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ABSTRACT

We propose to explain the recent observations of GRB early X-ray afterglows

with SWIFT by the dissipation of energy in the reverse shock which crosses the

ejecta as it is decelerated by the burst environment. We compute the evolution

of the dissipated power and discuss the possibility that a fraction of it can

be radiated in the X-ray range. We show that this reverse shock contribution

behaves in a way very similar to the observed X-ray afterglows if the following

two conditions are satisfied: (i) the Lorentz factor of the material which is

ejected during the late stages of source activity decreases to small values

Γ < 10 and (ii) a large part of the shock dissipated energy is transferred to a

small fraction (ζ ∼
< 10−2) of the electron population. We also discuss how our

results may help to solve some puzzling problems raised by multiwavelength

early afterglow observations such as the presence of chromatic breaks.

Key words: gamma ray: bursts; shock waves; radiation mechanisms: non-

thermal

1 INTRODUCTION

The X-Ray Telescope (XRT) on board the SWIFT satellite has for the first time allowed a

follow-up of the X-ray afterglows of GRBs starting within one minute of the BAT trigger

(Burrows et al. 2005a). These early afterglow observations have revealed several surprising

features which cannot be easily understood in terms of the usual interpretation where the

afterglow comes from dissipation in a forward shock propagating through the source envi-
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2 Genet et al.

ronment. At very early times immediately after the burst prompt emission, the afterglow

first exhibits a steep decrease of temporal slope α1 ∼ 3 - 5 (FX ∝ t−α) (Tagliaferri et al.

2005). It is often followed by a much shallower part with 0.2 < α2 < 0.8 which can last

for several hours until a more standard slope 1 < α3 < 1.5 is finally observed (Nousek et

al. 2005). Moreover flares with sharp rise and decay times are often present, superimposed

on the power-law evolution (Burrows et al. 2005b). In most cases, the spectrum remains

essentially constant through the breaks which may indicate that a single physical process is

responsible for the whole X-ray emission. The forward shock could be such a process but it

seems unable, at least in its simplest version, to account for the early slopes α1 and α2. It

has been suggested that the shallow part of the light curve could still be produced by the

forward shock if it is continuously feeded in energy by the central source (Panaitescu et al.

2005; Zhang et al. 2005). Another possibility would be to delay the rise of the forward shock

contribution as a result of viewing angle effects (Eichler and Granot, 2005). These two pro-

posals would however strengthen the constraint on the efficiency of the prompt gamma-ray

emission which is already a potential problem for the internal shock scenario (see however

Fan & Piran, 2006 and Zhang et al. 2006). For the initial steep decay, curvature effects of

the emitting shell have been invoked (Nousek et al. 2005) while flares are usually explained

by a late activity of the central source (Zhang et al. 2005; Fan & Wei, 2005).

In this paper we do not consider the origin of flares but rather focus on the evolution of

the early X-ray afterglow. We propose that it could be accounted for by a contribution from

the reverse shock. We develop a simple model which allows us to follow the internal, reverse

and forward shocks in a consistent way. We compute the energy dissipated in the reverse

shock and show that, for some specific initial distribution of the Lorentz factor in the flow,

it is possible to reproduce the succession of the three slopes α1, α2 and α3. We then discuss

under which conditions part of this dissipated energy can be radiated in the X-ray range,

providing an alternative explanation for the early X-ray afterglows of GRBs. We also obtain

the optical emission of the reverse shock and show that chromatic breaks can be observed

in some cases.

The paper is organized as follows: in Sect.2 we present the simplified model we use to

follow the dynamics of internal shocks. We explain in Sect.3 how it is extended to include

the interaction with the environment and we compute the power dissipated in the reverse

shock. We consider in Sect.4 the possibility for this power to be partially radiated in the

X-ray range. We discuss in Sect.5 the relative importance of the reverse and forward shock
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the early X-ray afterglow 3

contributions and present X-ray and optical afterglow light curves produced by the reverse

shock alone. Sect.6 is our conclusion.

2 THE ORIGIN OF GRB PULSES

In the context of the internal shock model for the prompt emission of GRBs the pulses

observed in the light curve are produced when fast moving material catches up with slower

one previously ejected by the central source (Rees & Meszaros, 1994). This process has often

been represented by the collision of two “shells” of negligible thickness. However the central

source probably does not release individual shells but a continuous relativistic outflow with

a varying Lorentz factor. For this reason the shape of the pulses is largely dominated by hy-

drodynamical effects (Daigne & Mochkovitch, 2003) while high latitude emission (curvature

effect) only becomes important at late times. Soderberg and Fenimore (2001) have for exam-

ple found that the decay of pulses differs from what would be expected if it was controlled

by the curvature effect alone. A hydrodynamical study of the relativistic flow emerging from

the central engine therefore appears necessary for a detailed description of the physics of

pulses but it is naturally quite expensive in computing time (Daigne & Mochkovitch, 2000).

