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Abstract- Information distance is used to measure how
similar sensorimotor experience is to past experience
within a certain temporal horizon. Applied to groups
of sensors this gives a mathematical metric on sensori-
motor experience over time. We show that for complex
data from a robot, large scale similarity of experience
can be discovered from the robot perspective, providing
a means of building an experiential interaction history.

1 Introduction and Background

We view cognitive systems as embodied dynamical systems
structurally coupled (in the sense of Maturana and Varela
[1]) to their environments. Cognition then is the develop-
ment and activity of such a system in response to a history
of interactions with its environment (including the social en-
vironment). Cognitive structures arise from the recurrent
sensorimotor patterns that enable and scaffold increasingly
complex perceptually guided action. This view follows the
dynamical systems approach of Thelen and Smith [2] that
views the dynamic interactions between individuals and en-
vironments, and among cognitive processes as the funda-
mental units of behaviour.

An autobiographic agentas defined in [3] dynamically
constructs and reconstructs histories of its experience as an
enactive embodied dynamical system. These interaction
histories are grounded in the physical world, and modify be-
haviour of the agent while also being modified themselves
by further experience [4].

Histories of autobiographic agents that make use of these
histories in guiding their actions can be thought of as ex-
tending thetemporal horizonof an agent beyond that of a
simple reactive agent, and beyond that of an affective agent
driven by emotions, hormones and the like [5]. These agents
becomepost-reactivesystems acting with respect to a broad
temporal horizon by making use of temporally extended
episodes in interaction dynamics.

From the perspective of development during the lifetime
of an individual (ontogeny), a dynamically constructed
interaction history can facilitate development at the borders
of known experience. It is known that this is the case for
human development which is continually scaffolded by
building new capabilities on top of existing ones, with
learning proceeding at the periphery of known experience
and already mastered interaction skills (“zone of proximal
development”) [6].

Thus, it is our long term aim that a robotic agent will be
able to use an extended interaction history to modify future

behaviour by recognising that a particular previously expe-
rienced episode (for example playing with a familiar toy or
interaction partner) is reoccurring, attempting to re-engage
in that previous dynamic interaction, and exploring new
possibilities beyond that interaction by some modification
of behaviour. In doing this the agent will reinforce the
memory of the experience while also modifying it with the
new experience.

This paper presents a methodology for locating senso-
rimotor experience in a metric space and making relative
comparisons of distance between experiences.

In the remaining sections we explain our motivation
and describe the formal metrics used (Section 2), describe
the robotic platform used and the investigations conducted
(Section 3) followed by a presentation and discussion of the
results (Section 4). Finally Section 5 presents our conclu-
sions and summary while Section 6 looks at future direc-
tions.

2 Motivation and Metrics

While it is true that an engineer will know in exact detail
what a robot has been instructed to do, because of the dy-
namical structurally coupled nature of the robot environ-
ment interaction, it is not trivial to know what the robot
is “experiencing” in a particular interaction. We require a
method, therefore, that characterisesexperience, in terms of
sensorimotor readings, from the robot perspective.

Additionally, it is useful to have a general, universal
method that (1) does not rely on particular sensor and
actuator configurations or types of robot architecture, and,
moreover, (2) allows for changes over time in the sensors,
e.g. in terms of layout, size, or resolution. This could be
harnessed in ontogenetic development and learning by ex-
perience from past interaction history with the environment,
where the kinds of interaction have changed or some of the
sensors or motors have passed through various ontological
developmental stages.

The method we present uses a metric measure of the dis-
similarity of temporal sequences of sensors building a met-
ric space in which experiences can be placed and thus com-
pared. Previous work has used the information metric to
find structure in uninterpreted sensor-motor data [7],[8] and
our work uses similar techniques. We extend the concept of
average information distance sensor-motor phase-plotsin-
troduced in [8] which quantitatively represents the changing



internal geometry of “clouds of experience” and how they
change over time, to look instead at the relation in time of
where those “clouds of experience” are in the metric space
and how their trajectory varies in time.

Related work includes [9] where sensory-motor coor-
dination is investigated and agent-environment interaction
“fingerprints” are derived, as well as [10] where mutual in-
formation is used to characterise interactions of a simulated
agent. An important distinction between this and previous
work is that time-developed interaction histories are played
out as dynamical trajectories in a geometric space of sen-
sorimotor experiences, whose points correspond to tuples
of information sources, using complex physically grounded
data from a real robot.

