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Abstract

We consider the issues that arise from an examination of the continuum between two social learning
paradigms that are widely used in robotics research: (i) following or matched-dependent behaviour
and (ii) static observational learning. We use physical robots with minimal sensory capabilities and
exploit controllers using neural network based methods for agent-centred perception of model angle
and distance. The robot is first trained to perceive the dynamic movement of a robot model carrying
a light source, then the robot learns by observing the model demonstrate a behaviour and finally it
attempts to re-enact the learnt behaviour. Our results indicate that a dynamic observation using rotation
performs significantly better than static observation. However given the embodiment of the robot a
dynamic strategy using both rotational and translational movement becomes more problematic. We
give reasons for this, discuss lessons learned for combining these types of social learning and make
suggestions for requirements for imitator robots using dynamic observation.

1 Introduction
In this paper we build on our previous research (Saun-
ders et al., 2004) in considering the issues that
arise from an examination of the continuum be-
tween two social learning paradigms that are widely
used in robotics research: (i) following or matched-
dependent behaviour and (ii) static observational
learning. Our motivation in examining these issues
is the belief that an understanding of the mecha-
nisms underlying social learning should be consid-
ered as a prerequisite for building adaptive and intel-
ligent robots. We believe that social learning leads
to an acceleration of the acquisition of intelligent be-
haviour (Zentall, 2001; Galef and Heyes, 1996; Daut-
enhahn and Nehaniv, 2002) with the promise of eas-
ier robot task acquisition, increased behavioural com-
plexity and ultimately some form of cultural trans-
mission (Alissandrakis et al., 2003). In this respect
we focus on the mechanisms supporting Imitation1

with experiments with physical robots in an attempt
to simplify and focus on key aspects of imitative
processes. The background of this paper is an on-

1We take Thorndike’s 1898 classical definition of imita-
tion (Thorndike, 1898) as “ learning how to do something by seeing
it done” but extended to include non-biological agents (Mitchell,
1987).

going investigation of social learning and the in-
teraction between both human/robot and robot/robot
pairs to understand the social dimension of imita-
tive behaviour. The perspective of both the imi-
tator and the imitatee and the problems of percep-
tion and action encountered by both are considered.
Our starting point is the different imitator perspec-
tives which are widely applied in paradigms used
in robotics imitation research, namely following be-
haviour (Hayes and Demiris, 1994; Billard and Daut-
enhahn, 1997; Dautenhahn, 1994) and static observa-
tion behaviour (Kuniyoshi et al., 1994; Gaussier et al.,
1997; Bentivegna and Atkeson, 2002; Schaal, 1997;
Matarić et al., 1998; Alissandrakis et al., 2003).

From a psychological/ethological viewpoint fol-
lowing is more rightly considered as matched-
dependent behaviour (Zentall, 2001). The imitator
observes and immediately matches the behaviour of
the model as it is being performed, staying close to
the model. For example rats can be trained to follow a
lead rat through a maze which they then learn to nav-
igate (Miller and Dollard, 1941). The rats may have
no idea of intentionality of the lead rat and can be
trained to follow other salient (including non-animal)
stimuli, this behaviour is sometimes called discrimi-
nated following.



Likewise, static observation by the imitator who
stays at a fixed location is related to the ethologi-
cal/psychological notion of observational learning.
Here the behaviour of the demonstrator is copied after
it is observed carrying it out. Typically the demon-
strator and imitator operate within a shared context
but at a distance from one another. For example
Norway Rats apparently develop food preferences by
smelling the breath of a conspecific (Galef and Heyes,
1996), without reference as to whether the demon-
strating rat becomes ill or dies. These examples hint
at some interesting but not widely researched fea-
tures of imitative behaviour in the relationship be-
tween static observation of, and active participation
in, an event to be imitated.

