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Abstract—Measurement-based timing analysis (MBTA) is a
hybrid approach that combines execution time measurements
with static program analysis techniques to obtain an estimate
of the worst-case execution time (WCET) of a program. In
order to minimize the chance that the WCET estimate is
below the real WCET, the set of representative execution-time
measurements has to be selected advisedly. We present an input
data generation technique that uses a combination of model
checking and genetic algorithms in order to heuristically optimize
the set of measurements in terms of safety.

Index Terms—Real-time systems, validation, worst-case execu-
tion time, measurement-based timing analysis

I. INTRODUCTION

A real-time computer system is a computer system in which
correctness does not only encompass functional behavior, but
also compliance to temporal constraints. If the violation of
timing constraints can have catastrophic consequences we
speak of a hard real-time system. On the other hand, a soft
real-time system can tolerate violations of temporal constraints
to some extent. An example of the latter is a mobile phone
application involving minor communication delays. As an
example for hard real-time systems, an airbag not releasing
in time or a non-reacting aircraft control unit can lead to
catastrophic consequences. Consequently, there is an inherent
interest in verification and validation techniques that focus on
the temporal behavior of real-time systems.

Many real-time computer systems are implemented as a
collection of individual tasks in order to handle complexity.
A valid schedule for those tasks ensures the adherence to
temporal dependencies [1]. Most of the common scheduling
algorithms rely on the Worst-Case Execution Time (WCET) of
each single task.

Determining the WCET of a program by simple end-
to-end measurements exercising the program with different
input data is unlikely to find a safe upper bound on the
real WCET, i.e., a bound that is never exceeded under any
circumstances. As a more systematic approach that provides
much higher confidence into safety of the obtained WCET
bound, static WCET analysis is based on the provision of an
accurate timing model of the processor [2]. Given that the
involved analysis techniques are sound and that the timing
model is correct, static WCET analysis can yield a safe upper
bound on the WCET. However, timing properties of modern
architecture features like caches, branch predictors or out-
of-order execution are hard to model and analyze precisely.
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As a consequence, static analysis struggles to deliver precise
results, i.e., WCET bounds that are only slightly larger than
the real WCET, due to conservative assumptions it has to act
on in order to be safe. Further, the manual construction of a
detailed timing model is often only economically feasible for
processors used in safety-critical systems where comprehen-
sive verification efforts are mandatory for certification.

Thus, measurement-based timing analysis has emerged
[3], where the timing model is obtained from execution
time measurements, making sophisticated hardware models
unnecessary. However, without those detailed models, it is not
possible to derive safe WCET estimates in general for non-
trivial hardware architectures. Thus, it is crucial for MBTA to
select the input vectors for measurements advisedly.

The problem we address in this work is the following:

How can we generate test vectors for the execution time
measurement phase of MBTA such that we minimize the chance
of WCET underestimation?

To answer this question, we will first shine a light on
the aspect of optimism in the context of measurement-based
timing analysis in Section IV. This will provide us means
to empirically compare test suites used for measurement in
MBTA in terms of safety.

We will then introduce FROO: The FORTAS Reduction Of
Optimism input data generation technique which addresses the
objective of reducing optimism in MBTA, thereby decreasing
the chance of WCET underestimation (see Section V). The
heuristic approach follows the principle of a genetic algorithm
where model checking is used for guiding the search for
promising test vectors by providing high-quality seeds. In
contrast to existing methods that use genetic algorithms for
WCET estimation of end-to-end executions, we try to jointly
maximize local WCET estimates of program parts. This is
reflected by a fitness function that is specifically tailored to
our application.

With a focus on the automotive domain, we experimentally
show the effectiveness of FROO for the Infineon TriCore 1796
processor and a domain-specific benchmark in Section VI.
Before we address optimism and FROO we will give a de-
tailed introduction to measurement-based timing analysis in
Section II. Then, Section III will introduce basic concepts
needed for our investigations. Readers familiar with genetic



algorithms might directly skip to Section III-B which provides
a small set of notions used throughout the paper.

Related work is provided by Section VII after which this
article concludes and motivates future work in Section VIIIL.

