
Fault Analysis in OSS Based on Program Slicing Metrics

Sue Black Steve Counsell, Tracy Hall David Bowes
Department of Computing Department of Computing Dept. of Computer Science
University of Westminster Brunel University University of Hertfordshire
Harrow Campus, UK Uxbridge, UK Hatfield, UK
sueblack@gmail.com steve.counsell@brunel.ac.uk d.h.bowes@herts.ac.uk

Abstract-In this paper, we investigate the Barcode OSS
using two of Weiser’s original slice-based metrics
(Tightness and Overlap) as a basis, complemented with
fault data extracted from multiple versions of the same
system. We compared the values of the metrics in
functions with at least one reported fault with fault-free
modules to determine a) whether significant differences in
the two metrics would be observed and b) whether those
metrics might allow prediction of faulty functions. Results
revealed some interesting traits of the Tightness metric
and, in particular, how low values of that metric seemed
to indicate fault-prone functions. A significant difference
was found between the Tightness metric values for faulty
functions when compared to fault-free functions
suggesting that Tightness is the ‘better’ of the two metrics
in this sense. The Overlap metric seemed less sensitive to
differences between the two types of function.

Keywords-Slicing; faults; OSS; metrics

I. INTRODUCTION

Program slicing is an area that has recently
attracted a range of research studies [20, 22, 23, 24, 25,
26, 30]. It is also an area that has developed its own set
of metrics based on features of program ‘slices’.
However, while there are metrics devoted explicitly to
measurement of program slicing, we still know very
little about their behaviour and how useful they may be
in illustrating features of the code they are extracted
from. If we are to both appreciate and understand, for
example, the relationship between program slicing and
fault proneness, then we need to have a set of metrics
that first quantitatively capture slice characteristics and
second, can form the basis for sound statistical analysis
(in this case with fault-proneness). Equally, if we want
to build predictor models based on those metrics, then
we need to understand the intricacies and vagaries of
those metrics (in this case, of the two chosen slice-
based metrics).

In this paper, we describe an empirical study of the
Barcode Open Source System (OSS) and collected
fault data from multiple versions of the same system.
We explore whether two slice-based metrics (Tightness
and Overlap [29]) can tell us anything about the
propensity or otherwise of functions to be fault-prone
or not. To inform our analysis, we collect fault-based
data from multiple versions of the Barcode system and
categorize a function as being either ‘fault-prone’ (i.e.,
contains at least one fault) or fault-free. Results suggest
that of the two metrics, Tightness shows some promise
in its ability to discriminate between fault-prone and
fault-free functions. The same can not be said about the
Overlap metric, however. The metrics also reveal
insights into evolutionary features within the Barcode
system and how functions might have behaved and
deteriorated over time.

The remainder of the paper is organized as follows. In
the next section we consider the motivation for the
research and related work. We then describe details and
definitions of the slicing metrics we collected
(Tightness and Overlap) in Section 3. In Section 4, we
describe an analysis of the research question posed and
present data to support or refute that question. Finally
we draw some conclusions (Section 5).

II. MOTIVATION AND RELATED WORK

The motivation for the work described in this
paper stems from several sources. First, while a range
of software metrics has been proposed for measuring
cohesion [1, 4, 11, 13], very little research has been
undertaken to determine the relationship between those
metrics and the propensity for faults; work by Pan and
Kim [26] used C language slicing metrics to compare
the classification of faults with metrics for C++; yet we
still know very little about software cohesion and even
less about evolutionary trends in cohesion. Second,
evolutionary studies have tended to focus on features of
modules/classes (depending on the programming

2009 35th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-3784-9/09 $26.00 © 2009 IEEE
DOI 10.1109/SEAA.2009.94

3

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

paradigm being studied, i.e., procedural or OO). Very
few studies have investigated the concept of cohesion
from an evolutionary viewpoint. Third, vast numbers of
software metrics have been proposed in the literature to
measure different facets of software, but the majority of
those metrics have not been validated in the sense that
first, they have been shown to actually measure the
software characteristic they purport to measure and
second, are related to some dependent variable [19,
22]. In this paper, we try to form a relationship between
two well-known and highly used slicing metrics and
fault propensity. Finally, OSS is becoming an
increasingly important part of software development
integration policies for many organizations. We see an
analysis of slicing metrics and faults in OSS as valid
and useful as any corresponding analysis of faults in
proprietary software. Tentatively, we may expect
functions/classes with low cohesion to be more likely
to be more fault-prone, since low cohesion often
reflects a poorly written and/or poorly maintained
artifact. The study presented here is based on that
assumption.