In our previous research (Saunders et al., 2004)
we considered the extremes of a purely reactive fol-
lowing behaviour and contrasted that against a static
observational behaviour using some simple exper-
iments with Khepera miniature robots. Two con-
trollers were designed to allow either a reactive fol-
lowing behaviour or a static observation behaviour.
Each robot either followed or statically observed an-
other robot making various geometric shapes over
varying terrain. In both cases the robot could learn
the observed behaviour and attempt to re-enact it. The
model was perceptable by the imitator due to place-
ment a small light bulb on top of the model. No
explicit communication was permitted between the
model and imitator; in fact the sensory information
was basically the perceived brightness of the moving
light bulb. The research results from these experi-
ments identified trade-offs that are summarised in the
spectrum table shown in figure 1.

The results indicated that there was a clear trade-
off between positional accuracy obtained from static
observation and the advantages of direct perception-
action coupling available from following. This lack
of precision during following we called impersistence
to reflect the fact that the robot is always reacting to
the latest sensor reading and not persisting to meet
the goal signalled by the previous reading. We be-
lieved that the accuracy available from static obser-
vation was unsurprising, given that static observation
allows the design of the robot controller to concen-
trate exclusively on angle and distance perception and
apply more complex and engineered methods to this
task. We believed that similar complexity in observa-
tional systems were also engineered into most other
social learning robotics experiments.

The relative simplicity of the following paradigm
also hid some key advantages, in that the robot was

Spectrum of TradeSpectrum of Trade--Offs for Following vs. Observational LearningOffs for Following vs. Observational Learning
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Figure 1: The table summarises the key aspects re-
vealed by the previous research experiments (Saun-
ders et al., 2004) with extremes of each aspect shown.
Comparative costs are shown in the boxes. The
current research considers mixed approaches which
might allow the balance of these costs and benefits.

able to directly map its perceptions against its motor
actions. It was thus able to learn much about the
environment directly and relatively cheaply. How-
ever to achieve positional accuracy, more complex
observational algorithms were required, but observa-
tion alone was insufficient to completely assess the
physical complexities of the environment. We said
that there may be an argument for suggesting that
observation could be most effective after a following
episode, i.e. observation could fine-tune already
stored movement patterns. Similarly there may be an
appropriate time to ‘see’ (observe from a distance)
as opposed to ‘feel’ (follow, experiencing the same
context) in social learning. A mixed approach
may be valuable, this approach corresponding to
intermediate positions or switching in the spectrum
table shown. One could imagine for example cases
where the observation is less static e.g. several
follow-observe-follow cycles, or where a series of
static observations are made prior to each episode of
following behaviour.

Dynamic Observation. In this paper we consider in
more detail some of the effects of allowing a more dy-
namic observational approach. We study the quality
of the imitation attempt from the imitator’s perspec-
tive in two experiments using either an ‘observe and
rotate’ or an ‘observe and move’ strategy to match the
movement patterns of the model. These successively
augment static observation, respectively, by adding
orienting rotational changes to allow the imitator to



track the model (observe and rotate) or by adding ro-
tation and translation.

2 Experimental Overview
For our experiments we use a controller previously
designed (Saunders et al., 2004) to investigate the im-
itation of movements using static observation and ex-
tend it to provide a mechanism to investigate dynamic
imitation. All experiments are carried out in real-time
on physical robots (i.e. simulation is not used) on a
desktop in a typical busy academic environment with
light levels varying during the day.

Figure 2: The picture shows the experimental plat-
form. The Khepera acting as a model has a small
bulb placed on top of it. The imitator is shown track-
ing the model which is tracing out a triangle.

We examine the behaviour of the imitator when
imitating various geometric shapes made by the
model. We consider intermediate positions in the
spectrum table in two experiments to examine the
effects of a mixed observation and movement exe-
cution strategy. Both experiments involve dynamic
observation which combines both observation and
movement.

