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 Abstract.  – This paper presents an Autonomous Proxemic 

System (APS) for a mobile robot. It detects people in the 

surroundings and manipulates the robot’s motions to approach 

them keeping an acceptable proxemic distance. The APS sensing 

functions include face and upper body detection, leg detection, 

and motion detection using camera, laser, and infra-red sensors 

respectively. The control functions consist of approach a human 

and obstacle avoidance. APS uses the sonar and laser range 

devices to keep an accurate proxemic distance with the human. 

Initial system tests indicate that the APS keeps desired proxemic 

distances to within an acceptable error margin.  

1.  Introduction 

In order for a mobile service or domestic robot to be a socially 

acceptable and effective companion, it must exhibit appropriate 

socially acceptable behaviours. The study of social spaces 

between people is termed Proxemics. Within the wider research 

field of Human-Robot Interaction (HRI), Human-Robot 

Proxemics (HRP) studies how humans and robots use and 

manipulate distances between each other with regard to social 

behaviour and human perceptions. Breazeal ![1] has found that 

humans responded socially to expressive zoomorphic robots in 

some very fundamental non-verbal ways, including respecting 

the robot's interpersonal space. Nomura et al. ![2] found that both 

participants' negative attitudes and anxiety towards a small size 

humanoid robot had statistically significant effects on users’  

preferred (comfortable) robot approach distances. The main aims 

for our HRP research are to empower domestic or service robots 

to be able to: 

• Detect the presence and position of people in its 

surroundings 

• Approach, pass or avoid people as necessary, while 

dynamically controlling for socially acceptable HRP 

distances  

• Take account of both the robot’s and user's physical 

situations, and the robot's task context.  

The particular HRP distance taken will also depend upon other 

factors, including each individual human user’s preferences, the 

physical and social situation, and also task context ![3].  Some of 

these other factors which affect HRP are known, but have only 

been roughly quantified using essentially static measurement 

methods, such as the HRP framework presented by Walters et al. 

![4]. It is therefore desirable to carry out more comprehensive 

research to see if some of the richness apparent in human 

proxemics interactions can also apply to other HRP interactions.  

Human Proxemics  

In human-human interactions, Hall ![5] observed that human 

social spatial distance varies by the degree of familiarity between 

interacting humans and the number of participants. Later, Hall 

![6] provided a framework which categorized the main social 

spatial zones by interaction and situation. Hall estimated these 

distances visually but later researchers ![7] have assigned 

numerical values for human-human personal space zones:  

• Intimate zone < 0.45m   

• Personal zone " 0.45m and  < 1.2m   

• Social zone " 1.2m and  < 3.6m    

• Public zone " 3.6m   

In the field of human proxemics research, other factors which 

can also affect proxemic distances between interacting humans 

have also been proposed. For instance, Stratton et al. ![8] 

suggested that uncertainty (or slight perceived threat) can affect 

human proxemic distances, and makes them take up slightly 

greater distances from the source of the perceived potential 

"threat". In a study, for a robot which used different voice styles, 

participants initially encountering the robot took significantly 

different comfortable approach distances ![9] and it was 

suggested that these differences may be caused by participants' 

slight initial uncertainty due to perceived inconsistencies 

between the robot's appearance and voice styles.  

Gillespie and Leffler ![10] concluded that much of the 

observed variation in social distance between communicating 

humans is accounted for by the relative status of the interactants. 

Burgoon and Jones ![11] explained many seemingly 

contradictory aspects of human-human proxemic behaviour by 

suggesting that relatively small (dynamic) manipulations of the 

distance between participants were a social "reward and 

punishment" mechanism. This theory can also explain how high 

status interactors can "reward" lower status interactors by 

moving closer, but lower status interactors can "reward" higher 

status interactors by keeping a greater distance.  