The research in this paper is informed by two
areas – namely, program slicing and cohesion (metrics)
[2, 17 ,20]. In terms of slicing literature, the paper from
which the slicing metrics were analyzed and which is
considered the seminal slicing text is Weiser [29].
Since then, the techniques of program slicing have been
adapted by many disciplines and for a multitude of
contexts [5, 6, 7, 8]. Ott and Thuss explored some of
Weiser’s original metrics [29] and also introduced
several of their own. These metrics were then analyzed
from a largely empirical viewpoint. Bieman and Ott [4]
used program slicing in the context of tokens and ‘glue’
that held those tokens together and is considered an
influential study in the area. Meyers and Binkley [23]
undertook a large-scale empirical study of five slice-
based metrics (largely those of Ott and Thuss) and
provide baseline values for those metrics on a
longitudinal basis; lowly-rated modules according to
those baselines would be candidates for re-engineering.
The research also showed that the same set of metrics
could be used to analyze the decay of systems.

As a software engineering concept, cohesion was
introduced as early as 1979 when Yourdon and
Constantine introduced a seven point ordinal scale for
component cohesion [31]. Stevens et al. started looking
at inter-module metrics even earlier [28]. Many other
studies of different aspects of cohesion have followed
[3, 10, 14]. In terms of the OO paradigm, the best
known and most researched cohesion metric is the Lack

of Cohesion of Methods (LCOM) proposed by
Chidamber and Kemerer [11]. LCOM measures the
relationship of methods and variables of a class by
counting the number of method pairs accessing
different variables, minus the number of method pairs
accessing the same variables. A high LCOM for a class
is undesirable and indicates high complexity in that
class. The CAMC of Bansiya et al. [1] uses a similar
principle of the distribution of variables across a class
but with minor variations in interpretation from the
LCOM. The research in this paper builds upon
previous work by the authors comparing cohesion
metrics [9, 13, 14] where a comparative study of OO
cohesion metrics has highlighted the strengths and
weaknesses of each.

III. PRELIMINARIES

A. Metrics definition/collection

The two metrics which we explore in this paper
were originally proposed by Weiser [29], namely
‘Tightness’ and ‘Overlap’ and we use the same
definitions of the metrics. Before formally defining the
two metrics, we first describe the formal underpinnings
of a slice’s components proposed by Ott and Thuss
[25] which we adopt in this paper.

We denote a set of variables used by a function F
as VF and VO as the subset of VF representing output
(return) variables. F represents a program ‘function’,
defined as a unit under consideration with a ‘Length’
defined as number of executable lines of code. We
further note that in the OO paradigm, this would equate
to a class, the level at which OO cohesion metrics have
tended to be applied in past studies [1, 11, 13]. We
denote a slice SLi as that obtained for vi �VO and SLint
as the intersection of SLi over all vi � VO. We use the
same example function used in [22] for consistency.
This function is shown in Appendix A, the purpose of
which is to determine the smallest and largest of an
array of integers. The slice of each variable and
intersection are shown. The two metrics and also the
basis of the longitudinal, empirical study by Meyers
and Binkley [22] are as follows:

Tightness(F) =
)(

|| int

Flength
SL

Tightness measures the number of statements that occur
in every slice.

4

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

Overlap(F) =
|Vo|

1 �
�

|Vo|

1i |SLi|
|| intSL

Overlap measures ‘how many statements in a slice
are found only in that slice [22]’. From the definitions
of Tightness and Overlap, we obtain the following
values for the function in Appendix A:

Tightness =
19
11 = 0.58 Overlap =

2
1 (

14
11 +

16
11) = 0.74

The relatively high value of Overlap is due to high
value of SLint relative to the size of the two slices for
‘smallest’ and ‘largest’. The value of Tightness reflects
the fact that SLint accounts for just over half the
function length.

B. Fault Extraction

We used the CodeSurfer tool [12] to extract the
two metrics for every function from multiple versions
of Barcode, an OSS written in C for processing
barcode data and used in a previous study by Meyers
and Binkley [23]. Nineteen versions of Barcode were
studied as part of our analysis. The faults were
extracted manually using the on-line report logs of
Barcode. Henceforward, we distinguish between
functions that contain at least one fault in any single
version as ‘fault-prone’ and those that contained zero
faults (in any single version) as ‘fault-free’. The dataset
was thus partitioned into two categories for the purpose
of our analysis. Validating that CodeSurfer had
extracted the ‘correct’ values of the two metrics was
achieved through manual checking of the results (by
one of the authors).