2.1 Information Distance

For any pair of information sources for which a joint distri-
bution can be calculated, it is possible to measure theinfor-
mation distancebetween them. Information distance was
shown to be a metric by Crutchfield in [11] (in contrast to
related measures such as mutual information) and it is this
property in particular we wish to exploit. The method, as
used in [7] aligns the discretised time-series of two sensors
from a robot to generate their joint distribution by assigning
sensor values to bins and counting the frequency of occur-
rence in each bin.

The information distancemetric is defined for two
information sourcesX andY as

d(X,Y ) = H(X|Y ) + H(Y |X) (1)

and is measured inbits, whereconditional entropyH(X|Y )
is given by

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log2 p(x|y) (2)

and similarly forH(Y |X). In this paperX andY are de-
rived from continuous robot sensors and the joint and con-
ditional probability distributionsp(x, y) andp(x|y) are es-
timated from the time-series of discrete values produced by
sampling the continuous values of the sensors for a given
period of time. The time period is a window ofτ events
and the normalised sensor values are quantised intoQ bins
of equal size. Simultaneously taken readings are used to
estimate the joint probabilities.

The effect of quantisation on the entropy estimation from
a series of data can produce false peaks of high entropy
at the transitions between bins. This can be illustrated by
computing the entropy of a hypothetical sensor whose time-
series values are taken from a sine-curve. Figure 1 shows
a single period of a sine curve constructed from 500 points
(time-steps) for which the entropy has been estimated for
a moving window of 25 time-steps using 4 different num-
bers of bins. The entropy over the time-window is plotted
on the vertical axis at the point on the horizontal axis cor-
responding to the end of the time-window. When the num-
bers of bins is small there are artificial peaks in the entropy
curve, for a larger number of bins the curve is closer to the
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Figure 1: Effect of quantisation on entropy estimation.Sine curve of
500 points (one per timestep) for which the entropy for a moving window
of 25 timesteps is estimated for 4 different numbers of bins: 4, 8 16 and
64. Increasing the number of bins reduces the quantisation effect.

expected curve, i.e. low entropy over flat regions, entropy
increasing as the slope increases.1

The quantisation problem is very marked with such ideal
smoothly changing data, however; real data has a great deal
of variation and noise in it and this serves to mitigate this
effect. We demonstrate later that the general shape of en-
tropy curves for real data is less sensitive to the number of
bins.

2.2 Temporal Information Distance

At a particular instance in time a group ofn sensors will
have a particular value in ann dimensional space. Further,
for a given time windowτ , each sensor will have a time-
series of recent values (at times determined by the sampling

1Note, this is only the case where entropy is estimated by discrete sam-
pling.



rate). Taking all sensors together this can be thought of as
describing theexperience of the agent over the time window.

Using the individual time-series of the sensors for the
given window size, the information distance between any
two sensors can be estimated as was detailed in [8]. There,
distances between component random variables in the expe-
rience define a metric space, and morphological measures
can reveal the structure of the collection of experiential ran-
dom variables in that space (e.g. tightness of the collection).

Further, we propose that it is possible to compare any
one sensor with itself at another instance in time. Thus,
two time-series of equivalent window size can be taken from
two different regions in the overall time-series of a partic-
ular sensor and the information distance calculated. This
would indicate by how much the sensor has changed be-
tween the two time regions examined and defines another
metric space. Temporal comparisons using information dis-
tance have also been used by [12] to detect visual or tactile
flow

Thus, for a sensors, the temporal information distance
of the sensor between two time regions(t − τ, t) and
(t′ − τ, t′) where τ is the window size, usingQ bins
is given by the information distanced(st, st′), where
st is a random variable whose distribution is estimated
from the time-series of values(st−τ , st−τ+1, .., st−τ ),
st′ is the random variable whose distribution is estimated
from (st′ , st′−1, .., st′−τ ) and d(X,Y ) is the information
distance between two random variables described above.

For a collection ofn sensorsS = (s1, s2, .., sn) two
further metric measures can be defined; thetotal temporal
information distance

D(st, st′) =
n∑

i=1

d(st
i, s

t′
i ) (3)

and theaverage temporal information distance

D̄(st, st′) =
1
n

n∑

i=1

d(st
i, s

t′
i ) (4)

Both measures satisfy the mathematical axioms of met-
rics (equivalence, similarity and triangle inequality) because
the information distance is a metric [13].D(st, st′) is mea-
sured inbits indicating the total information distance for all
sensors between time regions andD̄(st, st′) is measured in
bits per sensorindicating on average how much the sensors
have changed.

