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Abstract—Living organisms are under permanent pres-
sure to take decisions with an impact on their success.
Such decisions require information, which can be for-
mulated in the precise sense of Shannon information.
Since information processing is costly for organisms,
this creates an adaptive pressure for cognition to be
as informationally parsimonious as possible. Combining
information theory with the theory of reinforcement
learning for modeling tasks, we present a number of
quantitative analyses how the cognitive burden of an
agent deriving from a task can be relieved by the
environment and, more specifically, its embodiment. This
can be interpreted as moving towards a giving a specific
and precise quantitative meaning to Paul’s and Pfeifer’s
concept of morphological computation and highlighting
the central importance of the embodiment for the success
of cognition.

I. INTRODUCTION

One of the goals of the studies of Artificial Life is to

identify universal principles governing the dynamics of

organisms, which are not tied to a particular substrate

and which abstract away the particular biological “im-

plementation”, and thus carry over to artificial agents.

Various approaches, such as dynamical systems model-

ing [1], cellular automata [2], [3] and many others have

been suggested for this purpose. In the last decade, a

new class of approaches based on information theory

has been receiving increasing attention. In contrast to

the former, it aims at addressing aspects of Artificial

Life in a mechanism-free way: instead of aiming to

specify mechanisms modeling particular phenomena,

one specifies (e.g. optimality) principles which result

in the desired phenomenon, without making any as-

sumptions about which mechanisms would actually

“implement” these principles. This allows for different

choices of mechanisms as long as they result in the

same macrodynamics. It provides a mesoscopic level of

modeling between high-level, phenomenological and

low-level, fine-grained models of Artificial Life.

II. INFORMATION AND COGNITIVE PROCESSING

Interestingly, information theory has already been rec-

ognized as an important potential tool for cognitive

modeling only shortly after the concept of informa-

tion had been introduced in [4], namely in the con-

text of cybernetics and biology [5]–[7]. Evidence for

information-maximization principles in biology [8]–

[10] and for sensors operating at the physically possible

limits of information acquisition [11]–[14] indicates

that informational optimality is a candidate for a prin-

ciple of central importance to biological organisms.

To use such principles, one needs to cast an agent

operating in its environment as a control scenario, in

which an agent interacts with the environment exerting

a certain amount of control over it [15]–[18]. The

informational picture of the perception-action loop has

studied in various contexts and scenarios [19]–[22].

More importantly, however, these considerations allow

one to formulate fundamental limits on the minimal

amount of information required for particular tasks,

be it a reduction of environmental entropy [15] or the

navigation to a target position from a random starting

position [18].

Whereas in Shannon’s original scenario there is no

mechanism to formulate a particular “semantics” or

purpose of how transmitted information is to be ac-

tually used the information bottleneck method demon-

strates how to separate relevant from irrelevant portions

of Shannon information [23]; this can be extended

towards agent scenarios by “qualifying” information

via a utility function which attaches a value to each

action an agent takes in a particular state [24]. In the

case of rewards delayed over a prolonged period, this

utility can be modeled by so-called Markovian Deci-

sion Processes, MDPs (which are studied in Reinforce-

ment Learning), and combined with the information-

theoretic view [25]–[27].

The bottom line of these considerations is that, for an

agent to take a decision that achieves particular utility

in its world, a certain minimum amount of informa-

tion processing is necessarily required. Together with

aforementioned hypothesis that information is costly

for organisms, this suggests that organisms would obey

a principle of information parsimony, minimizing the

information required to achieve a sufficient utility [14].
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Assuming that the information processing cost gives

a quantitative characterization of the “cognitive load”

of an agent, we are going to study how this cognitive

load can be partly relieved by the environment. It will

turn out that, under this view, not just the structure

and dynamics of the environment per se is important,

but how it relates to the particular task, and, more

specifically, also the embodiment of the agent which

we will here intend to mean how precisely the agent is

linked into the environment1 This suggests a quantita-

tive interpretation of the phenomenon of “morpholog-

ical” or “environmental” computation which has been

postulated as basis for the success of suitably embodied

agents [28]–[30].

