
An adaptive, reconfigurable interconnect for computational clusters

A Shafarenko
Department of Computer Science, University of Hertfordshire,

Hatfield, AL10 9AB UK
a.shafarenko@computer.org

V Vasekin
Telecom MODUS Limited, Leatherhead, Surrey, KT22 7SA, UK

vladimir.vasekin@t-modus.nec.co.uk

Abstract

This paper describes the principles of an original adap-
tive interconnect for a computational cluster. Torus topol-
ogy (2d or 3d) is used as a basis but nodes are allowed
to effectively migrate along the torus cycles. An optoelec-
tronic scheme which makes such migrations possible with
only local synchronisation is outlined. Between the in-
stances of migration the interconnect behaves as a direct
packet-routing network which constantly monitors its traffic
parameters. A decentralised predictive algorithm is applied
periodically to decide whether the current topology is con-
sistent with the predominant traffic flow and if it is not, a
reconfiguration to a better-matched topology occurs. We
present simulation results that show that on some standard
computational benchmarks a significant speedup is possi-
ble as a result of automatic matching between the effective
topology of the application’s message-passing infrastruc-
ture and that of the interconnect.

1 The case for reconfiguration

In this paper we shall present an interconnect scheme
which demonstrates a high-degree of adaptivity owing to
its capability to reconfigure the topology of the network in
sympathy with the prevailing traffic patterns. This section
will briefly introduce certain well-known trade-offs in clus-
ter interconnects which motivate our work.

Bus vs packet routing. Two forms of interconnect are
used in cluster systems: a bus (or a set of connected buses),
for example fast Ethernet, and a packet-routing network
which is a set of bidirectional channels connecting rout-
ing nodes (routers). The cluster machines interface with
the buses (in a bus system) or routers (in a packet-routing

system) in order to send and receive messages. An inter-
connect is called (dynamically) reconfigurable when con-
nections between buses or channels can be broken and re-
formed repeatedly in the course of program execution.

On a bus, a message is physically delivered to every con-
nected node and the node itself determines whether or not to
receive the message. In a packet-routing system, messages
are forwarded along certain routes to their final destinations.
The advantage of a packet-routing network over a set of
buses is subtle. It has not been discussed in detail in avail-
able literature, but certain fundamental differences are easy
to see. For example, in the case of uniform random traffic
(URT) under a heavy load, a mesh of buses loses to a 2d
packet-routing torus a factor of 4 in throughput. This is due
to the

�����
hops a message has to make on average along

one dimension of a torus versus the effective
�

“hops” re-
sulting from bus reservation for one message transaction.
However, this difference is a constant factor independent of
system size. In reality, the bus slows down as its physical
size increases (which is what is usually meant by the lack
of true scalability) to compensate for the increase in the re-
quired transmitter power. Nevertheless, a free-space optical
bus can be built that does not degrade appreciably in the
whole practical range of clusters (1-100 nodes). Under a
moderate load, when the throughput is not a concern, a bus
interconnect could show a much better latency thanks to its
ability to deliver messages directly to their destinations.

The role of locality. A packet-routing network comes into
its own when the application affords a large degree of com-
munication locality. If the algorithm-induced traffic and the
network topology are such that messages make an average
of � hops per dimension before they reach their destina-
tions, a packet-routing torus beats the equivalent bus mesh
by a factor of

���
� , both in throughput and latency. For a

fixed � , this factor gives the packet-routing network a scal-

able advantage over the buses, which may be the reason
why they are used in massively-parallel computers, such as
the Cray T3E. Certainly, at least for a large cluster packet,
routing should be attractive.

The ability to exploit locality, important as it may be, is
predicated on the matching of the “natural connectivity” of
an application with the topology of the network. At present
this means that the application code must take topology into
account explicitly, i.e. by aligning the data and processes
with the network structure. Such an approach is undesirable
in data-parallel systems where an abstract model of array
processing is used to avoid targeting a particular architec-
ture. Furthermore, in real-life applications task-parallelism
(whereby several data-parallel operations can be performed
concurrently by different cluster nodes) is just as important.
Here a large degree of communication locality is still pre-
served, as every array element interacts with only a small
set of other elements; these elements, however, may form a
neighbourhood which no longer conforms to the hardware
locality induced by the network topology. Process migra-
tion and data re-mapping on a fixed topology are possible
solutions, albeit requiring processes to be light-weight and
mobile, which is difficult to achieve.

