Intelligent Editor for Writing
Worst-Case-Execution-Time-Oriented
Programs *

Janosch Fauster, Raimund Kirner, and Peter Puschner

Institut fiir Technische Informatik,
Technische Universitat Wien,
Treitlstrafie 3/182/1,
A-1040 Wien, Austria

Abstract. To guarantee timeliness in hard real-time systems the knowl-
edge of the worst-case execution time (WCET) for its time-critical tasks
is mandatory. Accurate and correct WCET analysis for modern proces-
sors is a quite complex problem. Path analysis is required to identify
a minimal set of possible execution paths. Further, the modeling of a
processor’s internal states for features like caches or pipelines requires to
consider possible interferences of these features.

This paper presents a new software engineering paradigm tailored to
the development of real-time software. This paradigm results into more
predictable programs and is therefore well-suited for the development
of real-time systems. New software development tools are necessary to
support developers in writing efficient code for this new paradigm. In this
paper an editor is described that highlights all code that is not conform
with this programming paradigm.

1 Introduction

The knowledge of the worst-case execution time (WCET) of tasks is crucial for
the design of real-time systems. Only if safe upper bounds for the WCET of all
time-critical tasks have been established, it becomes possible to verify the timeli-
ness of the whole real-time system. Over the last one-and-a-half decades research
in WCET analysis and real-time computing has solved many sub-problems of
WCET analysis. Despite this progress in WCET analysis, there still exist three
fundamental problems in the current state of the art in WCET analysis [8]:
First, WCET analysis needs exact knowledge about the possible execution
paths through the analyzed code. Deriving this information automatically is,
however, not possible in the general case. This is due to the fact that the con-
trol flow of a program typically depends on the input data of the program and
a WCET bound thus cannot be predicted purely from code analysis. Further,

* This work has been supported by the IST research project “High-Confidence Ar-
chitecture for Distributed Control Applications (NEXT TTA)” under contract IST-
2001-32111.



the fully automatic program analysis to derive descriptions about possible con-
trol flows automatically is in conflict to the halting problem. Therefore, current
WCET analysis tools rely on the provision of the lacking path information [2,
3.

The second major problem is obtaining correct and accurate models about
the timing behavior of modern processors. These processors typically use features
like caches or pipelines to improve their peak-performance. The effects of these
hardware features interfere with each other and are therefore hard to predict.
Even worse, the behavior of a processor generally is scarely documented [1].
These facts taken together make it difficult if not impossible, to build for WCET
analysis tools a correct and accurate hardware model of the target processor.

The third major problem is the complexity of the WCET analysis. Beside
the problems in identifying the possible execution paths and obtaining detailed
hardware-timing data, the complexity of WCET analysis itself is a problem. The
number of paths that have to be analyzed to calculate a precise WCET bound is
growing exponentially with the number of consecutive branches. Full path enu-
meration therefore becomes infeasible, except for programs having a very simple
control flow [4]. To overcome this problems, approximating analysis techniques
are used. These approximations causes overestimation and consequently lead to
a system design with decreased utilization of hardware resources.

A possible solution to the above problems is the use of new software engi-
neering paradigms tailored to the development of real-time software. A recently
developed paradigm for this new area of software engineering is WCET-oriented
programming [8,7]. It represents an unconventional way on how to write pro-
grams. The fundamental motivation of WCET-oriented programming is to re-
duce the number of program statements with input-data dependent control flow.
New software development tools are necessary to support software developers in
writing efficient programs for this new software engineering paradigm.

In this paper we describe an editor that is able to highlight code that is not
conform with this programming paradigm. The described analysis method to
highlight the code is integrated as plug-in into a popular editor.

This article is structured as follows: Section 2 discusses WCET-oriented pro-
gramming and introduces the single-path approach to increase predictability in
real-time programs. Section 3 describes an analysis method to detect program
statements causing an input-data dependent control flow. The integration of this
analysis into an editor is explained in section 4. Examples are shown in section 5
to demonstrate the features of this program analysis methods. Section 6 gives a
conclusion to the article.