Fortunately it can often be replaced by a simplified model where the flow is represented by

a large number of regularly ejected shells which interact by direct collision only (Daigne &

Mochkovitch, 1998). This neglects pressure waves but this is a good approximation since

kinetic energy strongly dominates over internal energy of the flow. This approach implies

to use many shells (from 103 to 104) to represent accurately the distribution of mass and

Lorentz factor. It is different from the even more simplified description where the numbers

of shells essentially corresponds to the number of pulses to be produced and where the tem-

poral profiles are then entirely fixed by the curvature effect (Kobayashi, Piran & Sari, 1997).

The position Ri of each shell of mass Mi and Lorentz factor Γi is followed as a function of

time t (in the source frame). When shell i catches up with shell i + 1 a shock occurs at time

ts and radius Rs. The two shells merge and the resulting Lorentz factor after the collision is

given by

Γr =

√

ΓiΓi+1
miΓi + mi+1Γi+1

miΓi+1 + mi+1Γi
. (1)

If the the released energy
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4 Genet et al.

E = miΓic
2 + mi+1Γi+1c

2
− (mi + mi+1)Γrc

2 (2)

can be efficiently radiated it will be received by the observer at a time

tobs = ts −
Rs

c
(3)

and for a typical duration

∆tobs =
Rs

2cΓ2
r

(4)

under the condition that the radiative time is much smaller than the dynamical time (fast

cooling regime). The burst bolometric luminosity can then be obtained from the sum of all

the elementary shock contributions, the dynamical evolution being terminated when all the

shells have their Lorentz factor decreasing downstream so that no new internal shock can

form. For an accurate description of the pulse profile at late times, the contribution ℓ(t) of

each elementary shock must include the curvature effect of the emitting shell which yields

ℓ(t) =
2E

∆tobs(1 + t−tobs

∆tobs
)3

(5)

for tobs < t < tobs +(1 − cos∆θ) Rs/c, where ∆θ is the opening angle of the jet here supposed

to be seen on axis (Granot, Piran & Sari, 1999; Woods & Loeb, 1999). The luminosity in

a given energy band depends on some additional (and uncertain) assumptions on the post-

shock magnetic field and Lorentz factor of the electrons which are discussed in Sect. 4 and

5 while in Sect. 3 we restrict ourselves to the bolometric emission only.

To produce a single pulse burst (or a pulse as a building block of a more complex

burst) we have often used in previous works (Daigne & Mochkovitch, 1998, 2000) an initial

distribution of the Lorentz factor of the form

Γ(t) =
Γmax + Γmin

2
−

Γmax − Γmin

2
cos

(

π
t

0.2 tW

)

(6)

if t < 0.2 tW and Γ(t) = Γmax if t > 0.2 tW; Γmax and Γmin are the maximum and minimum

values of the Lorentz factor and tW the duration of the relativistic wind emission (the first

shell is then ejected at t = 0 and the last one at t = tW). This Lorentz factor distribution

where a rapid part of the flow is decelerated by a slower part placed ahead of it, has been

represented in Fig.1a for Γmax = 200, Γmin = 50 and tW = 10 s. The resulting bolometric

profile from dissipation by internal shocks is shown in Fig.1b for a total (isotropic) radiated

energy Erad = 1053 erg.

The decline of the pulse after maximum is first controlled by the dynamics of internal

shocks. This would lead to an asymptotic behavior L(t) ∝ t−3/2 if it was not interrupted
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the early X-ray afterglow 5

Figure 1. A single pulse burst. (a): Initial distribution of the Lorentz factor in the relativistic flow as a function of ejection
time and distance D to the source (in light-seconds) according to Eq.(6) with Γmax = 200, Γmin = 50 and tW = 10 s (thick full
line) and to Eq.(7) with δ = 1 and Γf = 2 (thin full line); (b): Bolometric profile for the distribution given by Eq.(6) (full line)
together with the corresponding temporal slope α (dashed line). After maximum, the profile is first controlled by the dynamics
of internal shocks before the curvature effect eventually dominates after tobs ∼ 20 s.

at a time τ ∼ tW when all the fast material of the ejecta has been shocked. Daigne and

Mochkovitch (2003) have shown that the gamma-ray profiles which can be obtained from

this first part of the bolometric light curve are generally in good agreement with the early

decline following maximum count rate in observed GRBs (Ryde & Svensson, 2000).