Observe and Rotate. The first experiment extends
the static observational perspective by allowing the
robot to alter its orientation so as the better exploit it
sensory facilities. The embodiment of the Khepera
robot is such that the majority of the light sensors are
in front of the wheels, with two sensors at the back.
The estimation of distance is therefore more accurate
when the robot is able to employ all of its front facing
sensors as it is receiving more information from the
environment. To ensure that these sensors are in an
optimal position we program the circular Khepera
robot to rotate in place orienting toward the model.

The rotation is such that the imitator will attempt
to directly face the model if the model’s angle with
respect to the imitator exceeds a given threshold.
However, if the imitator has to rotate to achieve this
then all subsequent observations must be converted
back to the original reference frame in order to replay
the imitation. To achieve this conversion, accuracy
in measuring how far the robot has turned is critical
to this process. We tested threshold angles of 0, 30,
60 and 90 degrees. In both this and the experiment
described below the model was preprogrammed to
make 4 geometric shapes. The first was a 10cm
radius circle around the imitator, the second a 10cm
circle 5cm in front of the imitator. The third and
fourth a triangle and T-Shape 5cm in front of the
imitator.

Observe and Move. The second experiment allows
the robot to record a sequence of observations of
the model and then attempt to use a given subset of
these observations to imitate the model’s movement
sequence. Once the imitator has completed this part
of the imitation it recommences observing.

In a two-dimensional parameterisation of the spec-
trum, different social learning mechanisms are given
by varying both the number n of observations and
the number m of movements made by the imitator. A
single observation is an estimation by the imitator of
the model’s angle and distance from the imitator. A
movement is the transformation and execution by the
imitator of observations to motor-commands in order
to achieve the same effect.

These mechanisms however present a series of
challenges due to the fact that after each movement
sequence the robot’s memory of previous observa-
tions will be from a different perspective from the
current observation set. This is because the imitator,
after partially replaying the imitation (by transform-
ing a subset of the observed vectors) will find that
the remaining observations need to take account of
the new observation position. Furthermore, the new
observation position may not be optimal for accurate
readings, therefore a rotation (as in experiment 1) will
be necessary. To then replay the next part of the imi-
tation the effect of the rotation must be reversed and
subsequently a transformation of the observations re-
performed.

3 Controller
The controller used in both experiments relies on
computing the distance and angle from the imitator
to the moving model and storing these observation



points as a list of two element vectors. Prior to
observing, the robot first learns how to measure
angles and distance.

Learning to Measure Angles. The robot is first
trained to accurately compute the angle of the
light from the centre of the imitator. A number
of methods were evaluated including using a light
compass (Nehmzow, 1993), or computing the angle
by using vector summation of the inputs to each
of the light sensors (Arkin, 1998). However both
of these methods were not accurate and suffered
from incorrect readings especially when none of
the robot’s sensors were directly facing the light. A
new method, which we call environmental sampling,
was grounded in sensory experience and is to some
extent nearer to a biological solution: the robot
is allowed to learn about light angles simply by
observing them. As the Khepera is a circular robot
it rotates in a circle in the presence of the model.
It detects when the circle is complete by polling its
wheel encoders and stopping when the appropriate
value has been exceeded. (During the turn it reads
its light sensors every 200ms. A robot turning at
8mm/s would typically poll it sensors 65 times.) As
the speed of the turn is constant the time interval
between readings can thus be converted to an angle.
Each of the sensor readings are then normalised.
This has two effects, firstly that of making distant
readings of angle equivalent to closer readings,
and secondly allowing these values to be loaded
directly as weights into a neural network (a counter-
propagation network (Hecht-Nielson, 1988)). This is
a fully connected feed-forward three layer network.
The first layer takes the normalised input of the 8
light sensors, the number of middle layer neurons
is set to the number of times the robot was able to
poll its sensors and the final layer used to output
the conversion of these values to angles. Using
this technique has a number of advantages. Firstly
that the network can be built as the environment is
observed, secondly there are no additional training
steps i.e. there is no further training of the neural
network, thirdly the size of the network is directly
related to the internal rotation speed, sensor modality
and sensor polling time of this particular robot and
finally that the method is partially resilient to sensor
failure. There are some biological observations
which may show similar (though not equivalent)
mechanisms in animals. For example young bees
appear to record the image of their hive from many
angles and positions around it: they fly in and out
of the hive varying their circular flight path each

time (Murphy, 2000).

