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Abstract

Two existing high capacity training rules for the standard Hopfield architecture associative memory are examined.
Both rules, based on the perceptron learning rule produce asymmetric weight matrices, for which the simple dynamics
(only point attractors) of a symmetric network can no longer be guaranteed.  This paper examines the consequences of
imposing a symmetry constraint in learning.  The mean size of attractor basins of trained patterns and the mean time
for learning convergence are analysed for the networks that arise from these learning rules, in both the asymmetric
and symmetric instantiations.  It is concluded that a symmetry constraint does not have any adverse affect on
performance but that it does offer benefits in  learning time and in network dynamics.

1 Introduction
Due to the low capacity of the original Hopfield
associative memory model, several other, more recent,
models, have been developed that have a higher
performance [Diederich and Opper 1987, Krauth and
Mezard 1987, Gardner 1988].  The models examined
here all use variants of the perceptron learning
procedure that are known to produce networks with high
capacity.  However, unlike the original Hopfield
prescription, the weight matrices so formed are
normally non-symmetric.  This effects the dynamics of
the network, so that the normal asynchronous state
update is no longer guaranteed to converge to a point
attractor. In this paper we investigate the implications,
for attractor performance and training times, of
reimposing the symmetry constraint on the weights of
such networks.

2 Models Examined
In this section we take a set, Π, of N-ary, bipolar (+1/-1)
training vectors, { p}.  The N by N weight matrix is
denoted by W, and the state of the  i’th unit is denoted
by Si.  The loading of the network is defined as:

=
Π
N

 .

All the high capacity models studied here are
modifications to the standard Hopfield network. The net
input, or local field, of a unit, is given by:  hi = wijS j

j ≠i
∑

The next state of the unit is then given by:

  Si (t + 1) =
1 if hi > i

−1 if hi < i

Si (t ) if hi = i

 
 
 

  

where the threshold, i , is normally taken as zero.  The
update can be synchronous or asynchronous.  Here we
use asynchronous, random order updates. These
network dynamics and a symmetric weight matrix
guarantee simple point attractors in the phase space.

If the aligned local fields, hi i , are all non-negative then

the pattern , will be stable in the network.

2.1 Perceptron Style Learning

In the late 1980s it was demonstrated that perceptron
like learning could be applied to associative memory
networks to produce much higher capacity.  In fact as
Gardner [1988] showed a Hopfield type network of N
units could store up to 2N uncorrelated patterns, with
this optimal capacity increasing for correlated patterns.
Learning rules of this type are designed to drive the
aligned local fields of patterns in the training set over a
threshold value, T.  As shown above, a necessary and
sufficient condition for the training patterns to be learnt
is that T is non-negative, and often, for ease of training,
a value of 1 (or even 0) is taken.  Nevertheless
increasing T may improve the attractor performance of
the network [Abbott 1990].  Some care must be taken
though, since if we consider a network in which all the
training patterns are stable, that is hi i > T  for all

patterns and units, i,  then any uniform, upward scaling



of the weight matrix will increase the aligned local
fields, but will obviously not increase the attractor
performance.  In fact the optimal attractor performance
in achieved when the threshold is maximised with
respect to the size of the weights.  For this reason the
relevant characterisation is the normalised stability

measure, defined as: i =
hi i

Wi

where Wi  is the

incoming weight vector to unit i.  The minimum of all
the i  therefore gives a measure of the likely attractor

performance and we take = min
p,i

( i
p ) .

2.1.1 Local Learning (LL)

Diederich and Opper’s [1987] local learning rule is an
iterative learning rule in which the local fields for each
training pattern are driven to the correct side of +T or
–T as appropriate.  This is equivalent to the condition
that:

∀i, p •hi
p

i
p ≥ T

So the learning rule is given by:

Begin with a zero weight matrix
Repeat until all local fields are correct

Set the state of network to one of the  p

For each unit, i, in turn
Calculate hi

p
i
p .