The paper is structured as follows: in Sec. III we

introduce basic notation, notions and principles of the

MDPs models used, in Sec. IV we explain how these

are expanded towards the informational framework,

in Sec. V we present the experiments and results,

concluding in Sec. VI with a discussion.

III. MODEL

In the following, we present the model from [25] which

will be used for the experiments. The agent’s prefer-

ences and decision process is modeled as a Marko-

vian Decision Process (MDP). MDPs are a popular

approach for modeling sequences of decisions taken

by an agent in the face of delayed accumulation of

rewards. The structure of the rewards defines the tasks

the agent is supposed to achieve. In the present paper,

we will restrict ourselves to a simple navigation task,

but the formalism is significantly more general [31].

We begin by introducing general notation and the MDP

concept.

A. Notation and Definitions

1) Probabilities: First, we introduce some nota-

tion and conventions. We use uppercase characters

X,Y,Z, . . . for random variables, lowercase characters

x, y, z, . . . for the values they assume and curved

characters X ,Y,Z, . . . for their respective domains

which we always assume finite. The probability that

a random variable X assumes a value x ∈ X is

written P (X = x), however for simplicity we will

use the simpler form p(x) instead by abuse of notation

whenever there is no danger of confusion. In particular,

in writing p(x) we will not make an explicit distinction

between the distribution of the random variable X and

the probability value p(x) for the particular outcome

x ∈ X . We write p(x, y, z) for the joint distribution

1Here, we will, unlike some other work, not make a distinction
between “real” and “simulated” scenarios in using the term embod-

iment.

of random variables X,Y,Z, and p(y|x) for the con-

ditional distribution of Y given X .

2) Entropy and Mutual Information: Given a random

variable X , define its entropy H(X) as H(X) :=
−

∑
x∈X p(x) log p(x) where we always assume a

binary logarithm. Thus the entropy will be expressed

in bits, and is a measure of the uncertainty about

the outcome of the random experiment X . For jointly

distributed variables X,Y , the entropy is defined as

H(X,Y ) := −
∑

x∈X

∑
y∈Y p(x, y) log p(x, y) which

is equivalent to the entropy of the (single) joint random

variable (X,Y ). For the random variable pair X,Y , the

conditional entropy is defined as

H(Y |X) :=
∑

x∈X

p(x)H(Y |X = x)

= −
∑

x∈X

p(x)
∑

y∈Y

p(y|x) log p(y|x) .

Finally, define the mutual information between X and

Y as

I(X;Y ) := H(Y ) − H(Y |X) , (1)

i.e. the reduction in uncertainty about the outcome of

Y if the outcome of X is known.

3) Markovian Decision Processes (MDPs): Infor-

mally, an MDP is a model for an agent taking se-

quential decisions in an environment with the following

properties:

1) The world consists of states and an agent which

has a policy that determines which actions it

selects in which states.

2) After each action taken, the agent obtains a

reward (which may be negative). These rewards

are cumulated over the lifetime of the agent and

determine its achieved utility.

3) Being Markovian, MDPs have no hidden states

— that means that, in principle, the agent has

full access to the state of the world. We will

discuss this assumption briefly in Sec. IV-C. For

the particular study, this is not a restriction.

We now formally define MDPs, adopting in the nota-

tion from [31] with slight modifications. A Markovian

Decision Process is defined by its set of states S, its
set of actions A, and the pair (Ps′

s,a,Rs′

s,a) defined for

all s, s′ ∈ S and a ∈ A; here P
s′

s,a is the probability

that by performing an action a in a state s, the agent

will move to state s′ and R
s′

s,a is the expected reward

for this particular transition.

P
s′

s,a defines a transition (“structure of the world”) and

R
s′

s,a a reward structure. Given (Ps′

s,a,Rs′

s,a), an agent

can employ a policy π which specifies its decision

process: an action a in a state s is selected with
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probability π(a|s). Over the course of a single run,

an agent will accumulate a reward
∑∞

t′=t rt′ , starting

at time2 t. The expectation value for this cumulated

reward is obtained by averaging over the transition

probabilities P
s′

s,a and the policy π(a|s). Given a

starting state s and a policy π, this is the value V π(s)
of the state s following policy π. It can be expressed

via the recursive Bellman equation

V π(s) =
∑

a∈A

π(a|s) ·
∑

s′∈S

P
s′

s,a ·
[
R

s′

s,a + V π(s′)
]

.