Learning to Measure Distance. For distance mea-
surements various mechanisms were also assessed. A
first approach was to use triangulation, exploiting the
fact that accurate angle measurement was now pos-
sible. The approach measured the light angle from
the model, moved the imitator a fixed distance and
then read the new angle. This allows the computation
of the original distance using the two angles and the
travelled distance. However this mechanism was un-
reliable for two reasons, firstly that, over small move-
ment distances (which minimised errors in the odom-
etry readings from the wheel encoders), the derived
angle would be small and tiny errors in the angle mea-
surement would result in an amplified error in the dis-
tance computation, secondly if the model was mov-
ing, the measurements/movement combination of the
imitator could never be fast enough to resolve the po-
sition of the model accurately. An alternative method
based on environmental sampling was used for the an-
gle computation, the light sensors being summed as
vectors as the robot turned. This exploited the fact
that sensors directly facing the light would have a
larger effect on the vector magnitude than those fur-
ther away. The robot was trained by rotating at in-
creasing 1cm distances from the light source. The
vector magnitude was then held in a lookup table in-
dexed by angle and distance. Using this method gave
a reasonable distance accuracy to about 25 cm from
the robot at an angle between approximately 30

◦ to
150

◦ in front of the robot. However, outside these
parameters the distance accuracy was very poor.

Following these procedures the robot can compute
both angle and distance without further training.

Observing Angles. After the learning phase is
complete the network operates by feeding a nor-
malised sensor vector to the input layer and receiving
the angle from the output layer. The network is
thus operating as a pattern matching mechanism.
Automatic interpolation between observed values is
achieved by setting the middle layer ‘winning nodes’
to a value greater than 1.

Observing Distance. During the observation phase
the angle is computed, followed by magnitude of the
vector summation2, the two values providing the key
to the lookup table to yield distance.

Altering the Angle of Observation. In both exper-
iments the robot collects a set of angles/distances

2Refer to (Saunders et al., 2004) for details.



from itself to the model whilst the model is moving.
The imitator cannot poll its sensors when it itself
is moving. Thus in a fixed time period the number
of possible observations when the imitator is not
moving will be higher than when the imitator is
moving. In the first experiment the imitator can
either not move or rotate to face the model once a
threshold angle has been exceeded (see figure 3). The
lower the threshold angle the greater the rotational
movement of the robot to face the imitator when
the angle is exceeded. The higher the angle, the
smaller the rotational movement, but the robot will
move more often. In our previous research we had
fixed the imitator position and allowed it to observe
the moving model. The model was at all times in
front of the imitator and therefore within range of
angle/distance computation mechanism. We now
allowed the model to be both in front of the imitator
and at any angle around the imitator. By varying
the rotation threshold we can then examine both the
effect of rotational movement size and the effect of
frequency of movement on the imitation attempt.

Time Averaging and Way Points. In both exper-
iments the recorded observations are smoothed us-
ing a simple moving average. The smoothed trajec-
tory is then thresholded to yield a set of way points.
This procedure is necessary for two reasons. Firstly
to eliminate the effect of noisy observations and sec-
ondly to avoid two observation points being too close
to one another - this closeness causing large and po-
tentially damaging changes in the robot’s motor sys-
tems if replayed directly. The imitator uses the de-
rived way points to then imitate the model’s trajec-
tories. In the second experiment this procedure is
only applied when computing the required move-
ment. Any unused observations (which result from
the movement index being less than the observation
index - see experiment 2 below), remain unmodified
as these may be subject to geometric transformation
following the actual movement of the imitator.