2 Writing WCET-Oriented Programs

WCET-oriented programming is a software engineering paradigm especially tai-
lored to the development of real-time software. This section discusses its novel
aspects compared to traditional performance-oriented programming. Further,



the single path approach — a paradigm to increase predictability of real-time
software — is described.

2.1 Traditional Performance-Oriented Coding

Non real-time programmers typically aim at a good average performance to allow
for a high throughput. Therefore, the primary performance goal of non real-time
programmers is the speed optimization for the most probable (i.e., frequent)
scenarios. In order to be able to favor the frequent cases the code tests the
properties of input-data sets and chooses the actions to be performed during an
execution based on input data. Using input-data dependent control decisions is
an effective way to achieve short execution times for the favored input-data sets.
This approach is therefore suitable for optimizing the average execution time.
In contrast to this, a programming style that is based on input-data dependent
control decisions adversely affects the quality of the achievable WCET. This is
due to the following reasons:

— Tests to identify the current input data: Even if an input-data set is not
among the "favored” inputs it has to be tested at the points where the
control flow between favored and non favored inputs splits. While the fast
code makes up for the cost of the control decisions in the case of favored
inputs, the execution time of the input-data tests add up to the execution
time without compensation for all other data.

— Branching costs: Similarly to the previous argument, not just the costs for
testing the properties of input data but also the costs for branching to the
respective code sections increase the total execution time of non-favored
cases.

— Information-theoretical imbalance: Every functionality on a defined input-
data space and available data memory has a specific complexity. The overall
problem complexity determines the number and types of operations needed
to solve the problem for the given input-data space. Performance oriented,
non real-time programming spreads this overall complexity unevenly over the
input-data scenarios: to facilitate a high throughput, the frequent input-data
scenarios are treated at computational cost that are below the complexity
that would result if the total complexity would be evenly distributed to
all scenarios. As the complexity inherent to a problem is constant, a cost
reduction for some part of the input-data space necessarily causes higher
costs for the rest of the inputs. Again, this impairs the achievable WCET
(example: average versus worst-case transmission time of a string coded in
Huffman code respectively a constant-length code).

Data-dependent control decisions are the results of traditional performance-
optimization patterns. In the following we show that we have to apply a com-
pletely different and not so common optimization strategy, if we aim at optimiz-
ing the worst-case completion time.



2.2 Programming for the Worst-Case

As shown in the previous section, traditional (non real-time) programming tends
to produce code that has a high WCET. We observe that it is the different
treatment of scenarios, i.e., favoring certain input-data sets over others, that
causes an increased WCET. The reasons for this were detailed above. In order
to write code that has a good WCET the shortcomings of the traditional pro-
gramming style have to be avoided. A novel programming strategy is needed.
WCET-oriented programming (i.e., programming that aims at generating code
with a good WCET) tries to produce code that is free from input-data depen-
dent control-flow decisions or, if this cannot be completely achieved, restricts
operations that are only executed for a subset of the input-data space to a
minimum. Note that in some applications it is impossible to treat all inputs
identically. This can be due to the inherent semantics of the given problem or
the limitations of the programming language used. WCET-oriented program-
ming needs a way of thinking that is quite different from the solution strategies
we normally use. As a consequence, it produces unconventional algorithms that
may not look straightforward at the first sight. The resulting pieces of code,
however, are characterized by competitive WCETs due to the small number
of tests (and branches) on input data and the minimal information-theoretical
imbalance. A small number of input-data dependent alternatives does not only
keep the WCET down. It also keeps the total number of different execution
paths through a piece of code low. Identifying and characterizing a smaller num-
ber of paths for WCET analysis is easier and therefore much less error-prone
than dealing with a huge number of alternatives. In this way, WCET-oriented
programming does not only produce code with better WCET performance but
also yields more dependable WCET-analysis results and thus more dependable
real-time code than traditional programming.

