs
on this reduced data set.



IV. Illustrative example

As an example we visualize in figure 1 im-
age segmentation data obtained by randomly
sampling patches of 3x3 pixels from a database
of outdoor images. The patches are character-
ized by 18 continuous attributes and are classi-
fied into 4 classes: cement + path, brickface +
window, grass + foliage and sky. The param-
eters of GTMs were as follows: latent space
[−1, 1]2, K = 15 × 15 latent space centers,
M = 4 × 4 + 1 RBF spherical Gaussian ker-
nels of width 1, “weight-decay” regularization
coefficient 0.1 [1]. For a complete information
on presentation of the visualization hierarchy,
we refer the reader to [8].
We organize the plots of the hierarchy in a

hierarchical tree. In non-leaf plots, provided
the child models were initialized in the inter-
active mode, we show the latent space points
ci that were chosen to be the “centers” of the
regions of interest to be modeled in greater de-
tail at lower levels. These are shown as circles
labeled by numbers. The numbers determine
the order of the corresponding child GTM sub-
plots (left-to-right).
We adopt the strategy, suggested in [2], of

plotting all the data points on every plot,
but modifying the intensity in proportion to
the responsibility (posterior model probability)
P (M| tn) which each plot (sub-model M) has
for the data point tn. Points that are not well
captured by a particular plot will appear with
low intensity.
The user can visualize the regions captured

by a particular child GTM M, by modify-
ing the plot of its parent, Parent(M), so
that instead of the parent responsibilities,
P (Parent(M)| tn), the responsibilities of the
model M, P (M| tn), are used. Alternatively,
the user can modulate with responsibilities
P (M| tn) all the ancestor plots up to Root.
As shown in [8] , such a modulation of ances-
tor plots is an important tool to help the user
relate child plots to their parents.
The Root plot contains dense clusters of

overlapping projections. Six plots at the sec-
ond level were constructed using the unsuper-

vised MML technique (Amax = 10). Note that
the classes are already fairly well-separated.
We further detailed the second plot in the in-
teractive mode, by selecting centers (shown as
circles) of 2 regions of interest. Since the fifth
plot contains a region of overlapping projec-
tions, we use again the MML technique for
constructing its children plots. The result-
ing children plots are readable enough to be
further detailed in the interactive mode. We
stress that all useful tools for understanding
the visualization hierarchy described in [8],
such as children-modulated parent plots, mag-
nification factor and directional curvature plots
can also be used in the proposed system.

V. Discrete data types

In another line of development, we have ex-
tended the basic hierarchical GTM [8] to deal
with noise models from the general exponen-
tial family of distributions [6]. This is im-
portant for visualizing other than continuous
data types, e.g. binary or count data, where
Bernoulli or multinomial noise models can be
used.
We briefly mention, that by employing MML

technique into such generalized hierarchical vi-
sualization system, we can perform e.g. semi-
supervised hierarchical document mining. The
documents are represented as high dimensional
discrete vectors through the key-word tech-
nique. The visualization hierarchy is now com-
posed of so-called latent trait models [5], which
are basically GTMs endowed with noise models
from the exponential family of distributions (in
our example Bernoulli/multinomial). Other
tools aimed at improving our understanding of
the plots, like listing the most probable dictio-
nary (key) words for each latent space center
xi [5], are also incorporated in the system.

VI. Conclusion

We have described a principled approach to
semi-supervised data visualization. The pro-
posed system gives the user a choice of initial-
izing the child plots of the current plot in ei-
ther interactive, or automatic mode. It is par-
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Fig. 1. Hierarchical visualization of the image segmentation data constructed in a semi-interactive way.



ticularly useful when user has no idea how to
choose the area of interest due to highly over-
lapping dense data projections.
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