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Abstract- Information distance is used to measure how behaviour by recognising that a particular previously expe-
similar sensorimotor experience is to past experience rienced episode (for example playing with a familiar toy or
within a certain temporal horizon. Applied to groups interaction partner) is reoccurring, attempting to re-engage
of sensors this gives a mathematical metric on sensori- in that previous dynamic interaction, and exploring new
motor experience over time. We show that for complex possibilities beyond that interaction by some modification
data from a robot, large scale similarity of experience of behaviour. In doing this the agent will reinforce the
can be discovered from the robot perspective, providing memory of the experience while also modifying it with the
a means of building an experiential interaction history. ~ new experience.

1 Introduction and Background This paper presents a methodology for locating senso-
rimotor experience in a metric space and making relative

We view cognitive systems as embodied dynamical systemaemparisons of distance between experiences.

structurally coupled (in the sense of Maturana and Varela

[1]) to their environments. Cognition then is the develop- In the remaining sections we explain our motivation
ment and activity of such a system in response to a histoand describe the formal metrics used (Section 2), describe
of interactions with its environment (including the social enthe robotic platform used and the investigations conducted
vironment). Cognitive structures arise from the recurrerSection 3) followed by a presentation and discussion of the
sensorimotor patterns that enable and scaffold increasinglgsults (Section 4). Finally Section 5 presents our conclu-
complex perceptually guided action. This view follows thesions and summary while Section 6 looks at future direc-
dynamical systems approach of Thelen and Smith [2] th&ibns.

views the dynamic interactions between individuals and en-

vironments, and among cognitive processes as the funda-\/otivation and Metrics

mental units of behaviour.

An autobiographic agenas defined in [3] dynamically While it is true that an engineer will know in exact detail
constructs and reconstructs histories of its experience asw&hat a robot has been instructed to do, because of the dy-
enactive embodied dynamical system. These interactioramical structurally coupled nature of the robot environ-
histories are grounded in the physical world, and modify benent interaction, it is not trivial to know what the robot
haviour of the agent while also being modified themselveis “experiencing” in a particular interaction. We require a
by further experience [4]. method, therefore, that characterisgperiencein terms of

Histories of autobiographic agents that make use of thesensorimotor readings, from the robot perspective.
histories in guiding their actions can be thought of as ex- Additionally, it is useful to have a general, universal
tending thetemporal horizorof an agent beyond that of a method that (1) does not rely on particular sensor and
simple reactive agent, and beyond that of an affective ageattuator configurations or types of robot architecture, and,
driven by emotions, hormones and the like [5]. These agentsoreover, (2) allows for changes over time in the sensors,
becomepost-reactivesystems acting with respect to a broace.g. in terms of layout, size, or resolution. This could be
temporal horizon by making use of temporally extendetlarnessed in ontogenetic development and learning by ex-
episodes in interaction dynamics. perience from past interaction history with the environment,

From the perspective of development during the lifetimevhere the kinds of interaction have changed or some of the
of an individual (ontogeny), a dynamically constructedsensors or motors have passed through various ontological
interaction history can facilitate development at the bordeidevelopmental stages.
of known experience. It is known that this is the case for
human development which is continually scaffolded by The method we present uses a metric measure of the dis-
building new capabilities on top of existing ones, withsimilarity of temporal sequences of sensors building a met-
learning proceeding at the periphery of known experienagc space in which experiences can be placed and thus com-
and already mastered interaction skills (“zone of proximgbared. Previous work has used the information metric to
development”) [6]. find structure in uninterpreted sensor-motor data [7],[8] and

our work uses similar techniques. We extend the concept of

Thus, it is our long term aim that a robotic agent will beaverage information distance sensor-motor phase-ptets
able to use an extended interaction history to modify futuroduced in [8] which quantitatively represents the changing
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internal geometry of “clouds of experience” and how they
change over time, to look instead at the relation in time of ol
where those “clouds of experience” are in the metric space
and how their trajectory varies in time.