We note that the decision as to whether a function was
fault-prone or fault-free, based on the report logs, was
often made difficult because of the ambiguity or
incompleteness in the reports. Consequently, 253 of the
775 functions in total had to be classed as ‘don’t
knows’ (i.e. we can not categorically say either way
whether those functions contained a fault or not). We
did not include these functions in the analysis presented
on the basis that they might have posed a threat to
study validity. One problem with the manual collection
of faults is that it is often difficult to associate a
reported fault with the function from which the fault
was derived. In such a case, we can only say that we
‘don’t know’ if that function actually contained a fault.
We accept that leaving these functions out might have
introduced a bias into our analysis. However, in our

defense, inclusion of these functions would have
clouded the clarity of the paper and perhaps posed an
even greater bias than had we included them.

IV. DATA ANALYSIS

We explore the question of whether there were
significant differences between the values of the
Tightness and Overlap metrics with respect to the fault-
proneness in Barcode functions. More specifically, the
question we try to answer is: are either of the two
metrics able to distinguish between functions with at
least one fault and those without a fault? In this paper,
we make the distinction between a ‘module’ and a
‘function’; we define them in a one/many relationship
where a single module may contain one of more
functions.

A. Summary Data

Table I contains the summary data (number of
functions (N) in each category, mean, maximum,
standard deviation (SD) and median) for the two
metrics for all functions in the two categories.

TABLE I. SUMMARY DATA FOR TIGHTNESS AND OVERLAP

N Mean Max SD Median
Tightness
(fault-prone)

372 0.32 0.99 0.32 0.21

Tightness
(fault-free)

150 0.38 1.00 0.37 0.28

Overlap
(fault-prone)

372 0.59 1.00 0.33 0.63

Overlap
(fault-free)

150 0.63 1.00 0.38 0.72

A clear trend from Table I is the relatively higher
values of Tightness and Overlap for fault-free functions
in both the mean and median values (these values are
italicized). This suggests, at face value, that the higher
the cohesion (given by these two metrics) the lower the
propensity of faults in the functions studied. It is also
noticeable that the maximum value of Tightness for
fault-prone functions was 0.99, but was 1.00 for fault-
free functions (the two Overlap values are both 1.00).
From the data in the table, it would appear that a salient
characteristic of a fault-free function is a relatively high
value of the Tightness and Overlap metrics. According
to their formulas, one means of achieving this is to
have a high SLint. In other words, a high slice
intersection may be an indicator of a fault-free
function. While this might seem a premature claim to
make, we are mindful of the fact that the distribution,
intersection and use of variables in an OO class is a key

5

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

feature of the LCOM and CAMC metrics of Chidamber
and Kemerer [11] and Bansiya et al. [1], respectively.
In both of those metrics, a high overlap is reflective of
a cohesive class. It appears that the same principles
might apply to C functions in Barcode as they do to OO
classes for the LCOM and CAMC; that is, we can
attain high cohesion through a high intersection of
variables to prevent that function from becoming
faulty. In a programming sense, this makes practical
sense: we would expect a functionally cohesive ‘unit’
to optimize the extent of interactions between the
declared variables and contain no redundant
statements.

B. Tightness and Faults

Fig. 1 shows the values of the Tightness metric (y-
axis) for fault-prone functions (x-axis) and Fig. 2 the
Tightness metrics for fault-free functions. A prominent
feature of Fig. 1 is the relatively large number of
Tightness values ‘on or around’ the zero mark.
Inspection of the source data revealed that these values
belonged to just four functions in four different
modules. The first was the function
‘Barcode_ps_print’ in the module ‘ps.c’, the second the
‘main’ function in the module ‘sample.c’, the third the
function ‘Barcode_Delete’ in the ‘library.c’ module
and the last in the function ‘add_one’ of the module
‘code_39.c’. These four observations occurred in
versions 12, 2, 2 and 8, respectively. The same feature
(of relatively large numbers of small Tightness values)
is evident in Fig. 2.

