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Abstract: - The consequences of imposing a sign constraint on the standard Hopfield architecture associative
memory model, trained using perceptron like learning rules, is examined.  Such learning rules have been
shown to have capacity of at most half of their unconstrained versions.  This paper reports experimental
investigations into the consequences of constraining the sign of the network weights in terms of: capacity,
training times and size of basins of attraction. It is concluded that the capacity is roughly half the theoretical
maximum, the training times are much increased and that the attractor basins are significantly reduced in size.
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1   Introduction
Neural networks designed to function as associative
memories are usually based around the standard
Hopfield architecture.  It has been known for some
time [1] that a variety of local learning rules can
produce models with much better performance than
the original Hebbian learning, proposed by
Hopfield.  These learning rules either act as
approximators to the projection weight matrix or use
perceptron style learning.  It is also thought that
networks that purport to biological plausibility
should adhere to Dale’s law [5], which suggests that
neurons either make exclusively excitatory, or
inhibitory, connections.  In all three types of
learning rules, mentioned above, the weights in the
resulting network have no such restriction.
However, it has been demonstrated that for the
perceptron type learning rules, it is possible to
constrain the signs of the weights, so that they
adhere to Dale’s law, whilst still producing
convergence on suitable training data.  In this paper
we examine the performance of such learning rules
in terms of: their capacity, learning time and
capabilities as effective associative memories.

2   Models Examined
In this section we take a set, Π, of N-ary, bipolar
(+1/-1) training vectors, {ξp}.  The N  by N weight
matrix is denoted by W, and the state of the i’th unit
is denoted by Si.  The loading of the network is
defined as:

α = Π
N

 .

All the high capacity models studied here are
modifications to the standard Hopfield network. The
net input, or local field, of a unit, is given by:
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The next state of the unit is then given by:
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where the threshold, θi , is normally taken as zero.
The update can be synchronous or asynchronous.
Here we use asynchronous, random order updates.
These network dynamics and a symmetric weight
matrix guarantee simple point attractors in the phase
space.
     If the aligned local fields , hi iξ , are all non-
negative then the pattern ξ , will be stable in the
network.

2.1 Perceptron Style Learning
In the late 1980s it was demonstrated that
perceptron like learning could be applied to
associative memory networks to produce much
higher capacity than the basic model.  In fact as
Gardner [6] showed a Hopfield type network of N
units could store up to 2N uncorrelated patterns,



with this optimal capacity increasing for correlated
patterns.  Learning rules of this type are designed to
drive the aligned local fields of patterns in the
training set over a threshold value, T.  As shown
above, a necessary and sufficient condition for the
training patterns to be learnt is that T is non-
negative, and often, for ease of training, a value of 1
(or even 0) is taken.  Nevertheless increasing T may
improve the attractor performance of the network
[1].  Some care must be taken though, since if we
consider a network in which all the training patterns
are stable, that is h Ti iξ >  for all patterns and units, i,
then any uniform, upward scaling of the weight
matrix will increase the aligned local fields, but will
obviously not increase the attractor performance.  In
fact the optimal attractor performance is achieved
when the threshold is maximised with respect to the
size of the weights.  For this reason the relevant
characterization is the normalised stability measure,

defined as: γ ξ
i
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weight vector to unit i.  The minimum of all the γ i

therefore gives a measure of the likely attractor
performance and we take κ γ= min( )
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i
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2.1.1   Local Learning (LL)
Diederich and Opper’s [4] local learning rule is an
iterative learning rule in which the local fields for
each training pattern are driven to the correct side of
+T or –T as appropriate.  This is equivalent to the
condition that:

∀ • ≥i p h Ti
p

i
p, ξ

So the learning rule is given by:

Begin with a zero weight matrix
Repeat until all local fields are correct
  Set the state of network to one of the  ξp

  For each unit, i, in turn
    Calculate hi

p
i
pξ .  If this is less than T then change

     the weights to unit i according to:

∆w
Nij

i
p

j
p

=
ξ ξ

This is the perceptron learning rule with a fixed
margin of T and a learning rate of 1

N .  The process
will converge on a suitable weight matrix if one
exists [4], at which point the trained patterns are
guaranteed to be stable.

     As shown by Abbott [1],  this leads to a network

in which κ κ≥
+

T

T2 1 max , where κ max  is the optimal

value of κ .  From this it is apparent that increasing
T will in turn increase the lower bound of κ , and
this may give better attractor performance.

2.1.2   Krauth and Mezard Local Learning (KM)
A modification to this learning rule proposed by
Krauth and Mezard [8] can be shown to produce a
κ value that tends towards κ max  as T increases.  In
this version the patterns are not presented to the
network in an arbitrary order.  Instead the pattern
that has the smallest aligned local field is chosen as
the one for next presentation.