(2)

This equation can be used as a fixed point iteration

(value iteration) for V π by inserting an estimate for V π

on the right side and obtaining an improved estimate

for it on the left side until convergence. Sometimes it

is convenient to further decompose this equation into

the Qπ function which distinguishes the values attained

for a given state s as different actions a are applied:

Qπ(s, a) =
∑

s′∈S

P
s′

s,a ·
[
R

s′

s,a + V π(s′)
]

. (3)

Qπ(s, a) is the utility attained if, in state s, the agent

carries out action a, and after that begins to follow π.

This representation of the utility allows one to directly

evaluate different actions a in a given state s.

In the traditional MDP optimization one now seeks a

policy π∗ which maximizes the — unique — value

function V ∗(s) for all states s. Here, however, we

will be interested in a modification of the problem,

incorporating the decision costs into the problem.

4) Notes on the MDP Definition: Before we proceed

to do so, we mention the conventions used here. First,

we assume transition probabilities P
s′

s,a into states

which are not successors of s to be 0. Furthermore,

here we only consider navigation tasks and model the

goal states of our experimental scenarios as absorbing

states which the agent cannot leave once reached.

Second, in the traditional MDP definitions, one as-

sumes that, in the most general case, different states

s may have different action sets As. Here we deviate

slightly from this in that we require the action set

A to be the same over all states s. The rationale for

this requirement is at the core our interpretation of the

decision maker as agent: the embodiment of the agent

implies a consistent set of “atomic” actions available to

the agent throughout the world — an embodied agent

always “takes its actions with it” and the available set

of action choices from which the agent selects does

not change from state to state 3. The effect of actions,

2For the sake of simplicity, we do not consider a discount over
time.

3We exclude actuator evolution or meta-actions, such as the
options model.

however, will in general differ in various ways from

state to state.

This is, from the point of MDPs, a seemingly minor

technical requirement which can be easily accomo-

dated4 and has no tangible consequences. However,

this assumption about the embodiment, i.e. about a

particular consistent action set available to the agent

throughout the world, will turn out in Sec. V-B to have

major consequences, once we take the information

costs of decision making into consideration.

IV. INFORMATION IN THE DECISION PROCESS

A. Overview and Rationale

In this paper, we are not concerned with the cost of

learning policies, but delegate that consideration to

a generic evolutionary or otherwise adaptive “black

box” algorithm (concretely, the algorithm given in

Sec. IV-D) which computes the policies. The criterion

that we will apply instead is that the policy will

be informationally parsimonious. We will make this

notion precise in the current section.

First, some general qualitative considerations: if there

exists only one optimal policy for the MDP, then that

policy is unambiguous and has a given information

processing cost. However, if there are multiple optimal

policies, then asking for the informationally cheapest

one among these optimal policies becomes a more in-

teresting question. Even more interesting becomes the

issue when we do no longer demand that the solution

be perfectly optimal. After all, strict optimality in one

criterium is not the typical situation in biologically

relevant scenarios, as many other considerations come

into play. Thus, if we only require the expected reward

E[V (S)] to achieve a “sufficiently” large value, the

information cost for such a suboptimal (but informa-

tionally parsimonious) policy will be generally lower.

The extreme case is that of a “blind” agent without

information processing cost: it follows the same (but

possibly probabilistic) policy independently of the state

it is in. In the following, we now make these notions

precise and reiterate the methods to compute these

policies, where we follow the method from [25].

