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Abstract Social robotics opens up the possibility of 
individualized social intelligence in member robots 
of a community, and allows us to harness not only in- 
dividual learning by the individual robot, but also the 
acquisition of new skills by observing other members of 
the community (robot, human, or virtual). 

We describe ALICE (Action Learning for Im- 
itation via Correspondences between Embodi- 
ments), an implemented generic mechanism for solv- 
ing the correspondence problem between diEerently 
embodied robots. ALICE enables a robotic agent to 
learn a behavioral repertoire suitable to performing a 
task by observing a model agent, possibly having a dif- 
ferent type of body, joints, different number of degrees 
of freedom, etc. Previously we demonstrated that the 
character of imitation achieved will depend on the gran- 
ularity of snbgoal matching, and on the metrics used to 
evaluate success. 

In this work, we implement ALICE for simple robotic 
arm agents in simulation using various metrics for eval- 
uating success according to actions, states, or d e c t s  or 
weighted combinations. We examine the roles of syn- 
chronization, looseness of perceptual match, and of p r e  
prioceptive matching by a series of experiments. As a 
complement to the social developmental aspects sug- 
gested by developmental psychology, our results show 
that synchronization and loose perceptual match- 
ing also allow for faster acquisition of behavioral com- 
pentencies at low error rates. 

We also discuss the use of social learning mechanisms 
like ALICE for transmission of skills between robots, 
and give the first example of transmimion of a skill 
through a chain of robots, despite differences in embod- 
iment of agents involved. This simple example demon- 
strates that by using social learning and imitation, cul- 
tural transmission is possible among robots, even het- 
erogeneous groups of robots. 

1 Introduction: Acquiring Skills via Social 
Learning by Imitation 

Imitation is an important means to acquire new compe 
tencies in a social context. Human cultures use imitation 
in a variety of ways. This may include learning of new 
motor skills, such as learning how to tie shoe laces, how 
to play tennis, or learning a dance. Imitation may also 
be involved when we learn a language, learn tool use, or 
learn how to behave in particular social contexts, such 
as learning dress codes or greetings. In animal seiences 
the question of which animal species imitate is under hot 
debate. Imitation is Merent from other mechanisms of 
social learning, e.g. when animals learn mainly due to 
the presence of co~pedfics,  or when conspedcs draw 
attention to certain features of the environment that are 
involved in the behavior. In the latter case biologists 
would cal l  this form of social learning local or stimulus 
enhancement. Other types of social learning (also called 
observational learning) are variously taxonimized and 
include goal emulation, social laming of afiodanees, 
etc. Some authors require that ‘do as I do’ (the common 
sense interpretation of imitation or ‘apeing’) should only 
be called imitation if it involves learning a novel behav- 
ior [27]. See [30, E] for an in depth discwsion of merent 
types of social learning, definitions of imitation, and the 
main research questions involved. 

1.1 The Correspondence Problem 
Fbboticists have been interested in imitation since the 
early 1990’s [14, 71. In robotics, learning by imitation 
involving a following strategy (the imitator following the 
model around in an enviroment) has been used widely 
[11,4]. Theacquisitionofmotorskillsisanotherveryac- 
tive area of research, involving learning control policies 
to match vibpoints in the motion trajectory of a model 
[25] or, e.g. in work where a virtual humanoid agent 
learns to dance the Macarena [15]. While most previ- 
ous work has engineered ad hoc mechanisms to achieve 
imitation, general mechanisms for solving the correspon- 
dence problem, i.e. how an imitating agent can imitate a 
model with possibly dissimilar embodiment, are OUI focus 
in this paper. An informal definition of the correspon- 
dence problem [19, 20, 21, 221 is as follows: 

Given an observed behavior of the model, 
which, from a given starting state, leads the 
model through a sequence (or hierarchy) of 
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subgoals (in states, action, and/or dects, 
while possibly responding to semory stimuli 
and external events), find and execute a se 
quence of actions using one's own (possibly 
dissimilar) embodiment, which, from a corre- 
sponding starting state, leads through corre- 
sponding subgoals (in corresponding states, 
actions, ana/or a s ,  while pwibly re- 
sponding to corresponding events). [22, p. 
491' 