Human-Robot (HR) Proxemics  

H#ttenrauch et al. ![12] concluded that in HRI user trials most 

participants kept inter-personal distances from a PeopleBotTM 

robot corresponding to Hall's Personal spatial zone (0.45m to 

1.2m). Previously in HRI trials run using semi-autonomous 

robot control techniques in HRI trials, we found that children 

tended to approach a similar robot to similar distances ![13] but 

for individual adults approaching the same robot, the approach 

distances were more ambivalent and inconclusive ![14]![15].  
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We (Koay et al. ![16]) also found that people generally allow 

robots to approach more closely during physical interactions 

(handing over an object etc.) than for verbal or no interaction 

conditions. Syrdal et al.  ![17] found people generally prefer 

more humanoid appearance robots to keep a further distance 

away than mechanoid appearance robots. Walters et al. ![18] 

found that participants' preferences for particular robot attributes 

(both appearance and height) affected participants' comfortable 

approach distances with regard to whichever robot type they 

interacted with. The results from our previous HRP trials ![4] are 

summarized in Table 1, where all distances have been 

compensated to satisfy a standard measurement between the 

human and the robot's closest body trunk parts (i.e. not including 

arms or manipulators). These distance measurements (as best as 

we can tell from the published details) are also roughly 

comparable to those made by Hall for his spatial zone distances 

and also by Stratton et al. ![8]. Takayama and Pantofaru ![19] 

found that other factors including robot head orientation, gender 

of participants, and previous experience interacting with both 

pets and robots also affected peoples comfortable HRP 

distances.   
 

Factor 
Context(s) – 

Approach  

Base Distance = 

57cm 

Estimated 

Adjustment for 

Factor (± 0.5cm) 

Attribute or Factor of Robot 

Mechanoid 

Robot 

All – RH  

All – HR  

-3 

-7 

Humanoid Robot 
All – RH  

All – HR  

+3 

-1   

Verbal 

Communication 

Verbal Interaction – 

RH  
+3 

Giving object 
Physical Interaction – 

RH  
-7 

Taking object 
Physical Interaction – 

RH 
-7  

Passing   No Interaction – RH +4 

Direction from: 
Front – RH 

Right/Left – RH 

+2 

-2 

Attribute or Factor of Human 

Preferred Robot 

Humanoid 
All Private – RH -3 

Preferred Robot 

Mechanoid 
All  – RH +3 

Preferred Height 

Tall  
All – RH -1 

Preferred Height 

Short 
All – RH +2 

Uncertainty or 

perceived 

Inconsistency 

Initial Encounter – HR +13 

Verbal 

Communication 

Verbal Interaction – 

HR 
+3 

Giving object 
Physical Interaction – 

HR 
-7 

Taking object 
Physical Interaction – 

HR 
-7 

Passing 
No Interaction – HR 

 
+4 

Table 1. Factors affecting HR proxemics and corresponding 

adjustments for Base HRP Distance (57cm) ![4] 

In order to confirm and extend these findings, investigate 

whether other factors might apply to HRP interactions, and also 

effectively measure and quantify any effects, it is necessary to 

first develop autonomous robot HRP sensing and control 

capabilities. Haasch et al. ![28] have presented a mobile 

companion robot that employs multi modal person tracking, 

attention mechanism, speech recognition, and dialog manager to 

interact with a human, but not studied HRP in their work. This 

paper therefore presents a state-of-art Autonomous Proxemic 

System (APS) for sensing and control of HRP distance. It 

discriminates humans from objects, automatically measures the 

HRP distance, controls for a given desired HRP distance. The 

robot is also able to follow people around, keeping a desired 

HRP distance (to the best of the robot’s capabilities, as it moves 

rather slowly compared to most people). The rest of paper is 

organized as follows. The next section explains the APS main 

components and its implementation details. Section 3 describes 

the experiment that evaluates the performance of APS in keeping 

the desired HRP distances. Finally, the last section gives a 

conclusion and prospect of future work.  

2. Autonomous Proxemic System  

The APS is designed to detect a human in the mobile robot’s 

surroundings, and enable the robot to approach and keep a 

desired HRP distance in both static and dynamic states. The APS 

employs a range of sensors common to mobile robots consisting 

of a low resolution camera, passive infra-red (IR) sensor, laser, 

and sonar range finders. It uses computer vision techniques to 

detect either a face or upper body of a person within its camera 

range, but also applies a leg detection algorithm to laser range 

finder data. Meanwhile, it uses infra-red (IR) and sonar sensors 

to perceive and track human motions and obstacles, respectively. 

The rest of this section provides more details of how these 

sensors and associated algorithms are implemented in the APS.  

Face Detection 

The APS uses face detection to detect and localize people in the 

focus range of the camera. The main aim of this face detection is 

to determine whether or not there is actually a human face in the 

current captured camera frame, and if so return the location. 