Instead of considering all sensors together it is also pos-
sible to consider groups of sensors and look at how they
vary with time and also how they vary with respect to each
other. As we are interested in agent-environment interac-
tions, a useful split of a robot’s sensors would be into read-
only sensors (roughly corresponding to exterioceptors or
just the environment) and read-write sensors (roughly cor-
responding to proprioceptors/effectors or internal states of
the agent specifically). With these two groups it is then pos-
sible to consider the dynamical variation over time of the
agent-environment interaction.

Table 1: AIBO Telemetry Collected
Sensors # Motors #

IR-Distance 1 Leg Joint Positions 12

Accelerometers 3 Head Joint Positions 4

Temperature/Battery 2 Tail Joint Positions 2

Buttons 8 Motor Force / Duties 18

Visual 27

Total Sensors 41 Total Motors 36

3 Platform and Experiments

For our experiments we use the commercially available
SONY AIBO2 robot. Behaviours were written using the
Open Source software Tekkotsu [14] and executed on the
AIBO. Sensor/motor data was transmitted at regular inter-
vals (on average 10 frames/sec.) to a workstation over wire-
less LAN where the data was processed in real-time. For
experimental purposes, data was also reprocessed off-line
with different parameter values. Experiments were carried
out in a low walled 2m×2m arena.

Table 1 summarises the sensors available to the Aibo
from which data was collected. The data was grouped into
36 proprioceptive variables representing the agent and 41
sensor variables representing the environment as perceived
by the robot. Visual images from the head mounted camera
were converted into 27 individual sensors by taking an aver-
age of each of the red, green and blue values in each region
of a 3×3 grid over the image.

The following preliminary investigations were con-
ducted:

• Test of metric using a sine curve.

• Investigation of effect of varying the window size us-
ing real robot data.

• Investigation of effect of varying number of bins
(quantisation effect) using real robot data.

Finally, using data from a robot performing a series of
behaviours, we use the temporal information distance to
construct local and global views of the experiential metric
space and to identify experiences which are close in the met-
ric space.

4 Results and Discussion

Test of metric using a sine curve. To test the utility of
using the temporal information distance to be able to place
experience in a metric space, the method was tested using
a simple sine-curve with probabilities estimated using 32
bins. All possible time windows of size 25 were compared
with each other and Figure 2 shows a plot of the tempo-
ral information distance (on a grey-scale) for every pair of
time-regions.

The results indicate that the very tops and bottoms of
a sine curve appear different to other regions but very
similar to themselves with a gradual change in the degree
of similarity. Also, sloping regions appear similar to each

2AIBO is a registered trademark of SONY Corporation



Figure 2:Temporal information distances between all temporal regions
of size 25.Data is a sine curve with 1 period covered over 500 timesteps
(see Figure 1). Temporal information distance estimated for 32 bins. Infor-
mation Distance represented on grey-scale. Note that the top and bottom
of the sine curve are distance zero from each other.

other although not exactly the same. It is also worth noting
that the information distance metric finds similarity with
contrary sloping regions in the same manner as if the slopes
were in the same direction.

Investigation of effect of varying window size using real
robot data. The AIBO robot executed a short simple be-
haviour (in this case turning in-place) and the sensor data
was analysed to investigate the effect of the window size on
the method.

The behaviour consisted of 113 timesteps (11.3 seconds)
of data for the 77 sensors while the robot turned around ap-
proximately 4.5 times. A time region of a given size near
the middle was chosen, and the temporal information dis-
tance calculated for each sensor from all other possible time
regions of the same size within the 113 timesteps available.
Note that a complete window is needed to make a compari-
son. An average for all the sensors was plotted against time.
This was repeated for 4 different window sizes and the re-
sults shown in Figure 3.

Two effects can be seen. Firstly, increasing window size
increases the overall temporal information distance (averag-
ing around 1.3 bits for a window of 10 time-steps to around
2.1 bits for a window of 40). This effect is probably due
to the increased number of samples from which to estimate
the probability distributions as the window increases. This
in turn leads to more accurate (higher) estimations of infor-
mation distance. Secondly, the overall shape of the curve is
qualitatively similar for all the window sizes. This shows
that, for this simple behaviour, the window size does not
have a great qualitative effect on the information distance.
However, for much larger window sizes, there is further
smoothing of the curve.