After all the ejecta has been shocked the pulse evolution becomes fixed by geometry, the

contribution of each shocked shell being given by Eq.(5). At large times t ≫ τ , all the ℓ(t)

and therefore the global profile L(t) asymptotically behave as t−3. However at early times

t ∼> τ , a steeper decline can be obtained (Nousek et al. 2005) as illustrated in Fig.1b where

the temporal slope α has been plotted together with the profile. It has a maximum of 3.65

just at the end of the internal shock phase before relaxing to 3 after a few τ .

3 THE REVERSE SHOCK

3.1 Physical description

The profile calculated above corresponds to a “naked GRB” (Kumar & Panaitescu, 2000)

and would be the only component observed in the absence of external medium. The burst

environment will however interact with the ejecta, leading to a forward shock propagating

through the circumstellar medium and a reverse shock sweeping back into the ejecta. We
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6 Genet et al.

compute below (Sect.3.2) the power dissipated in the reverse shock and discuss its possible

contribution to the early X-ray emission of GRBs. With the initial distribution of the Lorentz

factor given by Eq.(6) the reverse shock crosses the ejecta in a short time and cannot explain

an emission lasting for several days. The situation is however very different if a slight change

is made in the initial distribution of the Lorentz factor. We expect that the central source

will not stop ejecting relativistic material abruptly at t = tW. We instead propose that Γ

will progressively decrease until it reaches a small value (possibly close to unity) at tW. Since

Γ(t) is given by the ratio Ė/Ṁ of the energy to mass injection rates, a small Γ can be a

consequence of (i) a decrease of Ė, less and less energy becoming available from the source

to accelerate a given baryon load or/and (ii) a catastrophic increase of Ṁ . Case (i) appears

more natural during the late stages of source activity and has been adopted in presenting

our results in Sect.3.2.

We have then introduced a new distribution of the Lorentz factor where, for t > 0.5 tW,

Γ(t) decreases to a final value Γf

Γ(t) = Γf + (Γmax − Γf)

[

1 − t/tW
0.5

]δ

(7)

while for t < 0.5 tW, Γ(t) is still given by Eq.(6). This modified Lorentz factor is plotted

in Fig.1a for Γmax = 200, Γf = 2, tW = 10 s and δ = 1. With this new distribution, the

duration of source activity remains unchanged but the reverse shock will be present for a

much longer time, until all the ejecta has been decelerated to Γ ∼ Γf . The forward shock also

remains feeded in energy as slow material from the ejecta is continuously catching up but

the resulting effect is too small in this case to account for the shallow part of the light curve

(we assumed that equal amounts of kinetic energy are injected before and after t = 0.5 tW).

To compute the energy dissipated in the reverse shock we had to implement in our shell

model the interaction with the burst environment. This was done by considering the contact

discontinuity which separates the ejecta and the shocked external medium. In our simple

description it is represented by two shells moving at the same Lorentz factor Γ. The first

one corresponds to the mass Mej of the ejecta already crossed by the reverse shock, which

carries a total energy ΓMejc
2, and the second to the shocked external medium of mass Mex.

If the forward shock moves quasi-adiabatically (slow cooling regime), this shell keeps its

internal energy (since pdV work is neglected in our simple model) so that its total energy is

ΓΓiMexc
2 where (Γi − 1)c2 is the dissipated energy (per unit mass) in the fluid rest frame.

Two processes will affect this two shell structure at the contact discontinuity : it will collide
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the early X-ray afterglow 7

either with shells of the external medium at rest, or with rapid shells of the relativistic ejecta

catching up. This represents both the forward and reverse shock in our simplified picture.

Forward shock: the interaction with the external medium is discretized by assuming that a

collision occurs each time the contact discontinuity has travelled from a radius R to a radius

R ′ so that the swept-up mass is

mex =
∫ R ′

R
4πr2ρ(r)dr = q

M

Γ
(8)

where M = Mej + Mex, ρ(r) is the density of the external medium (for which we adopted

either a constant or a stellar wind distribution) and q ≪ 1 (we take in practice q = 10−2).

Writing the conservation of energy-momentum for this collision, we obtain the new Lorentz

factor Γr at the contact discontinuity

Γr =

[

(Mej + MexΓi)Γ
2 + mexΓ

(Mej + MexΓi) + 2mexΓ

]1/2

(9)

and also the new Lorentz factor Γ′
i for internal motions after the collision

Γ′
i =

(Mej + MexΓi)Γ + mex − MejΓr

(Mex + mex)Γr

. (10)

It should be noted that the above equations assume that material in the burst environment is

at rest. This neglects the pair-loading process resulting from the initial flash of gamma-rays

which pre-accelerates the circumstellar medium (Madau & Thompson, 2000; Thompson &

Madau, 2000; Beloborodov, 2002) out to a radius

Racc ∼ 7 1015 E
1/2
γ, 53 cm (11)

where Eγ, 53 is the isotropic gamma-ray energy of the flash in units of 1053 erg. For this

reason, the deceleration by the external medium will be delayed by

∆tacc ∼
Racc

2cΓ2
= 12 E

1/2
γ, 53 Γ−2

2 s (12)

where Γ2 is the average Lorentz factor of the ejecta in units of 102. Therefore the initial

dynamical evolution will be that of a naked GRB but the effect will last more than one

minute only for the most extreme bursts with Eγ, 53 > 10.