However, face detection is challenging due to variability in 

scale, location, orientation (up-right, rotated), and pose (frontal, 

profile). Facial expression, occlusion, and lighting conditions 

also change the overall appearance of the faces ![20].  

In our application, we take advantage of an object detector 

which uses Haar-Like features of an image ![21]. This is a refined 

version of the widely known algorithm created by Viola & Jones 

![22]. This algorithm is already implemented and trained for face 

and upper body detection in OpenCV ![23], the open-source 

computer vision library adopted for use in the APS. According 

to a comparative survey in ![20], the chosen solution shows a 

good balance between performance and computational speed. It 

is also proven that this method is colour independent (i.e., adapt 

for different skins) and robust to varying light conditions.  

Briefly, the chosen face detection algorithm deploys Haar-

like features that consist of two or three jointed rectangular 

regions (Figure 1). The value of a Haar-like feature is the 

difference between sums of grey level values of pixels within the 

two rectangular regions.  
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Figure 1. Haar-like features: two or three jointed rectangle 

regions ![22] 

 
Figure 2. Haar-like features are extracted from sub-windows 

for face detection ![22]  

 

 
Figure 3. Cascade of simple classifiers applied to the Haar-like 

features of the sub-windows ![22] 

 

Compared with raw pixel values, Haar-like features can 

reduce in-class, and increase out-class variability, thus making 

more distinguishable data and easier classification. The Haar-

like features are computed from sub-windows of an image 

(Figure 2). Given an image resolution of 320x240, sub-window 

resolution of 24x24, and 15 frames per second, the total number 

of sub-windows with one Haar-Like feature is about 1 million 

per second which has a relatively large computation cost. To 

optimize this computation, a cascade of pre-trained simple 

classifiers (i.e. AdaBoost ![21]) with a threshold structure is 

applied to the features computed from sub-windows. The first 

classifier eliminates a large number of negative sub-windows 

and passes almost all positive sub-windows (high false positive 

rate) with very little processing effort. Subsequent layers 

eliminate additional negative sub-windows (passed by the first 

classifier) but which require more computation. After several 

stages of processing, the number of negative sub-windows has 

been reduced greatly (Figure 3). Finally, the remaining relatively 

few sub-windows may contain a face passed as the output of the 

algorithm.  

Bellotto et al. ![24] presented an adapting regulation for 

parameters of the face detection method to improve the fast 

tracking performance in real-time applications. It starts with an 

image at normal size (320x240) and once it has detected a face 

(or faces), selects the nearest one, and then scans just a sub-

image containing the selected face. Meanwhile, it reduces the 

sub-windows size into 80% of the selected face size. This 

significantly increases the detection speed (~4 times) and keeps 

track of one face as long as it can be detected.  

The proposed algorithm ![23] is capable to be extended to 

distinguish different visual patterns. Then, as mentioned, we 

have extended the visual object detection to detect upper body 

rather than the exclusive face detection. Moreover, we deployed 

the face detection classifier with different profiles. By this 

means, the robot can perceive people even when it is behind or 

to the side of the person. More details about the implementation 

are discussed in the next sub-section. To supplement the face 

detection system, additional sensing tools are required to detect 

humans in the surrounding area. This is because the applied face 

detection is limited in both performance (false positives, 

negatives and lost targets) and the area of scanning coverage.  

Leg Detection 

Leg detection is a pattern recognition terminology that can 

discriminate and localize people legs using laser readings ![29]. 

The leg detection system processes the range data collected by 

laser, extracts the edges produces by the objects, and localizes 

the patterns of edges that match with the human leg patterns’.  

Although, the detected patterns are not guaranteed to belong to 

human legs, they provide potential directions to explore to 

confirm whether people are in the environment. In APS, leg 

detection is employed to provide the turning direction for the 

robot when no one was detected by the visual detection object.  

The laser sensor provides range data from 180° covering the 

front and sides of the robot, at a height of about forty 

centimetres from the floor, and with half degree resolution. The 

scanning area is semicircular with a radius of 8 meters. The laser 

range data, according to the manufacturer’s specifications, are 

very accurate with errors of a few millimetres. Figure 4 depicts a 

snapshot of the range data in the presence of a person in the 

scanning area.  