II. MEASUREMENT-BASED TIMING ANALYSIS

Measurement-based timing analysis (MBTA) is a hybrid
WCET analysis technique. It combines static program analysis
techniques and execution time measurements.
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Fig. 1. Measurement-based timing analysis (MBTA)

As shown in Figure 1, MBTA first analyzes and decomposes
a program into segments following the divide and conquer
principle. WCET estimates for program segments are then
derived in the phase of execution time measurement. Finally,
all local timing information is composed to yield a global
WCET estimate for the whole program in the phase of timing
composition.

o Analysis and Decomposition: For WCET analysis, the
maximal end-to-end execution time of the software is of
interest. In general, to obtain a perfectly accurate timing
model, we would have to consider the execution time of
all possible operation sequences that can be performed
by the computer for all possible initial states of the
system under scrutiny while executing the given computer
program. Measuring all these sequences is intractable
in general, as there are simply too many. Therefore,
reducing the number of execution time measurements
is crucial. Usually, MBTA approaches try to access the
local WCET of program segments (subgraphs [4]-[6],
sequences between instruction points [7], down to basic
blocks [4]).

o Execution Time Measurement: Once the program is
decomposed, the execution time is estimated for each
segment. Execution times are measured on real hardware,
which allows to take hardware characteristics into account

without modeling them in full detail. This phase intro-
duces optimism: the maximal observed execution time for
each program segment is gathered from measurements
and optimistically assumed to be the real WCET.

o Timing Composition: The timing results from all
segments are composed via IPET [8], [9] or a tree-based
approach [7], [10] to obtain a global WCET estimate.
This phase introduces pessimism, i.e., whenever the com-
position technique lacks context information for deriving
WCETs, it conservatively chooses those scenarios leading
to higher WCET estimates.

The major drawback of MBTA is that, in general, it cannot
provide sufficient coverage of all system states to guarantee
that the maximal observed execution time (MOET) for a
segment is indeed the WCET. This is due to hardware features
like pipelines, caches, and out-of-order execution that blow up
the state space of the processor. Further, all possible system
states at the entry of a segment would have to be covered in
order to guarantee that the WCET is among the MOETs. Since
we cannot guarantee safety of WCET estimates for program
segments, we also cannot guarantee to produce safe WCET
estimates of the overall program as there is no means to
compensate unsafe WCET estimates for program segments in
the timing composition phase of MBTA in general. However,
in contrast to static WCET analysis, MBTA does not try
to guarantee safety for all of its results. It rather aims for
balancing analysis efforts to serve both needs: to aim for
adequately safe results (i.e., reduce optimism) on the one hand
and to be precise on the other hand (i.e., reduce pessimism).

With respect to the verification of temporal requirements in
embedded systems, this implies that MBTA targets soft real-
time systems primarily, where precision of a calculated WCET
bound is as crucial as safety. However, MBTA can also be
used to verify hardware models used in static WCET analysis
or for design space exploration of both hard and soft real-time
systems.

A discussion on how to extend MBTA such that pessimism
can be handled is presented in [11]. In contrast, this article,
targets optimism as a diametrically opposed aspect. We will
therefore focus only on the phase of execution time measure-
ment, more specifically, on its input data generation.

III. PRELIMINARIES
A. Genetic Algorithms

Evolutionary algorithms aim for solving optimization prob-
lems stochastically. They follow the idea of Darwin’s survival
of the fittest theory [12]. In evolutionary algorithms, potential
solutions to an optimization problem are regarded as indi-
viduals. A fitness function quantifies the survival probability
of an individual in such a way that the fitter an individual
is, the better the corresponding solution is with respect to
the optimization problem. Evolutionary algorithms iteratively
generate populations, i.e., sets of individuals, by means of
reproduction features using stochastic operators such as selec-
tion, recombination and mutation.