Reconfigurability. The above analysis seems to suggest
that packet-routing networks for generic cluster computing
require reconfigurability to ensure that their advantage in la-
tency is fully exploited. There are, however, very few exam-
ples of such interconnects in literature. Some of them, such
as the RMN system [5], use a fixed set of configurations to
enable a number of 2 � -mesh-based and � -cube-connected
algorithms to exploit their locality. Another example of re-
configurability is the Achilles system[13] which boasts ex-
tremely low latency, which is achieved at the price of having
to support full connectivity across a single ����� crossbar
switch.Unlike RMN, the Achilles switch is controlled by
the headers of incoming packets and is, consequently, de-
centralised. However, the complexity of this solution and
its lack of scalability prevents it from being used in larger
clusters.

The bulk of literature on reconfiguration technology is
concentrated in the area of reconfigurable connections on
programmable logic chips; see, for instance,[11, 10]. Opti-
cal communication is appreciated as a technology that sup-
ports the massive connectivity that large distributed systems
need[9, 4]. Scalable interconnects for cluster computing
have started to appear[9]. However, even in the largest
optically-connected systems being discussed (see, for ex-
ample, a survey in [7]), reconfigurability has not yet been
utilised, despite the fact that theoretical advantages of opti-
cal reconfigurability are well-understood [8, 2].

On a systems level, it is our position that a generic recon-
figurable interconnect requires both channel-switching and

message-routing. Indeed, in any given configuration, there
is no static guarantee that the application will only use direct
connections between nodes. The topology usually follows
the prevailing connectivity of the application but not all its
communication requirements. Forwarding packets to their
indirect destinations is still necessary even though a channel
could be switched to provide direct access. The problem is
that channel switching is much slower than packet routing,
even for very fast channels, such as optical ones. The delay
due to channel switching can only be justified by the sav-
ings in forwarding costs of a long train of messages, i.e. a
prevailing traffic pattern.

In this paper we propose a novel approach to reconfigu-
ration which enables an optoelectronic packet-routing net-
work to reconfigure automatically and in a decentralised
manner. This is physically achieved by exchanging opti-
cal beams that connect a pair of nodes to cause the nodes to
effectively swap their positions in a network cycle. Holo-
graphic beam-steerers are a mature technology which can
be used for reconfiguration purposes (see [14]) and con-
trolled electronically. At the nodes, optically-transmitted
packets are converted to electrical signals and either con-
sumed or routed electronically to one of the outputs for a
subsequent optical transmission.

The decision to perform a beam exchange is made lo-
cally, at a node, by observing the traffic flow through the
nodes and predicting the effect of reconfiguration by a
heuristic rule. This approach avoids the use of a single
cross-bar switch and also benefits from the fact that the
capability to deflect an optical beam (unlike the capability
to switch an electrical wire) imposes no propagation-time
penalty by itself.

After several exchanges a distant migration of any node
can occur, which, for a given node, is only restricted by
the limits of its network cycles. The scheme supports a very
large number of potential configurations and is totally trans-
parent to the user code.

2 Reconfigurable torus

A torus network is the Cartesian product of � primitive
bidirectional cycles. Our proposal achieves long-distance
network alterations as a composition of several per-cycle
reshuffles. It should be noted that, since we do not re-
quire global synchronisation, those alterations could be per-
formed in parallel with each other and the ongoing com-
putation processes. In order to introduce our solution, let
us consider the primitive cycle in Fig 1. The figure shows
the traffic flowing in one direction (clockwise). The part
of the traffic traveling anticlockwise is completely indepen-
dent. At some stage in the computation, the node b may
detect that it is forwarding too much transit traffic from a to
c which prevents b from injecting its own messages clock-

2

a

b
c

Figure 1. Single cycle of a reconfigurable net-
work

wise at the required rate. Its own messages include those
that come to it from the other dimension(s) (they are shown
as double-headed arrows in the figure for the 2-dimensional
case). If the node b can exchange places with the node a in
the clockwise cycle, that would reduce the amount of transit
traffic by shortening the effective distances for the passing
messages.