2.3 The Single-Path Approach for Predictable Code

As mentioned before, the problem of WCET analysis is in general a complex
task because programs behave differently for different input data, i.e., different
input data cause the code to execute on different execution paths with differ-
ing execution times. In the following we propose an approach that avoids this
complexity by ensuring that the code to be WCET-analyzed has only a single
execution path. This approach uses code transformations to transform input-
data dependent branches and their alternatives into sequential code (input-data
independent branches are not transformed). To be precise, the code resulting
from the transformation avoids data dependencies in execution times by keeping
input-data dependent branching local to single operations with data-independent
execution times.

Constant-Time Conditional Expression The key feature of our predictable-
programming approach is the so-called constant-time conditional expression op-
eration (CTCE). A CTCE consists of a boolean expression and two expressions.



It evaluates the two expressions and returns one out of the two results. Which of
the two results is actually selected depends on the truth value of the condition.
Throughout this paper we use the following notation for CTCEs:

cond # expry : expry

cond represents the condition of the constant-time conditional, expr; and
exprs stand for the two expressions that are evaluated. If cond yields true then
the value of the CTCE is the result of expri. If cond evaluates to false the
CTCE returns the value of expry. What has been described above may remind
the reader of the conditional assignment operator ”7:” of the C programming
language. Indeed, as we assume that expr; and exprs do not have any side
effects, the final result of both types of statements is the same. That is also why
the syntax of the CTCE has been chosen similar to that of the C conditional
expression (?7:). Note, however, that there are significant differences in the control
flow of the two constructs. The C conditional expression works like an if-then-
else construct. It first evaluates the condition and then executes one of the two
branches. In contrast to the conditional expression in C, the CTCE evaluates
both expressions. Having computed the expressions it evaluates the condition
and returns one of the two expression results as the value of the whole constant-
time conditional expression. In [8] the different semantics of the two conditional
operators are described in more detail.

Obviously, evaluating a conditional expression with the new operator takes
longer than using an operator with the semantics of the C construct (the old
operator evaluates only one expression while the new one has to evaluate both).
The big advantage of the CTCE shows, however, when it comes to execution
time prediction. In the C conditional the two alternatives of the branch perform
different operations, and this usually implies that the alternatives have different
execution times. In the general case it is therefore impossible to predict the
exact execution time of the conditional. The constant-time implementation has
a single, constant execution time. Its execution time is therefore predictable. This
is achieved as follows: First, both alternative expressions execute in sequence.
Executing both expressions unconditionally avoids the problem of finding out
how the conditional behaves in a worst-case execution. Second, the result of the
overall conditional is selected and returned in a simple operation with constant
execution time.

The CTCE can be realized with a conditional move instruction, which is
implemented on a number of modern processors [8].

2.4 Converting WCET-Analyzable Code into Single-Path Code

The CTCE is a construct to make the single-path approach explicit. In the fol-
lowing we illustrate how every well structured and WCET-analyzable piece of
program code can be translated into code with a single execution path. By the
term WCET-analyzable code we understand code for which the maximum num-
ber of iterations of every loop is known; a WCET bound is thus computable.



The translation replaces all input-data dependent branches by sequential code
that uses CTCEs [6].

We only consider structured data dependent branchings of high-level lan-
guages like conditional statements (e.g., if statement) and loops; gotos or exit
statements are leaved out. In order to translate a piece of code into temporally
predictable code we transform these two statement types into non-branching
code.

— Conditional branching statements conditionally change the values of a num-
ber of variables. The transformation of such conditional branches is straight-
forward. The translation process generates sequential code with constant-
time conditional assignments for each of the conditionally changed variables.
When translating assignments in nested conditional branches, the conditions
of all nested branches have to combined in the conditions of the generated
conditional assignments.

— Loops with input-data dependent termination conditions are translated in
two steps. First, the loop is changed into a simple counting loop with a
constant iteration count. The iteration count of the new loop is set to the
maximum iteration count of the original loop. The old termination condition
is used to build a new branching statement inside the new loop. This new
conditional statement is placed around the body of the original loop and
simulates the data dependent termination of the original loop in the newly
generated counting loop. The second step of the loop translation transforms
the new conditional statement, that has been generated from the old loop
condition, into a constant-time conditional assignment. This way the entire
loop executes in constant time.

