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Abstract

The problems of dense stereo reconstruction and object class segmentation can both
be formulated as Conditional Random Field based labelling problems, in which every
pixel in the image is assigned a label corresponding to either its disparity, or an object
class such as road or building. While these two problems are mutually informative,
no attempt has been made to jointly optimise their labellings. In this work we provide a
principled energy minimisation framework that unifies the two problems and demonstrate
that, by resolving ambiguities in real world data, joint optimisation of the two problems
substantially improves performance. To evaluate our method, we augment the street view
Leuven data set, producing 70 hand labelled object class and disparity maps. We hope
that the release of these annotations will stimulate further work in the challenging domain
of street-view analysis.

1 Introduction
The problems of object class segmentation [16, 24], which assigns an object label such as
road or building to every pixel in the image and dense stereo reconstruction, in which every
pixel within an image is labelled with a disparity [12], are well suited for being solved jointly.
Both approaches formulate the problem of providing a correct labelling of an image as one
of Maximum a Posteriori (MAP) estimation over a Conditional Random Field (CRF) [17],
which is typically a generalised Potts truncated linear model. Thus both may use graph cut
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based move making algorithms, such as α-expansion [3], to solve the labelling problem.
These problems should be solved jointly, as a correct labelling of object class can inform
depth labelling and stereo reconstruction can also improve object labelling. To provide some
intuition behind this statement, note that the object class boundaries are more likely to occur
at a sudden transition in depth and vice versa. Moreover, the height of a point above the
ground plane is an extremely informative cue regarding its class label, and can be computed
from the depth. For example, road or sidewalk lie in the ground plane, and pixels taking
labels pedestrian or car must lie above the ground plane, while pixels taking label sky must
occur at an infinite depth from the camera. Figure 1 shows our model which explicitly
captures these properties.

Object class recognition yields strong information about 3D structure as shown by the
work on photo pop-up [7, 8, 19, 20]. Here a plausible pop-up or planar model of a scene
was reconstructed from a single monocular image using only prior information regarding the
geometry of typically photographed scenes, and knowledge of where object boundaries are
likely to occur.

Beyond this, many tasks require both object class and depth labelling. For an agent to
interact with the world, it must be capable of recognising both objects and their physical
location. For example, camera based driverless cars must be capable of differentiating be-
tween road and other classes, and also of recognising where the road ends. Similarly, several
companies [6] wish to provide an automatic annotation of assets (such as street light, drain
or road sign) to local authorities. In order to provide this service, assets must be identified,
localised in 3D space and an estimation of the quality of the assets made.

The use of object labellings to inform scene reconstruction is not new. The aforemen-
tioned pop-up method of [7] explicitly used object labels to aid the construction of a scene
model, while 3D Layout CRF [9] matched 3D models to object instances. However, in [7]
they built a plausible model from the results of object class segmentation, and neither jointly
solve the two problems nor attempt to build an accurate 3D reconstruction of the scene
whereas in this paper we jointly estimate both. Hoiem et al. [9] fit a 3D model not to the
entire scene but only to specific objects, and similarly, these 3D models are intended to be
plausible rather than accurate.

Leibe et al. [18] employed Structure-from-Motion (SfM) techniques to aid the tracking
and detection of moving objects. However, neither object detection nor the 3D reconstruction
obtained gave a dense labelling of every pixel in the image, and the final results in tracking
and detection were not used to refine the SfM results. The CamVid [5] data set provides
sparse SfM cues, which were used by several object class segmentation approaches [5, 25]
to provide pixel wise labelling. In these works, no dense depth labelling was performed and
the object class segmentation was not used to refine the 3D structure.

None of the discussed works perform joint inference to obtain dense stereo reconstruction
and object class segmentation. In this work, we demonstrate that the problems are mutually
informative, and benefit from being solved jointly. We consider the problem of scene recon-
struction in an urban area [18]. These scenes contain object classes such as road, car and
sky that vary in their 3D locations. Compared to typical stereo data sets that are usually pro-
duced in controlled environments, stereo reconstruction on this real world data is noticeably
more challenging due to large homogeneous regions and problems with photo-consistency.
We efficiently solve the problem of joint estimation of object class and depth using modified
variants of the α-expansion [3], and range move algorithms [14, 26].