If this is less than T then change the weights to
unit i according to:

∆wij = i
p

j
p

N

This is the perceptron learning rule with a fixed margin
of T and a learning rate of 1

N .  The process will

converge on a suitable weight matrix if one exists
[Diederich and Opper, 1987], at which point the trained
patterns are guaranteed to be stable.  Normally a
symmetric weight matrix will not be the result, so that
cycles can arise in the network dynamics.  These are
actually quite rare, but nonetheless present problems.

As shown by Abbott [1988],  this leads to a network in

which ≥
T

2T +1 max , where max  is the optimal value

of .  From this it is apparent that increasing T will in
turn increase the lower bound of , and this may give
better attractor performance.

2.1.2 Krauth and Mezard Local Learning (KM)

A modification to this learning rule proposed by Krauth
and Mezard [1988] can be shown to produce a value
that tends towards max  as T increases.  In this version

the patterns are not presented to the network in an
arbitrary order.  Instead the pattern that has the smallest
aligned local field is chosen as the one for next
presentation.

Begin with a zero weight matrix
Repeat until all local fields are correct

For each unit, i, in turn
Select the pattern,  p with lowest aligned local
field at this unit and update the incoming weights
according to:

∆wij = i
p

j
p

N

2.2 Symmetry of the Weights

The original Hopfield network has a symmetric weight
matrix and such weights have the desirable property of
implying point atttractors, with asynchronous updating
and cycles of at most length 2 with synchronous
updates.  As the symmetry is broken, more complex
dynamics become progressively more likely. On the
other hand Krauth, Nadal and Mezard [1988] showed
that, under certain circumstances, decreasing the
symmetry of the weight matrix should improve attractor
performance.  Another factor, not pursued in this paper,
is that a symmetric weight matrix can represent less
information than an asymmetric one, so it is no surprise
that the storage capacity of a fully symmetric network is
less than an asymmetric one [Gardner 1989].

Gardner [1988] pointed out that an iterative perceptron
like training rule could be made to produce symmetric
weights by simply updating both wij  and w ji  when either

changes.  She also showed that such algorithms would
find a symmetric weight matrix, if one existed, for a
particular training set.  To investigate the implications
of having a symmetry constraint we compare
asymmetric and symmetric versions of both the
Diederich and Opper local learning method (LL) and the
Krauth and Mezard optimal version (KM).

The Symmetric Local Learning rule (SLL) is therefore:

Begin with a zero weight matrix
Repeat until all local fields are correct

Set the state of network to one of the  p

For each unit, i, in turn
Calculate hi

p
i
p .

If this is less than T then change the weights
between unit i and all other units, j, according
to:

∆wij =∆w ji = i
p

j
p

N

We donate as SKM the corresponding symmetrical
version of KM.



3 Analysing Performance
As a consequence of the training rules used, all the
associative memory models discussed in this paper
perform with perfect fidelity with respect to the stability
of trained patterns.  Nonetheless there are two other
important features of associative memory that should be
examined.  These are the training time, and attractor
performance – the size of the attractor basins of the
trained patterns.

The relationship between attractor basin size and
memory loading is presented first.  Each of the models
was trained with sets of random training patterns, in
which:

∀i,p • prob ( i
p= +1) = 0.5,

3.1 Basins of Attraction

For useful pattern association to occur, the patterns
stored in an associative memory of the Hopfield type
must act as attractors.  The ideal behaviour of such an
associative memory would be such that a given initial
state would relax to the nearest trained pattern.  If the
trained patterns are not the only attractors then such
behaviour cannot be guaranteed.  As is well known,
Hopfield type networks necessarily contain many
attractors not in the training set, such as inverses and
mixture patterns.  So the key question to ask of a
Hopfield type network is: what is the mean size of the
basins of attraction of the trained patterns?