Note that applying the described transformation to existing real-time code
may yield temporal predictability at a very high cost in terms of execution time.
Thus, we consider the illustration of the transformation as a demonstration
of the general applicability of our approach, rather than proposing to use the
transformation for generating temporally predictable code from arbitrary real-
time programs.

In order to come up with code that is both temporally predictable and well
performing the programmer needs to use adequate algorithms, i.e., algorithms
with no or minimal input-data dependent branching. This new paradigm tailored
to the development of real-time software is called WCET-oriented programming.
Special software engineering tools can help the software developer in writing
WCET-oriented software. In the following sections a special feature for an editor
is described that provides the developer with additional information about the
predictability of the code. Statements that cause an input-data dependent change
of the control flow (i.e., statements that violates the single-path approach) are
highlighted. This information allows the developer to check the predictability of
the current code. Based on this information, a refinement of the code may be
possible to avoid any performance decrease caused by the automatic translation
of the program into single-path code.



3 Control Flow Analysis

We developed a plug-in for an editor to support the development of WCET-
oriented code. This plug-in can analyze the source code and mark every control-
flow that violates the single-path paradigm.

In order to analyze the source code, our first task is to detect all basic blocks
in the code and to construct a control flow graph representing all control flows
between the basic blocks. The second step is to extract data information from
input code and to analyze the data flow in the function. For that reason we need
a data structure that supports a correct and efficient analysis of the code. The
data flow information we need, can be represented as a semi-lattice, where the
elements of the lattice constitute abstract properties of the program. In our case
each variable is mapped to a lattice shown in figure 1 containing the following
three elements:

— the bottom element (L) that marks an “unreachable value”

— maybe input dependent (MBID) that marks a variable as “possibly input
dependent” and finally

— not input dependent (NID) that marks an element as surely “independent
from the input”

MBID

NID

L

Fig. 1. Hasse Diagram of Lattice

This semi-lattice induces a partial order on its elements. The diagram repre-
sents the information content of the values, i.e. upper values have a less precise
information content than lower values.

The initial state of the semi-lattice is NID for all elements in all basic blocks.
But there is an exception. The start node contains all the informations that we
have at the beginning of the algorithm and so it gets initialized as follows:

— all global variables are marked as “maybe input dependent”, because we
consider only intra-procedural control flows and so we don’t know what
happens outside a function.

— all parameters of the function are considered as input dependent too. This
is evident, because these parameters are the input for the function.

— all locally defined variables are initialized as “not input dependent”.



After this initialization we have a complete control flow graph and we can
solve the problem with a modified fixpoint iteration scheme. For that purpose
we have developed an analysis algorithm which is subdivided into three levels:

1. basic block level analysis
2. statement level analysis
3. expression level analysis

Each of this steps will now be covered in detail.

3.1 Basic Block Analysis

First of all we take an arbitrary basic block out of the control flow graph. Each
basic block has an input vector and an output vector, in which the state (MBID,
NID or L) at the entry point and at the exit point of the basic block for all
variables is saved. Then we have to compute the current input vector. If a basic
block can be reached by only one other basic block, we simply set the input
vector to the output vector of that basic block. Otherwise, if the basic block can
be reached by more than one control path, we have to apply a union operation
on all output vectors of the preceding basic blocks in order to get the input
vector of the current node. This union operation is defined in the following way:

L ifvje{l...n}:p; =1L
U, (b1 -pa) = { MBIDif 3j € {1...n} : p; = MBID 1)
NID otherwise

which means that if the state of a variable is NID in all vectors, it remains
NID in the input vector, but if the state in only one of the considered output
vectors is MBID, the new value is MBID.

After we have computed the input vector, all statements and all expressions
in these statements are analyzed. Details regarding those analyses are given in
the next sections. The whole procedure for calculating the output vectors of all
basic blocks in the control flow graph is repeated until the output values are
stable for all nodes. It can be shown that this algorithm always terminates.