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400

Function

Ti
gh
tn
es
s
va
lu
e

Figure 1. Tightness values for Barcode (fault-prone)

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

Function

Ti
gh
tn
es
s
va
lu
e

Figure 2. Tightness values for Barcode (fault-free)

Table II summarizes the frequencies of the
Tightness metric values in fault-prone and fault-free
functions. The high percentage of small Tightness
values is evident from the table contents. Clearly, a low
Tightness value (and, by implication, a low intersection
of slices) seems to be a feature of a fault-prone
function. Fig. 3 shows the extent of the difference
between the fault-prone and fault-free functions;
namely, analysis of the source data revealed that 70.2%
of the fault-free functions were < 0.5, compared with
77.4% for fault-prone functions in the same range.

TABLE II. FREQUENCY OF TIGHTNESS VALUES

Range/
Category

0 –
0.199

0.2–
0.399

0.4–
0.599

0.6-
0.799

0.8-
1.00

Fault-prone 172 65 55 26 54

Fault-free 63 24 19 2 42

This observation supports the view that the
incidence of faults in the Barcode system were for
functions where there was a low value of SLint. For
fault-free functions therefore, a higher value of SLint
may be more desirable. Of course, function size does
play a part in this, since the formula for Tightness
implies that a small function also contributes to a high
Tightness value; however, inspection of source data
revealed no trend for fault-free functions to be smaller
(in LOC) than the corresponding fault-prone functions.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Tightness (fault-prone)

Ti
gh
tn
es
s
(fa
ul
t-f
re
e)

Figure 3. fault-prone vs. fault-free (Tightness)

6

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

Analysis of both fault-prone and fault-free
functions revealed the majority in each to be close to
the median for all functions (value 35 LOC) and neither
large nor small in magnitude.

C. Overlap and Faults

Fig. 4 shows the data for the Overlap metric. In
contrast to the Tightness metric, there are only a small
set of zero values. Inspection of the source data
revealed that these zero values featured exclusively to
the ‘main’ function in the module ‘sample.c’. No other
zero values in any other modules/functions were
reported. There is a simple explanation for this feature
of main. A main function will differ from a ‘regular’
function in terms of the number of declarations and
types of variables and, in particular, when considering
the formula for Overlap – the lack of use of output
(return) types may be a bias. Put another way, main is a
special type of function and is unlikely to have the
same type and distribution of variables and statements
as a more ‘regular’ function.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Function

O
ve
rl
ap
va
lu
e

Figure 4. Overlap values (fault-prone)

Fig. 5 shows the values of the Overlap metric for fault-
free functions. The values in Fig. 5 are far more
polarized than those in Fig. 4. There are significantly
more metric values close to, or with values of ‘1’
relative to the proportion in Fig. 4. It is also interesting
that the number of zero values in Fig. 5 is larger than
that in Fig. 4. Scrutiny of the source data revealed that
the zero values for Overlap shown in this figure are
actually a ‘superset’ of the small set of zero values
shown in Fig. 4, but only start to feature at a later
version of the system. These zero values are exclusive
to the ‘main’ function in the ‘sample.c’ module. From
an evolutionary perspective, this is an interesting
system characteristic. The values of the Overlap metric,
in this case, indicate that significant maintenance effort
may have been applied to the main function over the
course of the versions studied. This claim is made

purely on the basis that in earlier, fault-prone versions
(i.e., versions 2&3) of Barcode, there were only 8 zero
values; in later versions of fault-free functions (3, 4,
5&6) there were 24 zero values. In other words, as the
Barcode system has evolved, the function main appears
to have been modified significantly and that these
modifications have been reflected in more zero Overlap
values. The Overlap metric may therefore assist in
identifying highly-changed functions as opposed to
fault-prone functions.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200

Function

O
ve
rl
ap

va
lu
e

Figure 5. Overlap values (fault-free)

Table III shows the distribution of Overlap values
for fault-prone and fault-free modules. The contrast
between the profile in Table 3 and that in Table 2 (for
Tightness) suggests that a high value of Overlap is
found for both fault-prone and fault-free functions.