Reverse shock: as the Lorentz factor at the contact discontinuity decreases, new shells from

the ejecta become able to catch up. Writing again the conservation of energy-momentum for

these collisions, we obtain the change in Lorentz factor

Γr =
√

Γγej

[

(Mej + MexΓi)Γ + mejγej

(Mej + MexΓi)γej + mejΓ

]1/2

(13)
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8 Genet et al.

Figure 2. Dissipated power as a function of observer time during reverse shock propagation when the Lorentz factor is given
by Eq.(7) with Γf = 2 and δ = 1. (a): wind case with A∗ = 0.5 (dashed line), A∗ = 0.1 (full line) and A∗ = 0.05 (dotted line);
(b): uniform density case with n = 1000 (dashed line), 10 (full line) and 0.1 cm−3 (dotted line). In each panel the thin full line
represents the naked burst.

and the related dissipated energy

Ediss = (Mej + MexΓi)Γc2 + mejγejc
2
− (Mej + mej + MexΓi)Γrc

2 (14)

where mej and γej are respectively the mass and Lorentz factor of the colliding material from

the ejecta.

3.2 The dissipated power

Using this simplified model for the interaction of the ejecta with its environment we can

describe the deceleration of the front shell and the propagation of the reverse shock. We

have obtained the dissipated power in the reverse shock for different burst environments

(uniform medium or wind). In the wind case, we considered three values of the parameter

A∗: 0.5, 0.1 and 0.05 (such as ρ(r) = 5 1011 A∗/r
2 g.cm−3 with A∗ = 1 for a wind mass

loss rate Ṁw = 10−5 M⊙.yr−1 and a terminal velocity v∞ = 1000 km.s−1). In the constant

density case, we also tried three values of n: 1000, 10 and 0.1 cm−3. The resulting profiles are

shown in Fig.2 for Γf = 2 and δ = 1 in Eq.(7) but we checked that they remain essentially

unchanged when Γf is varied between 1 and 10 and δ between 0.5 and 2.

The curves in Fig.2 show a striking resemblance with the early X-ray afterglows observed

by SWIFT. After about 100 s the reverse shock component dominates over the tail of the of

the burst prompt emission computed in the last section. At late times the decline follows a
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the early X-ray afterglow 9

constant slope α ∼ 1.5. The shape of the intermediate region is most sensitive to the density

of the burst environment. At high density it is nearly suppressed, the constant slope α ∼ 1.5

following directly the initial steep decrease. Conversely at low density, it can become com-

pletely flat and even fall to a temporary minimum. For comparison, we have also represented

in Fig.2 the profile corresponding to the naked GRB. Without an external medium and for

the distribution of Lorentz factor given by Eq.(7) (with Γf = 2 and δ = 1) we find that a

large fraction of the ejecta (all slow material with Γ < 140) remains unaffected by internal

shocks. With an external medium the reverse shock propagates throught this material which

produces the additional power at late times.

To elucidate the behavior of the reverse shock contribution we have considered the fol-

lowing simplified case which can be handled analytically: the ejecta is supposed to be made

of a rapid single shell of mass M0 and initial Lorentz factor Γ0 (representing the fast material

where the prompt emission takes place) followed by a slower tail of the form

Γ(M) = Γf + (Γ0 − Γf)
(

M

Ms

)δ

(15)

where Γf is the final Lorentz factor at the end of the tail and Ms is the total mass of the

slow material (M = 0 corresponds to the last emitted shell and δ allows to vary the tail

shape). Notice that this expression of Γ(M) directly results from Eq.(7) if Ṁ is constant.

Such a distribution of Γ skips the prompt phase and the resulting dissipated power Pdiss

comes from the reverse shock only.

The reverse shock contribution is maximum at a time close to the deceleration time of

the front shell

tdec =
Rdec

2c Γ2
0

with Rdec =

[

M0 (3 − s)

4πAΓ0

]
1

3−s

(16)

where we have used the notation ρ = Ar−s with A = ρ and s = 0 for a uniform medium

and s = 2 for a stellar wind. A full analytical solution can be obtained for the reverse

shock contribution but we only derive below its asymptotic behavior assuming that the

front shell essentially follows the Blandford-McKee solution, i.e. it is only weakly affected

by the additional energy coming from the slow material progressively catching up. We have

checked this approximation with the numerical simulations and it is satisfied to an accuracy

of about 25%.