The term evolutionary algorithm encompasses several
subtopics or techniques. One of these derived techniques is
genetic algorithm [13] where individuals are represented as
strings of numbers. Usually, those numbers are binary-coded
but this is not mandatory.
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Fig. 2. General structure of a genetic algorithm [14]

The general structure of a genetic algorithm is depicted
in Figure 2. One characteristic feature of genetic algorithms
is that they always incorporate a selection phase, which is
not necessarily part of an evolutionary algorithm in general.
In this phase, only those individuals showing an appropriate
fitness level are selected for reproduction in contrast to treating
all individuals equally. Further, recombination always plays
an essential role in genetic algorithms, which again is not
mandatory for evolutionary algorithms in general. In the phase
of recombination, a new individual is produced out of two
or more selected parent individuals. The subsequent mutation
phase in which individuals are randomly altered is optional.
Finally, the offspring is evaluated with respect to its fitness
to determine, in the phase of insertion/replacement, which
newly generated individuals will be integrated into the current
population and which ones will be removed.

We will now separately introduce the particular phases at a
level that is sufficient to understand the techniques and princi-
ples to be presented in this paper. For a detailed introduction
to evolutionary and genetic algorithms, the interested reader
might refer to Wegener’s PhD thesis [14] from which most of
the introduction here evolved.

1) Initialization: There is no principle that generally de-
scribes the initialization phase. A straightforward and popular
approach is to randomly generate an initial population, also
referred to as seed, having the same size as the populations in
the following iterations. However, neither the size of the seed
is fixed nor is the generation technique in general.

2) Fitness Evaluation: Determining the fitness of an in-
dividual involves two steps. First, a target function assigns
a value to each individual. This value exclusively depends
on the individual’s variables and represents the individual’s
quality. Second, based on the target function values of all
individuals, the fitness (survival probability) is computed for
each individual. Whereas the character of the target function
strongly depends on the optimization problem, the assignment
of survival probabilities usually follows known principles. We
will use a proportional fitness assignment [15], where the
fitness is proportional to the target function value.

3) Selection: Those individuals suggesting to be promising
candidates for reproduction are identified in the selection
phase. Many techniques exist for selection, a detailed eval-
uation of which is given in [16]. For our experiments we
choose Roulette Wheel Selection [17]. Here, each individual
gets initially assigned to a single section of a line with length
L. The extent of each section is proportional to the fitness
of its assigned individual. In a next step, a random value p is
picked (uniformly distributed) where p is in the interval [0, L].

individual 1] | individuai3 | ... [] | | ndividual k

0 14 L

In roulette wheel selection, the unique section that includes
p indirectly selects the corresponding individual. The process
is repeated until the required amount of individuals for repro-
duction is selected.

4) Recombination: We will restrict the introduction to
discrete recombination, which targets representation domains
of individuals that are countable sets, e.g., integers, bit strings
or finite vectors thereof. Further, we will only target multi-
point crossover [18]. Here, a pre-defined number of points at
variable positions along the parents’ bit strings specify areas
that are to be interchanged mutually as one atomic unit. The
locations of those points are randomly regenerated for each
recombination:
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If only one point is selected the recombination process is
referred to as single-point crossover. Analogously, two-point
crossover calls for two intersection points, as illustrated above.

5) Mutation: Selection and recombination aim for identify-
ing and recombining parts of promising individuals. However,
both phases cannot generate individuals that are completely
new in a sense that there are no parts of an individual that have
never occurred in any individual of a preceding population.
Hence, in order to increase the population diversity, and to
thereby avoid stagnation at local optima, mutation introduces
random changes of individuals.

6) Insertion/Replacement: If the population is set to be
constant during evolution, a decision has to be made which
of the newly created individuals are to be taken over to the
next iteration and which of the individuals in the current
population are to be discarded. One possible technique is elitist



reinsertion, where the amount of newly generated individuals
is less then the size of the population they have to be inserted
into. Further, all newly generated individuals are inserted into
the population and those individuals in the population showing
the lowest fitness are replaced.

7) Termination: The decision on when to stop the loop is
influenced by two factors.

o Limitation of resources. Usually, there is a time limit
after which a solution has to be provided. Memory size
is typically not an issue as the population size usually
remains constant. However, if a memory-intensive fitness
function is involved, a user-defined limit on memory
usage can make sense.

