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Abstract

We consider two agents, each equipped with a controller.
When they achieve a joint goal configuration, their coordi-
nation can be measured informationally. We show that the
amount of coordination that two agents need to configure in
a certain way depends on the amount of information they ob-
tain from their environment. Furthermore the environment
imposes a coordination pressure on the agents that depends
on the size of the environment. In a second scenario we in-
troduce a shared centralized controller which leads to a syn-
chronisation of the agents’ actions for suboptimal policies.
However, in the optimal case this intrinsic coordination van-
ishes and the shared centralized controller can be split into
two individual controllers.

Introduction
When one considers biology, many phenomena require that
subentities perform actions in a coordinated way. This phe-
nomenon is so prevalent that it requires pivotal treatment. It
is seen in swarms, morphogenesis as well as in the actions of
different parts of a single organism. We wish to study some
principles behind this central phenomenon in an Artificial
Life setting. In the sense of a ‘life that could have been’
(Langton, 1997) we are interested in what minimal assump-
tions have to be made to investigate coordination and auton-
omy within a collective of two agents. For this purpose we
use the framework of information theory. We do not assume
a particular metabolism and intrinsic dynamics but have the
choice of certain limitations on information processing. This
makes it possible to develop necessary and sufficient condi-
tions for life-like scenarios and to find invariants for Artifi-
cial Life in any type of environment.

Nonetheless a physically consistent model can be plugged
into the framework. Furthermore, studying coordination in
a scenario that approximates nature has many applications:
In ethology the understanding of collective tasks like for-
aging, flocking or group decision-making is active research
(Deneubourg and Goss, 1989; Couzin et al., 2005; Nabet
et al., 2009). Social interactions and coordination in robotics
have been first studied by Walter (1950) and these issues
in natural and artificial agents have received more atten-
tion lately (Dautenhahn, 1995, 1999; Ikegami and Iizuka,

2007; Di Paolo et al., 2008), for a review see (Goldstone
and Janssen, 2005). Furthermore agent based and cellular
models of morphogenesis have been studied with respect to
coordination: Deneubourg et al. (1991) investigated the dy-
namics of ant-like agents that were not able to communi-
cate directly but could pick up and drop objects of different
types, leading to coordinated behaviour, called stigmergy,
among the agents and clustering of objects of the same type.
In an effort to understand morphogenesis of a certain slime
mold, coordination between cells was modelled on a sub-
cellular level, resulting in a simulation of the self-organised
migration of the mold via an emergent level of photo- and
thermotaxis (Marée and Hogeweg, 2001).

Stigmergy and local observation are common ways to
model agent communication to get coordinated behaviour
(Beckers et al., 1994; Castelfranchi, 2006). In both cases
the communication is ‘routed’ through the environment, in
the case of stigmergy in a very explicit way by altering the
environment. In these models communication is spatially
bound and limited by the amount of information that can be
‘stored’ in the environment.

When we talk about information, we specifically mean
Shannon information (Shannon, 1948). The theory that
comes with it allows to compare and quantify relations be-
tween random variables which can be used to model causal
relationships in Bayesian graphs. Information theory gives a
universal language to quantify conditions and invariants for
a large class of models in very general way. Furthermore,
this allows to compare quantities of models that are other-
wise not directly comparable.

To study agent coordination from an information-
theoretic perspective towards a predictive and quantitative
theory of agent interactions we will look at embodied agents
in a grid-world that is underlain by certain ‘physical laws’,
like movement and blocking by other agents. To isolate the
influences that a constraint of the agent’s information pro-
cessing capabilities has on the agents’ coordination, we will
neither impose an environmental constraint on the commu-
nication between them, nor a constraint on their sensors. The
agents will have a shared controller, but we will limit their
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information processing capabilities. Using the information-
theoretic quantification of coordination, we will investigate
how much they need to coordinate to achieve a given goal
in the grid-world and compare this to the coordination in
the case where the agents have independent controllers. Ob-
viously the size of the environment has an impact on the
amount of coordination as in large grid worlds with few
agents there is a smaller chance of collision and less ne-
cessity to deal with this situation in an optimal way. For
a shared controller we will investigate when the actions are
coordinated in a way such that it is not possible to split the
controller into two independent controllers which we inter-
pret as both agents ‘acting as one’.