3.2 Statement Analysis

As mentioned before, each statement in a basic block must be analyzed sepa-
rately. It is important to notice, that a vector is associated to each statement,
in which the state of all variables in that particular code location is stored. So
the first task is to update the current vector. If the statement to be analyzed
is the first in the basic block it takes over the input vector of the basic block,
otherwise it uses the vector of the statement preceding it.

The statement analysis module mainly extracts all expressions from the state-
ment and passes them to a dedicated expression analyzer. This is true for sim-
ple arithmetic expressions, but also for the conditional expressions in while-,



main ()

{
int b;
if (a)
b=2;
if (b)
doSomething;
}

Fig. 2. Code Example for Indirect Flow Dependency

do/while-, for-, if /else- and switch/case-statements. The second job for this mod-
ule is to detect indirect control flow dependencies.

The example in figure 2 shows such an indirect dependency. The first if-
statement in the illustration depends on a global value. That means, that the
assignment-expression b=2 is also input dependent, although b is assigned only
a constant. That means furthermore that also the second if-statement depends
on global input data and should be marked accordingly.

3.3 Expression Analysis

This is the central part of the analysis, because here we actually set the state of
the variables. Each expression has a set of input parameters in = {in; ...in,}
and a set of output parameters out = {outy ...out,}, where it is possible to
deduce the state of all output parameters from the state of the input parameters
using following function:

Yout; € out :

1 ifVje{l...n}:in; =1L @)
out; = er{ml ...in,} = ¢ MBIDif 35 € {1...n} :in; = MBID

NID otherwise

We distinguish the following cases:

— assignments, like a=b+c, (in = {b, ¢}, out = {a}).
All elements at the right side of the assignment are input elements, the
variable at the left side is the output element. This means, that if all elements
at the right side of the assignment are NID, then also the variable at the
left side is NID. But if at least one element at the right side has the value
MBID, then also the variable at the left side gets MBID.

— functions. in = {MBID}, out ={global variables, return-value, referenced
values of pointers in arguments}.
Functions need a more complicated handling. At this point it is important to
remember that we make only intraprocedural and no interprocedural anal-
ysis. Thus, after a function call we must assume, that all globally declared



variables could have been changed during the function call and for that rea-
son the value of all those variables is set to MBID. Further, the return value
of the function is always input dependent. Finally, another case must be
considered: if one of the arguments of the called function is a pointer, its
referenced value is set to MBID, too.

— constants (in = 0, out ={constants}).

Constants are considered to be always NID.

— structures/unions. Each member of a structure is treated separately. Thus
a single member can have the value MBID, while other ones are in the state
NID. Special care must be taken for recursive structures, e.g. datastructures
used for trees and lists. Here we restrict the accuracy of the analysis to
assure the correctness of the algorithm. We assume that each locally defined
structure is NID at the beginning. But if at least one member gets MBID,
the whole structure turns to MBID and cannot be changed any longer to
NID.

— pointers. Each pointer is represented by two state values. One for the pointer
itself and a second one for the referenced variable. The pointer itself can be
treated like a common variable, but the referenced variable needs special
attention, because it could be referenced by more than one pointer. For that
purpose we have two different strategies. The easier one assumes that all ref-
erenced variables have always MBID as their current state, while the more
sophisticated strategy uses alias-informations to handle references by point-
ers. More informations about the alias-analysis can be found in section 3.4.

— arrays. Arrays are handled similarly as pointers, i.e. each array is represented
with two states, one for the array itself and one for all its references. Thus,
if one array entry changes its state from NID to MBID, the whole array is
considered to be MBID and remains in this states forever. This is necessary
because the analysis doesn’t keep track of individual array cells and so if
one value changes its state to MBID, later we don’t know which cell was
affected by this change and thus we must assume, that all cells could be
in the state MBID. We have chosen this way to handle arrays, because it’s
quite simple, whereas developing a method that considers each element of an
array individually would be complex and leads to higher computation and
memory consumption. Arrays can be subject to aliasing too and therefore
we use our aliasing analysis with arrays as well.