¢ Solution quality. In general, it is not possible to decide
if an optimal solution has been found. Consequently, one
can stop the loop if the solution is “good enough”, but
sometimes even such a metric is not available. Thus, a
further option is to stop if the fitness of newly generated
individuals stagnates.

B. Basic Concepts

One aspect of a software program that is basic, not only in
measurement-based timing analysis but in nearly all WCET
analysis techniques, is flow of control:

Definition III.1. A Control Flow Graph (CFG) of a program
P is a directed graph Gp = (V, E, v, ) with vertices V' and
edges ' € V x V with vg € V as the unique start of the
program.

Control flow graph vertices express basic blocks, i.e., in-
struction sequences of maximal length where only the last
instruction might be a jump. Control initially resides in v
and can then flow along the CFG edges through the various
basic blocks.

Definition IIL.2. Given a program P, an input vector iv
assigns values to free variables in P. A test suite is a set I" of
input vectors. A trace mp(iv) denotes a time-stamped path in
the control flow graph Gp that results from an execution of P
where all free variables are assigned with respect to 1v. We say
a vertex v is exercised by " iff there is an 4v € T" such that v is
in the path 7p (iv). v is feasible iff there exists an input vector
iv such that v is exercised. The maximal observed execution
time (MOET) for vertex v during an execution of input vector
iv is denoted MOETp(v,iv). We set MOETp(v,iv) to be
zero iff v is not in wp (év). In the following, we will omit P
for the sake of readability and assume that all notations refer
to the same program.

IV. ABOUT OPTIMISM

We have already discussed that optimism is an inherent
property of measurement-based timing analysis that emerges
in the phase of execution time measurement. As a first step
towards tackling the objective of reducing the chance of
WCET underestimation in MBTA, we will start by presenting
means to quantify optimism.

Recall that the phase of execution time measurement in
MBTA is dedicated to derive worst-case execution time es-
timates for program segments. In the following we consider
those segments to be basic blocks without loss of generality
as other common segment concepts in MBTA (subgraphs,
sequences between instruction points) are all composed of
basic blocks. Under the premise that no hardware model is
available in measurement-based timing analysis, the worst-
case execution time of a basic block b is optimistically
estimated to be the maximal observed execution time during
a measurement performed on a given test suite I':

WCET.(b,T) = max{MOET(b,iv)|iv €T}

An ideal metric to derive how optimistic a WCET estimate
for a basic block is, would precisely denote the difference
between the estimate and the real worst-case execution time.
As the real WCET is generally unknown, we cannot absolutely
determine optimism. However, we can compare test suites in
terms of optimism, i.e., a test suite that leads to a higher
MOET for a basic block is less optimistic:

Ty <y Ty = WCET..(b,T1) > WCOET,.(b,Ts)

where <, denotes the relation “less optimistic” for a basic
block b. So far, the relation considers only a single basic block.
In order to generalize the concept such that test suites for a
program as a whole can be evaluated in terms of optimism,
we need to generalize the notion of WC ET,,. Recall that
the phase of execution time measurement in MBTA happens
before timing composition, i.e., we have no knowledge about
how basic blocks contribute to the global WCET estimate that
is derived in the timing composition phase. We do not know
how often a basic block is exercised by the path that generates
the overall WCET estimate. Thus, we consider all basic blocks
to be equally important for the overall analysis and derive an
average WCET estimate W CET..? over all basic blocks to

est
yield a generalized version of <:

Iy <Ty = WCET™(T,)>WCET™T,)
1
WCET;SZQ (F) m Z WCETest(b7 F)

beV

To summarize, if a test suite I'; leads to higher local
WCET estimates in average than test suite 'y, we consider
it to be less optimistic. Further, we claim that the chance of
underestimating the global WCET is lower when using I'y
than using I's in the context of measurement-based timing
analysis. Recall that this claim does only hold if one has no
knowledge about how the global WCET estimate is derived
in the phase of timing composition. For instance, if IPET
is used for composition, WCET,,; would rather take only
those basic blocks into consideration that are in the WCET
path, weighted by their execution frequencies. However, in
this paper we restrict our investigations to the more general
version WCET.?.

est



The “less optimistic”-relation < will be used later for an
experimental safety evaluation of our proposed input data
generation technique FROO.