Belletto et al. ![24] ![25] presented a novel detection algorithm 

to find human legs by using laser scans. It is designed to work 

either in large empty environments or small cluttered rooms, and 

is able to distinguish among different leg postures, thus 

improving the discrimination of false positives. The leg 

detection algorithm extracts the necessary features (edges 

produced by the objects) from a single laser scan, and identifies 

typical patterns (relative to particular leg postures) that, in most 

of the cases, are distinguishable from the other objects in the 

environment. The desired leg patterns, shown schematically in 

Figure 5, correspond to three typical situations: two legs-apart 

(LA), forward straddle (FS), and two legs-together or SL. The 

first pattern is usually very common when a person is standing in 

front of the robot. The second is most likely to happen when the 

person is walking. The last pattern covers most of the remaining 

postures. However, it can also be generated by other objects in 

the environment, giving rise to false positive detections ![25].  
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Figure. 4. Range data collected from the laser sensor with 

marked edges  

 

 
Figure 5. Leg patterns and the Leg Detector’s schematic 

diagram ![25] 

As shown in the schematic presentation of Figure 5, the 

algorithm is divided into three main parts: data pre-processing, 

detection of vertical edges, and finally extraction of leg patterns. 

The laser range data are pre-processed by applying a local 

minimization operator to remove possible spikes due to 

reflections on sloped surfaces, and a local maximization operator 

to discard thin objects such as table legs. Suppose the angular 

step between two consecutive laser scans is constant, and the 

range data after pre-processing is stored in an array S = [r1 . . .  

ri . . . rM], where ri is the range measured on the direction !i, and 

M is the total number of readings. If we represent S on a 

Cartesian graph, we can identify a sequence of vertical edges 

defined as follows. The doublet {ri, ri+1} can be considered an 

almost vertical edge if the distance |ri+1!ri| is greater than a 

given threshold. Moreover, we can distinguish a left edge, when 

ri>ri+1 from a right edge, when ri<ri+1, and refer to them as Li 

and Ri, respectively.  

The resulting vertical edges are initially queued into a list E = 

{e1 . . . en . . .}, where each element en can be either an L or R 

edge. If they are very close and almost aligned, adjacent edges of 

the same type are connected to form a longer one. After that, 

from the updated list of connected edges, we extract all the 

subsets that might belong to one of the three leg patterns 

described before. The order of patterns that we look for is as 

follows.  

• The LA pattern is a quadruplet {L, R, L, R}. 

• The FS pattern is a triplet {L, L, R} or {L, R, R}. 

• The SL pattern is a doublet {L, R}. 

Every edge is removed from E as soon as it contributes to form 

one of the aforementioned sequences. Therefore, all the LA 

patterns, which are normally the most reliable, are extracted first, 

while the SL patterns, which are the easiest to misinterpret, are 

left at the end. During the search for the patterns we consider 

some constraints and spatial relations between edges, including 

maximum normal distance between legs and limits on their size. 

With reference to Figure 5, some dimensional constraints are 

fixed for the measures a, b, and c, which are, respectively, the 

leg’s width, the maximum step length, and the width of two legs 

together. These are used by the algorithm’s procedures to 

recognize LA, FS, and SL patterns. Finally, the distance and 

direction of the detected legs are calculated from the midpoint of 

each pattern ![25].  

Motion Detection 

Many objects normally emit IR radiation, invisible to human 

eyes that can be detected by electronic devices designed for such 

a purpose. The APS motion detector is designed to perceive a 

human as the robot is moving. It is based on a passive IR sensor, 

which is an electronic device that measures IR light radiating 

from objects in its field of view. It is a passive sensor, which 

means that it does not emit an IR beam but merely passively 

accepts incoming IR radiations. Intensity of the emitted radiation 

is proportional to the objects’ temperature ![26], and apparent 

motion is detected when an IR source with one temperature, 

such as a human, passes in front of an IR source with another 

temperature (e.g. a wall etc.). Furthermore, a motion can also be 

realized when an IR sensor moves relative to an IR source with 

one temperature, such as a human, standing in front of an IR 

source with another temperature. This feature can be adopted to 

detect the positional change between a human and a mobile 

robot carrying the IR sensor.  