4 Experimental Results
In our experiments we compared imitation behaviour
on four simple patterns. These were a triangle, a cir-
cle enclosing the imitator, a circle observed ahead of
the imitator and the letter T. The triangle was chosen
because of the sharp changes of direction at each ver-
tex, the circle because of its continuous shape and the
letter T because of the need to reverse direction and
remap the shape. We emphasise that our goal was
not to design robots that perfectly imitate geometric

shapes but rather investigate relevant aspects of the
imitation attempt using a more dynamic approach in
observational learning.

4.1 Experiment 1 - Dynamic Observa-
tion with Rotation Only

Details of Set-up. In each case the imitator is placed
at the centre of the experimental platform (shown as
point 0,0 on the graphs in figure 4) facing forward
(at 90

◦ along the positive Y-axis). The model is
pre-programmed to move according to the prescribed
shape. A threshold rotation angle is then set and the
imitation run commenced for a fixed period. The
threshold supplies a range of values around the front
of the robot. For example, setting a threshold of say
60

◦ means that if the imitator perceives the model
within a forward range of 60 − 120

◦ (see figure 3)
no rotation will be applied. If however the model

60º

Robot remains static if model perceived within this viewing angle

Threshold

60º
Threshold

Robot rotates if model perceived in angles in excess of this angle

0°180°

90°

Figure 3: Rotation Threshold. In this example the im-
itator will not move at values between 60

◦ and 120
◦.

Between 61
◦ and 121

◦ the imitator will rotate to face
the model.

moves to, say, 50
◦ the imitator will rotate so that the

model is directly in front of it, and thus be, from the
imitator’s new perspective, at 90

◦. The higher the
threshold angle (to the limit of 90

◦) the more often
the imitator will move to match the model but it will
rotate by a smaller amount. If the threshold is set
to zero, then the imitator will only move when the
model is outside the range 0 − 180

◦, however the
robot will then rotate by at least one quarter of its
circumference.

Results. Figure 4 shows the results from a test with
the enclosing circle. The robot is placed facing for-
ward along the positive Y-axis. After the run the
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Figure 4: Dynamic Observation with Rotation Only.
Imitative Behaviours for an enclosing circle. The first
diagram shows the result with no rotation, the final
four graphs show rotation at 0

◦, 30◦, 60◦ and 90
◦ de-

grees thresholds. The continuous line shows the path
of the model, dotted line the imitator observations,
crosses the smoothed observation and large dots the
way points which are replayed by the imitator.

imitator robot attempts to re-enact the observed be-
haviour. The large dots on the graphs show the way
points, these being the path that the imitator will take
when replaying the imitation. The first graph shows
the imitation when no rotation has been applied and
thus where only static observation is taking place. As
expected at angles outside the angle/distance range
the imitation is poor. The second graph shows the
first example of a dynamic observation with the imi-
tator moving only when the model moves outside the
range 0 − 180

◦. Two extreme observation points are
shown reflecting the inability of the distance/angle
sensor to correctly measure the distance. However,
once the 180

◦ or 0
◦ angle is exceeded the robot turns

and starts again to make reasonably accurate read-
ings. On imitation replay the outlying readings are
smoothed away. The situation is further improved at
30

◦ when the sensory apparatus is always in range but
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Figure 5: Dynamic Observation with Rotation Only.
Imitative Behaviours for T-Shape The two graphs
show results with rotation at 60

◦ and 90
◦ thresholds.

the number of moves small. However at 60
◦ and 90

◦

the situation is ambiguous. We would suggest that the
imitation is slightly less accurate. This may be due to
the increasing effect of odometry errors as the num-
ber of moves increases. This is especially true at 90

◦

where there would be a small movement for every 1
◦

change on the model’s position.
Results for the forward circle and triangle (not

shown) were less marked, however the robot was
subject to less movement due to the constrained
angles presented by both shapes. The T-Shape
however is more interesting (see figure 5). The
nature of the shape meant that at 0

◦, 30
◦ and 60

◦ the
imitated trajectories were broadly similar, however
at 90

◦ the robot was affected again by odometry drift
and a similar worsening of readings ensued.