B. Core Model

Consider an MDP (Ps′

s,a,Rs′

s,a) (state set S and action

set A, as in Sec. III-A3). One can consider an agent

graphically as a Bayesian Network, Fig. 1. The random

variables S0, S1, S2, . . . denote the (complete) state of

4To model in our notation action sets As that change between
different states s, we characterize illegal (unavailable) actions, i.e.
actions outside of As, by penalizing them via a infinitely negative

reward R
s
′

s,a
:= −∞.
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the world at times t = 0, 1, 2, . . . . Depending on St,

the action At at each time t is selected according to

the policy π(at|st) which is fixed throughout the run.

Depending on the particular given state st and the

action selected at, the new state is generated according

to probability distribution p(st+1|st, at) ≡ P
st+1

st,at
.

S0
//

π
��

S1
//

π
��

S2
//

π

��

. . .

A0

AA
�

�
�

�
�

�
�

A1

AA
�

�
�

�
�

�
�

. . .

Fig. 1. Bayesian Network indicating the decision structure for an
agent

The decision cost incurred by the agent is given by the

mutual information

I(S;A) =
∑

s∈S

p(s)
∑

a∈A

π(a|s) log
π(a|s)∑

s′∈S π(a|s′) p(s′)

(4)

(essentially a reformulation of (1)). Note that we

consider (4) independent of time: we will assume a

“steady state” where we do not start the decision

process at a specific time but “tap” randomly into the

decision process. We will thus simplify the discussion

by assuming a fixed distribution of the states p(s) for

all time steps.

With these assumptions, the information cost given

by (4) then depends only on the state distribution

p(s) and the policy π and, since we here consider

p(s) as fixed, our only variable of interest becomes

π. We now proceed to determine a policy π which

is informationally parsimonious, i.e. which minimizes

I(S;A) for a given utility level E[V π(S)].

C. Informationally Optimal Policies

For didactic reasons, we describe the issue of infor-

mationally parsimonious solutions in two steps. We

first consider only optimal strategies which achieve the

(unique) optimal value function V ∗(s). This is only

achieved if a (not necessarily unique) optimal policy

π∗ is used by the agent. If the optimal policy is not

unique, then one can impose an additional optimality

principle amongst the optimal policies, namely seeking

one that is informationally parsimonious; i.e. one seeks

an optimal policy π∗ such that, in addition, I(S;A)
as given by (4), with π∗ substituted for π, becomes

minimal. Such a policy π̄∗ is called informationally

optimal.

An informationally optimal policy π̄∗ can be inter-

preted in various ways:

1) among the optimal policies, it requires the least

amount of (Shannon) information to distinguish

the states S the agent is in;

2) this can be interpreted as the strongest restriction

(in terms of information) of the MDP to a

process where the state can only be partially ob-

served (a partially observable MDP) but where

still an optimal value can be reached without the

use of memory (see also [27]);

3) alternatively, this can be interpreted as the min-

imal cost on sensory processing power of a

memoryless agent achieving an optimal policy.

To compute informationally optimal policies, one first

determines the optimal value function V ∗(s) in one of

the well-established ways (e.g. by alternating value it-

eration and then selecting greedy policies, Sec. III-A3)

[31]. With the optimal value function V ∗(s) one then

uses the Lagrangian formalism to formulate the uncon-

strained minimization problem

min
π

(
I(S;A) − β · E[Q∗(S,A)]

)
(5)

for infinite (in practice very large) β where the expec-

tation E is taken over the joint distribution of states

S and actions A given by p(s, a) = π(a|s)p(s). This
turns out to be virtually identical with the so-called

rate-distortion problem from information theory [23],

[32], for which the Blahut-Arimoto fixed point iteration

is well established. It consists of a double iteration

alternating updates for the policy π and the resulting

action distribution p(a) =
∑

s π(a|s)p(s) to compute

an informationally optimal policy π̄∗:

π(k)(a|s) = Z−1 · p(k−1)(a) · exp (β Q∗(s, a)) (6)

p(k)(a) =
∑

s∈S

π(k−1)(a|s) · p(s) (7)

where π(k) and p(k)(a) are the estimates for policy

and action distribution in the k-th iteration step and

Z is a normalization factor. Under mild conditions,

this iteration converges to a solution for (5). As in

[25], we call the resulting mutual information I(S;A)
for a value-wise and informationally optimal policy π̄∗

relevant information for the given MDP.