Begin with a zero weight matrix
Repeat until all local fields are correct
  For each unit, i, in turn
    Select the pattern,   ξp with lowest aligned local
    field at this unit and update the incoming weights
    according to:

    ∆w
Nij

i
p

j
p

=
ξ ξ

2.2 Sign Constraints
A possible difficulty with the normal perceptron
learning rule is that weights can (and do) change
sign during the learning process.  The biological
equivalent of this would be for a synapse to change
from excitatory to inhibitory or visa versa.  This is
not thought to happen, and indeed Dale’s rule [5]
states that all synapses at a given neuron are all
either excitatory or inhibitory.  For a neural network
this is equivalent to requiring that all incoming
weights to a given unit have the same sign, and this
cannot change over time.
     The effect of imposing such a constraint on a
Hopfield network was first investigated in 1986 [9]
where it was shown that the capacity only falls from
α = 0.14 to α = 0.09, for uncorrelated patterns. Later
Amit et al. [2] showed that the perceptron learning
rule could also be effective under such a constraint.
They showed that the theoretical maximum capacity
of a sign constrained network was exactly half that
of the unconstrained version.  This is a surprising
result as the volume of weight space that the
network may use is reduced by a much higher
proportion.  They also showed that this capacity is
independent of the particular sign constraint used.
In particular, a network of units using only



excitatory (or inhibitory) connections could store up
to N uncorrelated patterns.
     They also suggest how a learning rule based on
standard perceptron learning can be modified to
comply with a particular sign constraint.  The idea is
straightforward: whenever a weight change is
proposed that will result in a violation of the sign
constraint, the change is not made.  A variant of this
is to zero such a violating weight.
     In the experimental work reported here we use,
without loss of generality, networks, with only
excitatory weights, and investigate the efficacy of
the learning rule and the resulting networks.
Specifically, we start with weight matrices with
weights randomly initialised to lie between 0 and 1
and use learning rules, that in the case of Signed-
LL, can be formally stated as:

Repeat until all local fields are correct
  Set the state of network to one of the  ξp

  For each unit, i, in turn
    Calculate hi

p
i
pξ .

    If this is less than T then change the weights to
    unit i according to:

    ′ = +w w
Nij ij

i
p

j
pξ ξ

    whenever the resulting weight is positive

The variant of this, mentioned above, is to use

         ′ = +
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and we will denote this variant as Signed-LL-Zero
Note that this form of learning can be used in any
variant of perceptron learning, so that signed KM is
straightforwardly derived from the KM algorithm.
     As is well known, normal perceptron learning
will converge on a solution, if one exists, since the
weight changes always move the weight vectors
towards ones that embed the training vectors [1].
However, with sign constrained learning, a subtle
difference emerges: when a weight change takes
place it is constructive, but a weight change will not
take place when it results in a violation of the sign
constraint.  Therefore, learning can reach a local
impasse, in which a suitable weight matrix exists
but the learning rule is unable to find it, without
passing through a point in the weight space that is
prohibited.  This may result in a reduction in
capacity with respect to the theoretical maximum

and this aspect of the constrained learning is
investigated in the next sections.

3   Analysing Performance
An effective associative memory model is expected,
not only to have the training patterns as fixed points
of the network dynamics, but also that these fixed
points should act as attractors in the state space.
     As stated above the perceptron type learning
rules will have the training vectors embedded, when
the aligned local fields have been driven to be non-
negative.  Moreover the larger these aligned local
fields become, the better the attractor performance
should be.  Therefore we examine the performance
of the signed constrained networks by varying both
the loading, α, and the training threshold T.
     We also consider the effect of correlations in the
training patterns.  An uncorrelated training set is one
in which the patterns are completely random.
Correlation can be increased by varying the
probability that a given bit in a training pattern is +/-
1.  If the probability of any bit being +1 in the
training set is the bias, b, ∀ i,p • prob (ξ i

p = +1) = b,
then a bias of 0.5 corresponds to an uncorrelated
training set and a bias of 1 to a completely
correlated one.
     To estimate the size of the attractor basins of the
learned patterns R, the normalized mean radius of
the basins of attraction [3] is measured.  It is defined

as R
m

m
= −

−
1

1
0

1

 where m0 is the minimum overlap

an initial state must have with a stored pattern for
the network to return the state to the training pattern,
and m1 is the largest overlap of the state with the rest
of the training patterns.  The angled braces denote
an average over all training patterns. Details of the
algorithm used can be found in [3].
     The training time of the local learning rules is
reported as the number of epochs, complete
presentations of the training set, needed for
convergence.