Interestingly, such a reconfiguration can be performed
using only local synchronisation. i.e. one involving nodes
a, b and c. Moreover, by combining several exchanges, a
node can be forced to migrate as far as necessary around
one or more cycles. Since a migration in one cycle can
never result in two distinct nodes becoming the same, the
guaranteed minimum distance for a pair of nodes drifting
towards each other is equal to the number of independent
dimensions. As a result of nodal exchanges in the orthogo-
nal dimension(s), the cycles effectively bend and twist, see
the example in fig 2, where three vertical cycles: 3,4, and 5,
have been affected by two horizontal exchanges. Still, un-
der no circumstances does this lead to a cycle being broken
and re-formed with a different set of nodes included in it.
Consequently, the proposed scheme is not an arbitrary per-
mutation of the network order and hence may not support
a globally optimal solution. However the variety of con-

11 12 13 14 15 16

21 22 23 24 25 26

31 32 34 33 35 36

41 42 43 44 45 46

51 52 53 55 54 56

61 62 63 64 65 66

Figure 2. Torus topology after exchanging
pairs (33,34) and (54,55)

figurations this restricted scheme does support is enormous
and so it is likely that efficient ones occur among them. It
should also be noted that, as reconfiguration proceeds inde-
pendently in clockwise and anticlockwise components of a
cycle, the same node can migrate to different places in them.
Depending on the direction of incoming traffic, every node
is in fact a combination of 2 � “ghosts”, e.g. there are four
ghosts for each node in a 2-dimensional torus: (East � West,
North � South), (East � West, South � North), (West � East,
North � South), and (West � East, South � North).

Let us proceed to the proposed decentralised reconfigu-
ration algorithm. Consider a pair of adjacent nodes on the
same cycle, say the clockwise one, with the message fluxes
as per Fig 4.

Messages coming to the node � constitute the flux
�����

.
Some of these messages get absorbed at that node (includ-
ing those that are to be routed into the other dimension),
with the rest,

���
	�����
, being sent to � . At the same time some

messages are originated at � , giving rise to the flux � �
	������
.

These include messages coming in to � from the other di-
mension. At � , some messages from

� �
	������
and � �
	������

are
absorbed and new ones are originated. These result in the
fluxes

����� �
, � ��� �

and � ��� �
, respectively.

The decision on whether � and � should swap depends
on how many messages per second would have their paths
extended and how many reduced. The difference of those
numbers, M, is as follows:

3

����� � �
	�������� � ��� ���	�
� ��� ��� � �
	��������� � ��� �
� � ��� ������� � �
	�������� � ��� �����	� ���

The first term is the incoming flux absorbed at � . Those
messages need to reach � and have to make an extra hop
over � in order to do so. The second term is the number
of messages per second that are absorbed at the node � and
which would gain a hop as a result of the swap. The neg-
ative sign accounts for this gain. The third term stands for
the traffic generated at � to be dispatched beyond the node
� and hence it would lose a hop as a result. The term de-
scribes the traffic originated at � gaining an extra hop. Fi-
nally, some messages originated at � are intended for � . As
a result of the swap they would have to follow a different
route, as � would be behind � and thus unreachable in this
cycle other than by a very long route. This circumstance is
accounted for by the last term which contains two parame-
ters. The value of

�
is the number of additional hops for the

messages transferred to the anticlockwise flow. Parameter� � �
is introduced to account for the flux from � to � in the

anticlockwise flow which is not shown in the figure. The
fluxes have been observed over a period of time � . Now
assume that all fluxes are constant. Then a positive

�
has

the meaning of the number of hops that the messages would
have saved had � and � been swapped in the beginning of the
period. Assuming that the fluxes vary slowly over the period
� and beyond, the value of

�
could serve as a predictive

criterion for reconfiguration. The reconfiguration cost nor-
malised by � should be subtracted from

�
to work out the

likely net effect of the new topology for the next period of
observation .