No real world data sets are publicly available that contain both pixel-wise object class
and dense stereo data. In order to evaluate our method, we augmented the data set of [18] by
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Figure 1: Graphical model of our joint CRF. The system takes a left (A) and right (B) image from a
stereo pair that has been rectified. Our formulation captures the co-dependencies between the object
class segmentation problem (E, §2.1) and the dense stereo reconstruction problem (F, §2.2) by allow-
ing interactions between them. These interactions are defined to act between the unary/pixel (blue)
and pairwise/edge variables (green) of both problems. The unary potentials are linked via a height
distribution (G,eq. (3)) learnt from our training set containing hand labelled disparities (§5). The
pairwise potentials encode that object class boundaries, and sudden changes in disparity are likely to
occur together. The combined optimisation results in an approximate object class segmentation (C)
and dense stereo reconstruction (D). See §3 and §4 for a full treatment of our model and §6 for further
results. View in colour.

creating hand labelled object class and disparity maps for 70 images. This data set will be
released to the public. Our experimental evaluation demonstrates that joint optimisation of
dense stereo reconstruction and object class segmentation leads to a substantial improvement
in the accuracy of final results.

The structure of the paper is as follows: In section 2 we give the generic formulation
of CRFs for dense image labelling, and describe how they can be applied to the problems
of object class segmentation and dense stereo reconstruction. Section 3 describes the for-
mulation allowing for the joint optimisation of these two problems, while section 4 shows
how the optimisation can be performed efficiently. The data set is described in section 5 and
experimental validation follows in 6.

2 Overview of Dense CRF Formulations
Our joint optimisation consists of two parts, object class segmentation and dense stereo re-
construction. Before we formulate our approach we give an overview of existing approaches
and introduce the notations used in §3. Both problems have previously been defined as a
dense CRF where the set of random variables Z = {Z1,Z2, . . . ,ZN} corresponds to the set of
all image pixels i ∈ V = {1,2, . . . ,N}. Let N be the neighbourhood system of the random
field defined by the sets Ni,∀i ∈ V , where Ni denotes the neighbours of the variable Zi. A
clique c ∈ C is a set of random variables Zc ⊆ Z. Any possible assignment of labels to the
random variables will be called a labelling and denoted by z, similarly we use zc to denote
the labelling of a clique. Fig. 1 E & F depict this lattice structure as a blue dotted grid, the
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variables Zi are shown as blue circles.

2.1 Object Class Segmentation using a CRF
We follow [11, 16, 24] in formulating the problem of object class segmentation as finding
a minimal cost labelling of a CRF defined over a set of random variables X = {X1, . . . ,XN}
each taking a state from the label space L = {l1, l2, . . . , lk}. Each label l j indicates a different
object class such as car, road, building or sky. These energies take the form:

EO(x) = ∑
i∈V

ψ
O
i (xi)+ ∑

i∈V , j∈Ni

ψ
O
i j (xi,x j)+ ∑

c∈C
ψ

O
c (xc). (1)

The unary potential ψO
i of the CRF describes the cost of a single pixel taking a particular

label. The pairwise terms ψO
i j encourage similar neighbouring pixels in the image to take the

same label. These potentials are shown in fig. 1 E as blue circles and green squares respec-
tively. The higher order terms ψO

c (xc) describe potentials defined over cliques containing
more than two pixels. The terms ψO

i (xi) are typically computed from colour, texture and lo-
cation features of the individual pixels and corresponding prelearned models for each object
class [1, 4, 15, 21, 24]. ψO

i j (xi,x j) takes the form of a contrast sensitive Potts model:

ψ
O
i j (xi,x j) =

{
0 if xi = x j,

g(i, j) otherwise, (2)

where the function g(i, j) is an edge feature based on the difference in colours of neighbour-
ing pixels [2], typically defined as:

g(i, j) = θp +θv exp(−θβ ||Ii− I j||22), (3)

where Ii and I j are the colour vectors of pixel i and j respectively. θp, θv, θβ ≥ 0 are
model parameters learnt using training data. We refer the interested reader to [2, 21, 24] for
more details. In our work we follow [16] and use their hierarchical potentials based upon
region based features, which significantly improve the results of object class segmentation.
Nearly all other CRF based object class segmentation methods can be represented within this
formulation via different choices for the higher order cliques, see [16, 22] for details.

