
The Naming of Systems and Software Evolvability
Martin J. Loomes, Chrystopher L. Nehaniv and Paul Wernick

School of Computer Science
University of Hertfordshire

College Lane, Hatfield, Herts AL10 9AB, United Kingdom
{M.J.Loomes, C.L.Nehaniv, P.D.Wernick}@herts.ac.uk

Abstract— Software systems are unlike most entities whose
existence, persistence, development, and integrity as single in-
dividuals are presupposed by ordinary acts of naming. This
paper broaches the issue of how naming practices in software
evolution may significantly impact software maintenance and
evolvability. We explore how naming in the realm of software
is unlike naming of other types of phenomena to which we apply
usual human naming practices. Such naming practices have been
naively generalized to the realm of software. In the software
realm, naming practices have been co-opted for political roles
in reification as well as in the mobilization of commitment and
resources.

I. INTRODUCTION - WHAT’S IN A NAME?

One important issue regarding the maintenance of a system

is the fairly obvious point that before we can “maintain”

we must have “a system” upon which our maintenance can

be deployed. But what exactly does this mean? This is a

question that, we believe, has not been given the attention

it deserves in the Software Engineering community, perhaps

as a consequence of the often cited movement towards a

Postmodern perspective where “theory” and “‘philosophy” are

seen as distractions from the really important activities of

“getting things done”.

In this paper we suggest that there is an important area

of debate that is rarely (if ever?) discussed: what creates a

“system” as an entity that has some existence in its own

right and hence entitles it to a programme of maintenance? In

particular, we will focus on one area where (as far as we are

aware) there has been no discussion, the naming of systems.

This is an extremely complex issue, and our intention here

is not to present a coherent treatise on the subject, but to

offer up a series of questions in the hope that philosophers,

psychologists, linguists, and other experts in these sorts of

fields might help us to clarify the issues. An essential general

reference to the whole area of naming is Salmon [19].

Our preliminary discussions on the topic have revealed one

thing: the question explodes in multiple dimensions before

we can even think of entering an analytical phase of seeking

clarification and “answers”. Perhaps this paper will help the

process along by promoting some interest. We should, how-

ever, explain briefly why these issues are of relevance to the

Software Maintenance community.

II. WHAT IS SOFTWARE MAINTENANCE?

Consider the task of maintaining a motor car engine: we

have a set of conditions that specify the correct set up and

behaviour of the engine, and maintenance consists largely of

taking the existing engine and making minor changes so that

these conditions are met. Adding oil until the correct mark is

reached, adjusting the timing until it is within given tolerances,

and so on. We may need to replace a component, such as a

filter, as a way of returning the engine to the correct state. We

would be very surprised, however, if the mechanic informed

us that, as part of the maintenance programme, the motor

vehicle could now travel underwater, cook our evening meal,

and receive 32 digital television stations. We might even be a

little annoyed if informed that, in “addition”, the vehicle could

no longer be driven on roads.

In the software design culture, however, that is precisely

what we have come to expect (and accept). As Turski notes:

“The crux of the matter is that an ineptly chosen term

masks the real issue. (Once again, sloppy linguistic

habits and a childish enthusiasm for new games that

can be played without rules have lead us astray.)

Maintenance, as defined by dictionaries, is the act

of maintaining, i.e. of keeping in an existing state,

of sustaining against opposition or danger, etc. Yet,

to quote a friend of mine, software engineering is

the only discipline where adding a new wing to

a building would be considered as a maintenance

activity.” [22, p. 107]

We would argue that one aspect of this problem is the

way we create the impression that an artifact is of a status

to be maintained in the first place. One important aspect

of this is the decision to “name”, for this provides identity

and also something that we can relate to in political and

emotional terms. In naming a system, not only do we risk

the reification of something without necessarily considering

all of our actions, but we also may be creating some notion

of stability or persistence that was not intended.

A. Naming and Evolution of “the Word Processor”

Early “word processor” systems were designed largely as

software emulators of typewriters, the latter having changed

relatively little in the previous 50 years. It might be reasonable,

therefore, to expect a maintenance phase as we improved

our word processors so that they became better emulations.