The notion of 'corresponding' states, actions and ef- 
fects here is formalized by a choice of metria, and the 
choice of subgoals to be matched d&es the granularity 
and program-structure of the candidate matching be- 
havior [19]. Our previous work studying the correspon- 
dence problem included a chessworld scenario where 
the results showed that the newly developed mechanism 
called Action Learning for Imitation via Cor- 
respondences between Embodiments (ALICE) 
could solve the correspondence problem for agents with 
dissimilar embodiment [l, 31. This work also demon- 
strated that the metric and the level of subgoal gran- 
ularity can each dramatically affect the character of 
imitative behavior that is generated, and that one met- 
ric is not in general univmally 'better" than another, 
but various choices of metrics contribute to which as- 
pects of a behavior are to be imitated 131. The ALICE 
mechanism is related to statistical string-parsing mod- 
els of social learning from ethology [SI and associative 
sequence learning theory from psychology [13]. In our 
current work we nse a Merent  test-bed, namely a sce- 
nario where robotic arm8 imitate each other. 

1.2 Immediate Imitation: Synchrony and 

Imitation can have another important role in robotics, 
besides skill acquisition. Developmental psychologists 
have revealed the crucial role of imitation in how humans 
become social beings, e.g. how they identify others as 
pemons, and how they recognize individuals (cf. work 
on neonatal imitation, e.g. [16] and others). 

Synchronization of behavior plays a fundamental role 
in child-caretaker interactions, as becomes evident in 
developmental studies with babies and infants [26, 171. 
The contingencies and dynamic aspects of interaction 
and communication are stepping stones in the social de- 
velopment of infants, and they are prerequisites of im- 
mediate imitation. It has been argued by Nadel [17] 
that immediate imitation creates intersubjectivity and 
is the 6rst step by which infants make 'contact' to other 
human beings. Individualized social intelligence in hu- 
mans and social animals may rely on a common core of 
these and related mechanisms (cf. [28, 231). 
This and other evidence from the study of animal 

social complexity (e.g. [12]) suggest that synchronization 
and immediate imitation might also be key ingredients 
for the development of individualized social intelligence 
in robots 191. 

We show below that use of synchronization of behav- 
ior in a robotic test-bed can also dramatically speed up 
solution of the correspondence problem. Our results also 
show that the use of loose perceptual matching speeds 
up solution of the correspondence problem. 

Social Intelligence 

'See that reference and [lS, 20,2l] for the formal statement of 
the correspondence problem relating to the use of different error 
metrim, and for other applications. 

2 The ALICE Mechanism in a Robotic Arm 
Test-bed 

In order to study the correspondence problem we de- 
veloped the ALICE (Action Learning via Imitation be- 
tween Corresponding Embodiments) generic imitation 
mechanism. This mechanism is intended as a con- 
troller for the actions of an imitating agent, making 
use of a correspondence library. The keys to the 
entries of this library consist of some combination of 
actionslstatesldects of the model agent, and proprio- 
ceptive information concerning the imitator's own state. 
Perceptions of the model and possibly proprioceptions 
are converted to the form of a key for the imitator to 
look-up corresponding actions for that key in the im- 
itator's correspondence library. These actions are the 
actions that the imitating agent should pertorm in or- 
der to achieve a matching behavior, according to an 
evaluation metric. As new actions corresponding to  the 
perceptual keys are learned they are added to the imi- 
tator's library, which is initially empty. 

These possible actions can be generated using any 
kind of generating algorithm to propose actions (e.g. in- 
verse kinematics). In OUT work we simply use a ran- 
dom generating algorithm, since we are not concerned 
about the precise nature of the generating mechanism 
here. Proposed actions are then evaluated according to 
a metric and wil l  either update an existing entry with 
more fitting solutions, or create a new entry of their 
own if the current state/action/&ect or proprioceptive 
aspects comprising the key have not been o b m d  pre- 
viously up to that point. 