Analysis. These effects show some of the advantages
and disadvantages of a tracking mechanism described
above. Observing whilst not moving (static observa-
tion) has the key advantages of being fast and thus
able to make more observations in a given time pe-
riod (given the sequential nature of the observe/move
scenario presented here). There are no odometry con-
cerns as the imitator is not moving and the energy
required would be lower than for a moving imitator.
The major disadvantage is of course that the model
can move into imitator blind spots. The advantages of
the tracking imitator (dynamic observation with rota-
tion only) is that blind spots can now be seen, how-
ever this is offset by the disadvantages of increasing
odometry errors as more movement is carried out, a
higher energy cost, and more complex computation
as reference frame adjustments are continuously re-
quired. However at a particular movement/rotation
ratio, which for this robot appears to be around 30

◦,
there appears to be a point where accuracy is opti-
mised. This suggests an clear strategy - expend en-
ergy and computational costs by moving only when



Imitation Sequence with 2:1 observation:move Index

1 1

1

Imitator Model

1

1 2
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3

2
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4

Imitator observes Model at 1

Imitator observes Model at 2

Imitator observes Model at 3

Imitator duplicates Model (1-2)

Model simulatnously moves to 4

Imitator observes Model at 4

Imitator

Imitator

Model

Model

Model2Imitator

2

3

Imitator duplicates Model (2-3)

Model simulatenously moves to 1

Imitator observes model at 1

ModelImitator

3 4

1

1 2

1

1 2

3

Imitator duplicates Model (3-4)

Model simultenously moves to 2

Imitator observes model at 2

ModelImitator

3 4
4

1 2

1

Figure 6: Analysis of Observation and Movement In-
dex. In the analysis the model describes a square
pattern. Here we see the imitator using a observa-
tion:movement index of 2:1 and successfully match-
ing it. Similar successful matching will always occur
when the movement index is set to 1 regardless of the
observation ratio.

not to do so would give incorrect results. Or more
simply - keep still until movement is almost neces-
sary (in our case when the model goes beyond the
30

◦ threshold into ’peripheral’ vision).

4.2 Experiment 2 - Dynamic Obser-
vations: Varying Observation and
Movement Cycles

Theoretical Results and Detailed Set-up. This
experiment explored how movement and observation
might be intermixed. This was attempted by varying
the number of look-ahead observations against
an equal or smaller number of moves. Thus the
robot would first make an initial observation 3 and
then subsequently observe for n cycles and then
move, based on these observations, m times. This
procedure iterated throughout the imitation attempt.
Prior analysis of this method, using the imitator
and model represented as points (see figures 6 and
7) suggested that accurate imitation may only be
possible if the number of moves were set to 1. To
simplify the analysis we assumed that the imitator
and model moved at approximately the same constant
speed. Additionally, due to the control system of the

3For each move two observation vectors are required, therefore
at the start of the run one additional observation is made.

Imitation Sequence with 2:2 observation:move Index

1 1

1

Imitator Model

1

1 2

2

3

2
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Imitator observes Model at 1

Imitator observes Model at 2

Imitator observes Model at 3

Imitator duplicates Model (1-2-3)

Model simultaneously moves via 4 to 1

Imitator observes Model at 1

Imitator

Imitator

Model

Model

ModelImitator

1

3

Model moves to 2

Imitator observes model at 2

ModelImitator

3 4

1 2
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1 2

3

Imitator duplicates Model (3-1-2)!