D. Informationally Suboptimal Policies

We are now introduce the general methodology for

suboptimal policies, policies that achieve a particular,

but no longer optimal, value E[V π(S)]. In Sec. IV-C,

where we considered optimal policies only, we com-

puted first the optimal value function V ∗(s) and from

it, via (3), Q∗(s, a). This optimal value which does

not depend on the policy and is universal for an MDP

scenario was used in the iterations (6),(7). This is no

longer true, however, when we seek policies π that are
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informationally optimal at a suboptimal value level,

since in these cases, the value function V π(s) and its

associated utility Qπ(s, a) will in general depend on

the policy.

While we still can write the Lagrangian minimization

task as

min
π

(
I(S;A) − β · E[Qπ(S,A)]

)
, (8)

now not only I(S;A), but also Qπ(s, a) depends on the
policy π. Thus a solution for (8) must be self-consistent

not only with respect to (6),(7), but also with respect to

the Bellman equation (2). This double self-consistency

criterium can be used to derive an algorithm for finding

solutions for (8): a single step of value iteration (2) is

followed by a single step of the Blahut-Arimoto update

(6),(7), repeating until convergence. This method was

proposed in [25], and the universal convergence of an

extension of this algorithm been conjectured [27], but

not proven.

The computations in the following will all use this

algorithm5. For β → ∞, the algorithm computes an

optimal strategy that is also informationally optimal,

consistent with (5) which uses the optimal Q∗ di-

rectly. For smaller β, the algorithm produces policies

π that are informationally optimal for a given value

E[V π(S)]. The trade-off curves in Fig. 3 can be read

in two ways: either as the least information I(S;A)
to reach a particular value E[V π(S)] or the best value

E[V π(S)] that can be reached for a fixed information

I(S;A). In particular, in the latter, E[V π(S)] will

increase monotonically with growing I(S;A).

V. EXPERIMENTS

We consider two main scenarios. In both scenarios, we

use a square grid world with a varying goal for each

of the scenarios. An agent is located in a cell of the

grid world, and can take one of four actions, moving

it north, east, south or west from the cell the

agent is currently in.

To implicitly specify the goal position in the scenarios,

we define the reward structure R
s′

s,a as follows: for

each step taken outside the goal state, the reward is −1
(penalty). The grid world is finite and its boundaries are

delimited by “walls”; if an action moves the agent into

the walls, the agent does not move, but incurs the usual

reward −1. Once the goal is reached, the agent does

not move away from it and all further rewards are 0 —

5In the scenarios we are considering, we estimated or calculated
solutions for the extreme cases β → ∞ and β → 0 as “sanity
check” benchmarks. For intermediate values of β, we have grounds
to believe that the algorithm converged to the actual optimal solution;
the results are plausible and consistent with the confirmed limit
cases; further work is aiming to validate this assumption.

B

A

Fig. 2. Grid world with goal positions.

the task has finished. The value function V π(s) gives

the negative of the expected duration of the travel from

a given state s to the given goal if the agent follows

policy π.

A. Value-Information Trade-Offs for Goal Variations

We now specify the scenarios in detail. Consider a 11×
11 square (Fig. 2). Here, we consider two cases: a goal

at the top right corner of the grid (A) and a goal in the

center of the grid (B). Assuming that the start position

is equidistributed over the grid, case B has the shorter

average shortest path lengths to the goal and thus the

higher optimal values V ∗(s) since this value is the

negative of the path length.

Figure 3 shows the trade-off between the value

achieved for given information I(S;A) for cases A

and B under the self-consistent condition (8) for β ∈
(0,∞). The top right corner in each graph corresponds

to β → ∞, the optimal value E[V ∗(S)] (shortest path
to the goal) and the minimum information required

to achieve it. As one reduces β, I(S;A) drops and

the policy uses less information about the state S,

thus leading to a drop of E[V π(S)]. The limit case

is where trade-off curve meets the y-axis and the

information I(S;A) becomes 0, the curve intersecting

with the vertical axis at the best value that can be

achieved by an completely blind agent. In case A

(solid curve in Fig. 3), the optimal policy requires a

relevant information of ≈ 0.166 bit, achieving a value

of ≈ −10.1. The other extreme case of a blind agent

with I(S;A) → 0, achieved by a policy which selects a
north or east move with probability 0.5 each, still

reaches a value of ≈ −14.5, and is thus reasonably

effective in reaching the goal.