Information theory has been successfully employed to
models of embodied agents in a growing body of scientific
literature starting from Ashby (1956). The idea that infor-
mation is a main resource for organisms, but at the same
time costly to process, is reflected in the evolution of sen-
sors (Nehaniv et al., 2007) and affects the way information
theoretic models of agents are investigated (Polani et al.,
2007). Lately this idea received increased attention due to
new techniques (Touchette and Lloyd, 2000; Klyubin et al.,
2004a, 2007; Ay et al., 2008) and there are now broad appli-
cations of information theory to Artificial Life related fields
(Linsker, 1988; Shalizi and Crutchfield, 2002). Recent re-
sults showed that information theoretic learning principles
can lead to higher coordination between linked agents (Za-
hedi et al., 2009) though a different notion of coordination
than in this paper is used. In the context of the Information
Bottleneck (Tishby et al., 1999) the concept of relevant in-
formation was introduced by (Polani et al., 2001) and later
extended to the perception-action loop (Polani et al., 2006).
Here it will be set in relation to an information theoretic
quantification of coordination as the mutual information be-
tween actions. Sperati et al. (2008) already used the mutual
information between actions as a measure of coordination to
evolve maximally coordinated agents.

When agents socially interact, or coordinate in an envi-
ronment they sometimes seem to act as a single entity (e.g.
bee hives, ant colonies, multicellular organism), at the same
time they are individuals acting at a ‘lower’ level. In our ex-
periment we will study under which constraints the agents
can still be considered as autonomous with respect to the
other agents and whether acting as a single entity helps to
perform better to achieve a given configuration. Therefore
we will introduce a measure of intrinsic coordination be-
tween two agents which vanishes if both agents have an in-
dependent controller and attains its maximum if the action
of one agent is fully determined by the action of the other.
We will then analyse how much intrinsic coordination is ac-
tually needed when acting optimally under an information
processing constraint.

Information Theory
Information Theory was introduced by Shannon (1948). We
will give a brief introduction: In information theory, entropy
is given by H(X) = −

∑
x p(x) log p(x) where X denotes

a finite-valued random variable with values in X and p(x)
the probability that X takes on the value x ∈ X . Entropy
measures the uncertainty of the outcome of a random vari-
able. Given a second random variable Y the conditional en-
tropy is

H(Y |X) = −
∑
x,y

p(x)p(y|x) log p(y|x)

and measures the uncertainty of Y knowing the outcome
of X . To relate these, mutual information is defined by
I(X;Y ) = H(Y ) − H(Y |X). Hence, mutual information
is a measure of how much the uncertainty of Y is reduced
if we know the value of X . Again, this can be conditioned
on a third random variable Z which gives the conditional
mutual information I(X;Y |Z) = H(Y |Z) − H(Y |X,Z).
For a detailed account on information theory, see Cover and
Thomas (2006).

Coordination
We propose measures of coordination that are independent
of the topology of the environment and only depend on dis-
tributions of states and actions. Let S denote the random
variable of the world states and A the random variable rep-
resenting its actions where the actions only depend on the
current state of the environment.

An important quantity in this context is Relevant Informa-
tion: it is the minimal amount of information an agent needs
to process to perform optimal actions (Polani et al., 2006),
denoted by

I(S;A∗) = min
p(a|s):p(a|s)p(s)>0⇒a optimal fors

I(S;A).

This minimises the mutual information between states and
actions but still requires that in each state with positive
probability the optimal action is taken. Relevant informa-
tion reflects, as mentioned in the introduction, the infor-
mation parsimony principle that processing information has
a metabolic cost (Polani et al., 2007) and complies with
findings that certain neurons work at information limits,
minimising the bandwidth to just maintain their function
(Laughlin, 2001).

In theory the relevant information can be much lower than
the bandwidth of the sensor, that is, different sensory inputs
lead to the same distribution of actions. Moreover, one can
ask the converse question: how well can a policy perform if
I(S;A) is limited? To do this a utility in terms of a reward
structure will be used and the trade-off will be calculated
with an algorithm introduced by (Polani et al., 2006).



Proc. of the Alife XII Conference, Odense, Denmark, 2010 601

a) A
(1)
t b) A

St St+1 St St+1

A
(2)
t

Figure 1: Bayesian network of the perception-action loop for
a) independent actions b) joint actions. Here A(1) and A(2)

denote the random variable of the action of each agent, A
denotes the random variable of the joint action (a(1), a(2))
and t is the time index. In both cases the actions are fully
determined by the current state of the environment.