The type of the resulting imitating behavior will de- 
pend on the metric used, whether the imitator will try 
to match the perceived model actions/states/effects cu 
some combination of them. For more details on ALICE 
see [3] and below. 

2.1 The Robotic Arm Test-Bed 
The current test-bed w a ~  created as a simple, yet 'rich 
enough' environment that would allow for several in- 
teracting models and imitator agents, having dissimilar 
embodiments [Z]. Each agent (Fig. 1) occupies a two- 
dimensional workspace and is embodied as a robotic arm 
that ean have any number of rotary joints, each of vary- 
ing length. The agent's embodiment can thus be de- 
scribed by a vector L = [&, &, &. . ' , L], where & is the 
length of the ith segment of the arm. 

There are no complex physics in the worhpace and 
the movement of the arms is simulated using simple for- 
ward bemat ics  but without collision detection or any 
static constraints (in other words, the arms can bend 
into each other). Our intention is to demonstrate the 
features of the imitative mechanism and not to build a 
faithful simulator. 

An action of a given agent is defined as a vector 
describing the change of angle for each of the joints, 
A = [al,az,a3,...,an], where n is the number of its 
joints. These angles are relative to the previous state of 
the arm and can only have three possible values, +lo" 
(anti-clockwise), 0' or -10' (clockwise). 

A state of an agent is defined as the absolute angle 
for each of the joints, S = [ u ~ , u ~ , u s , .  . . ,U,], where n 
is the number of its joints. We can distinguish between 
the previous state and the current state (the state 
of the arm after the current action was executed). As 
a result of the pcmible actions, the absolute angle at 
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A = [q' cu'] 

s' = rol' "1 A" = lor" rs-1 

Figure 1: Example Embodiment. A twejoint robotic 
arm, with segments of length ti and Lz, moving from 
state SO (arm completely outstretched along the hori- 
zontal axis) to state S to state S' to state S", as it 
sequentially per fom actions A, A', and A". Note that 
the effects are not shown in this figure. 

each joint can be anywhere in the range of 0" to 360" 
(modulo 360') but only in multiples of 10". 

The end tip of the arm can leave a trail of paint as 
it moves along the workspace. The effect is defined 
as a directed straight line segment connecting the end 
tip of the previous and the current states of the arm 
(approximating a paint trail). The efTect is internally 
implemented as a vector of displacement E = (z. - 
zp, yC - yP), where (zp, yp) and (zc, a) are the end tip 
coordinates of the arm for the previous and current state 
respectively. 

2.2 Metrics 
The imitating agents can perceive the actions, states and 
effects of the model agents, and also their own actions, 
states and effects, and therefore we define several metria 
to evaluate the similarity between them. Metria are 
scaled to take values from 0 to 100%. Ideally the metric 
value should be zero, indicating a perfect match. 

State metric 
The state metric calculates the averaged distance b e  
tween the various joints of an agent (posed in a particu- 
lar state) and the corresponding joints of another agent' 
(posed in a merent  state) as if they were occupying the 
same worbpace. Ideally this distance should be zero 
when the arms take corresponding poses, but this may 
not be possible due to embodiment differences. Using 
forward kinematics, the coordinates of the ends for each 

'The state metric can be used not only between different 
agents, but also to evaluate the similarity between two etates 
of the same agent. This is true far the action and the effect 
metric en mll. 

If both agents have the same number of joints the cor- 
respondence between them is straightforward; the Eu- 
clidean distance for each pair is calculated, the distances 
are then all summed and divided by the number of joints 
to give the metric value. 

p = - c d ;  I n  
n 

i=l 

If the agents have a merent  number of joints, then some 
of the joints of the agent with more joints are ignored. 
To tind which joint corresponds with which, the ratio of 
the larger number of joints over the smaller number of 
joints is calculated, and if not integer, is rounded to the 
nearest one. In computing the metric, the ith joint of the 
agent with the smaller number of joints, will correspond 
to the (ratio x i)'h joint of the agent with the larger 
number of joints. For example if one of the agents has 
twice the number of joints, only every second joint will 
be considered. 