V. FrROO

FORTAS Reduction of Optimism, in short FROO, is an input
data generation technique that combines the principles of ge-
netic algorithms and model checking. The objective for FROO
is to maximize the average WCET estimate WCET,.,’ of the
set of input vectors that are used in the phase of execution time
measurement in MBTA. That means, the maximal observed
execution times for all basic blocks are jointly to be increased
during the generation process in a best effort manner.

The motivation for using model checking in combination
with a genetic algorithm results from our previous work [19]:
Random input data generation is shown to be very fast but
cannot guarantee to cover all parts of a program. Model
checking, on the other hand, can be used to generate test suites
that satisfy sophisticated structural coverage criteria, however,
it requires considerable resources of computation.

The basic idea in this paper is to use model checking
for generating a test suite that satisfies basic block coverage,
thereby guaranteeing that each basic block is exercised at least
once. This test suite forms the seed for a genetic algorithm
that iteratively attempts to further improve the quality of the
population.
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Input data generation in MBTA

First, let us take a closer look at the MBTA phase of
execution time measurement. Figure 3 illustrates the general
structure: an input data generation module iteratively produces
input vectors that are executed on the target and measured.
FROO is embedded into this general procedure as depicted in
Figure 4.

In the following, we will focus on the modules of FROO:

1) Initialization: Input vectors form individuals. Conse-

quently, populations are test suites. For example, if the
program under scrutiny has two free integer variables,
an individual v could have the form:

[57 71]
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...where each index k refers to a unique variable.
Populations are denoted P;, where i is the iteration in
which the according population is generated. We want
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Fig. 4. FROO in the context of measurement-based timing analysis

2)

3)

the initial population (seed) Py, to satisfy basic block
coverage. First, we generate a test suite I'p that satisfies
basic block coverage with FShell', a prototype imple-
mentation based on the principles described in [20],
[21]. FShell relies on the C Bounded Model Checker
(CBMC), version 3.8 [22]. The input to FShell is a
test suite specification, expressed by the FShell Query
Language (FQL) [23]. In our case, FQL queries are of
the form:

IN @FUNC (foo) cover @BASICBLOCKENTRY

The population size must be large enough to include I's.
In our setup, we set |Py| = 200. An additional random
test suite I'p is generated to fill up Py =I'p U R.
Fitness Evaluation: A straightforward way to evaluate
an input vector’s fitness F; at iteration ¢ would be to
take the average WCET estimate:

Fi(iv) = WOCET.? ({iv})

However, this would not specifically promote those input
vectors that yield to new maximal observed execution
times of basic blocks. Hence, we use a fitness function
that considers the execution time distance to the maximal
execution time, observed with respect to the current
population. In order to account for jitter, and to even
further promote distances that are close to the MOET,
we square the distance.
1

Fy(iv) =
) l; 1+ [WCETes(b, P;) — MOET (b, iv)]?

Selection: Inspired by [24], we use roulette-wheel se-
lection and pick 50% of the individuals in the current
population for recombination.

Thttp://code.forsyte.de/fshell



4) Recombination: As suggested in [25], we choose single-

point crossover.

5) Mutation: The mutation probability is set to 2%, i.e.,

for each individual in the offspring, there is a chance of
0.02 to be mutated at one randomly chosen variable. For
a variable that is chosen to be mutated, a new uniformly
distributed value in the variable’s domain is generated.

6) Insertion/Replacement. We use a modified version of

elitist reinsertion: the whole offspring is inserted into
the current population, where those individuals showing
the lowest fitness are replaced. An important exception is
that we want to keep alive those input vectors satisfying
basic block coverage in I' . Hence, those input vectors
are never replaced. Our experiments reveal that this
modification improves FROO considerably.

Note that this paper is not intended to be a detailed investi-
gation of how genetic algorithms can be used in measurement-
based timing analysis. Although we find the question very
interesting how specific parameters and strategies of a genetic
algorithm affect optimism, we only want to present a proof of
concept for FROO in this paper. Studies on how to optimize
FROO are subject to future research.