Of course, what happened is that the technical potential of

such interactive software systems was quickly realized, and

developments took place that moved them far from the realms

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

of typewriters [11]. This is progress, and not at all prob-

lematic. However, something rather more subtle accompanied

this movement: various word processors were named1 en

route. Thus we had “Word” “Word Perfect” “WordStar” ,

“MacWrite”, and many others. At the time, this seemed quite

harmless and natural, but what are the consequences?

B. Speech Acts

Note that the naming process was carried out (to use

Austin’s term) by speech acts [1], most often by the employ-

ment of names with the tacit presupposition of the existence

of “the system” – treating the system’s very existence and its

conceptual coherence as an entity as a fait accompli. Naturally,

such naming was carried out in a very uncontrolled fashion.

A speech act can be informally defined as something said or

written by somebody that in itself constitutes the act. Examples

include naming a ship, promising to do something, or saying

“I do” in a marriage ceremony. In order for the speech act

to be effective, it must conform to certain conditions, initially

described by Austin [1, pp. 14–15] and later formalized and

substantially extended by Searle ([20], [21, p. 158–9]). These

conditions are referred to as felicity conditions, and failures in

such conditions as infelicities. Infelicities can arise in a speech

act due to the correct procedure/ceremony for the speech act

not being followed or being followed by somebody without

the authority to perform it, e.g. the authors of this paper are

unfortunately unable to pass legislation to govern the United

Kingdom since they are not members of its parliament. Other

infelicities can arise due to the procedure as laid down not

being carried out correctly or completely. Another class of

infelicity occurs when a speech act is performed insincerely,

in the course of a play or other mimicking of reality, e.g.

a marriage conducted by actors as part of a theatrical perfor-

mance is not valid; whereas uttering an insincere promise does

constitute an (abused) act of promising. [1, p. 16].

Reference via a name is explicitly treated by Searle as a

speech act [20, Ch. 4]. The concepts of a speech act, and

the definitions of felicity conditions and infelicities, bring into

focus the question of how and when a software system can

be, and is, validly named. Who can name a system? How is

this naming performed?

Is there some form which is a procedure of naming, and if

so how is the completeness and correctness of its performance

evidenced? Can a system be named insincerely, say if a system

which is not intended to actually be developed is announced

to the public to spoil a competitor’s marketing plans?2 What

are the implications of the naming of a system of its being

cancelled after having been announced with sincere intentions?

C. Naming Acts in Practice

For software systems, such as in the naming of the word pro-

cessing systems mentioned above, there were no discussions

1We will leave aside for the moment the equally problematic issue of

adopting the generic name “word processor” - cf. sec. III.B.
2A related area is the advent of web domain names and their subsequent

creation and marketing as a commodity, as well as the use of web domain

names that are misleadingly similar to well-known ones.

to clarify under what felicity conditions such acts were safe.

It was unclear who had the authority to invoke the names (we

will not be drawn here into the issues surrounding the legal

positions of such names). There were no apparent rituals, such

as Baptism, to name the systems. And, perhaps more worrying,

no apparent understanding of the implications for the various

stakeholders that naming entails. Once we had been given, e.g.,

“Word”, however, clearly there was something in existence

that was a potential candidate for maintenance, even if it was

unclear what this might mean for the system in question.

Applying names, version, and release numbers to collections

of software code can help clarify reference, but they do not

completely solve problems that arise when names are used

as if they referred to natural kinds or unambiguous species

terms. Viewing the naming of systems as a social process (as

suggested for other aspects of software [3], [4]), the degree to

which naming can or should be formalized or regulated is a

completely open question. At this stage we can only glimpse

some of its the consequences of naming practices.

III. PRESUPPOSITION OF INDIVIDUAL INTEGRITY

A. Life-Cycle Model

We should note in passing that many of the problems

of system identity are inherently built in to the life-cycle

model of system “development”. For example, there is the

usual ambiguity in the way that we view such cycles in

biological sciences: is it the life of an individual that is being

focused upon, or that of the development of a species? If it

is one individual, say Freddy the Frog, we traditionally have

some understanding of what Freddy “is” – the “encoding” of

Freddy is within his inherited genetic material and he will

develop in accordance with the laws of nature given a suitable

environment (cf. [15]). Freddy will have some existence in

the real world (embryonic Freddy is only of interest because

we have faith that the “real” Freddy will soon be happily

hopping around with a genuine external presence). Of course,

modern biotechnology has caused us to question some of

these assumptions. We would argue that using this analogy

in Software Development presents even more problems, but

that these are rarely recognized, let alone made explicit.