Suppose now there are two agents; the coordination is
then defined as the mutual information between their ac-
tions I(A(1);A(2)) where A(1) is the random variable rep-
resenting the actions of the first agent and A(2) the ran-
dom variable representing the actions of the second agent.
In the case of independently embodied agents, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s) the coordination is lim-
ited by the relevant information of each agent

I(A(1);A(2)) ≤ min{I(S;A(1)), I(S;A(2))}.

This follows easily from the data processing inequality
(Cover and Thomas, 2006, p. 34). If the agents however
have a joint policy p(a(1), a(2)|s) the coordination is only
limited by the entropy of the actions. See Figure 1 for the
perception-action loop of the whole system in the case of a)
independent controllers and b) one shared controller.

For such an agent pair that has one shared controller it is
interesting to see whether there is any intrinsic coordination
or whether the controller could be split into two independent
controllers. We define intrinsic coordination as the condi-
tional mutual information I(A(1);A(2)|S) which vanishes if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s), that is, the agents come
to independent decisions given the state of the environment.
By definition intrinsic coordination can be higher or lower
than the coordination. In the case that the actions are in-
dependent of the state, that is, H(A(1)|S) = H(A(1)) and
H(A(2)|S) = H(A(2)), coordination equals intrinsic coor-
dination, however, the converse is not always the case.

Experimental Setup
We want to study how much (intrinsic) coordination the
agents have when they follow an optimal policy to achieve
a particular goal configuration (under information process-
ing constraints). Furthermore the amount of coordination
will be compared to the coordination in the case where the
agents have independent controllers.

The setup consists of two agents, determined by a joint
state s = (s(1), s(2)) ∈ S in the state space S =W×W−∆
whereW is a n×m grid-world and ∆ = {(w,w)|w ∈ W}
the diagonal. Hence only one agent is allowed to occupy
a particular grid cell per time step. As before, the random
variable representing the state of the environment is denoted
by S. The goal is given by two particular adjacent cells in
the centre of the grid-world and it is not relevant which agent
occupies which goal cell, hence there are two goal states in
the state space S.

Each agent has five possible actions {N,S,W,E,H}, go
to one of the four neighbouring cells or halt. The actions
are denoted by the random variables A(1), A(2), and their
joint action a = (a(1), a(2)) by the random variable A. The
distribution of the actions only depends on the location of
the two agents. In this scenario the transitions to the next
step are deterministic p(st+1|at, st) ∈ {0, 1} and reflect the
movement of the two agent in the grid-world, blocked by the
walls and blocking each other symmetrically (see Figure 2).
The agents are blocked if they try to move to the same field
or if one agent moves to a field where the other agent stays.

For every step the agents get a reward that is determined
by a reward function r(st+1, at, st) which depends on the
current state, the action taken and the state of the world af-
ter the action was executed. A negative reward is given un-
less both agents occupy a goal cell in which case no reward
or penalty is given. Thus, a policy that maximises the ex-
pected reward over the lifetime of the agent is one that takes
the shortest way to the goal configuration. This defines a
Markov Decision Process (MDP), for which reinforcement
learning can be used to find such a policy. Given the MDP
we can define a state value function V π(s) that gives the ex-
pected future reward at some state s following the policy π
and a utility functionUπ(s, a) that gives the expected reward
incorporating the action chosen at state s and then following

Figure 2: In this 6 × 5 grid-world, the two dark-grey rect-
angles show the goal configuration, the light-grey rectangles
show a configuration where the agents block each other if
they move in the directions of the arrows. This causes that
the agents stay at their current position.
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the policy π:

V π(s) =
∑
a

π(a|s)
∑
s′

p(s′|a, s) (r(s′, a, s) + V π(s′)) ,

Uπ(s, a) =
∑
s′

p(s′|a, s) (r(s′, a, s) + V π(s)) .

The definition of the state value function is recursive and
the correct value function is a fixed point of this equation.
Iterating the recursive definition of the value function con-
verges to the correct value function for a given policy. If
the policy is updated to be greedy with respect to the current
utility in every step, the iteration, called optimistic policy
iteration, results in an optimal policy for the MDP (Sutton
et al., 1999).

If the agents’ actions are independent, that is, if
p(a(1), a(2)|s) = p(a(1)|s)p(a(2)|s), the problem breaks
down to two dependent MDPs that are not deterministic any-
more but whose transition probabilities depend on a predic-
tion of the other agent’s action p̃(a(i)|s). For instance when
agent i expects j to act according to p̃(a(i)|s), then the pre-
dictor for the transition of i is:

p̃(st+1|a(i)t , st) =
∑
a(j)

p̃(a(j)|st)p(st+1|a(i), a(j)t , st),

where i, j ∈ {1, 2} and i 6= j. In this paper we will update
the predictor in every iteration to be the same as the policy
of the other agent: p̃(a(i)|s) = π(a(i)|s). That means the
agents can do the best possible prediction of the action of
the other agent in every step.