In our application, we set up an IR sensor connected to an 

analogue to digital converter (ADC, Phidget Interface Board) on 

top of the mobile robot to perceive the presence of a human in 

its surroundings. The sensor was fixed at a height approximately 

1.2 meters from the floor to read IR radiations emitted from the 

human body (i.e. trunk) and avoid typical non-human IR sources 

(e.g. heating radiators) in a room. The sampling frequency was 

5Hz, and the recorded data was passed through a low-pass filter 

to remove noises produced by the vibration. The gradient of the 

filtered data represents a change in successive IT radiation 

measurements and indicates a motion when it exceeds a certain 

threshold. The threshold was chosen after preliminary tests, and 

adjusted to detect the motions produced by a human within a 

range of 5 metres.  

According to the desired scenarios in our application, we 

deliberately ignored any fast or weak motions from the passive 

IR sensor by adjusting the sampling rate, low-pass filter and 

threshold parameters. After tuning, the robot detected the 
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presence of a static human when the robot passes by, or when a 

human moves in front of the robot.  

System Implementation   

The APS is a real-time controller developed for the Pioneer 

PeopleBotTM robot. It has a modular design and employs the 

above-mentioned detectors as modules running in multi-thread 

mode. The APS is implemented in C++ using ARIA and 

OpenCV libraries. It runs on a Dual Core PC (with Windows 

XP) connected directly to the robot via the USB serial port 

adaptor.   

The APS includes both control and sensing functions. The 

controlling commands are made up of ‘Turning Left/Right’ and 

‘Moving Forward/Backward’, both implemented as Actions in 

ARIA. The Turning command has a priority over Moving; this 

means the robot first turns toward the person and then starts 

approaching. The Moving command checks regularly the range 

devices (i.e. Sonar and Laser) to keep the HRP distance and 

avoid obstacles. The cycle time of the robot controller, at which 

the sensors and commands are regularly updated, was set to 

200ms. This is a sensible rate for a companion robot in normal 

daily activities.  

APS sensing functions include face and upper body detection, 

leg detection, and motion detection using the camera, laser, and 

Infra-Red (IR) sensor, respectively. Moreover, the obstacle 

avoidance Action also uses the sonar and laser range data. APS 

gives a higher priority to the camera-based functions over the 

laser ![30]. This means APS manipulates the robot using vision-

based information, as long as it detects a face or an upper body 

in view of the camera. When a face or an upper body is detected, 

APS uses its relative horizontal location in the image to adjust 

the robot’s bearing angle towards the human. In the absence of a 

detected human by the camera system during a limited time, 

APS then uses the information provided by the leg detector to 

manipulate the robot. Motion detection, due to its particular 

characteristics, just stops the robot turning (i.e., interrupt the 

Turning command) when it spots a human in its range.  

To make a sensible integration of the detectors, we require 

considering their features along with the characteristics of the 

controller. The laser-based leg detector is very accurate and in 

most of the cases is much more reliable than face detection ![25]. 

Moreover, the computational time needed by the leg detector is 

much less than that one required by the face detection module. 

Considering the modules running asynchronously in real-time 

operation, the face and leg detection processes take about 500 

and 250msec, respectively. The range covered by the laser 

device is much wider than the camera view. While the laser 

covers a semicircular area with a radius of 8 metres, the camera 

view is limited to approximately 40°. As mentioned, the face 

detection is featured to discriminate faces with different profiles 

as well as the upper body. However, even if the camera is fixed 

at about 1.4m from the floor (which is about a normal person’s 

face height), there are cases when a face or upper body cannot be 

detected because a person is too tall, too short, or very close to 

the robot.  

3. Experiments and Results    

According to Section 1, a domestic robot should be able to 

keep an acceptable HR proxemic distance during interaction 

with a human. The APS is supposed to manipulate the robot in 

such a way that it keeps reliably the desired HRP distances 

corresponding to different settings. We conducted an 

experiment, to evaluate the performance in HR proxemic control 

produced by APS.  