3.4 Alias Analysis

One or more pointers can reference the same memory location. If one pointer
changes the value of that location, all other pointers that reference the same
location will see this new value, too. Thus we must ensure that our analysis
takes into consideration this behavior. As mentioned before, a simple strategy
would be that all referenced variables are always set to MBID. By assuming
the “worst case”, we can be sure that our analysis will always be correct. In
most cases this treatment of pointers (and arrays) is sufficient, but there are
other cases were a more accurate view is needed. For more accurate results we



have developed an alias analysis, which recognizes pointers that could reference
the same memory location. To keep things simple, we have put a restriction on
our implementation: all global variables (including globally declared pointers)
are assumed to refer to the same memory location. In most cases this will not
be true, but our analysis is “safe”, i.e. if an element is set to NID it is surely
not input dependent, whereas if it is set to MBID it may depend on the input
values. Following this restriction, all these global variables have to be marked as
“aliased”.

int a;
main ()
{
int *x, *xy, *z;
y=z;
X=Yy;
*¥z=a;

Fig. 3. Example for Aliasing Analysis

The example in figure 3 shows a typical case, where an alias analysis should
be used. The first statement (y=z) means that both y and z reference the same
memory location and thus have to be aliased. The result is shown in figure 4a,
where each variable has its own list containing those variables to which it could
be aliased (for a more detailed description of the used data structures refer to
section 4).

X — X -y — 2z —
y — z — y -z — x —
zZ —y — Z -y — X —
a) aliased variables 1 b) aliased variables 2

Fig. 4. Aliased Variables for the Example Code

The second statements adds further aliasing information. After the execution
of the statement (x=y), x, y and z are aliased. The result is shown in figure 4b.
Now, the last statement in the example will need the collected aliasing infor-
mations to produce a correct result. Here the referenced variable of the pointer
z gets a new, input dependent, value and so it is set to MBID. Now the analyzer
sees that aliasing information is connected with this variable and therefore up-



dates also the states of the other two pointers. At the end of this piece of code
the output vector which stores the input dependency information is shown in
figure 5.

a
MBID |1 0 1 0 1 0 1

Fig. 5. Flow Dependency Output Vector

4 Editor with Integrated CFA

We have implemented a plug-in for an editor that supports the data flow analysis
described in the previous chapter. By using this enhanced editor the programmer
has two possibilities:

1. writing programs in such a manner that nothing will be highlighted. With
this proceeding one can be sure, that the program is conform to the single
path approach.

2. often the first procedure is not possible, because a program already exists
in large parts or the restrictions implied to are too big. In this case the
advanced features of the editor are use to highlight all code that could violate
the single path approach and one can verify, whether they are really critical
or still tolerable.

We have implemented a plug-in for vim!, that is capable of analyzing ANSI C89
code, but for more programming conveniences it supports also many ANSI C99
[5] and GNU C-expansions [9], for example additional datatypes and the //-
comment. The CTCE, which is described in section 2.3, is also supported by the
analysis. It has the following syntax:

<expr> = <cond> f <exprl> : <expr2>.

This expression is translated into two conditional expressions, where <expr1> or
<expr2> is assigned to <expr>. According to the single path approach <expri>
and <expr2> have to be free of side effects. In languages with pointers its very
difficult to locate such side effects and so we put the following constraints on
these expressions:

<exprl>, <expr2> € {CONST, VAR},

where CONST stands for a numerical constant (independent from the type) and
VAR is an identifier representing a variable name.

The plug-in for vim is written in the vi scripting language. It executes the
following steps:

! http://www.vim.org



— First of all it starts an external program, which analyzes the source code. This
external program writes the results of the analysis, i.e. those line numbers
in which there is code that violates the single path approach, in a file.

— Now we use a small program called “sequencer”, which extracts from this
file and returns the next line to be highlighted.