3 Performance evaluation

The performance of the reconfiguration scheme was
evaluated by simulating a reconfigurable network of pro-
cessors running a curtailed version of an application bench-
mark.

Simulated application. In order to assess the above re-
configuration scheme, an established computational bench-
mark is required. Although benchmarking is prone to bias
as the choice of a “typical” algorithm is bound to be sub-
jective, it is still possible to obtain qualitative results that
show the effect of the proposed scheme. For the purposes
of demonstrating the adaptivity of our interconnect, we se-
lected three classical Livermore Loops[12]: Kernels 7, 18
and 21, see fig5. Kernel 7 represents a one-dimensional
finite-difference method with index locality 7, i.e. 7 con-
secutive neighbours of each element form its local neigh-
bourhood (in the index, rather than network location, sense).

0.0 100.0 200.0 300.0
0.0

1.0

2.0

3.0

4.0

5.0

Im

M

C

B

A

Figure 3. Normalised performance � m vs
threshold �

Kernel 18 is a hydrodynamic piece operating in 2d on a � ���
index template (i.e. locality 9) and finally Kernel 32 is a
straightforward implementation of matrix dot product with
nonlocal reductions.

Parallelisation and node abstraction. As the index pat-
tern of all three Kernels is fixed there was no need to include
the floating-point arithmetic, or indeed any calculation at
all, in order to simulate the load that the processor presents
to the interconnect. We assumed that the application was
communication-bound, and thus neglected the processing
time between the delivery of the inputs to an assignment
and the emission of its write request. This assumption is
justified in the fine-grain limit, where the intention is to ex-
tract as much parallelism as possible. For a courser-grain
application, where communication is not as critical, the ad-

4

a b

P P

Q

P

Q

R

in trans

out

trans

out

out

Figure 4. Analysis of data streams through a
pair of nodes

vantage of a reconfigurable interconnect may be less pro-
nounced.

In order to achieve significant network load, each node
ran 8 parallel threads executing consecutive iterations of the
innermost loop within its share of the iteration space. Due
to the data-parallelism of the Kernels, those iterations were
strictly independent. The multithreaded execution is neces-
sary to account for the node capability to tolerate latency,
without which fine-grain distributed computing would be
impossible even with a sufficient network bandwidth. The
introduction of roughly as many threads as there are inde-
pendent channels incident to the node creates enough con-
currency to prevent that, see [3, 1].

Network abstraction. For these experiments we chose
the 3d torus topology because of its smaller diameter and
hence more pessimistic expectations of the possible benefits
of reconfiguration. For the sake of simplicity, our network
simulation was synchronous, i.e. operating in lockstep. At
each step, a node can insert a packet in the router and/or
receive a packet from it. At every node, each of the 14
channels (6 pairs of links plus the node injection/absorption
channels) has the capability to transfer one packet per step
provided that a packet is available at the source and there
is a free buffer at the destination. Buffering is set to 32
packet-size buffers on either side of each link. It should
be noted that as optical technology enables very wide links
(100 bits and more, due to high density of on-chip optical
interface and/or the need to demultiplex fast optical chan-
nels), it makes sense to simulate packet-wide channels as
this simplifies both routing and reconfiguration as well as
improving the overall throughput and latency of the inter-
connect.

The following types of packets were used:

1. read request, containing a virtual memory address

2. data, containing the data read from memory in re-
sponse to a read request

3. write request, containing a virtual memory address and
its new content

4. write acknowledgement

5. system control packet, containing control data

Each packet carries its source and destination addresses
and the thread ID. System control packets are used for noti-
fying configuration events to the routers. Dimension-order
routing was simulated, whereby a packet coming to a transit
node is transferred to the next node en-route, first in the �
dimension, then in � and finally in � . The transfer occurs
only when there is a free buffer associated with the output
link.