Given a scenario where agents do not know anything
about each other, it is possible to set the predictor to a uni-
form distribution. But we want to study how the perfor-
mance of a split controller compares to the shared controller
and will use the policy of the other agent to make the best
prediction about the action of the other agent as possible.

The performance of a policy π is measured by the
expected utility over all state action pairs, denoted
E[Uπ(S,A)]. To compare both cases a different reward is
used in each case: For the shared controller a reward of
−2 is given whenever the agents do not enter a goal state.
For the independent controllers a reward of −1 is given to
each of the agents if it does not enter a goal state, so in each
case the summed reward per step is −2 if the goal is not
reached. Using the current policy as the predictor p̃ gives
another advantage: For the joint policy π(a(1), a(2)|s) =
π(a(1)|s)π(a(2)|s), now the following holds

E[Uπ(S,A)] = E[Uπ
1

(S,A(1))] + E[Uπ
2

(S,A(2))],

where Uπ is the utility consistent with the joint policy
and Uπ

1

, Uπ
2

are the utilities consistent with the policies
π(a(1)|s), π(a(2)|s). Thus we have a common scale for the
expected utilities.

Algorithm
As introduced before, the relevant information is the mutual
information between sensor and actions, minimised over all
optimal policies. Minimising mutual information under the
constraint of a distortion measure can be done using the
Blahut-Arimoto algorithm (Blahut, 1972). To obtain a pol-
icy that is optimal and minimising, Polani et al. (2006) used
a Blahut-Arimoto iteration with the utility Uπ(s, a) as a dis-
tortion measure. The Blahut-Arimoto iteration is given by

πk+1(a|s) =
pk(a)

Zk(s, β)
exp(βUπ(s, a)),

pk+1(a) =
∑
s

pk(s)πk(a|s),

where k denotes the iteration step, Zk(s, β) is a normali-
sation term and β > 0 a trade-of between optimality and
relevant information. Now the iteration is alternated with an
update of the state probabilities and a value iteration to get a
consistent utility Uπk .

The agents act only until they reach the goal configura-
tion, the task is episodic. The probability to be in state s
after t steps is given by

p(s|t) =
1

|S|
∑
s′

P t(s, s′)

where P is the state transition probability matrix and a uni-
form distribution for t = 0 is assumed. Let sg1 , sg2 denote
the two goal states. Now the probability that the agent is in
state s and it has not reached the goal, denoted as living, is

p(s|living) = lim
T→∞

∑T
t=0 δ(s)p(s|t)∑T

t=0 1− p(sg1 |t)− p(sg2 |t)
,

where δ is zero if s is a goal state and one otherwise. Now
we set p(s) = p(s|living). Updating the state probabilities is
important as a correct state distribution is essential for good
convergence of the algorithm.

For the whole iteration the iterations steps are then done
in the following order

πk → pk(s)→ V πk → Uπk → πk+1.

The algorithm then minimises the functional

L[p(a|s)] = I(S;A)− β E[Uπ(S,A)].

As an optimal policy maximises the expected utility, the La-
grange multiplier β determines a trade-of between an opti-
mal policy and limited relevant information. Iterating the
algorithm for small β results in optimal policies given a lim-
itation on the relevant information, which is of particular
interest as many real world agents especially in collectives
have very limited information processing capabilities. For
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β →∞ the resulting policy is optimal and at the same time
minimises the mutual information I(S;A).

Recent work shows that extending relevant information to
multiple steps, results in a similar algorithm that unifies the
value iteration and the Blahut-Arimoto iteration and gives
a new framework for minimising information quantities in
Bayesian graphs under optimality constraints (Tishby and
Polani, 2010). A proof of convergence for these algorithms
is work in progress.

Having two agents with independent actions will change
the algorithm. The iteration is now alternated between the
two agents. For each agent a value iteration and a Blahut-
Arimoto iteration is done using the current policy of the
other agent as a predictor in the utility update. This gives
the following scheme of iterations:

π1
k, π

2
k → pk(s) → V π

1
k → Uπ

1
k → π1

k+1 → ...

... → V π
2
k → Uπ

2
k → π2

k+1.