 

Desired distance in APS  
 450 550 650 750 850 950 1050 1150 1250 

Recorded distances for subject 1 
1 385 500 595 725 715 885 1015 1055 1055 

2 395 495 645 730 825 885 1005 1005 1125 

3 395 485 635 735 735 825 960 1065 1115 

4 405 475 620 705 765 845 1015 1015 1135 

5 385 505 595 675 755 865 985 1055 1145 

Recorded distances for subject 2 
1 365 540 560 650 760 820 895 1005 1085 

2 375 450 570 650 760 830 885 1005 1105 

3 355 480 570 660 750 825 915 995 1095 

4 345 480 565 655 755 835 895 985 1105 

5 335 480 575 665 765 825 925 1005 1115 
 

Table 2. Recorded HRP distances corresponding to different 

settings (in millimeters) 
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Figure 6. Error (%) of raw HRP distances  
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Figure 7. Error (%) of HRP distances after applying bias 

values (6cm for Subject 1 and 10cm for Subject 2)   

To have a realistic evaluation, the experiment with two 

participants was conducted in a real living room with usual 

furniture in the University of Hertfordshire ‘Robot House’. The 

'Robot house' is a house near the University, based in a domestic 

area, which appears to be like any typical UK house, but has 

been adapted so that HRI experiments and user trials can be 
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performed in an ecologically valid, real home environment, 

rather than a laboratory or simulated home surroundings. In the 

experiment, we measured directly using a tape measure the 

actual distance between static human and robot corresponding to 

different desired HRP values set in APS. The experiment was 

designed to evaluate the reliability and repeatability of the APS 

performance; Hence, we repeated five trials for each setting, and 

also recorded the error. The error refers to the difference 

between desired and actual HRP distances. Some error is 

inevitable, since the APS records the nearest distances read by 

the sonar and laser at a fixed height (i.e. 0.3 and 1.2m for sonar 

and 0.4m for laser) from the floor as HRP, while we measured 

the actual distance at a height that includes the closest point 

between human and robot’s trunks. However, it was expected to 

record errors with constant bias and low variance. The bias 

mainly depends on particular subjects’ body shape.  

The experiment examined HRP settings from 45 to 125 

centimetres, and repeated trials for each setting five times. Table 

2 demonstrates the recorded distances for two participants and 

nine settings. Figures 6 and 7 illustrate the mean and standard 

deviation for error of HRP distances for each subject and setting. 

The former is for the raw data and the later depicts the error rate 

after subtracting the bias value to reduce the constant part of the 

error.  

The bias is a constant value that exists in the differences 

between measured values by the human and robot. It is primarily 

caused by the difference in the height of the point of 

measurement. The bias value therefore depends mostly on 

individual humans’ body shapes and is worked out for each 

subject. Considering the errors with normal distribution, it can 

be calculated using the ‘three-sigma’ rule in Statistics ![27]. The 

bias is worked out by subtracting the one-third of the standard 

deviation (STD) of the recorded errors from the absolute value 

of their mean. It was found to be 60 and 100 millimetres for 

Subject 1 and 2, respectively.  
 

 
Figure 8. Error (%) decreases significantly by applying the bias 

values to raw HRP distances  

Figure 8 shows that applying the individual subjects’ biases 

to the raw HRP distances from the APS, increased significantly 

the accuracy of measurement. The adjusted (biased) mean HRP 

error is about ±1.5% with repeatability of ±1%. This implies an 

approximate error of ±0.75cm in HRP distance measurements 

close to the 57cm base distance ![4] from the Proxemic 

Framework from Table 1. This is acceptable for our future work 

which will focus on HRP interactions within the near Personal 

Zone distances (40 – 100cm). We hope to refine the 

measurement accuracy in the light of more data from a wider 

range and number of participants in future trials. We also intend 

to improve the APS in future work by incorporating a learning 

mechanism that can learn users’ proxemic preferences and 

individual HRP parameters during run-time.  

4. Conclusion    

The social behaviour of a mobile robot can make it socially 

acceptable and effective as a companion. In HRI, the study of 

how human and robot use and manipulate distances between 

each other with regard to social behaviour and perceptions is 

called human-robot proxemics (HRP). An aim of HRP research 

is that a social service robot should be able to detect presence of 

people in its surrounding and approach them to an acceptable 

proxemic distance. The particular HRP distance depends on 

individual humans’ preferences, the robot’s task and services, 

social and physical situation, and possibly other factors. In this 

paper we proposed an autonomous proxemics system for a 

mobile robot. Experimental findings indicate that the proposed 

system works reliably and keeps a desired HRP distance with a 

total error variance about ±1.5%. We intend to improve the APS 

in future work by refining the HR measurements and 

incorporating a learning mechanism that automatically can adapt 

to individual users’ HRP preferences and parameters.  
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