Action metric 
For the action metric, the same algorithm ea the one 
described above for the state metric is used, but consid- 
ering the action vectors instead of the state vectors. 

The value in the case of the state metric represents 
an absolute positional error; for the action metric, it 
represents the relative error between the change of the 
state angles caused by the compared actions. 

Effect metric 
The dect metric is detined as Euclidean length p = 
,/(SI - 2 2 ) '  + (y1 - yz)' of the vector Merence h e  
tween taro effects (z1,yi)  and ( z a , y a ) .  

2.3 
The choice of the metric determines, in part, what will 
be imitated, whereas solving the Correspondence prob- 
lem concerns how to imitate [8]. In general, aspects of 
state, action and &ect as well as level of granularity 
of matching could all play roles in the choice of met- 
ric for solving the problem of how to imitate [ Z l ,  3, U], 
and the metria dewibed above were chosen to measwe 
these aspects (at tine granularity) in our test-bed. On- 
going research is addressing the complementary problem 
of how to extract agent subgoals and generate suitable 
metria automatically [21, 18, 51. 

2.4 Growth of the Correspondence Library 
The model's behavioral pattern may naturally be broken 
down as a sequence of actions that move the robotic arm 
of the agent from the previous state to the current state, 
while leaving behind a trail of paint as the effect. 

How versua What to Imitate 
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The nature of the experimental test-bed with the 
fixed-beae rotary robotic arms favours cyclical looping 
effects and the model patterns used in the experiments 
were designed as such (Fig. 2). Each complete behav- 
ioral pattern that returns the arm to its initial state ob- 
served by the imitator is called an exposure, and the 
imitator is exposed to repeated instances of the same 
behavioral pattern. At the beginning of each new ex- 
posure it is p k b l e  to reset the imitating agent to the 
initial state. This resetting is called synchronization 
in our experiments. 

The correspondence library is initially empty. At 
each time step, i.e. for each action of the model, the 
imitator agent may be able to perceive the model's a0 
tion, previous and current state and ala0 the effect. The 
agent might perceive any of those aspects or a combina- 
tion depending on the metric it is using. 

The first time a percept occurs, a new entry is c r e  
ated 5 the correspondence library with that percept as 
its indexing key. When created, the key for the entry 
contains the data on the perceived subset of the ob- 
served model's action/state/&ect and/or the state of 
the imitator, as perceptual and proprioceptual compc- 
nents respectively. (Which perceptual components are 
used in the keys depends on the metric.) A randomly 
generated action is initially used as the corresponding 
action the first time the perceptual key is encountered 
and is stored under that key. Over time, several actions 
can be associated with the same perceptual key in the 
library. 

When the model's action triggers an eldsting per- 
ceptual key3, e.g. if it has been observed before, then 
there will also be at least one corresponding action in 
a correspondence library entry. Using the metric, the 
predicted results of actions proposed by the generating 
mechanism (random in this implementation) are com- 
pared with the predicted results of ones from the library 
associated with the perceptual key, and a best one is ex- 
ecuted *om among this set of proposed actions. If this 
executed action was the newly generated one, it is added 
to the correspondence library entry. In the experiments 
reported here, a perceptual key can be associated with 
at mwt three actions in the library, so a new action 
might displace another when added to the library. 