First, we have the two policies for each agent from which
the common environmental state distribution is calculated.
This is followed by a value iteration step for the first policy
and a Blahut-Arimoto update that gives the new policy for
the first agent. Using this policy as a predictor the value iter-
ation step for agent two is done, again followed by a Blahut-
Arimoto step.

For most samples the algorithm converged very fast, but
for certain values of β this is not the case, however, these
values can be detected by taking a fine distribution of sam-
ples for β.

Results
Iterations were performed with different environment sizes
(6 × 7,6 × 5,4 × 5, 4 × 3, 4 × 2 and n × 1 with n =
5, 6, 7, 8). Samples were taken for different values of β
ranging from 0.05 to 10.0 with steps ranging from 0.005
to 0.1, greater worlds required a larger step size due to
computational limitations. Each value β leads to a policy
and a state distribution, the performance of the policy can
be plotted against the mutual information between actions
and states (see Figure 3). At the upper limit of β = 10.0
the trade-of was already completely in favour of an opti-
mal policy. For each sample the iteration was stopped when∑
s |V πk+1(s)− V πk (s)| < 10−6. In all runs the setup with a

shared controller/policy outperforms the case where the ac-
tions are independent (see Figure 3). However the optimal
(β → ∞) shared controller shows almost no intrinsic coor-
dination, that is I(A(1);A(2)|S) vanishes. Here the agents
perform equally well with a shared controller as with inde-
pendent controllers (see Figure 3 and 4). This suggests that
in the optimal limit intrinsic coordination does not help to
perform better. Similarly Zahedi et al. (2009) showed that

for linked robots, those performed better that had split con-
trollers for their motors, although this was in the context of
maximising predictive information.

In the suboptimal region, especially small values of β, the
shared controller performs better with the same amount of
relevant information. In this region the coordination behaves
differently depending on the kind of controller. With inde-
pendent controllers the coordination tends to zero, as less
relevant information is processed (see Figure 5). While this
was expected due to coordination limited by relevant infor-
mation, the coordination is not even close to the possible
limit. The shared controller shows the opposite behaviour:
the coordination increases as less relevant information is
processed. This is also valid for the intrinsic coordination,
which vanishes in the optimal limit (see Figure 4).

The maximum of coordination of the shared controller de-
pends closely on the size and geometry of the world (see
Figure 6). The spikes in the graph are due to convergence
problems for certain values of β. For larger worlds the co-
ordination still increases for β → 0, but by a significantly
smaller amount: In a 6 × 7 grid world the difference be-
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Figure 3: Performance of agents, dotted line – shared con-
troller, solid line – individual controllers with summed ex-
pectation of utility per agent and relevant information for the
joint distribution of (a(1), a(2)). Both graphs show the same
features but the scales differ.
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Figure 4: Coordination of agents with shared controller on a
6 × 1 field, dotted line – intrinsic coordination, solid line –
coordination.

tween the coordination for small and large values of β is
only ≈ 0.05 bit whereas in a 4 × 5 world the difference
is ≈ 1.54 bit. For very narrow worlds (size n × 1) the
coordination even reached its maximum maxH(A(1)) =
maxH(A(2)) = 1 bit. It may seem unintuitive that this can
happen while the relevant information is positive, as it means
that one action fully determines the other and each of the
two possible actions is chosen with probability 1

2 . However
the coordination takes the expectation over all states: the ac-
tions can be totally synchronised, that is, H(A1|A2) = 0
while H(A1|S) is not maximal. Thus the distribution of the
possible two synchronous actions is not uniform, but this ef-
fect can vanish when the expectation over all states is taken,
which can also be seen by that fact that the intrinsic coor-
dination does not equal the coordination and therefore the
actions cannot be independent of the states.

The distribution of the states is not uniform and S has
rather low entropy as the cells that are closer to the goal are
visited more often by the agents. To ensure that the observed
behaviour of coordination is prevalent over the whole state
space and not just appearing close to the goal the resulting
policies were also analysed assuming a uniform distribution
of S, which resulted in insignificant differences.