2.2 Dense Stereo Reconstruction using a CRF
We use the energy formulation of [3, 12] for the dense stereo reconstruction part of our joint
formulation. They formulated the problem as one of finding a minimal cost labelling of a
CRF defined over a set of random variables Y = {Y1, . . . ,YN}, where each variable Yi takes a
state from the label space D = {d1,d2, . . . ,dm} corresponding to a set of disparities, and can
be written as:

ED(y) = ∑
i∈V

ψ
D
i (yi)+ ∑

i∈V , j∈Ni

ψ
D
i j (yi,y j). (4)

The unary potential ψD
i (yi) of the CRF is defined as a measure of colour agreement of a

pixel with its corresponding pixel i from the stereo-pair given a choice of disparity yi. The
pairwise terms ψD

i j encourage neighbouring pixels in the image to have a similar disparity.
The cost is a function of the distance between disparity labels:

ψ
D(yi,y j) = f (|yi− y j|), (5)

where f (.) usually takes the form of linear truncated function f (y) = min(k1y,k2), where k1,
k2 ≥ 0 are the slope and truncation respectively. The unary (blue circles) and pairwise (green
squares) potentials are shown in fig. 1 F. Note that the disparity for a pixel is directly related
to the depth of the corresponding 3D point.
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3 Joint Formulation of Object Class Labelling and Stereo
Reconstruction

We formulate simultaneous object class segmentation and dense stereo reconstruction as
an energy minimisation of a dense labelling z over the image. Each random variable Zi =
[Xi,Yi]

1 takes a label zi = [xi,yi], from the product space of object class and disparity labels
L ×D and correspond to the variable Zi taking object label xi and disparity yi. In general
the energy of the CRF for joint estimation can be written as:

E(z) = ∑
i∈V

ψ
J
i (zi)+ ∑

i∈V , j∈Ni

ψ
J
i j(zi,z j)+ ∑

c∈C
ψ

J
c (zc), (6)

where the terms ψJ
i , ψJ

i j and ψJ
c are a sum of the previously mentioned terms ψO

i and ψD
i ,

ψO
i j and ψD

i j , and ψO
c and ψD

c respectively, plus some terms ψC
i , ψC

i j , ψC
c , which govern

interactions between X and Y. However in our case, since we use the formulation of ED(y)
§2.2 which does not contain higher order terms ψD

c our energy is defined as:

E(z) = ∑
i∈V

ψ
J
i (zi)+ ∑

i∈V , j∈Ni

ψ
J
i j(zi,z j)+ ∑

c∈C
ψ

O
c (xc). (7)

If the interaction terms ψC
i , ψC

i j are both zero, then the problems x and y are independent
of one another and the energy would be decomposable into E(z) = EO(x)+ED(y) and
the two sub-problems could each be solved separately. However, in real world data sets like
ours described in §5, this is not the case, and we would like to model the unary and pairwise
interaction terms so that a joint estimation may be performed.

Joint Unary Potentials In order for the unary potentials of both the object class segmen-
tation and dense stereo reconstruction parts of our formulation to interact, we need to define
some function that relates X and Y in a meaningful way. We could use depth and objects
directly, as it may be that certain objects appear more frequently at certain depths in some
scenarios. In road scenes we could build statistics relative to an overhead view where the
positioning of the objects in the xz-coordinate may be informative, since we expect that
buildings will be on both sides, pavement will tend to be between building and road that
would take up the central portion of the image. Building statistics with regard to the real-
world positioning of objects gives a stable and meaningful cue that is invariant to the camera
position. However modelling like this requires a substantial amount of data.

In this paper we need to model these interactions with limited data. We do this by re-
stricting our unary interaction potential to the observed fact that certain objects occupy a
certain range of real world heights. We are able to obtain the height above the ground plane
via the relation: h(yi, i) = hc +(yh− yi) · b/d, where hc is the camera height, yh is the level
of the horizon in the rectified image pair, yi is the height of the ith pixel in the image, b is
the baseline between the stereo pair of cameras and d is the disparity. This relationship is
modelled by estimating the a priori cost of pixel i taking label zi = [xi,yi] by

ψ
C
i ([xi,yi]) =− log(H(h(yi, i)|xi)), (8)

where
H(h|l) = ∑i∈T δ (xi = l)δ (h(yi, i) = h)

∑i∈T δ (xi = l)
(9)

1[Xi,Yi] is the ordered pair of elements Xi and Yi.
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is a histogram based measure of the naive probability that a pixel taking label l has height h
in the training set T . The combined unary potential for the joint CRF is:

ψ
J
i ([xi,yi]) = wu

Oψ
O
i (xi)+wu

Dψ
D
i (yi)+wu

Cψ
C
i (xi,yi), (10)

where ψO
i , and ψD

i ,are the previously discussed costs of pixel i being a member of object
class xi or disparity yi given the image. wu

O, wu
D, and wu

C are weights. Fig. 1 G gives a
graphical representation of this type of interaction shown as a blue line linking the unary
potentials (blue circles) of x and y via a distribution of object heights.