The actions stored in the library with particular keys 
are thus used as partial solutions to the correspondence 
problem. New actions proposed by the generating mech- 
anism at each time step might enter the correspondence 
library as described above. It is possible employ a more 
complex action proposal me&& (i.e. inverse kine- 
matics) than a random generating mechanism, and, in- 
deed, ALICE is designed to accommodate any generat- 
ing mechanism that returns valid actions from the search 
space.' In order to speed up the learning, it is possible to 

'Note that the lrey consists of atates/actian/eKecl and/or pm- 
prioeeptive entry fields. The number K of such possible keys 
partially determines the size of the search ' spse  in solving the 
correspondence problem. In general if t h k  are N degrees of 
freedom in the imitator, and ci (1 5 i 5 N) denotes the num- 
ber of possible choices of action component for the i'b degree 
of freedom, then (nfb, is  size of the search space for the 
correspondence problem at the granularity of single actions. In 
our case N is  the number of joints and ei = 3 holds for all i, 80 

one has a sear& space of size 3". 
'The simple random generating mechanism performs well 

enough for test-bed purposes, although the rate of learning is 
naturally slower than for more complex action generation mecl- 
ani". Sophisticated applications of ALICE can benefit by r e  
placing, in a modular nay, this sction generetion with a more 
mphisticated one appropriate to the given application. 

Figure 2: Traces of four different examples of 
model behaviours. Shown are the &ect trails cre- 
ated by the end tip of the model agent manipulator arm 
after a complete behavioural pattern. All model agents 
shown have the same embodiment L = [15,15,15]. 

generate more than one action per time step and chocae 
a best one (according to a metric used -see above).' 

Controlled by a threshold, it is ala0 possible not to 
require an -act match for the perceptual and/or the 
proprioceptive components of the trigger key, hut a loose 
one that is 'close enough' according to the metric. We 
call this loose perceptual matching, and we hypothe 
sized that it should support learning and generalization. 

3 Social "smission of Behaviours - The 
Beginning of Culture in Robots? 

Imitation broadly construed is required for cultural 
transmission [lo, ch. 111. Transmission of behavioral 
skills by social learning mechanisms like imitation may 
also be fundamental in non-human cultures, e.g. in chim- 
panzees [29], whales and dolphins [24]. The robotic arm 
test-bed with the ALICE mechanism can be used to 
study the social transmission of model behavior via imi- 
tation. The imitator of the model might in turn also be 
imitated by another agent, creating chains or networks 
of social trammission for the original model behavior 
pattern. 

The example illustrated in Fig. 3 demonstrates such 
(horizontal) transmission of a behavioral pattern via SD 
cial learning in a chain of imitating agents. The original 
model with three joints is shown in (Fig. 3, left). It 
is imitated by a twwjoint robotic arm (Fig. 3, centre), 
which in turn is imitated by another imitator (Fig. 3, 
right) with the same embodiment as the original model, 
but which only perceives the behavior of the two-joint 
agent. 

'Not implemented in the current test-bed, but another POB- 
sible part of ALICE, is the history meehoniam which also con- 
siders sequences of past imitative attempts when updating the 
correspondence library entries, as previously u e d  in the chess- 
world test-bed 131. 
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Figure 3: An example of social transmission. The 
original model model0 (L = [ZO, 20,201) is shown to the 
left. In the middle, a two-joint imitator0 (L = [30,30]) 
acts also as a model for imitator1 on the right (L = 
[ZO, 20,201)). Due to the Merent embodiment of the 
agent imitator0, the replication of the model pattern 
is similar, but not exact. imitator1 has the same em- 
bodiment as the original model model0 and, although 
indirectly transmitted, the resulting pattern is closer to 
that of the original model than is the behavior of the 
intermediate agent imitator0 used as a model by this 
second imitator. Both imitators use the action metric. 

in Fig. 4 (bottom panel), constantly demeasing and be- 
low l. This indicates that the numerator (error with 
loose matching) is minimized faster than the denominai 
tor (error with exact matching) and is explained by the 
fact that there are fewer and more generic entries in the 
correspondence library of the imitator with the loose 
matching, resulting in a faster improvement of perfor- 
mance. 

When exact matching is used, a significantly longer 
learning period is required, and therefore loose matching 
to within 10% was used in the the rest of the particular 
experiments reported here. 

