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Abstract. The performance of sparsely-connected associative memory models built from a set 
of perceptrons is investigated using different patterns of connectivity. Architectures based on 
Gaussian and exponential distributions are compared to networks created by progressively 
rewiring a locally-connected network. It is found that while all three architectures are capable 
of good pattern-completion performance, the Gaussian and exponential architectures require a 
significantly lower mean wiring length to achieve the same results. In the case of networks of 
low connectivity, relatively tight Gaussian and exponential distributions achieve the best 
overall performance.  

1 Introduction 

It has been shown that the small-world class of networks in which the majority of 
nodes are connected to their nearest neighbors, but in which a proportion of 
connections are distal, display interesting properties [1]. In such networks, the degree 
of clustering remains almost as high as that of a locally-connected network, while the 
distal connections of each node are sufficient to maintain a relatively low mean 
minimum path length across the network. 
 Bohland and Menai [2] and Davey et al. [3] have both applied these principles 
to the design of small-world associative memory models. In each case a one-
dimensional lattice in the form of a ring was established as a locally-connected sparse 
associative memory, and its performance was measured, as the local connections were 
progressively rewired to randomly selected nodes. It was found that the performance 
of the network steadily increased with rewiring, up to the point where 40-50% of 
connections had been rewired. Beyond this point, further rewiring had little additional 
effect on performance. 
 In the present paper, we explore the effect of using alternative connectivity 
architectures based on Gaussian and exponential distributions, and compare the 
resulting pattern-completion performance with that of an initially locally-connected 
network which is progressively rewired as above. 

2 Network dynamics and training 

A network of perceptrons is arranged in a one-dimensional structure with wrap-
around at the ends, and is trained on sets of random patterns of length N, where N is 
the number of units in the network. The input of each unit is connected to the outputs 
of a fixed number, k, of other units. The networks used in the present studies have no 
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symmetric connection requirement [4], and the recall process uses asynchronous 
random order updates, in which  the local field of unit i is given by:  

  
hi = wijS j

j≠i
∑

where wij is the weight on the connection from unit j to unit i, and S  is the 
current state. The dynamics of the network is given by the standard update:    

, where  is the Heaviside function. Network training is based on the 
perceptron training rule [5] chosen for its higher resultant capacity than that of the 
standard Hopfield model. The rule is designed to drive the local fields of each unit the 
correct side of the learning threshold, T, for all the training patterns. Earlier work has 
established that a learning threshold of T = 10 gives good results [6].   
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3 Performance measurement 

Network performance is determined by measuring the Effective Capacity [7] [8], and 
all results have been verified against the mean radius of the basins of attraction [9] as 
an alternative performance indicator. Effective Capacity is a measure of the number 
of patterns which a network can restore under a specific set of conditions. The 
network is first trained on a set of random patterns. Once training is complete, the 
patterns are each randomly degraded with 60% noise, before presenting them to the 
network. After convergence, a calculation is made of the degree of overlap between 
the output of the network, and the original learned pattern. This is repeated for each 
pattern in the set, and a mean overlap for the whole pattern set is calculated. The 
Effective Capacity of the network is the highest pattern loading at which this mean 
overlap is 95% or greater. This measure affords certain advantages over the radius of 
the basins of attraction, not the least of which is its lack of upper bound, and the way 
in which it tracks the underlying maximum theoretical capacity of a network [7] [10]. 
 In physical systems, whether biological or electronic, the length of wiring 
between nodes will be an important issue, and we take account of this by plotting the 
network’s pattern restoring ability, as measured by Effective Capacity, against mean 
wiring length, for each variant of each generic network type under test. 