VI. EVALUATION

In [19], we introduce BPG-II, an input data generation
technique with the objective of covering the worst-case tem-
poral behavior of program segments in a best-effort manner.
Our experiments revealed that BPG-II is superior to all other
investigated input data generation techniques in terms of
minimizing optimism. However, in the following we will show
by our experiments that FROO is even less optimistic than
BPG-II and more efficient in terms of input vector generation
time.

A. BPG-II Revisited

BPG II uses FShell to generate multiple different test
suites (the FShell option MULTIPLE_COVERAGE enables
the option to yield mutually different test suites for an FQL
expression), each satisfying the union of basic block and
condition coverage. The FQL query has the form:

IN @FUNC (foo)

cover (@BASICBLOCKENTRY | GCONDITIONEDGE)

The union of all test suites forms the result. Thus, BPG-
IT guarantees that all basic blocks are exercised at least
once. Also, the option to generate mutually different test
suites supports that basic blocks are exercised with different
execution histories. Although the input vectors generated with
BPG-II are of high quality in terms of optimism, it suffers
from scalability issues that often go hand in hand with model
checking, i.e., the number of input vectors produced per time
interval is rather low. In particular, the more mutually different
test suites are generated, the more difficult it gets for the model
checker to find new instances. For all our benchmarks we
observed that the amount of time needed for finding a new,
dissimilar test suite grows polynomially.

B. Target and Measurement

All measurements are performed on the TriCore 1796
microprocessor by Infineon. Programs under analysis are
compiled with HighTec’s GCC? compiler. The TriCore 1796
includes branch prediction, a superscalar pipeline and an
instruction cache. Furthermore, it provides On-Chip Debug
Support (OCDS) level 2 for cycle-accurate execution tracing.
We utilize the Lauterbach LA-7690 Powertrace device to
extract both timing and flow of control. Code instrumentation
is not required with this setup and measurements are cycle-
accurate.

C. Benchmarks

For benchmarking our methods, we use the following pro-
grams in ANSI C. Lines of code are counted via CLOC?.

e binary_search: An implementation of the binary
search algorithm, taken from the Mdlardalen WCET
Project*. The benchmark has 44 lines of code and 14
CFG nodes. The only free variable is the key to search
for, all respective input vectors are therefore of size 1.

e bubble_sort: Another problem from the Milardalen
WCET Project. The size of the input list for
bubble_sort is reduced from 100 to 10 as we utilize
a bounded model checker that does not scale well for
this particular benchmark. The benchmark has 44 lines
of code and 15 CFG nodes. Input vectors are of size 10.

e 1ift_control: The central control unit for an elevator
that we translated to C has 210 lines of code. It is orig-
inally intended for the Java Optimized Processor [26].
The original version is used in the field and can be found
on the web>. The according CFG has 119 nodes, input
vectors hold 68 variables.

e engine_control: An engine control unit from our
industry partners in the automotive domain. The code
is generated by Matlab/Simulink and involves a more
complex control flow structure than 1ift_control. It
has 976 lines of code, its CFG has 398 nodes, and an
input vector consists of 33 variables.

D. Results and Discussion

Both BPG-II and FROO are evaluated according to optimism
of the accumulated input vectors over time. Figure 5 outlines
our experimental results. For all benchmarks, the horizontal
axis denotes the duration At of the respective input data gen-
eration process. Then, for any At, the vertical axis illustrates
the corresponding average WCET estimate WC ET..,° (T') for
all input vectors I' that were generated in At. The dotted line
denotes WOET = WCET,.?(Ty): a cross-experimental
approximation of the real average WCET for all basic blocks
with I'y as a reference test suite including all input vectors

ever used for the respective benchmark.

Zhttp://gcc.gnu.org/

3http://cloc.sourceforge.net
“http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
Shttp://www.soc.tuwien.ac.at/trac/jop/browser/java/target/src/bench/jbe/lift
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The results show that FROO produces less optimistic input
vectors than BPG-II for all benchmarks. For bubble_sort,
the difference of 0.1%o is negligible. The biggest difference
was encountered for benchmark 1ift_ control with an
improvement of 0.8%. These differences are rather small. Both
BPG-II and FROO produce results close to WCET.