We can write the power dissipated in the reverse shock as

c© 0000 RAS, MNRAS 000, 000–000
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Pdiss = −
dM

dΓ

dΓ

dt
Γ ec2 (17)

where t is the observer time when a shell of Lorentz factor Γ catches up with the front shell.

The fraction e of the incoming material kinetic energy dissipated in the collision can be

obtained from Eq.(13) and (14) with mej ≪ Mej + MexΓi, leading to

e =
1

2

[

1 −
(

Γfs

Γ

)]2

(18)

where Γfs is the Lorentz factor of the front shell given by the Blandford-McKee solution

Γfs ≃ Γ0

(

R

Rdec

)−λ

(19)

with λ = 3−s
2

= 3/2 (resp. 1/2) for a uniform medium (resp. a stellar wind). Using dR/dt =

2c Γ2
fs we then get the relation between shock radius and observer time

t

tdec

=
1

2λ + 1

(

R

Rdec

)2λ+1

. (20)

With our assumed distribution (Eq.(15)) of the Lorentz factor in the slow material which is

steadily increasing outwards, each shell moves independently at the constant Lorentz factor

Γ until it catches up with the forward shock. We moreover neglect the fact that the slow

material is emitted over a certain duration and we write the position of each shell as a

function of observer time as

R

Rdec
=

t

tdec

(

Γ

Γ0

)2

. (21)

Notice that if the Lorentz factor is not initially monotonic in the slow material, internal

shocks will take place which, when they are completed, will leave a new distribution of Γ,

now steadily increasing outwards. For observing times long compared to the time of internal

shocks Eq.(21) will therefore still hold.

Eliminating the radius between Eq.(20) and (21) gives the time when a shell of Lorentz

factor Γ catches up with the forward shock

t

tdec
= (2λ + 1)1/2λ

(

Γ

Γ0

)− 2λ+1
λ

. (22)

Now from Eq.(19), (20) and (22) we can obtain the Lorentz factor Γfs of the forward shock

when the slow shell of Lorentz factor Γ catches up

Γfs = Γ (2λ + 1)−1/2 . (23)

To end with a simple power law expression for the dissipated power we write

dM

dΓ
=

Ms

δ Γ0

(

Γ

Γ0

)

1−δ
δ

(24)

c© 0000 RAS, MNRAS 000, 000–000



the early X-ray afterglow 11

Figure 3. Synthetic X-ray light curves in the 0.3 - 10 keV range for the models of Fig.2. The adopted post-shock energy
redistribution parameters are ǫe = ǫB = 1/3 and ζ = 10−2. The assumed burst redshift is z = 2; The different cases considered
in Fig.2 are represented by the same full, dotted and dashed lines.

i.e. we use Eq.(15) with Γf = 0 which is obviously uncorrect but does not change the behavior

of the solution in the relativistic regime. Using Eq.(22), (23) and (24) we finally get

Pdiss(t) = Φ(λ, δ)
Γ0Msc

2

δ tdec

(

t

tdec

)−[ 3λ+1+λ/δ
(2λ+1) ]

(25)

where

Φ(λ, δ) =
λ

2

[

1 − (2λ + 1)−1/2
]2

× (2λ + 1)
1−δ(1+4λ)
2δ(2λ+1) . (26)

For δ = 1 and the two values of interest for λ, Eq.(25) becomes

Pdiss

Γ0Msc2/tdec

= 6.6 10−2
(

t

tdec

)−7/4

(λ = 3/2)

= 1.5 10−2
(

t

tdec

)−3/2

(λ = 1/2) (27)

which is in good agreement with the asymptotic behavior of the light curves shown in Fig.2.

4 CAN THE REVERSE SHOCK CONTRIBUTE IN X-RAYS?

Despite their similarity with the SWIFT observations, it must remain clear that the profiles

shown in Fig.2 only trace the power dissipated in the reverse shock. With the assumptions

ordinary made to compute the reverse shock contribution in GRBs it should manifest itself

mainly in the visible/IR range (Sari & Piran, 1999). Moreover most of the emission would

c© 0000 RAS, MNRAS 000, 000–000



12 Genet et al.

generally take place in the slow cooling regime so that the observed light curve will not

necessarily trace the instantaneous energy release.