4 Gaussian, exponential and rewiring architectures compared 

A network of 5000 units, each with 50 afferent local connections was set up as a one-
dimensional lattice. It was  trained on sets of random patterns using perceptron 
training rules, and its Effective Capacity measured. 10% of the network connections 
were then rewired to random connection points around the ring, and the network 
retrained, and retested. This procedure was repeated for different levels of rewiring in 
steps of 10% up to 100%, this latter representing a fully-random network. The 
network was then rebuilt with a Gaussian connectivity distribution, so that the 
probability of a connection between any two nodes separated by a distance d 

around the ring was proportional to ( 2/1 Nd <≤ )
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and measurements of Effective Capacity were made for a series of such networks, 
whose σ  ranged in value from 10 to 2500. This process was then repeated, using 
progressively tighter exponential distributions, where the probability of connection 
was proportional to )),1(exp( −− dλ with λ in the range 0.001 to 0.06. 
 Figure 1 shows the resultant Effective Capacity of all the iterations of the three 
types of network, plotted against the mean wiring length of each network 
configuration. It is apparent from this that while all three generic architectures are 
capable of achieving the highest Effective capacity of 23, the Gaussian and the 
exponential distributions do so at a far lower wiring cost. In order to achieve an 
Effective Capacity of 22, the rewired network would need to be 50% rewired, and this 
results in a mean wiring length of 630, while the Gaussian (at a σ  of 120) and the 
exponential network (at a λ  of 0.01) would both have a mean wiring length of just 
96, and are thus very considerably more efficient in terms of achieving high Effective 
Capacity at low mean wiring length. The extreme closeness of the Gaussian and 
exponential plots in Figure 1 is also worthy of note, and is discussed later. 
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Fig. 1: Effective Capacity against wiring length for  a network of 5000 units with 50 afferent connections 
per unit (1% connectivity). Comparison of  Gaussian, exponential and rewiring architectures. Results are 
averages over 5 runs for each connectivity distribution. 
 
 To shed light on these results, Figure 2 shows the connectivity profiles of the 
three network configurations which achieve the same Effective Capacity of 22. From 
this we can see how tightly clustered are the connectivity distributions for the 
successful Gaussian and exponential variants. Even with their asymptotic tails, these 
distributions will have few, if any, long distance connections, and yet they still 
achieve very good pattern completion performance. The rewired network clearly has a 
relatively large number of long distance connections. These are, perhaps surprisingly,  
not essential to performance, and yet it is these which are responsible for the high 
mean wiring length of the network. 
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4.1 Comparing networks with higher connectivity levels 

In networks with higher levels of connectivity, the difference in performance between 
the three generic architectures is much less marked. Figure 3 shows a similar plot of 
Effective Capacity against wiring length to that of Figure 1, but for a network of  500 
units with 50 connections per unit: ten times the connectivity of the previous 
networks. The Gaussian and exponential results are again inseparable. But at this 
higher level of connectivity, the performance of the rewired network is much closer to 
that of its Gaussian and exponential counterparts, though both still outperform the 
rewired network in the important region of wiring lengths between 20 and 60, where 
the Effective Capacity is relatively high, and the mean wiring length relatively low. 
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Fig. 2: Connectivity histogram for a network of 5000 units, each with 50 connections (1% connectivity), 
comparing Gaussian, exponential and rewiring architectures with the same Effective Capacity of 22. 
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Fig. 3:  Effective Capacity against wiring length for a network size of 500 units with 50 afferent 
connections per unit (10% connectivity). Comparison of Gaussian, exponential and rewiring architectures. 
Results are averages over 50 runs for each connectivity distribution. 
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 If we take points of similar Effective Capacity from this graph, we can again 
compare specific connectivity distributions. We will use the points corresponding to 
an Effective Capacity of 16.1 on the Gaussian network (at  a σ  of 42), 15.8 on the 
exponential (at a λ  of 0.032), and 15.9 on the progressively-rewired network (at a 
rewiring of 25%). These have mean wiring lengths of 33.8, 31.6 and 43.3 
respectively. The connectivity distributions for these architectures are shown in 
Figure 4, and although the three distributions differ significantly, the connectivity 
profile of the progressively-rewired network is closer to the Gaussian and exponential 
profiles than it was in the 5000 unit network with only 1% connectivity shown in 
Figure 2. This rapprochement of the rewired connectivity profile to that of the 
Gaussian and exponential is reflected in the increased efficiency of the rewired 
network, though as already mentioned, it is still less efficient than its Gaussian and 
exponential counterparts in terms of Effective Capacity at low mean wiring length. 
 It is also of interest here that in spite of the clear differences between the 
Gaussian and exponential profiles, their pattern-completion performance is 
indistinguishable from each other. One might have expected that the Gaussian’s 
relatively smaller number of very close connections, or its slightly larger number of 
intermediate range connections might have given rise to a performance differential. 
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Fig. 4: Connectivity histogram for a network of 500 units, each with 50 connections (10% connectivity), 
comparing Gaussian, exponential and rewired architectures giving similar values of Effective Capacity 
(16.1, 15.8 and 15.9 respectively).  