Implementation of reconfiguration. This was put into
effect in line with the algorithm presented in the previous
section. Since the statistic gathering required for the for-
mula is local, a pair of consecutive nodes only require a
low-throughput connection to exchange the statistical data
from time to time. Compared to the main data traffic this
communication is negligible and hence need not be simu-
lated. The only thing that requires simulation is the process
of position change which takes place when the decision to
reconfigure has been made on the basis of the formula. This
is achieved by blocking the node � input (see fig2) for �

	
steps; switching the channels so that � links up with � and
then with � ; and then unblocking the � input which should
now link up with � . The reconfiguration time �

	
was set to

32 steps to reflect the current contrast between the speed of
the optical link (of the order of 10 packets per � s) and the
optical switch time (between 1 and 10 � s). At the next step
a system control message is broadcast around the network
cycle to notify the other nodes of the node swap1. Special
care was taken to avoid reconfiguration-induced deadlocks:
a packet, once emitted is not permitted to change its direc-
tion en-route even though the updated routing tables may
suggest otherwise.

Data mapping and load balancing. Normally array data
would be mapped on a conforming processor arrangement
to benefit from their inherent locality of access. As we were
deliberately using a mismatched 3d arrangement of proces-
sors to challenge the adaptive properties of our interconnect,
we chose to apply a scatter mapping as follows.

1It should be noted that in our decentralised reconfiguration methodol-
ogy there is no need to block the whole cycle until the system broadcast
message has been received by every node it is intended for. Indeed, a de-
lay in recognising the new topology by any nodes only leads to suboptimal
routing (say clockwise by 6 hops rather than anticlockwise by 5)

5

First of all, a global address space was introduced with
virtual addresses in a continuous range from 0 to � . A clus-
ter node with the coordinates

�
��� ��� �

�
was then assigned all

virtual addresses � such that � mod
��� �

�
����

�
�

� ,
where � , � and � range from 0 to

� �	�
with

�
being the pe-

riod of the torus. This is essentially a 1d, cyclic distribution
of addresses over a 3d interconnect structure irrespective of
the data-array rank and shape. The data arrays manipulated
by the Kernels were allocated one after another starting with
virtual address 0 without any alignment gaps between ob-
jects. The “computational load”, i.e., in our case, respon-
sibility to issue network packets, has been divided between
the processors by splitting the iteration space of the inner-
most loop into chunks of equal size and assigning one chunk
to each node of the system in the order of their virtual ad-
dresses.

Simulation results. For simulation purposes, the three
Kernels mentioned above were enclosed in a single loop
which was iterated long enough to collect reliable statistics.

The reconfiguration criterion from section 2 was used
to determine when to reconfigure local connections at ev-
ery node. The results are shown in fig 3 (curve A) which
plots the speed-up associated with reconfiguration against
the threshold value for

�
, denoted as � . It is clear that

a high threshold causes reconfiguration to occur too infre-
quently which weakens its effect. Since there is a cost as-
sociated with topology alteration and the prediction of the
fluxes is never fully accurate, the benefits fail to materialise.
In fact there is a net loss at some values of R. On the other
hand, when the threshold is too low the reconfiguration cost
is larger than the benefits. Consequently, useful behaviour
can be expected at intermediate values of � , which is, in
fact, what is observed. The troughs on the curve are due to
the interplay of numerical parameters of the simulated ap-
plication (such as array size), which can be smoothed out
by randomising the parameter � (curve B) and almost to-
tally eradicated by making the threshold � dependent on
the system behaviour (curve C). In the last case � repre-
sents the starting value of the threshold which varies in time
depending on the actual performance: up when the nodal
exchanges are too frequent and down when they are too
rare. Under such self-adjustment, the effect of reconfigu-
ration reaches high values (a factor of 4 in this benchmark).