Since the attractor basins cannot be expected to be
Hamming hyperspherical [Storkey & Valabregue,
1999], it is usual to take the minimum Hamming radius:

R(p) = inf q, p : q ∈Basin( p){ }
The mean radius of attraction,

R =
1

Π
R(p)

p∈Π
∑ ,

can act as a measure of the quality of a particular
associative memory.  It is also common for R to be
normalised with respect to the size of the network, so
that it lies between zero and one:

′ R =
1

N
R

For very small networks it is possible to exhaustively
explore the state space (see, for example [Personnaz et
al, 1986]), in order to calculate R exactly, but for more
realistic sizes the nature of the attractors can only be
explored statistically.  A sample (of size Γ) of states at a
fixed distance, r, from a trained pattern, p, is made, and

if all them relax to p, it is concluded that R(p) is at least
as big as r.  An incremental search over increasing
values of r provides an estimate for R(p).  Clearly, the
larger the value of Γ the higher the quality of the
estimate.

For finite size associative memories another factor
needs to be considered.  Any random starting point may
have a relatively high overlap with many of the trained
patterns, as well as the intended attractor and, to
compensate, we follow the method of Kanter and
Sompolinsky [1987] in the calculation of R, as described
below.  A series of initial states is chosen.  In each case,
a fixed fraction, m, of the state is identical to the
corresponding part of one of the stored patterns, p ,

and the rest of the state is random.  If the value of m is
high then the network will relax to p for every one of

those initial states.  The value of m is reduced until a
value, m0, is reached at which one or more initial states
do not relax to the desired state.  Averaging m0 over
different stored patterns yields:

R = 1− m0

As is pointed out in [Kanter & Sompolinsky, 1987], the
initial states used in this calculation may overlap one of
the other stored patterns more closely than p , and to

compensate for this the definition of R is modified to:

R =
1− m0

1 − m1

where m1 is the largest overlap with the rest of the
stored patterns.

In our implementation, the search for the value m0 is
undertaken from low m to high m.  A fixed number, Γ,
of random starting points are chosen, each of which has
low overlap with every member of the training set.  If,
as is likely, the start state does not relax to the closest
training pattern in one or more of the Γ cases, the value
of m is increased (by 0.01), and the search is repeated.
This continues until all random start states relax to the
closest stored pattern.  This procedure is performed for
six different sets of stored patterns for each network
type: three sets of unbiased random patterns, and three
sets of biased random patterns.  Unless otherwise stated
Γ has value 50.

The perfect attractor network has R = 1, which means
that it is possible to move away from any stored pattern,
and stay within its basin of attraction up to the point at
which another stored pattern becomes nearer (see Figure



1).  Note that the calculation of average attractor basin
size for the trained patterns can only sensibly be
undertaken when these patterns are themselves stable.

p1 p2
rr

p4

p3

Figure 1:  The closest pattern in the training set to p1 is p2, at
a distance of 2r.  Optimal performance occurs when all vectors
within the hypersphere centred on p1 and radius r, are
attracted to p1.  If all patterns stored in a network exhibit this
performance, its normalised average basin of attraction, R, is 1

4 Results

4.1 Attractor Basins and Loading

For all four models the size of the attractor basins
decreases with loading in a roughly linear way.  Figure
2 shows the results for Symmetric Local Learning, with
a network of 100 units, unbiased patterns and increasing
loading. The graphs for the other learning rules are
similar.  Differences in performance can only be seen by
detailed examination of the results for particular
loadings, as is seen in the next section.
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Figure 2: The basin of attraction size for the Symmetric Local
Learning Network, with 100 units and 30 unbiased patterns.
The dark line is a trend line, showing the fall of R with α.
Graphs for the other networks show a similar pattern.

4.2 Comparative Performance

The next set of results, shown in Table 1, compares
Local Learning (LL) with the symmetric version, SLL.