Joint Pairwise Interactions Pairwise potentials enforce the local consistency of object
class and disparity labels between neighbouring pixels. The consistency of object class and
disparity are not fully independent – an object classes boundary is more likely to occur here
if the disparity of two neighbouring pixels significantly differ. To take this information into
account, we chose tractable pairwise potentials of the form:

ψ
J
i j([xi,yi], [x j,y j]) = wp

Oψ
O
i j (xi,x j)+wp

Dψ
D
i j (yi,y j)+wp

Cψ
O
i j (xi,x j)ψ

D
i j (yi,y j), (11)

where wp
O,w

p
D > 0 and wp

C are weights of the pairwise potential. Fig. 1 shows this linkage as
green line between a pairwise potential (green box) of each part.

4 Inference of the Joint CRF
Optimisation of the energy E(z) is challenging. Each random variable takes a label from the
set L ×D consequentially, in the experiments we consider (see § 5) they have 700 possible
states. As each image contains 316× 256 random variables, there are 700316×256 possible
solutions to consider. Rather than attempting to solve this problem exactly, we use graph cut
based move making algorithms to find an approximate solution.

Graph cut based move making algorithms start from an initial solution and proceed by
making a series of moves or changes, each of which leads to a solution of lower energy. The
algorithm is said to converge when no lower energy solution can be found. In the problem of
object class labelling, the move making algorithm α-expansion can be applied to pairwise [3]
and to higher order potentials [10, 11, 16] and often achieves the best results; while in dense
stereo reconstruction, the truncated convex priors(see § 2.2) mean that better solutions are
found using range moves [14, 26] than with α-expansion.

In object class segmentation, α-expansion moves allow any random variable Xi to ei-
ther retain its current label xi or transition to a fixed label α . More formally, given a
current solution x the algorithm α-expansion searches through the space Xα of size 2N ,
where N is the number of random variables, to find the optimal solution. Where Xα ={

x′ ∈L N : x′i = xi or x′i = α
}
.

In dense stereo reconstruction, a range expansion move defined over an ordered space
of labels, allows any random variable Yi to either retain its current label yi or take any label
l ∈ [la, la + r]. That is to say, given a current solution y a range move searches through the
space Yl of size (r+1)N , which we define as: Yl =

{
y′ ∈DN : y′i = yi or y′i ∈ [l, l + r]

}
.

A single iteration of α-expansion, is completed when one expansion move for each l ∈L
has been performed. Similarly, a single iteration of range moves is completed when |D |− r,
moves has been performed.

4.1 Projected Moves
Under the assumption that energy E(z) is a metric (as in object class segmentation see §2.1)
or a semi-metric [3] (as in the costs of §2.2 and §3) over the label space L ×D , either
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α-expansion or αβ swap respectively can be used to minimise the energy. One single iter-
ation of α-expansion would require O(|L ||D |) graph cuts to be computed, while αβ swap
requires O(|L |2|D |2) resulting in slow convergence. In this sub-section we show graph cut
based moves can be applied to a simplified, or projected, form of the problem that requires
only O(|L |+ |D |) graph cuts per iteration, resulting in faster convergence and better solu-
tions. The new moves we propose are based upon a piecewise optimisation that improves by
turn first object class labelling and then depth.

We call a move space projected if one of the components of z, i.e. x or y, remains constant
for all considered moves. Alternating between moves in the projected space of x or of y can
be seen as a form of hill climbing optimisation in which each component is individually
optimised. Consequentially, moves applied in the projected space are guaranteed not to
increase the joint energy after the move and must converge to a local optima.

We will now show that for energy (7), projected α-expansion moves in the object class
label space and range moves in the disparity label space are of the standard form, and can
be optimised by existing graph cut constructs. We note that finding the optimal range move
or α-expansion with graph cuts requires that the pairwise and higher order terms are con-
strained to a particular form. This constraint allows the moves to be represented as a pair-
wise submodular energy that can be efficiently solved using graph cuts [13]; however neither
the choice of unary potentials nor scaling the pairwise or higher order potentials by a non-
negative amount λ ≥ 0 affects if the move is representable as a pairwise sub-modular cost.