— We use the built-in features of vim to highlight this line.

— The sequencer-program is called in a loop until all flow dependent lines are
highlighted.

The program that analyzes the code reconstructs a control flow graph after
parsing the code. Each node in the control flow graph contains its assigned state-
ments and pointers to its successor and predecessor nodes. Besides each node has
two bitvectors storing the states of all variables at the entry and exit point of the
basic block (input and output vectors). The dataflow analysis was implemented
using the three-level algorithm presented in section 3. At statement level the de-
tection of indirect control flow dependencies in nested loops was implemented
using a global stack storing flags. If the flag at the top of the stack is set, the
analyzer knows that it is currently inside a conditional expression dependent on
the input value. At expression level we have some more datastructures: a current
vector that stores the state of all variables after the execution of that expression
and a field of lists storing the collected alias-informations by using the algorithm
presented in section 3.4. The datastructure for storing aliasing information was
initially implemented as a simple bit-matrix, where an entry x/y is true if the
variables x and y are aliased. Tests have shown that this matrix could become
large in functions with many variables, but is typically only sparse. Therefore, we
decided to implement that matrix in form of a vector with references to simple
lists. Each variable has its own list, where each list entry represents a variable
to which this variable is aliased.

An expression is analyzed by going recursively to the innermost subexpres-
sion. This one is inspected and the results are passed back to the surrounding
expression. By using the results of all subexpressions, the current expression can
be examined. This mechanism is repeated until the whole expression is analyzed.
After all variable states are stable, i.e. the output vector of all nodes does not
change for a whole iteration, the algorithm terminates by collecting the results
and highlighting them in the editor.

5 Examples

The examples given in this section illustrate the software engineering paradigm
of WCET-oriented programming and demonstrate the program analysis to test
whether a code is conform to this paradigm.

5.1 Example for WCET Oriented Programming

WCET-oriented programming is intended to increase the predictability of real-
time programs. Figure 6a) shows a traditional performance-oriented implemen-
tation of find_first. Its behavior is that the loop is left as the first occurrence of



a key value is found within the array. In contrast, the WCET-oriented imple-
mentation shown in figure 6b) has an almost input-data independent runtime
behavior. Its only control-flow variance comes from the (7:) operator. Therefore,
also conventional code generated for this implementation has a reduced variance
in the execution time. As shown in [7], for processors with hardware support
for conditional move instructions the execution time becomes data-independent
and its WCET is even better than the WCET for the traditional performance-
oriented implementation.

int find_first
(int key, int all)

{
int i; int find_first_wcet
int pos = 100; (int key, int all)
{
for (i=0; i<=SIZE-1;i++) int i;
{ int pos = 100;
if (ali] == key)
{ for (i=SIZE-1;i>=0;i--)
pos = 1ij; {
break; pos = ((alil==key) 7
} i : pos);
} }
} }
a) Standard version b) WCET oriented version

Fig. 6. Example Code: find_first

The result of the conformance analysis for the WCET-oriented paradigm is
shown in figure 7. The result for the traditional performance oriented imple-
mentation given in figure 7a) shows that there exists an input-data dependent
control-flow path. The result for the WCET-oriented implementation given in
figure 7b) shows that there does not exist any input-data dependent control-flow
path. A technical detail is that in case the (?:) operator given in figure 7b would
contain other assignments than simple numeric expressions, the statement would
be classified as input-data dependent control flow.

The runtime behavior of the WCET-oriented implementation is therefore
more predictable than the traditional performance-oriented implementation. In-
formation like this can be used by the software developer to implement real-time
code with increased predictability.



{int key, int all}

Y g Hrefine SIFE 20
int pos = 100; int find_first
{int key, int all)
for (i=0; i<{=5IZE-1;i++)

int i

£
if (alil == key) int pos = 100;

for (1=SIZE-1;i>=0;i--)
i

pos = ((alil==key) ?