In case B, the optimal strategy achieves a better value

of −5.5, since the target state is in the center of

the square. However, compared A, this comes at the

price of a considerably higher amount of relevant

information, namely of I(S;A) ≈ 1.17 bit per step
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Fig. 3. Trade-off between average value and minimal required
information I(S; A) for the square grid MDP from Fig. 2. The
horizontal axis shows the information I(S; A) per decision and
the vertical axis shows the corresponding value achieved with this
information. For higher values, more information is required. The
trade-off for A, solid curve, achieves a slightly lower optimal value,
but, for most of its parts is strongly favoured to the B trade-off
curve.

taken. This effect becomes even more pronounced

when one moves on the trade-off curve towards the

limit of blind agents I(S;A) → 0. The value in this

case goes towards ≈ −205 (outside of the Figure) and

the corresponding strategy becomes a purely random

walk. The trade-off curve (dashed curve in Fig. 3)

for B lies mostly to the right and below that for A.

This indicates that case B is, for most of the part

far less favourable than case A in terms of “value for

information”. We will return to these observations.

B. Value-Information Trade-Offs for Relabeled Actions

In the scenarios of Sec. V-A, we varied the goal state

between the corner of the world and the centre. In the

scenario of the present section, however, we are going

to investigate another effect.

1) Action Relabeling: Qualitative Description: In the

scenario from Sec. V the agent performed actions

north, east, south or west which we implied

to have the usual effect in the grid world. However,

there is nothing in the formalism of MDPs that re-

quires “north”, “east”, “south” or “west” to

“mean” the same operation in each state: these are

merely labels of four actions that are available to the

agent in each state of the world. Intuitively, when we

consider an agent “embodied” even in a grid world,

we mean action north to effect roughly the same

operation in each state (with exception of the wall

and the goal). However, the MDP formalism allows

us to take a “platonic” stance and to assume that the

four action directions are just arbitrary labels attached

to the actions available to the agent in the current

state, with no discernible consistency over different

states. More precisely: consider two scenarios, one is

the original case A, with the goal in the corner, and

the actions labeling the directions of movement in the

traditional way. In the second, however, keep the world

unchanged, but rename the labels for the four actions

in each grid state randomly north, east, south

and west. This random relabeling is done before the

learning run is carried out, the world remains fully

deterministic for the agent; the only change is that there

is no consistency in the action labels throughout the

grid. In other words, the agent does no longer “carry

its actions with it”.

2) Action Relabeling: Formal Description: We now

describe formally the relabeling. This third case,

case Ã, consists of a relabeling of the actions of case A

in the following sense: given an MDP (Ps′

s,a,Rs′

s,a), a

relabeling of this MDP is given by (P̃s′

s,a, R̃s′

s,a) such

that P̃
s′

s,a := P
s′

s,σs(a) and analogous for R̃
s′

s,a, where

σs is a permutation A → A of the actions which is, in

general, different for each s ∈ S. In the special case of

σs being the identity permutation for all states s ∈ S,
we reobtain the original MDP.

Importantly, from the point of pure MDP optimization,

any relabeling of actions is completely irrelevant. Op-

timal policies can be computed with the usual value

iteration (2), and the resulting values are independent

of the relabeling, i.e. one has V ∗(s) = Ṽ ∗(s) for all

s ∈ S if Ṽ ∗ is the optimal value function for the

relabeled MDP. More generally, if we operate with a

general policy π and consider the Q-function, the Q-

values of the original MDP can be related to the new

one via the transformation Q̃π(s, a) = Qπ̃(s, σs(a))
where π(s, a) = π̃(s, σs(a)), that is π̃(s, a′) =
π(s, σ−1

s (a′)). In other words, with the exception of

an appropriate relabeling of the actions in each state

s for a given policy, the relabeled MDP is precisely

equivalent to the original one. This is a “platonic”

view of the traditional MDP picture: no matter how the

“embodiment” (in form of action labels) is modified,

it has no consequences for solving the task.