Model simultenously moves to 4 via 3
ModelImitator

3 4

1 2

3

1 2 1

4

2

Figure 7: Analysis of Observation and Movement In-
dex. This example shows the imitator an index of 2:2.
When the movement index is set above 1 the imitator
always fails to match the pattern.

robot, observation and movement execution are not
possible in the same time step. We then imagined
three scenarios cyclically alternating n observations
(o) of model transitions with m moves (x) by the
imitator (note: it is not possible to imitate further
than our observed sequence, and therefore n is
always larger or equal to m). The first scenario was
of n observations to 1 move e.g. 1:1 o-o x o x o x o
x ..., secondly a scenario where there are an equal
number of observations and moves but where both
are greater than 1, e.g. 2:2 o-o-o x-x o-o x-x o-o x-x
... and finally where n is greater than m and both are
greater than 1 e.g. 3:2 o-o-o-o x-x o-o-o x-x o-o-o
x-x .... Figure 7 shows an example of the failure
to correctly match the movement pattern when the
move index is set higher than 1. This occurs because
the imitator has failed to observe one or more critical
points in the model’s move sequence. The effect is
similar to the impersistence problem we noted when
analysing ‘following’ behaviour (Saunders et al.,
2004), however rather than failure to complete or
persist in its goal, as was the case for following, here
the problem is one of ‘inattentiveness’. The imitator
is blind to the moves of the model. This problem
occurs at all values of n and m which are larger than
1. Figure 7 shows an example of this when n:m is
set to 2:2.

Results. The robot was tested on a series of index
values on each geometric shape presented by the
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Figure 8: Dynamic Observation: varying Observa-
tion and Movement cycles. The results show the in-
ability of the imitator to correctly replay the model’s
path. In this case a triangle shape.

model. Figure 8 shows an example of the physical
robot using a 5:1 n:m index on the triangle shape.
The imitator fails to match the model. Similar
failures occurred in all attempts with the physical
robot on all shapes. This was initially surprising,
however the difficulty became clear once the actual
imitator movement was considered.

Analysis. The simplicity of the point analysis above
hides some crucial implementation issues. For ex-
ample the robot can only move in the direction of
its fixed wheels (i.e. it cannot arbitrarily move side-
ways), therefore a rotation may be necessary to ori-
ent the robot to the correct movement vector signalled
from the model. Also, the Khepera has a fixed place-
ment of sensors around its circular wheelbase. In or-
der to correctly ‘focus’ on the model the robot must
be in the appropriate sensor range. Thus the rotation
mechanism described in experiment 1 was employed.
Therefore in addition to the move or moves calculated
from the observations we may have up to 2 additional
moves: one to focus the sensors on the model and the
other to orient the imitator for its move. Whilst these
moves are being carried out the problem of ‘inatten-
tiveness’ is compounded. Two further issues were
also apparent. Firstly, each move is accompanied by
a small odometry error. The total error therefore in-
creases as the number of moves increases. Secondly,
the smoothing effect of time averaging has little or
no effect when attempting to model a small number
of moves. This means that unsmoothed noisy obser-
vations are replayed leading subsequently to a poor
imitation attempt.

We believe that the failure of the imitation is due
primarily to the constraints imposed by the embodi-
ment of this particular robot and might be obviated if
the sensory apparatus was independent of the actuator

mechanism e.g. distance/angle sensors which rotated
and were focusable independently of movements of
the main robot body. Such a mechanism is in fact
used by (Gaussier et al., 1997) in their experiments.
In fact there are no known imitating animals whose
observation sensors cannot focus at least somewhat
independently of the orientation of their bodies.