Expansion moves in the object class label space For our joint optimisation of disparity
and object classes, we propose a new move in the projected object-class label space. We
allow each pixel taking label zi = [xi,yi] to either keep its current label or take a new label
[α,yi]. Formally, given a current solution z = [x,y] the algorithm searches through the space
Zα of size 2N . We define Zα as:

Zα =
{

z′ ∈ (L ×D)N : z′i = [x′i,yi] and (x′i = xi or x′i = α)
}
. (12)

One iteration of the algorithm involves making moves for all α in L in some order succes-
sively. As discussed earlier, the values of the unary potential do not affect the sub-modularity
of the move. For joint pairwise potentials (11) under the assumption that y is fixed, we have:

ψ
J
i j([xi,yi], [x j,y j]) = (wp

O +wp
Cψ

D
i j (yi,y j))ψ

O
i j (xi,x j)+wp

Dψ
D
i j (yi,y j)

= λi jψ
O
i j (xi,x j)+ ki j. (13)

The constant ki j does not affect the choice of optimal move and can safely be ignored. If
∀yi,y j λi j = wp

O +wp
CψD

i j (yi,y j)≥ 0, the projection of the pairwise potential is a Potts model
and standard α-expansion moves can be applied. For wp

O ≥ 0 this property holds if wp
O +

wp
Ck2 ≥ 0, where k2 is defined as in §2.2. In practice we use a variant of α-expansion suitable

for higher order energies [22].

Range moves in the disparity label space For our joint optimisation of disparity and ob-
ject classes we propose a new move in the project disparity label space. Each pixel taking la-
bel zi = (xi,yi) can either keep its current label or take a new label from the range (xi, [la, lb]).
To formalise this, given a current solution z = [x,y] the algorithm searches through the space
Zl of size (2+ r)N , which we define as:

Zl =
{

z′ ∈ (L ×D)N : z′i = [xi,y′i] and (y′i = yi or y′i ∈ [l, l + r])
}
. (14)
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Figure 2: Quantitative comparison of
performance of disparity CRFs. We can
clearly see that our joint approach §3
(Proposed Method) outperforms the stand
alone approaches with baseline Potts [12]
(Potts Baseline), Linear truncated poten-
tials §2.2 (LT Baseline) and Linear trun-
cated with Gaussian filtered unary poten-
tials (LT Filtered). The correct pixel ra-
tio is the number of pixels which satisfy
|di − dg

i | ≤ δ , where di is the disparity
label of i-th pixel, dg

i is corresponding
ground truth label and δ is the allowed er-
ror. See §6 for discussion.

As with the moves in the object class label space, the values of the unary potential do not
affect the sub-modularity of this move. Under the assumption that x is fixed, we can write
our joint pairwise potentials (11) as:

ψ
J
i j([xi,yi], [x j,y j]) = (wp

D +wp
Cψ

O
i j (xi,x j))ψ

D
i j (yi,y j)+wO

d ψ
O
i j (xi,x j)

= λi jψ
D
i j (yi,y j)+ ki j. (15)

Again, the constant ki j can safely be ignored, and if ∀xi,x j λi j = wp
D +wp

CψO
i j (xi,x j)≥ 0 the

projection of the pairwise potential is linear truncated and standard range expansion moves
can be applied. This property holds if wp

D+wp
C(θp+θv)≥ 0, where θp and θv are the weights

of the Potts pairwise potential (see section §2.1).

5 Data set
We augment a subset of the Leuven stereo data set2 of [18] with object class segmentation
and disparity annotations. The Leuven data set was chosen as it provides image pairs from
two cameras, 150cm apart from each other, mounted on top of a moving vehicle, in a pub-
lic urban setting. In comparison with other data sets, the larger distance between the two
cameras allows better depth resolution, while the real world nature of the data set allows us
to confirm our statistical model’s validity. However, the data set does not contain the object
class or disparity annotations, we require to learn and quantitatively evaluate the effective-
ness of our approach.

To augment the data set all image pairs were rectified, and cropped to 316×256. A subset
of 70 non-consecutive frames was selected for human annotation. The annotation procedure
consisted of two parts. Firstly we manually labelled each pixel in every image with one of
7 object classes: Building, Sky, Car, Road, Person, Bike and Sidewalk. An 8th label, void, is
given to pixels that do not obviously belong to one of these classes. Secondly a dense stereo
reconstruction was generated by manually creating a disparity map i.e. matching by hand
the corresponding pixels between two images. See fig. 3 A, B, and D.