4.2 Synchronizat ion 
Inspired by the biological and psychological importance 
of synchronization (sec. 1.2), we implemented synchro- 
nization in our test-bed as follows and did a series of 
experiments to asses its efficacy. At the end of each 
exposure of the imitating agent to the model, it is pos- 
sible to reset the imitator arm to the same initial po- 
sition, thus synchronizing the imitation attempt t o  the 
model’s behavior. We conducted ten experimental runs, 

4 Experiments and Results 

4.1 Loose Perceptual Matehig 

cult for &I ‘imitating agent that does not synchronize to 
reach again states relevant to the model pattern if the 
initial imitation attempts are not successhrl. Soon after 
the start of the 6rst exnosure to the behavior Dattern. 

When the ALICE mechanism looks up a perceptual key 
in the correspondence library to find the relevant entry 
to the currentlv Derceived model actions. states and ef- 

the imitator not using-synchronization becomes ‘lost’ 
due to cumulative errors that are not corrected by re- 
setting (Fig. 5 (top panel)), while theimitator usingsyn- 

fects, it is p-ibie not to require an exa& match of the 
entry keys, but one that is close enough, depending on 
a threshold. We conducted ten experimental runs under 
the same conditions. Each run consisted of ten expo- 
sures to the model behavior for two imitating agents 
trying to imitate a model agent, one of them requiring 
an exact match for the trigger keys and the other one 
accepting a 10% margin of looseness. The metric used 
by both agents was a weighted half-half combination of 
the action and the state metria. Both agents synchro- 
nized after each exposure to the model. Each of the 
ten runs lasted eleven exposures and the average metric 
value (that can be seen as the error) for each exposure 
was logged. The d u e  of error metric for the agent us- 
ing loose perceptual matching is plotted in Fig. 4 (top 
panel), and that for the agent using exact matching in 
Fig. 4 (middle panel). 

The ratio of the average error of the imitating agent 
that uses loose matching over the average error of the 
imitating agent that requires an exact match can be seen 

chronization shows steady improvement (Fig. 5 (middle 
panel)). As a result the non-synchronizing agent might 
require a far greater numba of exposures to return (via 
the random walk of the generating mechanism) back ‘on 
track’ and succwfdly imitate. 

4.3 Proprioceptive Matching 
Proprioception is always used by the ALICE mechanism 
whenever perceptual keys include a state or effect com- 
ponent, since the imitator’s own state is taken into ac- 
count when calculating the metric d u e s  for the ditfer- 
ent pomible actions; but is not used if the perceptual 
key consists of only the action component. 

The correspondence library entry keys may contain 
both perceptual (the model’s action, state and e&t) 
and proprioceptive (the imitator’s own state at the time 
of the observation) data. It is possible to exclude this 
proprioceptive component from the keys and to trigger 
the keys based only on the perception. We conducted 
ten experimental runs, each with two imitating agents 

927 



Figure 4 Loose Percepual Matching Experiments. 
The error metric value of robotic agents over 11 expo- 
sures when using loose perceptual matching (top panel) 
and when using exact matching (miadle panel). The 
ratio of the average error per exposure of the imitating 
agent using loose perceptual matching over the aver- 
age error of the imitating agent that does not (bottom 
panel) indicates a comparative many-fold reduction of 
error with use of loose perceptual matching. In each 
panel, the thicker line shows average values of all the 
ten experiments, with the bars indicating the standard 
deviation. Dotted lines indicate values during individual 
mns. 