In contrast, the time At needed to get to the maximum,
is far less for FROO compared to BPG-II. For instance,
using benchmark engine_control, FROO yields BPG-1I's
maximum of 298, 74 in 6% of BPG-II’s time. Analogously, for
binary_search and 1ift_control FROO needs 18%
and 7% of BPG-II’s time, respectively. Only in benchmark
bubble_sort, FROO and BPG-II perform equally both in
terms of optimism and runtime performance.

The fact that BPG-II is outperformed by FROO is due to the
polynomial complexity of BPG-II. FROO on the other hand
needs constant time for generating a new population.
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FRrROO versus BPG-II

Independent of the benchmark it takes FROO about 4s
to generate a new population. This is rather slow, as we
calculate WCFET..,? not from main memory but from a
database. Also, we do not cache any data. We believe that
by addressing these issues and by tweaking the parameters
of the genetic algorithm, FROO’s performance can be further
improved considerably. This paper is intended to be a proof
of concept, though. Optimizations are subject to future work.

VII. RELATED WORK

This paper is basically a follow-up on our investigations
presented in [19] which is—to the best of our knowledge—the
only work that empirically evaluates test suites in terms of how
well the worst-case temporal behavior of program segments is
covered. There are two major improvements that are new in
this work:

1) We figured, that the concept of relative safety from [19]



is inconvenient in a sense that it might be misinterpreted
easily, as the term safety refers to a binary attribute
(either a system is safe or it is not). In contrast, we used
relative safety to describe what is actually optimism.
This work suppresses possible causes for diverging inter-
pretations and introduces concise and more convenient
definitions on how to quantify optimism.

2) [19] presents BPG-II, an input data generation technique
that is shown to generate test suites with a very low
amount of optimism that beats all other investigated
input data generation techniques in this regard. In this
paper, we demonstrate that FROO produces even less
optimistic test suites than BPG-II. Further, FROO safes
analysis time by orders of magnitude.

Genetic algorithms have been studied quite intensively for
WCET analysis [25], [27]-[31].

All related work on genetic algorithms targets global WCET
estimation, i.e., the fitness of individuals is defined in terms
of end-to-end execution times that is to be maximized by the
genetic algorithm. We, however, try to jointly maximize local
WCET estimates for all segments of a program. Beside this
major difference in assigning fitness, also the way we seed the
search is deviant,i.e., we use model checking to yield a high-
quality initial population where usually random techniques are
used.

As there is a huge amount of related work, we will highlight
the numerous contributions more specifically:

In [29], [32], genetic algorithms are evaluated with a
primary focus on aerospace applications. Other search-based
input data generation techniques are investigated as well such
as hill-climbing and simulated annealing.

The automotive domain, on the other hand, has been tar-
geted analogously by Wegener et al. [29], [33].

A comparison of genetic algorithms and static analysis for
WCET estimation is given in [25], [29], [34] where it is
also illustrated that optimism in search-based methods can
counteract pessimism by static analysis tools.

In general, the applicability of genetic algorithms for WCET
estimation depends on the structure of the program under
scrutiny. Gross et al. investigate the impact of specific software
properties on how well search-based methods perform is
investigated in [35].

In [24], [31], the fitness function does not exclusively
depend on end-to-end execution times but also on branch
prediction misses, cache misses, or number of loop iterations.

VIII. CONCLUSION

Using a metric to quantify optimism in measurement-based
analysis and a set of representative benchmarks, we have
shown empirically for the TriCore 1796, a commonly used
microprocessor in the automotive domain, that FROO is an
adequate tool for generating test suites that are to be used in
the phase of execution time measurement in MBTA.

As this paper is intended to present a proof of concept for
FRrROO, the next steps are to further optimize the approach.
Another idea is to combine model checking with a different

search heuristic, as for instance, Particle Swarm Optimiza-
tion [36], [37].
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