Related work includes [9] where sensory-motor coor-
dination is investigated and agent-environment interaction

Entropy

“fingerprints” are derived, as well as [10] where mutual in- - S i |
formation is used to characterise interactions of a simulated I Tl
agent. An important distinction between this and previous T e T e
work is that time-developed interaction histories are played , Eniropy of regions of a sine-curve. Window size 25, Bin size &
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out as dynamical trajectories in a geometric space of sen-
sorimotor experiences, whose points correspond to tuples
of information sources, using complex physically grounded
data from a real robot.
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2.1 Information Distance !\{\Eﬂ """ T
For any pair of information sources for which a joint distri- b T L s
bution can be calculated, it is possible to measureértfoe- o , Timestep

) ) i i py of regions of a sine-curve. Window size 25, Bin size 16
mation distancebetween them. Information distance was o T T T T T e
shown to be a metric by Crutchfield in [11] (in contrast to o 1
related measures such as mutual information) and it is this

property in particular we wish to exploit. The method, as
used in [7] aligns the discretised time-series of two sensors
from a robot to generate their joint distribution by assigning N
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sensor values to bins and counting the frequency of occur-
rence in each bin. . L L e
The information distancemetric is defined for two ) Timestep
. . Entropy of regions of a sine-curve. Window size 25, Bin size 64
information source andY as I . — e

d(X,Y) = H(X|Y) + H(Y|X) )
and is measured ipits, whereconditional entropy (X |Y")
is given by
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and similarly for (Y|.X). In this paperX andY are de- Figure 1: Effect of quantisation on entropy estimatioine curve of

rived from continuous robot sensors and the joint and comeo points (one per timestep) for which the entropy for a moving window

ditional probability distributiong(z, y) andp(z|y) are es- of 25 times?eps is estimated fqr 4 different numbers‘ of _bins: 4, 8 16 and

timated from the time-series of discrete values produced W Increasing the number of bins reduces the quantisation effect.

sampling the continuous values of the sensors for a given

period of time. The time period is a window efevents expected curve, i.e. low entropy over flat regions, entropy

and the normalised sensor values are quantisedgritins  increasing as the slope increades.

of equal size. Simultaneously taken readings are used to The quantisation problem is very marked with such ideal

estimate the joint probabilities. smoothly changing data, however; real data has a great deal
The effect of quantisation on the entropy estimation fronef variation and noise in it and this serves to mitigate this

a series of data can produce false peaks of high entropffect. We demonstrate later that the general shape of en-

at the transitions between bins. This can be illustrated kyopy curves for real data is less sensitive to the number of

computing the entropy of a hypothetical sensor whose timéins.

series values are taken from a sine-curve. Figure 1 shows

a single period of a sine curve constructed from 500 point.2 Temporal Information Distance

(time-steps) for which the entropy has been estimated f%t a particular instance in time a group afsensors will

a moving window of 25 time-steps using 4 different nums . : . .
have a particular value in andimensional space. Further,

bers of bins. The entropy over the time-window is plotteq . ; . ; .

- . . . . or a given time windowr, each sensor will have a time-
on the vertical axis at the point on the horizontal axis “O'Series of recent values (at times determined by the samplin
responding to the end of the time-window. When the num- y ping
bers of bins is small there are artificial peaks in the entropy INote, this is only the case where entropy is estimated by discrete sam-

curve, for a larger number of bins the curve is closer to thging.




rate). Taking all sensors together this can be thought of as
describing thexperience of the agent over the time window
Using the individual time-series of the sensors for the
given window size, the information distance between any
two sensors can be estimated as was detailed in [8]. There,
distances between component random variables in the expe-
rience define a metric space, and morphological measures
can reveal the structure of the collection of experiential ran-
dom variables in that space (e.g. tightness of the collection).

Table 1: AIBO Telemetry Collected

Sensors # | Motors #

IR-Distance Leg Joint Positions 12

1
Accelerometers 3 | Head Joint Positions
Temperature/Battery) 2 | Tail Joint Positions 2
Buttons 8 | Motor Force / Duties| 18

Visual 27

Total Sensors 41 | Total Motors 36

Further, we propose that it is possible to compare any
one sensor with itself at another instance in time. Thus,

two time-series of equivalent window size can be taken fromagr our experiments we use the commercially available
two different regions in the overall time-series of a particSoNy AIBO? robot. Behaviours were written using the
ular sensor and the information distance calculated. Thispen Source software Tekkotsu [14] and executed on the
would indicate by how much the sensor has changed bgigo. Sensor/motor data was transmitted at regular inter-
tween the two time regions examined and defines anothgg|s (on average 10 frames/sec.) to a workstation over wire-
metric space. Temporal comparisons using information difess L AN where the data was processed in real-time. For
tance have also been used by [12] to detect visual or tacti&perimental purposes, data was also reprocessed off-line