5 Discussion
In this research we have started to examine some of
the practical issues which face an imitator when try-
ing to use a dynamic observational behaviour. Here
the problems of perception, perspective and action
must be considered. We have greatly simplified the
problem domain by restricting the imitative actions
to that of replaying geometric shapes and have
used simple robots with fixed sensor embodiments
and with limited perceptual capabilities. We have
previously suggested that a ‘following’ behaviour, al-
though limited in its imitative accuracy, has the major
advantage of computational simplicity and the added
value of direct interaction with the environment
through proprioceptive polling of its actuators whilst
moving. We do not suggest that this opportunity to
‘feel’ the environment is exclusive to a following
strategy and accept that there are alternative and
probably better ways to proprioceptively explore
the environment. However this strategy has the
straightforward merits described above. It is also
true that both a follower and an static observer are
necessarily out of phase with the model and for this
reason it seems that the follower’s sensory cues may
not be more appropriate than an observer’s, however
work by (Billard and Dautenhahn, 1997) showed
that the these cues are dependent on the distance be-
tween a follower and the model and within a critical
distance the follower’s sensory cues become very
relevant. What we describe here is an initial attempt
to provide a movement mechanism to an observer
in order to combine the advantages of observational
accuracy with the feedback obtained from actively
exploring the environment. Clearly a simple and
modular solution to this task would be to keep to
the ‘extreme’ behaviours and simply apply each
strategy in turn e.g. follow-statically observe-follow.
One of the aims of this research has been to explore
the challenges faced in combining these strategies
whilst retaining the positive aspects of both. The
experiments themselves are clearly limited as we are
constrained both by the sensor embodiment of the
robot and its internal control system, but we believe
valuable lessons still emerge.



Suggestions for Imitators Dynamically Observing
from a Fixed Location. Our first experiment
showed that dynamic observation with rotation was
successful in that it allowed the model to pass out
of view of the imitator and be reacquired. It was
superior to static observation alone in this respect and
it appeared that the benefit of tracking accuracy could
be balanced against the cost of rotation frequency
and rotational movement based on a turn threshold.
Thus to retain observational accuracy, rotational
movement should be limited so that odometry errors
are minimised in their effect on the geometric trans-
forms required to replay the imitation. Thresholds
near the periphery of vision balance these factors.
In robotics the issue of errors from odometry drift
is clearly not new, however the literature on robotic
observational imitation seem rarely to cite it as being
a problem for a moving imitator.

Suggestions for Imitators that Observe and Move.
Our second experiment showed that with this par-
ticular robot, dynamic observation with movement
of the imitator was extremely difficult and failed to
replicate with reasonable accuracy the model’s path.
Our theoretical analysis suggested that the ‘inat-
tentiveness’ problem may be soluble for a dynamic
observational imitator where the movement value is
set to unity. This region in our spectrum corresponds
with the methods of other research (Wit, 2000)
where a single solution to this issue is considered.
However the need to make additional movements
over and above those required to track the model
means that the movement value can never be unity
for an embodiment where the sensor orientation is
completely fixed for a fixed body orientation. Thus
the imitation will be poor.

Possible Solutions. A solution to this might be in-
dependent sensing and actuator mechanisms. We en-
visage that such a system would additionally employ
independent computation facilities for both mecha-
nisms to allow continuous and parallel calculation of
model position. Thus appropriate movement vectors
could be sent to the actuators reducing unnecessary
movements and the associated additional odometry
drift. The sequential nature of the move-sense cy-
cle on our robot may mean that accurate dynamic ob-
servation is very difficult, however other control sys-
tems employing a parallel cycle may provide solu-
tions. There may also be simpler alternatives, for ex-
ample the model may repeat the pattern and the im-
itator might manage to fill the gaps caused by earlier

inattentiveness, or the model might simply wait for
the imitator.

Even in our own human experience it appears
much harder to both partially replay an imitation and
observe the model before the model has finished its
actions. Animals in fact may have obviated this issue
by evolving alternative mechanisms. In this respect
the recent neurological evidence of ‘mirror neurons’
in primates and humans (Gallese et al., 1996) and
their role in action perception may play a consider-
able role in static observational learning with the im-
itator experiencing perhaps as good a corrrelation to
its own behavioural patterns whilst statically observ-
ing as when attemping to match movements directly.
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