TABLE III. FREQUENCY OF OVERLAP VALUES

Range/Category 0 –
0.199

0.2 –
0.399

0.4 –
0599

0.6-
0.799

0.8-
1.00

Fault-prone 87 34 46 81 124

Fault-free 33 12 13 25 67

Fig. 6 shows the values of Overlap for fault-free
versus fault-prone functions (c.f. Fig. 3 for the
Tightness metric).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Overlap (fault-prone)

O
ve
rla
p
(fa
ul
t-f
re
e)

Figure 6. fault-prone vs. fault-free (Overlap)

7

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

The differences between the two sets of metrics
are evident from the respective scatter plots. The fault-
prone Overlap values appear to be either very high or
very low. The values of the fault-free functions, on the
other hand, are more evenly distributed. Further
analysis of the data revealed that Overlap values for
fault-prone functions tended to be higher in earlier
versions of Barcode and then rapidly decreased
thereafter; the values of Overlap for fault-free functions
were far more evenly distributed from an evolutionary
perspective. One conclusion that we draw from the prior
analysis is that the ‘smoother’ profile for the fault-free
functions, given by the Overlap metric values, may
actually be a contributing factor to the extent of their
lack of fault-proneness. This would also make sense
from a maintenance point of view, since a function
whose Overlap value fluctuates wildly over time is
likely to have been the subject of significant variable
modification, addition and deletion (or combinations of
the three) in that period. Tightness seems to have more
influence on the fault-proneness of a function – and
Overlap on its changeability. In terms of the original
research question, only one of the slicing metrics
(Tightness) seems to display a correspondence with
faults in a function and this is related to the distribution
and interaction of variables given by the slice
intersection.

D. Tightness versus Overlap

The range of the values found for Tightness and
Overlap is also a notable feature of the analysis.
Scrutiny of the source data and Figs. 1 to 6 shows that
Overlap, in most cases, is always approximately 0.2 in
excess of the value of Tightness. This explains why in
Fig. 1 there are a high number of zero (or close to zero)
values which are not evident in Fig. 4, for example.
This also explains the relatively large number of ‘1s’
for the Overlap metric in Figs. 4&5 when compared
with Figs. 1&2. The data in the study by Meyers and
Binkley [23] (which also used Barcode) showed this
relationship. Fig. 7 Tightness and Overlap metrics on
the same line graph and illustrates the extent of the
correlation between the two metrics.

R2 = 0.607

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Tightness value

O
ve
rl
ap
va
lu
e

Figure 7. Tightness versus Overlap (fault-prone)

As well as the number of zero or close to zero
values for the two metrics, the frequency of ‘1s’ in each
of Figs. 1-6 is also worth exploring. From the definition
of the Tightness metric, a value of one is obtained
when the value of SLint equals the size of the module.
For fault-prone modules, we found that no functions
had a Tightness value of ‘1’. For the same set of data,
there were 76 values of ‘1’ in the Overlap metrics. For
fault-free modules, there were just 2 Tightness values
of ‘1’ and 41 values of 1 for Overlap. This clearly
shows the bias of Overlap in terms of generally
producing higher values than those of Tightness. A
further characteristic of Figs. 1-6 is the occurrence of
small ‘clusters’ of metric values in the same region of
the graph. For example, visual inspection of Fig. 1
shows one grouping of values on the 0.4 boundary and
another grouping just above the 0.4 boundary. Equally,
Fig. 2 shows one large grouping which extends just
below and above the 0.2 boundary. This was an
unexpected feature to emerge from our analysis and is a
feature of both fault-prone and fault-free functions.
Scrutiny of the source data revealed that these clusters
were due to single functions whose values for
Tightness and Overlap changed very little over the
course of the versions studied. These small clusters
might provide opportunities for reengineering or even
refactoring [17] if the metric values are considered too
small. For a fault-prone function exhibiting these
characteristics, it might be worth targeting these
clusters, especially if, as we hypothesized earlier, low
Tightness values might be a contributing feature to a
fault-prone function.

E. Statistical Analysis

Finally, to determine if there were statistically
significant differences between the two groups (i.e.,
Tightness (fault-prone vs. fault-free) and Overlap
(fault-prone vs. fault-free)), we ran Wilcoxon’s signed
rank test [27] and found the Tightness categories (fault-

8

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

prone vs. fault-free) to be significant at the 5% level
(Z= -2.09). The same test for the Overlap categories,
however, revealed significance at the 10% level only
(Z=-1.78). In other words, there is significant
difference between the two categories for Tightness,
but not as strongly for Overlap. Spearman’s and
Kendall’s non-parametric tests showed a significant,
negative correlation for Tightness at the 1% level; for
Overlap, no significant correlation was observed. Both
of these results lend further credibility to the claim that
the Tightness (but not the Overlap) metric produces
significantly different values for fault-prone functions
than for fault-free functions and that, as a result, it
might offer some predictive capability.