The same tests were run for other examples of turning
and also of executing other behaviours, and we conclude
that the qualitative similarity over a range of window sizes
is typical.

Another point of interest is that only when a region is
compared to itself does the temporal information distance
become zero; at all other times it is fairly high. This is
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Figure 3: Effect of window size on temporal information distance for
Aibo data. Graphs show temporal information distances from a central
time region (always ending at timestep=80), averaged over all sensors.
Data is taken from a robot turning on the spot. The horizontal axis marks
the timestep at the end of the time-region being compared. Top to bottom;
window sizes 10, 20, 30 and 40.

true even for a time-shift of 1 timestep. Nevertheless, a
cyclic pattern of increasing and decreasing similarity can
be seen and this corresponds to the cyclic pattern of leg
movements and those of the repeating visual sensoric input
from turning on the spot.

Investigation of effect of varying number of bins (quan-
tisation effect) using real robot data.The same data used
for Experiment 1 was processed to get information distances
between a central time region and all other time regions us-
ing a range of numbers of bins. Again an average was taken
for all of the sensors and the results are shown in Figure 6.

Here, as for window size, it can be seen that the number
of bins does not have a qualitative effect on the informa-
tion distance for real robot data, except for a difference in



the start-up curve. This is an important result as it means
that, unlike for smoothly changing artificial data, real data
from a robot does not suffer from quantisation effects and
so smaller numbers of bins can be used to allow for faster
(an potentially on-line) processing. It seems that this is due
to the rapidly changing, noisy nature of the data.

Again, this is a typical result for different examples of
behaviours.

Constructing local and global views of the experience
metric space. The purpose of this experiment was to de-
termine, for a given experience, whether any similar experi-
ence could be recognised as having occurred in a sequence
of behaviours. The data was taken from a robot moving in
a random exploratory manner in the 2m by 2m arena. The
path traversed by the robot is shown in Figure 4. From a
human perspective, two main types of behaviours can be
distinguished, walking forward and turning, although there
are certainly more subtleties to the distinctions than this.

Figure 4: Path traversed by AIBO.View is overhead of the 2m x 2m
arena. Numbers are waypoints marking changes in behaviour.end-of-
turn waypoints are circled,end-of-walkwaypoints are enclosed in a square.
Note: in moving from 2→4 the robot first turned to position 3, then back
toward 2 briefly before turning fully to 4.

Local views of the behaviour can be constructed that
show the temporal information distance from a particular
temporal region to all other regions. Two regions of the total
temporal sequence (903 time-steps, 90.3 sec) were taken as
comparison models; a region where the robot was walking
forward (timesteps 200-220 corresponding to the early part
of the path between waypoints 4 and 5 in Figure 4) and one
where the robot was turning near a wall (timesteps 290-310
corresponding to part of the turn between waypoints 5 and
6). These regions were compared to all other regions (for all
sensors, averaged) using 10 bins and the results are shown
in Figures 7 and 8 alongside an indication of the transitions
between observed behaviour.

Noting that lower information distance indicates sim-
ilarity between regions, the results for the comparison
of the walk region (timesteps 220-200 Figure 7) show a
reasonable agreement with the observed behaviour. For the

turn region (timesteps 290-310, Figure 8) this is less clear
although the lowest information distances correspond to
other turning phases. Regions that should appear different
to 290-310, that is all walking regions, appear similar. On
closer inspection it can be seen that the similarity grows
toward the end of a walk phase; this maybe because, as the
AIBO approaches a wall, the experience (at least in visual
and proximity terms) becomes more like that of a turn,
which, in this behaviour always occurs on approaching a
wall.

Both Figure 7 and 8 show the local pictures for the exteri-
oceptors (environment) and proprioceptors (agent) on their
own. From these, it is clear that the high-frequency periodic
nature of the graphs is due to the motors and is likely to be
due to the periodic nature of walking. The number of sharp
valleys give an indication of the repeating periods within a
walking section and these correspond well with the number
of steps taken (e.g. 18 steps are taken between waypoints
8 and 9 and there are 18 or 19 sharp valleys in the motor
graph for walking (time period 200-220)).

It is also possible to compare all possible time-regions
of a certain size against all others (a global view) and
show the results as a matrix with the information distances
shown as colour or height in a third dimension as in
Figure 5. A feature of the resulting matrix are the “bands”
of dissimilarity (high points, light colour) that indicate that
certain regions are equally dissimilar to all others, that is
they are unique features. Between these are “valleys” of
similarity and we can see that both of our chosen regions
occur in these valleys.