Of course, it might be argued that the life cycle metaphor

in Software Engineering is intended to suggest not “Freddy

the Frog” developing, but the ways in which the species

“Frog” propagates and evolves. This would certainly seem

more plausible, but is no less problematic. In the case of

our frogs, we have some external reference as to what the

species is — the life cycle thus refers to something we are

able to appreciate as having an independent existence. Indeed,

it was the miraculous existence of “Frogs” in general and

Freddy in particular that made us seek an understanding of

how life propagates and evolutionary changes occur. That was,

of course, the origins of the Software Life Cycle too, but now

the term seems to have become more instrumental, defining

the process we should follow.

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

B. Species and Natural Kinds of Software?

Species in natural language (as opposed to biology) are

defined by paradigmatic examples. Clearly by this description

Windows could not be the name of a species in this sense, for

we cannot apply the name Windows without legal permission,

and its development route is important to the name (Microsoft

only). If we explore this further it gets quite complex. So,

what do we understand by named systems such as “Windows”?

What sort of name is it? Is it a proper name that denotes some

thing perhaps the master set of discs held in a safe at Microsoft

Head Office? Or perhaps “Windows” is a like a natural kind
term, such as “water”, denoting something by virtue of the

properties it possesses? Natural kind terms were introduced to

discuss names for things in classes that, as the name suggests,

occur naturally – that is, that have some independent existence.

It is far from clear that we can possibly consider their use

in the very artificial world of software systems, but there

may be some mileage in a brief diversion into one aspect of

this. Putnam [18] makes the point that terms such as “water”

have been used for centuries, pre-dating much of our current

understanding of the term. Indeed, the term might well have

been applied to many colourless, odourless, liquids that were

not H2O at all. The crucial issue is that there should be some

sameness relation that is used at the time to test substances

against those which we all accept as water.

“The key point is that the relation same is a theoretical
relation: whether or not something is the same liquid as this

may take an indeterminate amount of scientific investigation

to determine. Thus the fact that an English speaker in 1750

might have called [something with chemical composition]

XYZ “water”, whereas he or his successors would not have

called XYZ “water” in 1800 or 1850 does not mean that the

“meaning” of “water” changed for the average speaker in the

interval.” [18, Putnam, pp. 702–703].

We would argue that there is no agreed upon theoretical
understanding of what constitutes sameness for “species” in

software, such as Windows, which does not comprise a natural

kind. Accepting these software names as natural kind-like

terms may be a dangerous practice leading to the misuse and

abuse of reference in arguments concerning the properties of

such “systems”.

From this perspective we might want to consider whether

our systems have some existence independent of the theoretical

presentations that we give them at particular instances of time.

This is a counter-intuitive view for most practitioners, as it

suggests that design is driven by theoretical considerations.

For a more detailed discussion of this viewpoint, see [10].

If we do want to pursue this approach, however, we need to

consider the implications of accepting as natural terms things

which are not rigid designators. The assumption made by

Putnam and others is that terms such as “water” denotes some

well-defined entity. But in case of a named product, subsequent

speech acts may be carried out referring to identically denoted

products that slip in unexpected modifications of “the” system.

IV. EVOLUTION, NAMING AND PERSISTENCE ENTITIES

Naming of objects, natural phenomena, whether individuals

or classes of them, works in a particular way that generally

pre-supposes the existence and the continued persistence of

the entities named. When we name persons these assumptions

are naturally satisfied, and we are able to apply a name

without much ambiguity to a person even though the individual

changes and develops through radically different forms in

the course of life. Most biological organisms have a natural

persistence and integrity that allows us to do this. Our usual

ways of using naming have been co-opted (or “exapted”) to a

new realm when we apply naming to software systems.

A. Naming Species

Biological species and software ‘species’ are radically

different. For software, we lack both an adequate concept

of species and an adequate notion of what constitutes an

individual. Named individuals in our usual experience do not

bifurcate and become different instances of a single entity with

different characteristics and developmental routes. If Freddy

the Frog were to do so, would we continue to apply a single

name to it/them?

Such bifurcation however is frequent in the software realm,

suggesting a vague parallel with the species concept in biology.