Discussion
We introduced intrinsic coordination as a measure how
much different agents’ actions are correlated given the state
of the environment. The setting we investigated is a grid
world with two agents and a goal to configure in a certain
way. As both agents have the same possible two goal states,
they have to cooperate to reach the goal in an optimal way.
The actions only depend on the current location of the agent
(the agents are memoryless) thus the joint intent to move to
the goal states is explicitly encoded in the controllers. Us-
ing an alternated fixed point iteration method we computed
optimal policies for the agents under information processing

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

I
(A

(1
)
;A

(2
)
)

I(A;S)

Figure 5: Solid line – coordination of agents with individual
controllers on an 6×1 field, dotted line – limit given by each
controllers relevant information.

constraints.
The results show that agents use intrinsic coordination to

overcome limitations of their environment. This coordina-
tion is not needed in the optimal case where every agent can
get all the relevant information from the environment that it
needs to choose an optimal action. Though plausible, this
is not entirely obvious a priori. One could think of various
scenarios where the controllers are stochastic and the precise
knowledge of the others agent action would lead to a better
performance.

Now, large agent collectives will usually perform subopti-
mal policies as each agents’ abilities will be limited: In real
environments, the size of the agent and its supply of energy
are just some limiting factors to information processing ca-
pabilities. Furthermore having many agents acting in the en-
vironment leads to spatial limitations that were here matched
by the situation of narrow grid-worlds. In these cases in-
trinsic coordination performs better than just prediction of
the other agents’ behaviour: The shared controller cannot be
split into two independent controllers, this is what we under-
stand as ‘acting as one’. The intrinsic coordination gives a
measure of how strong this behaviour is. In the case of the
6×1 world and a small β the actions of the agents are always
in the opposite direction, but with a small bias whether the
agents move towards each other or away from each other.
Despite being a feature of the controller the synchronisa-
tion does not depend on the state and there is no information
needed to decide whether to act synchronised or not. The
agents perform even better with this strategy. This could be
interpreted as a kind of morphological computation (Pfeifer
and Bongard, 2006) where the synchronisation is a feature
of the embodiment of the agents used to perform better in
reaching the goal configuration. Due to the symmetry of the
present environment and the embodiment of the agents there
is also a symmetry in the shared controller. However, intrin-
sic coordination does not specifically depend on symmetries



Proc. of the Alife XII Conference, Odense, Denmark, 2010 605

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

B
its

I(A;S)

Figure 6: Coordination of agents with shared controllers on
a,medium thick line – 6 × 7, thin dotted line – 6 × 5, thick
dots 4× 5, thick line 4× 3, thin line – 4× 2 field.

and can occur in any scenario within this formalism.
In the setup the intrinsic communication is not limited:

the two agents share a common ‘brain’. But often coor-
dination is only ‘routed’ through the environment: In the
case of stigmergy the environment takes the role of the com-
munication channel (Klyubin et al., 2004b). Other ways
of communication that have low interference with the en-
vironment like sound, dissolving molecules or radio signals
qualify more to be modelled as intrinsic coordination, al-
though their limited channel capacities must be considered.
In our experiment intrinsic coordination was not modelled
using directed communication and the agents came to a in-
stantaneous joint decision. What we have not done here, but
to what the formalism could be changed, is a dependence
of A(2) on A(1), which would model connected controllers
where the first agent can express an intent to which the sec-
ond can react. This would be a more restrictive model than
the shared controller. Moreover this framework can be fur-
ther elaborated to take issues of time shifts and turn taking
during the decision process into account. Examples where
collectives of cells use molecular signalling, with almost no
interference, to activate a certain behaviour in the whole col-
lective (Marée and Hogeweg, 2001) could then be modelled
as intrinsic coordination. One can argue that the molecular
signalling should be modelled with each cell having an in-
dependent controller and a sensor for these molecules, but
a model allowing intrinsic communication could lead to a
simpler description and therefore be more preferable.

Furthermore it is not necessarily obvious whether a par-
ticular collective of agents is just a collection of individuals
or acts as one individual. If there is a simpler model al-
lowing intrinsic coordination does that automatically mean
that it acts as a single entity? Ant colonies are sometimes
called super-organisms (Theraulaz and Bonabeau, 1999) and
were recently found to fulfil certain laws that apply for an-
imals (Hou et al., 2010), melting the boundary between the

individual and the collective. If two agents have the possi-
bility of maximal intrinsic coordination they can hardly be
viewed as individual agents as their actions are completely
synchronised. Thus having non-maximal intrinsic coordina-
tion gives each agent a certain degree of freedom to decide
for an action solely on its own perception of the environ-
ment. This means that a collective with a shared centralized
controller still can undertake actions that conflict each other,
especially in the suboptimal case, but intrinsic coordination
can be used to avoid this to a certain degree. In the spirit of
defining autonomy for a system in an information theoretic
way (Bertschinger et al., 2008), intrinsic coordination could
function as another measure of individuality or autonomy
with respect to other agents.
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