3) Informational Consequences of Action Relabeling:

However, once we include the information processing

cost into the consideration, this changes drastically.

Figure 4 shows again the earlier trade-off curve (solid

line) between value and information for case A where

actions north, east, south, west correspond to

the usual directions; furthermore, it shows the trade-

off curve for case Ã, where the actions have been

relabeled for each state with a different random but

fixed permutation (dashed line).

The optimal value for case A had been ≈ −10.1
(Sec. V-A), and this is also the optimal value achieved
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Fig. 4. Value/Relevant Information trade-offs for the square grid
MDP. The horizontal axis shows the relevant information per deci-
sion and the vertical axis shows the corresponding value achieved
with this relevant information. Note that the optimal value achieved

is the same for case A (solid line) and case Ã (dashed line), but at a
much higher information cost for case Ã and generally that curves
lies below and right, thus unfavourably to the trade-off curve for
case A.

in the relabeled scenario of case Ã, consistently with

the discussion in Sec. V-B2.

Now, the differences: while the optimal value

E[V ∗(S)] achieved (top-right positions of both curves)

is exactly the same for both scenarios, the trade-off

curve for the randomly relabeled MDP (Ã) lies far

below and to the right to that for A. In particular,

for the optimal policy, Ã requires more than 1.1 bit
of information per step. In other words, for the same

performance, much more information intake is required

in case Ã. And note that, without seeing the action

relabeling, an external observer just watching the agent

from outside would not reveal any strategy different

from that of A. When one now moves towards van-

ishing I(S;A), i.e. the blind agent, the value drops

rapidly6 to below −222, performing at around the level

of for the blind agent of case B.

VI. DISCUSSION

The results show that minor changes in an MDP can in-

duce drastically different outcomes in the informational

“metabolism” of the agent. In cases A and B it is clear

that the goal in the center is reachable by a slightly

shorter average shortest path length than the goal in

the corner. However, B requires significantly more

information to achieve the optimal solution than A.

The effect becomes more pronounced when we reduce

information bandwidth; in this case, the achievable

value for B drops off very rapidly as compared to A.

6The value/information trade-off curve at vanishing I(S; A) is
almost vertical; the smallest β value in our experiments β = 10−4,
reaching I(S; A) = 2.4 · 10−5bit.

For A, the wall boundary of the grid helps the agent

find the goal in the corner. Even blindly, the agent can

randomly select north and east actions, and the

walls will guide it as a funnel towards the goal. For

the goal in the center, however, the environment can

no longer support the agent in finding the goal: here,

a blind agent cannot hope to do better than a random

walk.

The role of embodiment in relieving the agent’s cog-

nitive burden becomes even more striking in case Ã.

All that is dropped from A to Ã is the consistency

of actions (“directions”) over the states. From an

MDP point of view these are exactly equivalent cases.

However, once the cognitive burden is included into

the consideration, Ã is informationally disadvantaged

to A. Not only does the optimal case β → ∞ require

significantly more information per step for Ã, but also,

once one moves towards a blind agent, it performs

no better than B. Although still in the corner, unlike

in A, in Ã the goal cannot be longer found by the

increasingly blinded agent using the wall as “funnel”.

Instead, the agent needs significantly more information

about the current state to identify which two actions in

the given state would correspond to the north/east

actions of the original case A. This requires a much

larger information intake in Ã, finally leading to the

completely uninformed random walk for the fully

blinded agent. All that distinguishes case A and Ã is

how the selected action is carried out in the agent’s

environment.

Concludingly, this provides a prime illustration of the

principle of environmental, and more specifically of

embodied computation in how embodiment, even in

the abstracted view adopted in the present paper, can

affect the performance of an agent, once the cognitive

burden is taken into consideration,
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