People use names for ‘species’ of software that exist in

multiple instances, versions, and releases. What governs the

naming of species (e.g. is Windows a species, or Word, or web

browsers, ..?). Are WIMP/windowing systems a species? If

so, what holds them together, esp. if the analysis, design, code

are very different?

In biology there are several more or less clearly defined

and well-debated criteria for testing whether a given popula-

tion comprises a species (cf. [12] for a discussion), but to

our knowledge no such coherent species concept has been

developed for software systems.

B. Evolution in Software and in Biology

Evolvability in biology (and some of its generalizations)

is the capacity for generating adaptive heritable genotypic and

phenotypic variation [15]. It is a striking property of biological

systems that has not yet been successfully understood in

detail, nor in its formal and system-theoretic aspects, nor has

it been successfully modelled computationally or applied in

software systems or evolutionary computation. How to achieve

robustness, adaptability, and flexibility in facing changing re-

quirements and environments is a paramount issue for software

and related systems, not yet adequately addressed by previous

work either in computer science or biological systems.

C. Individuals

Darwin’s broad sense of evolution in organismal species as

“descent with modification” applies at the level of populations

of the individuals in a species over time undergoing a dy-

namical process with heritability, variability, selection (“strug-

gle for existence”) and limited resources. Populations rather

than individuals evolve (although individuals may change and

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

develop in their life times), but well-defined individuals are

required for the Darwinian theory to apply [13], [2], [14].

Persistence of changing entities is a weaker analogue of well-

defined individuality in an evolutionary dynamic, and occurs

also in other candidate spheres of evolutionary phenomena

such as memes, software, or physical technological artifacts

[16].

The software engineering community uses the term ‘evo-

lution’ in a broader sense that also focuses on the descent

with modification of software systems, but does not actually

presuppose populations of competing individuals of the same

species. Where software systems are seen as being modified

and maintained in the face of changing requirements and

contexts of use [4], [6], selection (success in the struggle for

existence) is not usually discussed; and, increasingly, system

boundaries are becoming difficult or impossible to delineate.

Nevertheless, explicit empirical laws for the evolution of

particular classes of software systems can be formulated [9].

Discussions of evolution of software, therefore, and of

evolution in some of the other realms mentioned above

(physical artifacts, memes), require a somewhat more general

theory than that of Darwinian evolution with its individuals.

Most importantly, software evolution differs from biological

evolution in a crucial way related to naming: There is currently

no well-circumscribed notion of what constitutes an individual

software system.

D. Theory Building and the Evolvability of Software

Given the considerations on naming discussed here, it is

abundantly clear that the existence and persistence of single

entity over a longer temporal extent is not to be taken for

granted when we move from the world of organisms or

everyday objects into the world of software. It might even

be the case that the notion of a developing individual – “the

system” and “its life cycle” is not an appropriate metaphor

in the realm of software maintenance and evolvability. An

alternative metaphor is to developed problem solving and

theory building as the central focus of software engineering,

where software systems become not individuals, but instead,

manifestations (in fact epiphenomena) of the more central

activities of problem solving and theory building aimed at

understanding and manipulating a given problem domain (cf.

[10], [11]).

V. EXAMPLE: NAMING AND REFERRING TO BLOBBO

Let us suppose that we are dealing with the names of

particular entities. Consider a fictitious software enterprise.

A company wishes to develop a system to handle its clean-

ing schedules for premises, including purchasing supplies,

allocating staff, health and safety issues, and various other

features that it has not yet specifically identified. We would

argue that, left in this vague state, development could proceed,

but at some point the individual stakeholders are likely to

decide upon a name for the enterprise. Let us suppose that

they decide to call it “Blobbo”. One important issue arises

immediately: Does “Blobbo” designate the system or the

project? We would argue that whatever the intention at the

outset, the move to “Blobbo” denoting the system (in some

sense) is likely to occur. Thus “project Blobbo” becomes

“system Blobbo”. References to “Blobbo” constitute speech

acts that reify Blobbo as a system. Why is this important?