In all cases the loading of the (100 node) network is α =
0.3, the patterns are unbiased and the results are
averages over fifty runs.  At this loading the theoretical
value of  κmax is 1.27

T R Training
Epochs

LL 1 0.84 0.57 7.7

LL 10 1.14 0.64 54.8

LL 100 1.18 0.63 500.6

SLL 1 0.80 0.54 11.6

SLL 10 1.14 0.65 35.6

SLL 100 1.18 0.65 307.8

Table 1: The comparative performance of local learning and
its symmetric counterpart, under a loading of 0.3 (30 patterns

in a 100 node network).  The patterns are unbiased and the
results averages over 50 runs.

It can be seen that the imposition of symmetry does not
affect the attractor performance (R) of the network.
Moreover the increase in T raises the value of κ but,
interestingly, this does not improve attractor
performance, in the change from T = 10 to T = 100, in
either case.  The actual value of κ obtained is much
higher than the theoretical lower bound, which for this
learning rule, at this loading is: 0.42 for T =1, 0.60 for T
= 10 and 0.63 for T = 100.

The training time (epoch count) is increasing linearily
with T, which is in accordance with the theoretical
upper bound on training time [Abbott 1988].  However
it is apparent that the convergence of SLL, at the higher
values of T, is significantly faster than the non-
symmetric version.

The results for the Krauth and Mezard rule, shown in
Table 2, again with  α = 0.3, unbiased patterns and the
results averaged over fifty runs show a similar pattern to
LL.  The imposition of symmetry does not make much
difference to R, with KM being marginally better than
SKM.  A comparison of  Tables 1 and 2 shows the R
values for LL to be similar to those for KM, although as
in accordance with the theoretical result, the κ values
are higher for KM, getting close to the theoretical
maximum (1.27) with the highest threshold.  The results
do not contain the training epoch count as the algorithm
does not take place in a simple epoch by epoch fashion.



T R

KM 1 0.87 0.57

KM 10 1.19 0.66

KM 100 1.23 0.64

SKM 1 0.87 0.56

SKM 10 1.19 0.61

SKM 100 1.23 0.62

Table 2: The comparative performance of Krauth /Mezard
local learning and its symmetric counterpart, under a loading
of 0.3 (30 patterns in a 100 node network).  The patterns are

unbiased and the results averages over 50 runs.

4.2.1 Symmetry

It is interesting to look at the degree of  symmetry in the
weight matrices produced by the asymmetric versions of
the learning rules.  To this end the symmetry measure of
Krauth, Nadal and Mezard [1988] was applied to the
resulting weight matrices. It is defined as:

 =
w ij

i ,j
∑ w ji

wij
2

i, j
∑ .

For a symmetric matrix this takes the value +1.  For an
anti-symmetric matrix it takes the value –1 and for a
random set of weights it will be roughly zero.  The
results, in Table 3, show that the weight matrices
produced for all thresholds are highly symmetric with
the symmetry increasing with the threshold.

T  - LL  - KM

1 0.961 0.968

10 0.983 0.991

100 0.983 0.991

Table 3: Symmetry of LL and KM with alpha = 0.3, and
unbiased patterns.  Averages over 50 runs

5 Discussion
Symmetry of the weights in an associative neural
network is a mixed blessing.  Desirable from the
perspective of dynamics, but with potentially damaging
implications for the attractor performance.  However as
shown above, for both forms of learning rule, the

addition of a symmetry constraint did not have an
adverse affect on the attractor basins.  The  reason for
this is probably that the matrices that result from
unconstrained learning are already highly symmetric
and become more so with a larger learning threshold,
which is itself an interesting result.

It is also apparent that, for the LL rule, imposing a
symmetry constraint during learning had a helpful affect
on convergence – almost halving the training epochs
required. In symmetric local learning, for each epoch,
each weight is changed twice, so if both these changes
are constructive in moving the weight towards its final
value, the learning may, at best, be twice as efficient.  If
the LL weight matrix was actually strongly asymmetric,
then it is improbable that the SLL double weight change
would be constructive, and the observed halving of
training epochs would not have occurred.

In conclusion, the best versions of these high capacity
Hopfield networks are those with strictly symmetric
weights, since they have simple dynamics (only point
attractors in the phase space), and learn faster.
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