4   Results

4.1 Capacity
To measure capacity we successively trained the
networks on training sets of gradually increasing
size.  At each loading increment, the learning rule



had to embed five different training sets.  The last
loading point at which a learning rule succeeded
was designated as its maximum loading. Note that
this calculation of capacity is different from the
normal one applied to the standard Hopfield one-
shot learning rule, which is obviously guaranteed to
converge, but may do so without embedding the
training patterns.
     The capacity of the first version of local learning,
with 100 units, was found at differing biases, and
the results can be seen in Figure 1.  The first point
that is apparent from this result is that the capacity
of unbiased patterns (b = 0.5) is  55 patterns, much
smaller than the theoretical prediction of 100.
Secondly it can be seen that the capacity falls off
rapidly as the patterns become correlated.  For
example with patterns with a bias of b = 0.7, the
capacity has fallen to 10 patterns and at b = 0.8 it is
just 2 patterns.  Such a decrease is, of course,
characteristic of one-shot Hebbian learning, but not
of normal perceptron learning.
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 Figure 1:  The capacity, the maximum loading, of a
one hundred unit network trained with patterns sets
of varying bias.

The second experiment repeated this analysis for the
other two learning rules, Signed-LL-Zero and
Signed-KM.  No significant difference in capacity
was found.  This suggests that these capacity results
are not simply an artifact of a particular learning
rule but are a reflection of a deeper characteristic of
the problem.

4.2 Performance
The next set of results compares the unconstrained
versions of LL and KM with the sign constrained
modifications.  In all cases the loading of the (100
unit) network is α  = 0.3, the patterns are unbiased
and the results are averages over fifty runs.  Three
different learning thresholds (T) are used.
     Table 1 shows the attractor performance of the
Signed-LL and Signed-KM.  It can be seen that both
versions have very similar performance, with the
optimal KM rule not showing a noticeably better
performance.  The increase in T brings about the
expected increase in minimum normalised stability
measure, κ.  The R values, though, are very small,
suggesting that, on average, no more than between 1
and 5 bits of a 100 bit training pattern will be
corrected.  The explanation for this may be that, a
strong attractor in a signed network is the pattern
that conforms to the sign constraint exactly, in the
case here the pattern consisting of +1’s.  This has
the potential advantage of being an obvious parasitic
attractor, but can also interfere with the basins of
attraction of the trained patterns.

Sign
Constrained

T κ R

LL 1 0.34 0.01
LL 10 0.47 0.04
LL 100 0.49 0.05
KM 1 0.38 0.03
KM 10 0.49 0.04
KM 100 0.50 0.04

Table 1: The performance of the signed LL and KM
learning rules, under a loading of 0.3 (30 patterns in
a 100 unit network).  The patterns are unbiased and
results are averages over 50 runs.

Table 2 shows the equivalent results for the
unconstrained versions of these two rules.  Once
again LL and KM give similar results.  In
comparison with the sign constrained networks the κ
values are much higher here (the theoretical
maximum value of κ at this loading is 1.27), and as
a result the attractor performance, as measured by R,
is far better.



Unconstrained T κ R
LL 1 0.84 0.57
LL 10 1.14 0.64
LL 100 1.18 0.63
KM 1 0.87 0.57
KM 10 1.19 0.66
KM 100 1.23 0.64

Table 2: The performance of the unconstrained LL
and KM learning rules, under a loading of 0.3 (30
patterns in a 100 unit network).  The patterns are
unbiased and results are averages over 50 runs.

The training time of the constrained and free
versions of LL are shown in Table 3.  As the KM
rule does not follow a simple epoch by epoch
approach its training epochs are not reported.  It can
be seen that the signed network requires about seven
times as many epochs to obtain a suitable weight
matrix, which suggests that the constrained learning
task is must harder.

T Unconstrained Sign Constrained
1 7.7 53.4
10 54.8 358.7

100 500.6 3425.5
Table 3: The number of epochs required to embed
30 patterns in a 100 unit network by the
unconstrained and signed LL learning rule.
Averages over 50 runs are reported.

5   Conclusion
The imposition of a sign constraint on a fully
connected set of perceptrons is interesting from the
perspective of biological plausibility.  Theoretically
it has been shown that this only halves the
maximum capacity of such a network, when trained
with uncorrelated patterns.  Here we have
empirically investigated how perceptron style
learning rules perform under the sign constraint.
The first important result is that the actual capacity
is significantly less than the theoretical maximum,
just over N

2  rather than N.  Moreover this result is

robust to modifications in the learning rule, with all
three variants of perceptron learning producing the
same result.  The reason for this could be that the
theoretical maximum is only obtainable for very
large N, or that, as mentioned earlier, the learning
rules reach local impasses, with respect to the sign

constraint, that prevents them from reaching the
optimal set of weights.
     As the training patterns become more correlated
the performance of the constrained learning rules
falls off drastically, a phenomenon worthy of further
investigation.
    The performance of the constrained networks as
associative memories, their ability to embed training
patterns in wide attractors, is shown to be very poor,
particularly in comparison with the unconstrained
version.  This is perhaps the most significant result
in this paper and raises questions about the validity
of these networks as biologically plausible models.
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