Related work. Afsahi and Dimopoulous[2] support our
assumption that structured communication locality is
present in most cluster computing applications. Like our-
selves, they propose to monitor traffic locally to predict
communication patterns. The main difference between their
solution and the one presented here is in the interconnect be-
ing controlled. Paper [2] is based on the channel-switching
model where each node has a fixed number of retargetable

connections, and so the question is, which one of them
should be switched when an output packet is to be sent to
a different destination. The intention is to keep the connec-
tions that are likely to carry the majority of packets as steady
as possible in order to minimise their switching overheads.
Afsahi and Dimopoulous proposed and evaluated various
heuristics, such as LRU, LFU, etc., which are similar to
the well-known virtual-memory paging heuristics. In the
present paper we use packet routing for all packets so the
links need not be switched just to deliver all packets. As
a consequence, our solution could utilise switches whose
switching time far exceeds the inverse throughput of the
link — and that is the case in most optical networks. The
slowness of the switch in our case only leads to diminished
adaptivity.

Also note the use of machine learning in predicting
shared-memory traffic in multiprocessors[6]. Techniques
such as these could be used in reconfigurable routing net-
works in future.

Conclusions

Optical communication technologies enable new ap-
proaches to a cluster interconnect. An adaptive toroidal
interconnect has been proposed and its capability to auto-
matically adapt to the application-induced traffic has been
demonstrated.

Further research may address the following issues.

1. Optimal navigation across a variable-topology net-
work. In a reconfigurable network the calculation of
the shortest routes is an NP-complete task. There is a
trade-off between the complexity of the decision mak-
ing in the navigation logic of a router, the amount of
global information it requires and the variety of avail-
able configurations. So far we have used the simplest
solution, based on essentially fixed-network routing
strategies, which have been modified to account for lo-
cal alterations of the interconnect. Further research is
required to address this problem in full.

2. The multicast problem. It is well-known that dis-
tributed algorithms exhibit complex multicast be-
haviour. While various forms of multicast can be emu-
lated by point-to-point communications, the proposed
optical solution can be modified to directly support
multicast capability.

3. As reconfiguration in our approach is based on an op-
tical switch, the issue of switch architecture is quite
important. In particular, the number of different con-
figurations that the switch needs to support should be
kept to a minimum to reduce the cost and complexity
of its control logic and optical elements. In this paper

6

we assume sufficient switching capability to support
all permutations of a cycle. It is possible, however, that
a proportion of cycle permutations can be left unsup-
ported resulting in a cheaper switch without significant
degradation of adaptivity.

Acknowledgement

This research has been supported by an EU grant within
the Framework IV MEL-ARI programme. The authors are
grateful to Alex Bolychevsky for fruitful discussions and to
our European partners whom we consulted on issues per-
taining to optical component architecture.

References

[1] A.Bolychevsky, C.Jesshope, and V.Muchnik. Dynamic
scheduling in risc architectures. IEE Proc.-Comput. Digit.
Tech., 143(5):309–317, september 1996.

[2] A. Afsahi and N. J. Dimopoulos. Communications latency
hiding techniques for a reconfigurable optical interconnect:
benchmark studies. In Applied Parallel Computing. Large
Scale Scientific and Industrial Problems. 4th International
Workshop, PARA’98. Proceedings. Sprnger-Verlag, Berlin,
Germany, 1998.

[3] D. B. Barsky and A. V. Shafarenko. Uniform random traffic
in a massively-parallel data-drive n computer. In Proceed-
ings of MPCS’96, pages 546–553. IEEE, 1996.

[4] C. Berger et al. Comparison of two reconfigurable ����� in-
terconnects for a recurrent neural network. Optical Review,
3(6A):388–390, 1996.

[5] S. M. Bhandarkar and H. R. Arabnia. Parallel computer
vision on a reconfigurable multiprocessor network. IEEE
Transactions on Parallel and Distributed Systems, 8(3):292–
308, Mar. 1997.

[6] M. F. S. et al. Predicting multiprocessor memory access pat-
tern with learning models. In Proceedings of the Fourteenth
International Conference on Machine Learning, pages 305–
312, 1997.

[7] J. Gourlay, T. Yang, J. A. B. Dines, J. F. Snowdon, and A. C.
Walker. Development of free-space digital optics in comput-
ing. Computer, 31(2):38–44, 1998.

[8] M. W. Haney and M. P. Christensen. Fundamental geometric
advantages of free-space optical interconnect. In Proceed-
ings of the Third International Conference on Massively-
Parallel Processing Using Optical Interconnections, pages
16–23, 1996.