Platform and Experiments

flow _ o with different parameter values. Experiments were carried
Thus, for a sensos, thetemporal information distance gyt in a low walled 2nx2m arena.
of the sensor between two time regiofls— 7,¢) and Table 1 summarises the sensors available to the Aibo

(t" — 7,1') where r is the window size, using) bins  from which data was collected. The data was grouped into
is given by the information distancé(s’,s"), where 36 proprioceptive variables representing the agent and 41
s’ is a random variable whose distribution is estimatedensor variables representing the environment as perceived
from the time-series of valuegs'™7,s""7*!,...s'"7),  py the robot. Visual images from the head mounted camera
s’ is the random variable whose distribution is estimategiere converted into 27 individual sensors by taking an aver-
from (s*,s"~1,..,s" 77) andd(X,Y’) is the information age of each of the red, green and blue values in each region
distance between two random variables described above.qf 5 3x 3 grid over the image.
The following preliminary investigations were con-
For a collection ofn sensorsS = (s, s2,..,s,) WO ducted:
further metric measures can be defined; ttital temporal

. . . e Test of metric using a sine curve.
information distance

e Investigation of effect of varying the window size us-
ing real robot data.

e Investigation of effect of varying number of bins
(quantisation effect) using real robot data.
Finally, using data from a robot performing a series of
o 1< . v behaviours, we use the temporal information distance to
D(s",s") = n Z d(sj,s; ) (4)  construct local and global views of the experiential metric
i=1 space and to identify experiences which are close in the met-
Both measures satisfy the mathematical axioms of metic space.
rics (equivalence, similarity and triangle inequality) because
the information distance is a metric [13(s’,s" ) is mea- 4 Results and Discussion
sured inbitsindicating the total information distance for all
sensors between time regions af¢s!, s'' ) is measured in  Test of metric using a sine curve. To test the utility of
bits per sensoindicating on average how much the sensorssing the temporal information distance to be able to place
have changed. experience in a metric space, the method was tested using
Instead of considering all sensors together it is also poa-simple sine-curve with probabilities estimated using 32
sible to consider groups of sensors and look at how theyins. All possible time windows of size 25 were compared
vary with time and also how they vary with respect to eackvith each other and Figure 2 shows a plot of the tempo-
other. As we are interested in agent-environment interacal information distance (on a grey-scale) for every pair of
tions, a useful split of a robot’s sensors would be into readime-regions.
only sensors (roughly corresponding to exterioceptors or The results indicate that the very tops and bottoms of
just the environment) and read-write sensors (roughly coa sine curve appear different to other regions but very
responding to proprioceptors/effectors or internal states sfmilar to themselves with a gradual change in the degree
the agent specifically). With these two groups it is then posf similarity. Also, sloping regions appear similar to each
sible to consider the dynamical variation over time of the
agent-environment interaction. 2AIBO is a registered trademark of SONY Corporation

D(St7 St/) = i d(SE, Sf) 3
=1

and theaverage temporal information distance
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other although not exactly the same. It is also worth noting >

that the information distance metric finds similarity with .1

contrary sloping regions in the same manner as if the slopes

were in the same direction. T

Investigation of effect of varying window size using real

robot data. The AIBO robot executed a short simple be-

haviour (in this case turning in-place) and the sensor data o ‘ ‘ ‘ ‘

was analysed to investigate the effect of the window size on
the method. 2
The behaviour consisted of 113 timesteps (11.3 seconds)
of data for the 77 sensors while the robot turned around ap-
proximately 4.5 times. A time region of a given size near
the middle was chosen, and the temporal information dis-
tance calculated for each sensor from all other possible time
regions of the same size within the 113 timesteps available.
Note that a complete window is heeded to make a compari- ol . .
son. An average for all the sensors was plotted against time. Timestep (1=100ms)
This was repeated for 4 different window sizes and the “F‘igure 3: Effect of window size on temporal information distance for
sults shown in Figure 3. Aibo data. Graphs show temporal information distances from a central

Two effects can be seen. Firstly, increasing window sizéme region (always ending at timestep=80), averaged over all sensors.

; ; ; ; ata is taken from a robot turning on the spot. The horizontal axis marks
increases the overall temporal information distance (average timestep at the end of the time-region being compared. Top to bottom;

ing around 1.3 bits for a window of 10 time-steps to aroungindow sizes 10, 20, 30 and 40.