Identifying similar experience in the experiential metric
space

In order to identify which experiences are close to any
particular experience we can look at those experiences
which lie within a certain distance. Thus if we consider (for
a given time window) a sphere of radiusr centred on the
experiencest at time t, then the collection of experiences
that lie within that sphere are given by

Br(st) = {st′ : D̄(st, st′) ≤ r} (5)

We can rank the experiences in terms of their distance
from a given experience. The 10 closest experiences to the
experience in the temporal region 200-210 (walking) for a
window size of 20 and 10 bins, are: 220 (walk), 643 (walk),
531 (walk), 240 (walk), 663 (walk), 280 (walk), 366 (walk),
458 (walk), 828 (turn), 253 (walk).3 Timestep 828 is 4
timesteps (0.4 seconds) into a turning phase and the error in
classification is either an observation error (in terms of exact
timestep when turning started), or due to the time-window
of data still containing more data from a walk action rather
than a turn action. The sphere that contains these closest 10
experiences has a radiusr = 0.797 bits/sensor.

For the temporal region 290-310 (turning), the closest 10

3The time-step number identifying a temporal region is the last time-
step in the region.



Figure 5:Information distances from all regions of size 20 to all other regions.Data from a robot exploring the environment.

experiences4 for window size 20 and 10 bins are: 310 (turn),
389 (turn), 402 (turn), 112 (turn), 105 (turn), 693 (turn), 700
(turn), 290 (turn), 363 (walk), 694 (turn). Again, the only
experience that is “misclassified” here is 363 which occurs
4 timesteps into a walking phase after a phase of turning.
The radius of the sphere containing these experiences isr =
1.1090 bits/sensor.

Many seemingly similar experiences are farther away,
but this might be because they differ in a manner not im-
mediately apparent to an external observer.

From these results, it appears that the closest experiences
in terms of the temporal information distance are of the
same type. The results indicate that it might be necessary to
compensate for differences in observed behaviour and that
given by the experience metric due to the information dis-
tance considering experience over a temporal period.

5 Conclusion

The measuretemporal information distanceis described
as an information distance between two equivalently sized
temporal periods in the time-series of the sensorimotor vari-
ables considered as random variables and can be used to
place experience in a metric space. This can be used for
subsets of sensorimotor variables to describe the sensori-
motor experience and to discover experience near to other
ones in terms of their distance in the space. We also show
that experiences that are near in their temporal information
distance are also similar in terms of how we might subjec-

4Ignoring start-up time when no behaviour was being executed

tively classify them, thus providing a method by which a
robot agent might classify its sensorimotor experience from
its own perspective.

6 Future Directions

Our future research will continue working towards an agent-
constructed experiential interaction history that can be used
to modify, predict and guide future behaviour. An agent
would map out its experience in a metric space and learn
how to move from one experience to another. The metric
nature of the space would allow the agent to know if it was
moving closer to or further away from any particular ex-
perience, potentially allowing it to navigate to familiar or
desired interactions. Further, knowing where in the experi-
ential space this experience is located and knowing how to
move through that space could allow for the prediction of
what might happen next. We will also look for dynamical
“attractors” in the space where repeated cycles of behaviour
occur and use these as areas from which to explore new ex-
perience.
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Figure 6:Effect of number of bins on information distance for Aibo data.
Graphs show temporal information distances from a central time region
averaged over all sensors. Data is taken from a robot turning on the spot.
The horizontal axis marks the timestep at the end of the time-region being
compared. Top to bottom; bins 5, 10, 20, 30, 40 and 60.
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Figure 7: Information distances from region 200-220 (walking) to all
other temporal regions.Data from a robot exploring the environment.
Time 200-220 corresponds to an early part of a walk. For comparison,
the observed behaviour is shown on the lower part of the graph with the
vertical lines marking changes in behaviour. Top: All sensors, Middle:
Exterioceptors, Bottom: Proprioceptors.
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Figure 8: Information distances from region 290-310 (turning) to all
other regions.Data from a robot exploring the environment. Time 290-310
corresponds to a part of a turn. For comparison, the observed behaviour
is shown on the lower part of the graph with the vertical lines marking
changes in behaviour. Top: All sensors, Middle: Exterioceptors, Bottom:
Proprioceptors.