; i : posl;
3
| A ALl L Al ALl
a) traditional performance- b) WCET-oriented implementa-

oriented implementation tion

Fig. 7. Input Dependency Analysis for find_first

5.2 Example for Alias Analysis

The capability of the integrated alias analysis is shown by a simple example
given in figure 8. The code in this example iterates over a local array having an
input-data independent content.

Boid test_alias()

i

EE

Boid test_alias()
i

int arrlz20];

int 1, xp=arr;

for (1=0;1<20;1++)
£

int arrl20];
inmt i, *®p=arr;
for (1=0;1<20;1i++)

i

if (xp < 3)
i
*po o= 1+2;
3
i P
3
1,4 All 1,4 ALl
a) without alias analysis b) with alias analysis

Fig. 8. Input Dependency Analysis with Alias Information

As shown in figure 8a the conformance analysis for the WCET-oriented
paradigm will classify the if statement as input-data dependent. The result for
the conformance analysis with enabled alias analysis shown in figure 8b detects
that this conditional control flow based on a pointer reference is input-data in-
dependent.

Due to the inherent complexity of an alias analysis for a programming lan-
guage like C, our implementation is not able to precisely detect every input-data
independent control-flow. But the alias analysis is safe in the sense that no
input-data dependent control-flow will be classified as input-data independent.



6 Summary and Conclusion

To guarantee the timeliness of hard real-time systems it is necessary to perform
WCET analysis for their time-critical tasks. Programs can be easily analyzed
for their WCET, if they are translated into single-path code. To increase the
efficiency of the translated code, a new programming paradigm — called WCET-
oriented programming — has been developed. New software development tools are
necessary to support developers in writing efficient code for this new paradigm.

In this paper we presented a method based on control and data flow analysis
to analyze the conformance of a code with the single-path approach. The analysis
has been implemented as a plug-in for the editor vim.

Experiments have been done to illustrate the application of the conformance
analysis to sample algorithms. The results of the implementations for the tra-
ditional performance-oriented programming and WCET-oriented programming
have been compared to demonstrate the improved predictability of WCET-
oriented programming.

References

1. Pavel Atanassov, Raimund Kirner, and Peter Puschner. Using real hardware to cre-
ate an accurate timing model for execution-time analysis. In International Work-
shop on Real-Time Embedded Systems RTES (in conjunction with 22nd IEEE RTSS
2001), London, UK, Dec. 2001.

2. Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor
with branch prediction. Real-Time Systems, 18(2):249-274, May 2000.

3. Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-case
execution time analysis. In Proc. 21st IEEE Real-Time Systems Symposium (RTSS),
Orlando, Florida, USA, Dec. 2000.

4. Thomas Lundqvist and Per Stenstrom. Timing analysis in dynamically scheduled
mircoprocessors. In Proc. 20th IEEE Real-Time Systems Symposium (RTSS), pages
12-21, Dec. 1999.

5. American National Standards Insitute/International Standards Organisation.
ISO/IEC 9899:1999 Programming Languages — C. American National Standards
Institute, New York, USA, 2 edition, Dec. 1999.

6. Peter Puschner. Transforming execution-time boundable code into temporally pre-
dictable code. In Bernd Kleinjohann, K.H. (Kane) Kim, Lisa Kleinjohann, and
Achim Rettberg, editors, Design and Analysis of Distributed Embedded Systems,
pages 163—-172. Kluwer Academic Publishers, 2002. IFIP 17th World Computer
Congress - TC10 Stream on Distributed and Parallel Embedded Systems (DIPES
2002).

7. Petez Puschner. Algorithms for Dependable Hard Real-Time Systems. In Proc. 8th
IEEE International Workshop on Object-Oriented Real-Time Dependable Systems,
Jan. 2003.

8. Peter Puschner and Alan Burns. Writing Temporally Predictable Code. In Pro-
ceedings of the 7th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pages 85-91, Jan. 2002.

9. Richard Stallman. Using and Porting the GNU Compiler Collection (GCC). iUni-
verse.com, Inc., USA, 2000. gcc-2.96, ISBN 0-595-10035-X.