As a project, Blobbo is clearly something being carried out

by people. As an artifact, however, there is a very real risk

or hope that Blobbo will be brought into existence. It will be

reified. We will talk of Blobbo as if it has some rights and life

of its own. It will “develop” rather than be designed. What are

the implications of the speech acts of naming and referring to

Blobbo? Will stakeholders now act as if the system has been

brought into existence? We now proceed as if Blobbo refers

to the system. Exactly what is Blobbo? Note that, during the

early stages of the project there is ‘no’ Blobbo. We cannot

point at it, or touch it. No instrument can detect it. It is the

idea of a Blobbo rather than the reality. The decision to name

it (like the unborn child or yet to be conceived child) makes

it more real, so that we can interact with it in subtle ways.

Note that strictly, as it has no existence, it cannot “change”,

but people’s perceptions and ideas of it can change.

Our projections of what the system might be are constantly

changing as it is discussed. Here we are firmly in the world of

modalities, where we need to consider the potential existence

of Blobbo in a number of possible worlds. One way to consider

this is to think of Blobbo as a system with state. Kripke likens

this to the situation with a pair of dice: we are happy to think

of the values shown on the faces of a pair of dice even if we

don’t know exactly what they are [5, pp. 16-21]. There has

been extensive debate in philosophy about such issues, but

this usually rotate around questions such as “Would the term

‘Nixon’ still designate the same person if he had not been

President of the United States?”.

For our purposes we are discussing the potential referents of

a name for which no real entity yet exists. Once again there

have been discussions on the naming of non-existent things

like unicorns, but there is no intention that, helped by the

process of naming, the unicorn will be brought into existence.

Let us move on to the situation where Blobbo has been given

some substance (either as a specification or as some executable

code). At this stage we need to consider what happens if

Blobbo changes. There seems little concern that changing a

few lines of code in Blobbo still leaves us with Blobbo. But

suppose we were to decide that Blobbo should now be the

name of the system that carries out all personnel functions

of the enterprise, or stock control, or investment functions, ...

How much change can we accept and still use the name? To

quote Kripke,

There is some vagueness here. If a chip, or molecule,

of a given table had been replaced by another we

would be content to say that we have the same table.

But if too many chips were different, we would

seem to have a different one. The same problem can,

of course, arise for identity over time. Where the

identity relation is vague, it may seem intransitive;

a chain of apparent identities may yield an apparent

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

non-identity... It seems , however, utopian to suppose

that we will ever reach a level of ultimate basic

particulars for which identity relations are never

vague and the danger of intransitivity is eliminated.

The danger usually does not arise in practice, so

we ordinarily can speak simply of identity without

worry. Logicians have not developed a logic of

vagueness. [5, p. 51]

We would argue that, on the contrary, if Turski is to be

believed, in Software Engineering this danger arises all the

time. The ease with which components of software systems

can be changed leads to precisely the lack of transitivity and

vagueness that should cause us concern. Do we have any

understanding of what a simple sounding sentence such as

“you cannot do that in Windows” actually means? Or “Blobbo

will be fully tested by next quarter.”

VI. COMMITMENT AND MOBILIZATION OF RESOURCES

VIA NAMING

The act of naming seems to attribute solid foundations to a

system. It “is”. It has some status in the world. The mere act

of talking about it gives political stature and people refer to

“it” in the real world as if it existed, even when it does not

exist. Naming the system helps serve to organize and direct

the flow of resources, including the activity of people, toward

its realization (cf. [8]).

What happens when the “it”, the expected system fails

to become reality? Writing of the Aramis subway transport

system for Paris that after many years of effort did not become

a real entity and fulfill the tacit promise of its having been

named, philosopher of science and technology Bruno Latour

investigates what led to the project’s demise; characterizing

the situation, he concludes:

“Either Aramis really existed and it had been killed (the

elected officials, the Budget Officer, the politicians had killed

it; there really had been murder, blindness, obscurantism),

or else, at the other extreme, Aramis had never existed: it

had remained inconceivable since 1981, and a different crime

had been committed by a different sort of blindness, another

obscurantism; for years on end they’d been drawing funds for

nothing – a pure loss.” [7, p. 279]

Latour goes on the make the point that the project had

reached a state where differing groups behaved as if Aramis

were both killed and had never existed - a paradox, which he

explains by observing that “Aramis” had come to mean two

different things to those inside the project (such as designers

and developers) and those outside (such as politicians) and

that the two groups “did not discuss it. They [the politicians

and other outsiders] don’t know what research is. They think

it amounts to throwing money out the window! Whilst every-

thing is shifting around inside the Aramis mobile unit, outside

everything is carved in stone” [7, p. 282].