[9] J.Dines, J.Snowdon, M.Desmulliez, D.Barsky,
A.Shafarenko, and C.Jesshope. Optical interconnec-
tivity in a scalable data-parallel system. Journal of Parallel
and Distributed Computing, 41:120–130, November 1997.

[10] L. K. John and E. John. A dynamically reconfigurable in-
terconnect for array processors. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems. vol.6, no.1; March
1998; p.150-7, 6(1):150–157, March 1998.

[11] L. Kurian and E. B. John. Development of free-space digi-
tal optics in computing. IEEE Transactions on VLSI, pages
150–157, March 1998.

[12] F. H. McMahon. The livermore fortran kernels test of the
numerical performance rangemance. In J. L. Martin, edi-
tor, Performance Evaluation of Supercomputers, pages 143–
186. North Holland, Amsterdam, 1988.

[13] J. Morris and S. Tham. High bandwidth and low latency
from a three-dimensional reconfigurable interconnect. In
Proceedings of the SPIE The International Society for Opti-
cal Engineering, volume 3844, pages 43–48, 1999.

[14] Suning-Tang and R. T. Chen. Reconfigurable electro-optic
interconnects using holographic elements. In Proceedings of
the SPIE The International Society for Optical Engineering.,
volume 3288, pages 153–163, 1998.

7

c***
c*** KERNEL 7 EQUATION OF STATE FRAGMENT
c***
1007 DO 7 k= 1,n

X(k)= U(k) + R*(Z(k) + R*Y(k)) +
1 T*(U(k+3) + R*(U(k+2) + R*U(k+1)) +
2 T*(U(k+6) + Q*(U(k+5) + Q*U(k+4))))

7 CONTINUE

c**
c*** KERNEL 18 2-D EXPLICIT HYDRODYNAMICS FRAGMENT
c**
1018 T= 0.003700d0

S= 0.004100d0
KN= 6
JN= n
DO 70 k= 2,KN
DO 70 j= 2,JN
ZA(j,k)= (ZP(j-1,k+1)+ZQ(j-1,k+1)-ZP(j-1,k)

1 -ZQ(j-1,k))*(ZR(j,k)+ZR(j-1,k))/(ZM(j-1,k)
2 +ZM(j-1,k+1))

ZB(j,k)=(ZP(j-1,k)+ZQ(j-1,k)-ZP(j,k)-ZQ(j,k))
1 *(ZR(j,k)+ZR(j,k-1))/(ZM(j,k)+ZM(j-1,k))

70 CONTINUE
c

DO 72 k= 2,KN
DO 72 j= 2,JN
ZU(j,k)=ZU(j,k)+S*(ZA(j,k)*(ZZ(j,k)-ZZ(j+1,k))

1 -ZA(j-1,k) *(ZZ(j,k)-ZZ(j-1,k))
2 -ZB(j,k) *(ZZ(j,k)-ZZ(j,k-1))
3 +ZB(j,k+1) *(ZZ(j,k)-ZZ(j,k+1)))

ZV(j,k)=ZV(j,k)+S*(ZA(j,k)*(ZR(j,k)-ZR(j+1,k))
1 -ZA(j-1,k) *(ZR(j,k)-ZR(j-1,k))
2 -ZB(j,k) *(ZR(j,k)-ZR(j,k-1))
3 +ZB(j,k+1) *(ZR(j,k)-ZR(j,k+1)))

72 CONTINUE
c

DO 75 k= 2,KN
DO 75 j= 2,JN
ZR(j,k)= ZR(j,k)+T*ZU(j,k)
ZZ(j,k)= ZZ(j,k)+T*ZV(j,k)

75 CONTINUE
c

c**
c*** KERNEL 21 MATRIX*MATRIX PRODUCT
c**
1021 DO 21 k= 1,25

DO 21 i= 1,25
DO 21 j= 1,n
PX(i,j)= PX(i,j) +VY(i,k) * CX(k,j)

21 CONTINUE

Figure 5. Livermore Fortran Kernels

8