I 

Figure 5 Synchronization Experiments. The error 
metric value of robotic agents over 11 exposues when 
not using synchronization (top panel) and when using 
spchronization (middle panel). The ratio of the av- 
erage error per exposure of the imitating agent using 
synchronization over the average error of the imitating 
agent that does not (bottom panel) indicates a dramatic 
reduction of error with synchronization. In each panel, 
the t h i k  Line shows average values of all the ten expa- 
iments, with the bars indicating the standard deviation. 
Dotted lines indicate values during individual m. 
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trying to imitate a model agent, one of them Using pri- 

by both agents was a weighted half-half combination 
of the action and the state metria. Both agents wed 
a l o w  entry key matching of 10% (for the perception 
component) and the generating mechanism was creat- 
ing five random actions to choose from. E d  run lasted 
eleven exposures and the average metric value for each 

operceptive matching, the other not. The metric used MuulsRV*.Fn" 

~ 

a o s u r e  was lowed. i 
-The ratio ocihe average error per exposure of the 1 hx 

... . ..,. .,., .. ,:. 
..,., ..:-. 

imitating agent that does not use proprioceptive match- 
ing over the average error of the imitating agent that 
does can be seen in Fig. 6, constantly decreasing and 

... U' 

., " ? " '- ., 
...U ::\, ;-?.:% --... below 1. This indicates that  the numerator (error when 

not using proprioceptive matching) is " k e d  faster 
than the denominator (error when usinr! uromioceutive 1 1 ,  

matching). Similar to the experimental&& for ioose 
matching described above, ignoring the proprioceptive 
matching for keys reduces the number of entries in the 
library, thus allowing them to update more frequently, U.l"oRom0- 

resulting in a faster improvement of performance! I> 

5 Conclusions and Outlook 
The results of our experiments using ALICE in Mer-  
ently embodied robotic arm agents shaw that (1) cul- 
tural transmission of behavioral patterns is possible in 3 
a heterogeneous community of robots, (2) loose per- I 
ceptual matching inmema the rate of solving the wr- 
respondence problem significantly, (3) synchronization 
dramatically increases the rate of solving the correspon- 
dence problem, (4) utilizing proprioreceptive matching 
for keys does not, at least for early stages of learning, 
aid in rate of the solution of this problem within our 
experiments (although it certainly did not prevent its 
solution). 

The potential for cultural t r a n s h i o n  of skills 
through a heterogeneous population of robots using our 
methods might be applied to the acquisition and trans- 
&ion of skills in more complex populations of robots, 
involved in carrying out useful tasks, e.g. on the shop- 
floor of a factory, with new robots coming and going, 
acquiring behaviors by obsavation without having to be 
explicitly programmed and without humans having to # 
develop different control programs for merent  types of 

' 

robots that need to perform the same task. Instead, the 5 
robots would autonomously create their how programs 
using social learning and a correspondence library. 

This together with previous work [3] using a cheas- 
world test-bed serves to establish the generalizability of 
the ALICE framework. Scalability in &rent settings ' , I . 6 I I) s 3 0  l: 

depends on particularities of the embodiments, the s e  
phistication of the generating mechanism used (here, 
only random actions were needed) to ProPO% Can&- 
date matching actions or action sequences, Processing 
sped,  and optimization probl- for the SPec*C Plat- 
forms. Future work in solving the correspondence Prob- 
lem will also involve applications to fault-tolerance and 
self-repair by imitating agents, as well as new methods 
for subgoal extraction and the automatic generation of 
metria. 
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Figure 6 Proprioceptive Matching Experiments. 
The error metric value of robotic agents over 11 expo- 
sures when using proprioceptive matching for keys in the 
correspondence library (top panel) vs. not using propri- 
oception in this way (mid& for 10 -. The 

per exposure of the imitat- 
ing agent not employing proprioreceptive matching over 
the average error of the imitating agent that does (bot- 
tom panel) indicates some comparative reduction of er- 
ror when not using proprioceptive matching. In each 
panel, the thicker line shows the average values of all the 
ten experiments, with the bars indicating the standard 
deviation, Dotted lines indicate values d-g individual 
IullS' 

of the average 

'Utilizing a proprioceptive matching component for keys in 
the correspondence library inereses the number of keys K, on 
which the seareh space depends exponentially, by a faetor equal 
to the number of all possible states of the imitator (d footnote 
3 above). 
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