Thus Aramis, at the outset, denotes a shared idea, but for one

group the role of the name is to fix the concept over time, for

the other it denotes the current state of a shared understanding.

The recipe for disaster is firmly established - designers will

report that Aramis is “developing” nicely (meaning the shared

understanding is continuing to evolve), and the politicians will

hear that the development is closer to their original ideas of

what Aramis should be.

VII. SOCIAL USE OF NAMES

At this stage perhaps we should consider the social use of

names. There is a point of view that considers names to be

simply things that refer to something in the real world. This is

simplistic and clearly inappropriate for our needs, for – again

to quote Kripke – “that’s not what most of us do. Someone,

let’s say, a baby, is born; his parents call him by a certain

name. They talk about him to their friends. Other people meet

him. Through various sorts of talk the name is spread from

link to link as if by a chain.” [5, p. 91]

Thus the name and what it refers to develop through

social interaction. Where the name refers to some object in

the physical world, this need not be problematic, but what

happens in the case of Blobbo? How do we ensure that, in

the early stages, Blobbo will be a consistent being, capable of

realization? How many systems, having been named, are then

pushed by social discourse into a position where they simply

cannot be realized?

VIII. CONCLUSIONS - EPILOGUE (OR PROLOGUE)

Practices of naming and reference shape how software

evolution and maintenance occur. We need to decide as a

community whether the issue of how we name software

systems is important. And, if it is, how can we understand the

mechanisms of naming practices and their impact on software

systems? Might it be possible to ‘reform’ naming practices

to achieve better software evolvability? Are there situations in

the course of software evolution where we are breaking (or

should be breaking) the laws and continuity of naming?

To summarize, we record some aspects of the naming of

systems discussed above that are worthy of attention:

1) Reification, Persistence, Continuity. Naming and re-

ferring to a system tacitly asserts its individual integrity

and presupposes a continual inertia of persistence over

time.

2) Commitment of resources. As a named, reified project,

a system appears to those hearing about it as having an

individual integrity. Since it has a name, this suggests to

others someone or some group has allocated resources

for its development and is committed to nurturing it to

realization and to maintaining it.

3) Naming and no entity. A system may be named yet

nothing tangible exist, e.g. an example is an announced

system. If sufficient people refer to Blobbo (even if

the term designates nothing as yet), then Blobbo will

develop (it is presumed).

4) Naming and coming into being. Via naming a project

or project idea, a transition is made to ‘systemhood’. The

activity of the project is conflated with or converted into

the system as an entity.

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

5) Same name for multiple identities. Referring to a

system by name often comprises reference a collec-

tion of entities whose properties are not (and in some

cases, cannot be) clearly circumscribed although they

are treated like ‘natural kinds’ or ‘species’. There are

at least the following several ways in which this may

occur:

a) Multiple copies. This is the most trivial kind:

multiple copies exist with only minor differences

of parameter settings, location, etc.

b) Diachronic multiplicity: multiple versions exist

arising over time - descent with modification, via

software maintenance and evolution.

c) Synchronous multiplicity: Multiple versions exist

that are all called by the same name but that

may not have the same functionality, code, or

manufacturer, etc.

6) Incommensurability. Incommensurability of naming

is illustrated by the example of a transactional ma-

chine environment, intended to support both distributed

databases and real-time queries. The interaction of these

two requirements and the initial difficulty of reconciling

them with technical issues leads the marketing depart-

ment at first to sell two or more versions to different

target groups of buyers. These different versions of

“one” system (with a single name) come to be separately

maintained, and marketing continue to sell “the system”

under a single name indicating that all features will

be unified in later releases. Eventually multiple, non-

unifiable versions exist, still bearing the same name.

There is a myth that philosophy (as a human activity)

is more relevant to day to day issues than to the deep

technicalities found in areas such as software design, where

simple procedures and laws will govern actions. Latour makes

the point that this is not the case: “Rhetoric is the name of

the discipline that has, for millennia, studied how people are

made to believe and behave and taught people how to persuade

others. Rhetoric is a fascinating albeit despised discipline, but

it becomes still more important when debates are so exacer-

bated that they become scientific and technical.” [8, p. 30].