We therefore investigated whether, under some specific conditions, a substantial fraction

of the dissipated power can be (i) radiated in the X-ray range and (ii) in the fast cooling

regime. If the reverse shock contribution originates from synchrotron radiation of shock

accelerated electrons, the characteristic synchrotron energy and cooling time behave as

Es ∝ BΓ2
e and ts ∝ B−2Γ−1

e (28)

in the rest frame of the shocked material. Both the post-shock magnetic field B and typical

electron Lorentz factor Γe have therefore to be large to produce an emission at high energy

and on a short time scale ts < tdyn. An estimate of Γe is usually obtained assuming that a

fraction ǫe of the dissipated energy is injected into a fraction ζ of the electrons so that

Γe ≃
ǫe

ζ

mp

me

e (29)

where mp and me are the proton and electron masses and ec2 is the energy dissipated per

unit mass in the comoving frame. Similarly the post-shock magnetic field can be expressed

as

B =
(

8πǫB ρ ec2
)1/2

(30)

where ρ is the comoving density and ǫB the fraction of the dissipated energy tranferred

to the magnetic field. To have large B and Γe values behind the shock we first supposed

that a complete equipartion is established between the electronic, magnetic and baryonic

components so that ǫe = ǫB = ǫbaryon = 1/3. We also assumed that only a small fraction

ζ ∼
< 10−2 of the electron population is accelerated in the shock. Adopting ζ = 10−2 increases

Γe by a factor of 100 and hence Es by a factor 104 and decreases ts by 102 compared to the

standard ζ = 1 case.

The possibility to have only a small fraction of electrons being accelerated has already

been considered by Bykov & Meszaros (1996) and also by Eichler & Waxman (2005) in the

context of GRB afterglows. They showed that ζ is not well constrained by the observations

and, even if ζ ∼ 1 appears slightly favored, they included the whole interval me/mp < ζ < 1

in their analysis. In internal shocks, which are very similar to the reverse shock (both take

place in the burst ejecta and are mildly relativistic) a large ǫe is required to maintain a

reasonable global efficiency since the fraction of the total energy dissipated by internal

shocks hardly exceeds 10%. A small ζ is also favored to insure that the emission takes place
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in the gamma-ray range as shown by Daigne and Mochkovitch (1998) and more recently by

Lee et al. (2005) in the context of the short hard burst GRB 050509b.

Examples of synthetic light curves in the XRT band 0.3 - 10 keV are shown in Fig.3

for the cases already considered in Fig.2. They have been obtained with ǫe = ǫB = 1/3,

ζ = 10−2, a slope p = 2.5 for the electron energy distribution and an assumed redshift

z = 2, typical of the SWIFT burst population. Especially in the wind case, they seem able

to reproduce many of the observed XRT light curves. Conversely in the uniform density case

we often obtain a depressed minimum followed by a bump rather than a continuous shallow

evolution

5 DISCUSSION

Our proposal to explain the early X-ray afterglow of GRBs by a contribution of the reverse

shock relies on three well defined assumptions: (i) the Lorentz factor of the material ejected

at late times by the source has to decrease to small values, Γf < 10; (ii) the shock dissipated

energy must be transferred to only a small fraction of the electron population; and (iii) the

forward shock contribution should lie below that of the reverse shock, at least during the

first hours following burst trigger.

This last condition requires an ineffective transfer of energy to electrons (ǫe ∼
< 10−2)

or/and magnetic field (ǫB ∼
< 10−5) in the material crossed by the forward shock. Difficulties

to produce a sufficiently large magnetic field extending over the emitting region of GRB

afterglows has for example been recently emphasized by Milosavljević & Nakar (2006). Then,

if the reverse shock dominates in X-rays, what is the situation in the visible? We have

checked that in most cases, taking small values of ǫe or/and ǫB in the forward shock, equally

implies that the reverse shock dominates in the visible. The consistency of our proposal must

therefore be checked not only with X-ray observations but also at lower wavelengths.

To better understand the multiwavelength behavior of the reverse shock contribution, we

have computed the peak flux Fmax and the characteristic synchrotron and cooling frequencies

νm and νc (Sari, Piran & Narayan, 1998). These three quantities depend on t (observer time),

Ne (total number of shock accelerated electrons), B (magnetic field in shocked material),

Γe (typical electron Lorentz factor) and Γ (Lorentz factor of the emitting material) in the

following way
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Fmax ∝ ΓBNe

νm ∝ Γ Γ2
eB

νc ∝ Γ−1B−3t−2

(31)

We consider their temporal evolution in the asymptotic regime already described in Sect.3.2,

assuming a wind environment. The evolution of Γ is given by Eq.(22) which can be reex-

pressed as

Γ(t) = Γ0

(

t

2 tdec

)−1/4

= 119 Γ2

(

t

tdec

)−1/4

(32)

where Γ2 = Γ0/100. Eq.(18), (23) and (29) show that Γe reaches a constant value

Γe = 4.3 10−2 mp

me

ǫe

ζ

p − 2

p − 1
= 79

ǫe

ζ

p − 2

p − 1
(33)

where we have added the normalizing factor p−2
p−1

(p being the slope of the relativistic electron

distribution) which was not present in Eq.(29). For the magnetic field, instead of Eq.(30) it

is easier to use the continuity of the energy density at the contact discontinuity which yields