We believe our augmented subset of the Leuven stereo data set to be the first publicly
available data set that contains both object class segmentation and dense stereo reconstruc-
tion ground truth for real world data. This data differs from commonly used stereo match-
ing sets like the Middlebury [23] data set, as it contains challenging large regions which

2http://www.vision.ee.ethz.ch/ bleibe/cvpr07/datasets.html
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are homogeneous in colour and texture, such as sky and building, and suffers from poor
photo-consistency due to lens flares in the cameras, specular reflections from windows and
inconsistent luminance between the left and right camera. It should also be noted that it
differs from the CamVid database [5] in two important ways, CamVid is a monocular se-
quence, and the 3D information comes in the form of an unstable3 set of sparse 3D points.
These differences give rise to a challenging new data set that is suitable for training and eval-
uating models for dense stereo reconstruction, 2D and 3D scene understanding, and joint
approaches such as ours.

6 Results and Conclusion
For training and evaluation of our method we split the data set (§5) into three sequences: Se-
quence 1, frames 0-447; Sequence 2, frames 512-800; Sequence 3, frames 875-1174. Aug-
mented frames from sequence 1 and 3 are selected for training and validation, and sequence
2 for testing. All void pixels are ignored. We quantitatively evaluate the object class seg-
mentation by measuring the percentage of correctly predicted labels over the test sequence.
The dense stereo reconstruction performance is quantified by measuring the number of pix-
els which satisfy |di−dg

i | ≤ δ , where di is the label of i-th pixel, dg
i is corresponding ground

truth label and δ is the allowed error. We increment δ from 0 (exact) to 20 (within 20 dis-
parities) giving a clear picture of the performance. The total number of disparities used for
evaluation is 100.

Figure 3: Qualitative object class and disparity results for Leuven data set.(A) Original Image. (B)
Object class segmentation ground truth. (C) Proposed method Object class segmentation result. (D)
Dense stereo reconstruction ground truth. (E) Stand alone dense stereo reconstruction result (LT
Filtered). (F) Proposed method dense stereo reconstruction result. Best viewed in colour.

Object Class Segmentation The object class segmentation CRF as defined in §2.1 per-
formed extremely well on the data set, better than we had expected, with 95.7% of predicted
pixel labels agreeing with the ground truth. Qualitatively we found that the performance is
stable over the entire test sequence, including those images without ground truth. Most of
the incorrectly predicted labels are due to the high variability of the object class person, and
insufficient training data to learn their appearance.

Dense Stereo Reconstruction The Potts [12] and linear truncated §2.2 (LT) baseline dense
stereo reconstruction CRFs performed relatively well, with large δ , considering the difficulty
of the data, plotted in fig. 2 as ‘Potts baseline’ and ‘LT baseline’. We found that on our data

3The outlier rejection step was not performed on the 3D point cloud in order to exploit large re-projection errors
as cues for moving objects. See [5] for more details.
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set a significant improvement was gained by smoothing the unary potentials with a Gaussian
blur4 as can be seen in fig. 2 ‘LT Filtered’. For qualitative results see fig. 3 E

Joint Approach Our joint approach defined in sections §3 and §4 consistently outper-
formed the best stand-alone dense stereo reconstruction, by a margin of up to 25%,as can
be seen in fig. 2 ‘Proposed Method’. Improvement of the object class segmentation was
incremental, with 95.8% of predicted pixel labels agreeing with the ground truth. The lack
of improvement can be attributed to the two mistakes being the misclassification of person
as building, and the top of a uniformly white building as sky. Of these failure cases, 3D
location is unable to distinguish between person and building, while stereo reconstruction
fails on homogeneous surfaces. We expect to see a more significant improvement on more
challenging data sets, and the creation of an improved data set is part of our future work.
Qualitative results can be seen in fig 3 C and F.

Conclusion In this work, we have presented a novel approach to the problems of object
class recognition and dense stereo reconstruction. To do this, we provided a new formulation
of the problems, a new inference method for solving this formulation and a new data set
for the evaluation of our work. Evaluation of our work shows a dramatic improvement in
stereo reconstruction compared to existing approaches. This work puts us one step closer to
achieving complete scene understanding, and provides strong experimental evidence that the
joint labelling of different problems can bring substantial gains.
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