In particular, those involved in rhetoric will enlist resources

to help them make their points, and the subtle use of naming

of artifacts is one of the tools deployed. Statements such as

“we will use Object Oriented Design to implement Blobbo on

a Windows platform” seek to persuade without opening the

black boxes denoted by the names “Object Oriented Design”,

“Blobbo” and “Windows”.

Naming and reference are unavoidable in software sys-

tems engineering and evolution. Names we use often remain

constant while entities, properties, context, requirements, and

understanding of different stakeholders are dynamic and inces-

santly changing. The application of naming and reference to

“a system” has many consequences for software evolvability,

some of which have been enumerated above, and merits further

detailed attention.

REFERENCES

[1] J. L. Austin (1976). How to Do Things with Words, Second Edition,

Oxford University Press, Oxford.

[2] L. W. Buss (1987). The Evolution of Individuality, Princeton University

Press.

[3] J. A. Goguen (1996). Formality and Informality in Requirements

Engineering, Proc. Fourth International Conference on Requirements

Engineering, IEEE Computer Society Press, 1996.

[4] J. A. Goguen (1994), Requirements Engineering as the Reconciliation

of Technical and Social Issues. In M. Jirotka and J. Goguen (Eds.),

Requirements Engineering: Social and Technical Issues, Academic Press.

[5] S. A. Kripke (1980). Naming and Necessity, Oxford, Blackwell Publish-

ers (enlarged edition).

[6] W. Lam and M. J. Loomes (1998). Requirements Evolution in the

Midst of Environmental Change: A Managed Approach, Proceedings

of the Second Euromicro Conference on Software Maintenance and

Reengineering (CSMR’98), IEE Press, pp. 121–127.

[7] B. Latour (1996). Aramis or the Love of Technology, translated by C.

Porter, Harvard University Press.

[8] B. Latour (1987). Science in Action, Harvard University Press.

[9] M. M. Lehman (1980). Programs, Life Cycles and Laws of Software

Evolution, Proceedings of the IEEE 68(9):1060–1076,

[10] M. J. Loomes and S. Jones (1998). Requirements Engineering: A Per-

spective through Theory-Building, Proc. Third International Conference

on Requirements Engineering, IEEE Computer Society Press, pp. 100–

107.

[11] M. J. Loomes and C. L. Nehaniv (2001). Fact and Artifact: Reification

and Drift in the History and Growth of Interactive Software Systems,

Proc. Fourth International Conference on Cognitive Technology: Instru-

ments of Mind, Springer Lecture Notes in Computer Science, vol. 2117,

pp. 25-39.

[12] Lynn Margulis and Dorion Sagan (2003). Acquiring Genomes: A Theory

of the Origins of Species, Basic Books.

[13] J. Maynard Smith and E. Szathmáry (1995). The Major Transitions in

Evolution, W.H. Freeman.

[14] R. E. Michod (1999). Darwinian Dynamics: Evolutionary Transitions in

Fitness and Individuality, Princeton University Press.

[15] C. L. Nehaniv (2003). Evolvability, BioSystems: Journal of Biological

and Information Processing Sciences 69(2-3):77–81.

[16] C. L. Nehaniv (2000). Evolvability in Biological, Artifacts, and Software

Systems. In: C. C. Maley and E. Boudreau (Eds.), Artificial Life 7 Work-

shop Proceedings - Seventh International Conference on the Simulation

and Synthesis of Living Systems, Reed College, pp. 17-21.

[17] H. Putnam (1962). “It ain’t necessarily so.” Journal of Philosophy

59(22):658-671.

[18] H. Putnam (1973). Meaning and Reference, Journal of Philosophy

70:699-711.

[19] N. U. Salmon (1982). Reference and Essence, Princeton University

Press.

[20] J. R. Searle (1980 [1969]) Speech Acts: An Essay in the Philosophy of

Language, Cambridge University Press.

[21] R. J. Stainton (1996). Philosophical Perspectives on Language, Broad-

view Press, Peterborough, Ontario, Canada.

[22] W. M. Turski (1981). Software Stability. Systems Architecture: Proceed-

ings of the Sixth ACM European Regional Conference, Westbury House,

107–116.

Proceedings of the 2005 IEEE International Workshop on Software Evolvability (Software-Evolvability’05)
0-7695-2460-5/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