B = (32πǫBc2A)1/2 Γ

R
(34)

where A is the wind constant such as ρ(R) = A/R2 (A = 5 1011A∗). With Eq.(20) for R and

Eq.(32) for Γ we get

B(t) = 3 104 (ǫB A∗)
1/2

tdec Γ2

(

t

tdec

)−3/4

G (35)

Finally, the number of accelerated electrons can be obtained from Eq.(24) which, for δ = 1,

gives

Ne(t) =
2 ζ Es

Γ0 mpc2

[

1 − 1.19
(

t

tdec

)−1/4
]

(36)

where Es = 1
2
Γ0 Msc

2 is the total energy in the slow material. From Eq.(32), (33), (35) and

(36) the expressions for Fmax, νm and νc can be computed

Fmax = 1.4 108 (1+z)
D2

28

(ζE53)(ǫB A∗)1/2

Γ2
×

1
t

mJ

νm = 9.15 1016 (ǫB A∗)
1/2
(

ǫe

ζ

)2 (p−2
p−1

)2
×

1
t

Hz

νc = 8.2 108 t
1/2
dec

Γ2
2

(ǫB A∗)3/2 × t1/2 Hz

(37)

with E53 = Es/1053 erg and where the expression for Fmax has been written in the limit

t ≫ tdec. Compared to the forward shock case, it can be seen that Fmax ∝ t−1 and that νm

decays less rapidly (as t−1 instead of t−3/2). For a wind environment, the cooling frequency

has the same power law dependence, νc ∝ t1/2. From these expressions the flux can be
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computed for the different possible radiative regimes (Sari, Piran & Narayan, 1998), the

results being given in Appendix A.

Let us for example take the following values of the parameters: Γ2 = 1, ǫe = ǫB = 0.33,

ζ = 10−2, p = 2.5, A∗ = 0.5 and tdec = 100 s. Then, the transition from fast to slow cooling

occurs at t = 1.3(1+ z) day. Now adopting 1 keV and 2 eV as typical energies for the X-ray

and visible bands (i.e. νX = 2.4 1017 Hz and νV = 4.8 1014 Hz) and a redshift z = 2, it appears

that after only a few seconds νX becomes larger than νm and then remains larger than νc

in the slow cooling regime. The corresponding temporal slope is αX = (2p + 1)/4 = 1.5. At

the visible frequency, we initially have νc < νV < νm and therefore αV = 0.75. The visible

frequency crosses νm at t = 2.6 h (in the fast cooling regime) and then νc (in slow cooling)

at very late times. A break from αV = 0.75 to 1.5 is expected at t = 2.6 h.

Since these predicted slopes are only valid in the asymptotic regime where t ≫ tdec we

have performed a numerical simulation with the burst parameters given above except for

the fraction ζ of accelerated electrons which is varied between 0.003 and 0.03. We assume

in addition that E53 = 1 and adopt a rest frame reddening AV = 0.5 in the burst host

galaxy. The resulting X-ray and visible light curves are shown in Fig.4. For ζ = 3 10−3 and

10−2 they exhibit chromatic breaks. The break in X-rays is a consequence of the dynamics

of the reverse shock (it is already present in the bolometric light curve) while the break in

the visible is a spectral break (when νV crosses νm). The cases with ζ = 3 10−3, 10−2 and

3 10−2 are very similar to the early afterglow light curves of respectively GRB 050802, GRB

050922c and GRB 050801 (see Panaitescu et al, 2006 and Panaitescu, 2006).

The subsequent evolution of the afterglow will depend on the behavior of ǫe and ǫB

in the forward shock. If they increase enough with time the forward shock contribution

will eventually dominate but the moment of the transition is difficult to estimate in the

absence of any reliable physical model for the possible variations of the shock microphysics

parameters. If the forward shock takes over after about one day, the multiwavelength fits of

GRB afterglows obtained in the pre-SWIFT era will remain valid but the early afterglow

will be explained by the reverse shock. At the transition, a change of slope or the presence of

a bump may however be expected. While such accidents have been observed in some bursts

they do not seem to be a generic feature of GRB afterglows.