F. Fault-prone functions (evolution)

One criticism that could be leveled at the study is
that while we have studied the two metrics and their
values, this tells us nothing about the propensity for
fault-prone functions as the Barcode system evolved. In
theory, we might expect a system to become more
fault-prone as it evolves and as code ‘decay’ becomes a
feature of the system due to continued maintenance.
Fig. 8 shows the trend in fault-prone functions over the
19 versions of barcode studied where at least one fault-
prone function occurred (N.b. 6 versions of Barcode
had zero identified fault-prone functions. One theory
for the ‘peak and trough’ distribution evident in Fig. 8
is that after an initial ‘flurry’ of a relatively large
number of fault-prone functions in early versions due to
changes in requirements, the system then recovers
(given by a fall in the number of fault-prone functions)
before faults begin to re-appear. Effort is applied again
to address the second wave of faults before the system
starts to stabilize.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13

Version

N
o.
fa
ul
t-p
ro
ne
m
od
ul
es

Figure 8. Fault-prone functions (evolutionary)

Consistent application of re-engineering or refactoring
[17] over versions can often be the cause of such a
fluctuating trend.

V. CONCLUSIONS

In this paper, we described an empirical study of the
relationship between two metrics for program slicing
and the faults generated by the functions of Barcode.
We explored, using two metrics (Tightness and
Overlap) and fault data extracted from the logs of the
Barcode system, whether the two slicing metrics could
illuminate features of either fault-prone or fault-free
functions. We found that the low values of the
Tightness metric showed some promise in terms of its
ability to highlight fault-prone functions. The Overlap
metric on the other hand was found to be useful for
highlighting maintenance activity. Statistical support
showed that there was a significant difference between
the Tightness metrics for fault-prone and fault-free
functions. One avenue of immediate future research
would be to compare the results found in this paper
with a closed-source, proprietary system. We accept
that the analysis and results are presented for one
system only and this presents a threat to the validity of
the study. We therefore encourage replication and
further studies in this area; to that end the data used in
this study is available upon request of the authors.

ACKNOWLEDGEMENT
The research is supported by the UK Engineering and
Physical Sciences Research Council (EPSRC)
(EP/E055141/1).

REFERENCES
[1] Bansiya, J., Etzkorn, L., Davis, C., and Li, W. A class cohesion
metric for object-oriented designs. Journal of Object-Oriented
Programming 11(8), pp. 47-52, 1999.
[2] Basili, V., Briand, L., and Melo, W. A validation of object-
oriented design metrics as quality indicators, IEEE Trans. on
Software Engineering 22(10), 751-761, 1996.
[3] Bieman, J., and Kang, B.-K. Cohesion and reuse in an object-
oriented system. Proceedings of ACM Symposium on Software
Reusability, Seattle, Wash., pp. 259-262, 1995.
[4] Bieman, J., and Ott, L. Measuring functional cohesion. IEEE
Trans. on Software Eng. 20, 8 (1994), pp. 644-657.
[5] Binkley, D. Gold, N. and Harman, M. An empirical study of
static program slice size. ACM Trans. Software Engineering
Methodology (TOSEM) 16(2):1-32, 2007.
[6] Binkley, D., Harman, M., and Krinke, J., Empirical study of
optimization techniques for massive slicing. ACM Trans. Program.
Lang. Syst. 30(1): (2007)
[7] Binkley D and Harman M., Locating dependence clusters and
dependence pollution, IEEE International Conference on Software
Maintenance, Budapest, Sept. 2005 pages 177-186.