2.1 bits for a window of 40). This effect is probably due

to the increased number of samples from which to estimate

the probability distributions as the window increases. Thiue even for a time-shift of 1 timestep. Nevertheless, a

in turn leads to more accurate (higher) estimations of info€yclic pattern of increasing and decreasing similarity can

mation distance. Secondly, the overall shape of the curvelp§ seen and this corresponds to the cyclic pattern of leg

qualitatively similar for all the window sizes. This showsmovements and those of the repeating visual sensoric input

that, for this simple behaviour, the window size does ndfom turning on the spot.

have a great qualitative effect on the information distance.

However, for much larger window sizes, there is furthefnvestigation of effect of varying number of bins (quan-

smoothing of the curve. tisation effect) using real robot data. The same data used
The same tests were run for other examples of turnin§t Experiment 1 was processed to get information distances

and also of executing other behaviours, and we conclud@tween a central time region and all other time regions us-

that the qualitative similarity over a range of window sized"d @ range of numbers of bins. Again an average was taken
is typical. for all of the sensors and the results are shown in Figure 6.

compared to itself does the temporal information distanc®f bins does not have a qualitative effect on the informa-
become zero; at all other times it is fairly high. This istion distance for real robot data, except for a difference in

Information Distance (bits/sensor)
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the start-up curve. This is an important result as it meartarn region (timesteps 290-310, Figure 8) this is less clear
that, unlike for smoothly changing artificial data, real datalthough the lowest information distances correspond to
from a robot does not suffer from quantisation effects andther turning phases. Regions that should appear different
so smaller numbers of bins can be used to allow for fastén 290-310, that is all walking regions, appear similar. On
(an potentially on-line) processing. It seems that this is dudoser inspection it can be seen that the similarity grows

to the rapidly changing, noisy nature of the data. toward the end of a walk phase; this maybe because, as the
Again, this is a typical result for different examples ofAIBO approaches a wall, the experience (at least in visual
behaviours. and proximity terms) becomes more like that of a turn,

which, in this behaviour always occurs on approaching a
Constructing local and global views of the experience wall.
metric space. The purpose of this experiment was to de-
termine, for a given experience, whether any similar experi- Both Figure 7 and 8 show the local pictures for the exteri-
ence could be recognised as having occurred in a sequem@eptors (environment) and proprioceptors (agent) on their
of behaviours. The data was taken from a robot moving iawn. From these, it is clear that the high-frequency periodic
a random exploratory manner in the 2m by 2m arena. Theature of the graphs is due to the motors and is likely to be
path traversed by the robot is shown in Figure 4. From due to the periodic nature of walking. The number of sharp
human perspective, two main types of behaviours can halleys give an indication of the repeating periods within a
distinguished, walking forward and turning, although theravalking section and these correspond well with the number
are certainly more subtleties to the distinctions than this. of steps taken (e.g. 18 steps are taken between waypoints
8 and 9 and there are 18 or 19 sharp valleys in the motor
graph for walking (time period 200-220)).

It is also possible to compare all possible time-regions
of a certain size against all others (a global view) and
show the results as a matrix with the information distances
shown as colour or height in a third dimension as in
Figure 5. A feature of the resulting matrix are the “bands”
of dissimilarity (high points, light colour) that indicate that
certain regions are equally dissimilar to all others, that is
they are unique features. Between these are “valleys” of
similarity and we can see that both of our chosen regions
occur in these valleys.

Identifying similar experience in the experiential metric
space

In order to identify which experiences are close to any
particular experience we can look at those experiences
which lie within a certain distance. Thus if we consider (for
Figure 4: Path traversed by AIBOView is overhead of the 2m x 2m a given time window) a sphere of radiuscentred on the

arena. Numbers are waypoints marking changes in behavienud-of- experiencest at timet, then the collection of experiences
turn waypoints are circlecnd-of-wallwaypoints are enclosed in asquare.that lie within that sphere are given b
Note: in moving from 2-4 the robot first turned to position 3, then back P 9 y

toward 2 briefly before turning fully to 4.