5 Conclusion 

In sparsely-connected associative memories, patterns of connectivity based on 
Gaussian and exponential probability distributions are capable of a pattern-completion 
performance which far exceeds that of locally-connected networks, and which can 
match that of the best-performing random network. But the Gaussian and exponential 
architectures achieve this at a much lower mean wiring length than that of a 
randomly-rewired small-world network, or of a random network. This performance 
differential is greatest in networks with very sparse connectivity, as evidenced in the 
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1% connectivity network of 5000 units with 50 afferent connections per node. But 
even at connectivity levels of 10% (500 units with 50 afferent connections per node), 
the differential is still significant. 
 There was, however, no perceptible performance difference between the 
Gaussian and exponential networks right across the range of distributions, and at both 
the 1% and 10% connectivity levels tested. This is somewhat surprising in view of the 
difference in profile of the two distributions. One might have thought that the lower 
number of local connections, and the higher number of medium-length connections  
of the Gaussian relative to its exponential counterpart, might have resulted in a 
performance differential. 
 Turning now to the specific distributions which resulted in the best 
performance, it was found that in the sparsest networks, relatively tight Gaussian and 
exponential distributions achieved very good pattern-completion performance. A 
Gaussian distribution with a σ  of just 120, and an exponential with a λ  of 0.011 
both achieved an Effective Capacity of 22. When one considers that the maximum 
connection length of the network is 2500 connections either side of any given node 
around the ring, it is clear that these are very tight distributions indeed. Thus, while 
connectivity must not be purely local, each node requires almost no distal 
connections, with the vast majority of connections being clustered around the host 
node in a relatively tight Gaussian or exponential distribution. 
 When connectivity is less sparse, it was found that the Gaussian and exponential 
architectures still perform the best, but that the optimal distributions are now 
somewhat less tight in proportion to the overall size of the network. We are currently 
studying the factors which determine the optimal distributions for differing network 
sizes and connectivity ratios. 

References  

[1] D. Watts and S. Strogatz, "Collective dynamics of 'small-world' networks," Nature, vol. 393, pp. 
440-442, 1998. 

[2] J. Bohland and A. Minai, "Efficient associative memory using small-world architecture," 
Neurocomputing, vol. 38-40, pp. 489-496, 2001. 

[3] N. Davey, B. Christianson, and R. Adams, "High capacity associative memories and small world 
networks," presented at IJCNN, Budapest, 2004. 

[4] N. Davey, L. Calcraft, and R. Adams, "High capacity small-world associative memory models," To 
be published in Connection Science. 

[5] S. Diederich and M. Opper, "Learning of correlated patterns in spin-glass networks by local learning 
rules," Physical Review Letters, vol. 58, pp. 949-952, 1987. 

[6] N. Davey, S. P. Hunt, and R. G. Adams, "High capacity recurrent associative memories," 
Neurocomputing, vol. 62, pp. 459-491, 2004. 

[7] L. Calcraft, "Measuring the performance of associative memories," University of Hertfordshire 
Technical Report (420) May 2005. 

[8] L. Calcraft, R. Adams, and N. Davey, "Locally-connected and small-world associative memories in 
large networks," Neural Information Processing - Letters and Reviews, 2006. 

[9] I. Kanter and H. Sompolinsky, "Associative recall of memory without errors," Physical Review A, 
vol. 35, pp. 380-392, 1987. 

[10] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation. Redwood 
City, CA: Addison-Wesley Publishing Company, 1991. 

 

ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

622


	Gaussian and Exponential Architectures in Small-World Associ
	Introduction
	Network dynamics and training
	Performance measurement
	Gaussian, exponential and rewiring architectures compared
	Comparing networks with higher connectivity levels

	Conclusion