A much more radical point of view can still be adopted: it would to suppose that in some

cases the forward shock never takes over so that the afterglow is entirely produced by the

reverse shock! The results shown in Fig.4 seem to indicate that this possibility should not be
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Figure 4. Early afterglow light curves produced by the reverse shock for ǫe = ǫB = 0.33, p = 2.5, Γ2 = 1, A∗ = 0.5, tdec = 100
s, AV = 0.5 and, from left to right, ζ = 3 10−3, 10−2 and 3 10−2 (see text for details). The full (resp. dotted) line is the
X-ray (resp. the visible) afterglow. Compare these results to the early afterglow light curves of respectively GRB 050802, GRB
050922c and GRB 050801 as shown in Panaitescu (2006).

excluded a priori even if, clearly, considerable work will be needed to confirm it. As for the

forward shock hypothesis it will have to be confronted to a large amount of multiwavelength

afterglow data and show that it can provide a consistent picture for their interpretation.

6 CONCLUSION

We have developed a simplified model which enabled us to follow simultaneously the dy-

namics of the internal, external and reverse shocks in GRBs. We were mainly interested by

dissipation in the reverse shock when the Lorentz factor in the material which is ejected at

late times by the source decreases to small values, Γf < 10. The propagation of the reverse

shock then extends over quite a long time needed to decelerate the fast moving part of the

ejecta down to Γ ∼ Γf . We have obtained the dissipated power as a function of observed

time for different burst environments (wind or constant density). Its evolution shows a stri-

king resemblance with the early afterglow light curves observed by SWIFT, especially in the

wind case. However the reverse shock contribution is normally expected at low energy and

to appear in X-rays it requires a transfer of the dissipated power to only a small fraction

(ζ ∼
< 10−2) of the electron population. If this is possible, SWIFT XRT observations could

be better explained by the reverse shock than by the standard afterglow produced by the

forward shock.

We have also computed the optical emission from the reverse shock. The comparison

with the X-ray light curve often reveals the presence of chromatic breaks during the first

hours. Such breaks have been observed and are difficult to explain with the standard model
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where the afterglow comes from the forward shock. We have finally even proposed that in

some cases the entire afterglow could be produced by the reverse shock. We fully understand

that, to be validated, this non standard view still has to show that it can successfully explain

multiwavelength observations of a reasonable sample of GRB afterglows. We aim to perform

these necessary tests in a work in preparation.

APPENDIX A:

Using Eq.(37) for Fmax, νm and νc we give the expressions for the flux at a given frequency

in the fast and slow cooling regimes:

Fast cooling

1) ν < νc

Fν = Fmax

(

ν

νc

)1/3

= 1011 (1 + z)4/3

D2
28

(ζE53)(ǫBA∗)

t
1/6
decΓ

5/3
2

ν
1/3
17.4 × t−7/6 mJ (A1)

2) νc < ν < νm

Fν = Fmax

(

ν

νc

)−1/2

= 7.7 103 (1 + z)1/2

D2
28

(ζE53) t
1/4
dec

(ǫBA∗)1/4
ν
−1/2
17.4 × t−3/4 mJ (A2)

3) ν > νm

Fν = Fmax

(

νm

νc

)−1/2 ( ν

νm

)−p/2

= 1.3 104
× 0.36p/2 (1 + z)1−p/2

D2
28

(ζE53) (ǫBA∗)
p−2
4 t

1/4
dec

×

(

ǫe

ζ

)p−1 (
p − 2

p − 1

)p−1

ν
−p/2
17.4 × t−

2p+1
4 mJ (A3)

Slow cooling

1) ν < νm

Fν = Fmax

(

ν

νm

)1/3

= 2 108 (1 + z)4/3

D2
28

(ζE53)(ǫBA∗)
1/3

Γ2

×

(

ǫe

ζ

)−2/3 (
p − 2

p − 1

)−2/3

ν
1/3
17.4 × t−2/3 mJ (A4)
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2) νm < ν < νc

Fν = Fmax

(

ν

νm

)
1−p
2

= 1.4 108
× 0.36

p−1
2

(1 + z)
3−p
2

D2
28

(ζE53) (ǫBA∗)
p+1
4

Γ2

×

(

ǫe

ζ

)p−1 (
p − 2

p − 1

)p−1

ν
(1−p)/2
17.4 × t−

p+1
2 mJ (A5)

3) ν > νc

Fν = Fmax

(

νm

νc

)
p−1
2
(

ν

νc

)−
p
2

= 1.3 104
× 0.36p/2 (1 + z)1−p/2

D2
28

(ζE53) (ǫBA∗)
p−2
4 t

1/4
dec

×

(

ǫe

ζ

)p−1 (
p − 2

p − 1

)p−1

ν
−p/2
17.4 × t−

2p+1
4 mJ (A6)

In all these expressions the frequency (in observer frame) is in unit of 1017.4 Hz, corresponding

to 1 keV.
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