B.(s') = {s" : D(s',s") <1} (5)

Local views of the behaviour can be constructed that
show the temporal information distance from a particular We can rank the experiences in terms of their distance
temporal region to all other regions. Two regions of the totfom a given experience. The 10 closest experiences to the
temporal sequence (903 time-steps, 90.3 sec) were taker€4gerience in the temporal region 200-210 (walking) for a
comparison models; a region where the robot was walkingindow size of 20 and 10 bins, are: 220 (walk), 643 (walk),
forward (timesteps 200-220 corresponding to the early pap8l (walk), 240 (walk), 663 (walk), 280 (walk), 366 (walk),
of the path between waypoints 4 and 5 in Figure 4) and orft58 (walk), 828 (turn), 253 (walk). Timestep 828 is 4
where the robot was turning near a wall (timesteps 290-34@nesteps (0.4 seconds) into a turning phase and the error in
corresponding to part of the turn between waypoints 5 arfdassification is either an observation error (in terms of exact
6). These regions were compared to all other regions (for dimestep when turning started), or due to the time-window
Sensors, averaged) using 10 bins and the results are Shdg&rﬁjata still Containing more data from a walk action rather
in Figures 7 and 8 alongside an indication of the transitior§an a turn action. The sphere that contains these closest 10
between observed behaviour. experiences has a radits= 0.797 bits/sensor.

Noting that lower information distance indicates sim- For the temporal region 290-310 (turning), the closest 10
ilarity between regions, the results for the comparisomn
of the walk region (timesteps 220-200 Figure 7) show a 3The time—s_:tep number identifying a temporal region is the last time-
reasonable agreement with the observed behaviour. For P In the region.
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Figure 5:Information distances from all regions of size 20 to all other regiddata from a robot exploring the environment.

experiencesfor window size 20 and 10 bins are: 310 (turn) tively classify them, thus providing a method by which a
389 (turn), 402 (turn), 112 (turn), 105 (turn), 693 (turn), 700obot agent might classify its sensorimotor experience from
(turn), 290 (turn), 363 (walk), 694 (turn). Again, the onlyits own perspective.
experience that is “misclassified” here is 363 which occurs
4 timesteps into a walking phase after a phasz_a of tur_ning Future Directions
The radius of the sphere containing these experieneesis
1.1090 bits/sensor. Our future research will continue working towards an agent-
Many seemingly similar experiences are farther awayonstructed experiential interaction history that can be used
but this might be because they differ in a manner not imto modify, predict and guide future behaviour. An agent
mediately apparent to an external observer. would map out its experience in a metric space and learn
From these results, it appears that the closest experiendesv to move from one experience to another. The metric
in terms of the temporal information distance are of th@ature of the space would allow the agent to know if it was
same type. The results indicate that it might be necessaryrwoving closer to or further away from any particular ex-
compensate for differences in observed behaviour and thsdrience, potentially allowing it to navigate to familiar or
given by the experience metric due to the information disdesired interactions. Further, knowing where in the experi-
tance considering experience over a temporal period. ential space this experience is located and knowing how to
move through that space could allow for the prediction of
5 Conclusion what might happen next. We will also look for dynamical
“attractors” in the space where repeated cycles of behaviour
The measurdemporal information distancés described occur and use these as areas from which to explore new ex-
as an information distance between two equivalently sizgakrience.
temporal periods in the time-series of the sensorimotor vari-
ables considered as random variables a}nd can be usedAt@knowledgements
place experience in a metric space. This can be used for
subsets of sensorimotor variables to describe the sensdrire work described in this paper was conducted within the EU
motor experience and to discover experience near to othetegrated Project RobotCub (“Robotic Open-architecture Tech-
ones in terms of their distance in the space. We also shdWlogy for Cognition, Understanding, and Behaviours”) and was
that experiences that are near in their temporal informatidHnded by the European Commission through the ES Unit (Cogni-
distance are also similar in terms of how we might subjecio™ of FP6-IST under Contract FP6-004370.
We would also like to thank Alexander Klyubin and Lars Ols-
son their input in clarifying the quantisation issues.

4lgnoring start-up time when no behaviour was being executed
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Bin size 10. Average of all sensors. Bin size 10. Average of all sensors.
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Figure 7: Information distances from region 200-220 (walking) to all Figure 8: Information distances from region 290-310 (turning) to all
other temporal regions.Data from a robot exploring the environment. other regionsData from a robot exploring the environment. Time 290-310
Time 200-220 corresponds to an early part of a walk. For comparisogprresponds to a part of a turn. For comparison, the observed behaviour
the observed behaviour is shown on the lower part of the graph with the shown on the lower part of the graph with the vertical lines marking
vertical lines marking changes in behaviour. Top: All sensors, Middlechanges in behaviour. Top: All sensors, Middle: Exterioceptors, Bottom:
Exterioceptors, Bottom: Proprioceptors. Proprioceptors.