9

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

[8] Binkley, D., Harman, M., Raszewski, I., and Smith, C. An
empirical study of amorphous slicing as a program comprehension
tool. Proc. of the Intl. Workshop on Program Comprehension,
Limerick, Ireland, pp. 161-170, 2000.
[9] Bowes, D., Counsell, S and Hall, T., Calibrating program slicing
metrics for practical use, Proceedings of TAIC PART, Windsor, UK,
2008, Computer Society Press.
[10] Briand, L., Daly, J., and Wust, J. A unified framework for
cohesion measurement in object-oriented systems. Empirical
Software Engineering Journal 3(1), 65-117, 1998.
[11] Chidamber, S., and Kemerer, C. A metrics suite for object
oriented design. IEEE Trans. on Soft. Eng. 20(6) (1994), 467-493.
[12] www.grammatech.com/products/codesurfer/
[13] Counsell, S., Swift. S., and Crampton J. The Interpretation and
Utility of Three Cohesion Metrics for Object-Oriented Design. ACM
Trans. on Software Eng. and Methodology, 15(2):123 – 149, 2006.
[14] Counsell, S., Bowes D., and Hall T., Evolutionary Cohesion
Metrics: The Empirical Contradiction. Proceedings of The
Psychology of Prog.Interest Group (PPIG), Open University, January
2009.
[15] El Emam, K., Benlarbi, S., Goel, N., Rai, s., The Confounding
Effect of Class Size on the Validity of OO Metrics. IEEE Trans. Soft
Eng, 27(7):630-650 (2001).
[16] Fenton, N., Pfleeger, S. Software Metrics, A Rigorous and
Practical Approach Thomson Intl. Comp. Press, (1996).
[17] Fowler, M. Refactoring (Improving the Design of Existing
Code). Addison Wesley, 1999.
[18] Gold, N., Harman, M., Binkley, D., Hierons, R., Unifying
program slicing and concept assignment for higher-level executable
source code extraction. Softw., Pract. Exp. 35(10): 977-1006 (2005).
[19] Harrison, R, Counsell, S and Nithi, R. An Evaluation of the
MOOD Set of Object-Oriented Software Metrics, IEEE Trans. on
Soft. Engineering, vol. 24(6), pp. 491-496, 1998.
[20] Horwitz, S, Reps, T. and Binkley, D., Interprocedural Slicing
Using Dependence Graphs. ACM Transactions on Programming
Language and Systems, 12(1): 26-60, 1990.
[21] Kitchenham B., Pfleeger S. L., and Fenton, N., Towards a
Framework for Software Measurement Validation, IEEE Trans. on
Software Engineering, 21(12), pp. 929-944, 1995.
[22] Meyers, T and Binkley, D. Slice-based Cohesion Metrics and
Software Intervention, Proceedings Working Conference on Reverse
Engineering, Delft, Netherlands, pages 256-265.
[23] Meyers, T. and Binkley, D. An empirical study of slice-based
cohesion and coupling metrics. ACM Trans. on Software
Engineering and Methodology, 17(1), 2007.
[24] Ott L, Thuss J., (1993) Slice based metrics for estimating
cohesion; Proc Software Metrics, 71–81, Baltimore, US.

[25] Ott L. and Thuss, J., The relationship between slices and
module cohesion. ICSE Proceedings, Pittsburgh, US, 1989, pages
198-204.
[26] Pan, K., Kim, S., Bug Classification Using Program Slicing,
Prcoeedings of IEEE Workshop on Source Code Analysis and
Manipulation, Philadelphia, US, 2006, pages 31-42.
[27] Snedecor, G., and Cochran, W. Statistical Methods, 8th ed. Iowa
State University Press, Ames, Iowa, 1989.
[28] Stevens, W., Myers, G., and Constantine, L. Structured design.
IBM Systems Journal 13, 2 (1974), 115-139.
[29] Weiser, M. Program slicing. Proceedings Int. Conf on Soft
Eng., San Diego, 1981. IEEE Press, pp. 439-449.
[30] Weiser M (1982) Programmers use slices when debugging,
Comm. of the ACM, 25(7):446-452, July 1982
[31] Yourdon, E., and Constantine, L. Structured Design. Prentice
Hall, Englewood Cliffs, New Jersey, 1979.

APPENDIX A - Function slices taken from [22]

Function SLsmallest SLlargest SLint
main()
{
int i;
int smallest;
int largest;
int A[10];

for (i=0; i <10; i++)
{

int num;
scanf(“%d”, &num);
A[i] = num;

}

smallest = A[0];
largest=smallest;

i=1;
while (i <10)
{

if (smallest > A[i])
smallest = A[i];

if (largest < A[i])
largest = A[i];

i = i +1;
}

printf(“%d \n”, smallest);
printf(”%d \n”, largest);
}

|
|

|

|

|
|
|

|

|
|

|
|

|

|

|
|
|
|

|

|
|
|

|
|

|
|

|
|

|

|

|
|

|

|

|
|
|

|

|
|

|

Length =19 14 16 11

10

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 18,2010 at 09:33:48 EDT from IEEE Xplore. Restrictions apply.

