
Comparing the performance of fault prediction models
which report multiple performance measures:

recomputing the confusion matrix

David Bowes
Science and Technology

Research Institute
University of Hertfordshire

College Lane
Hatfield, AL10 9AB

United Kingdom
d.h.bowes@herts.ac.uk

Tracy Hall
Department of Information
Systems and Computing

Brunel University
Uxbridge

Middlesex, UB8 3PH
United Kingdom

tracy.hall@brunel.ac.uk

David Gray
Science and Technology

Research Institute
University of Hertfordshire

College Lane
Hatfield, AL10 9AB

United Kingdom
d.gray@herts.ac.uk

ABSTRACT
There are many hundreds of fault prediction models pub-
lished in the literature. The predictive performance of these
models is often reported using a variety of different mea-
sures. Most performance measures are not directly compara-
ble. This lack of comparability means that it is often difficult
to evaluate the performance of one model against another.
Our aim is to present an approach that allows other re-
searchers and practitioners to transform many performance
measures back into a confusion matrix. Once performance
is expressed in a confusion matrix alternative preferred per-
formance measures can then be derived. Our approach has
enabled us to compare the performance of 601 models pub-
lished in 42 studies. We demonstrate the application of our
approach on several case studies, and discuss the advantages
and implications of doing this.

1. INTRODUCTION
Imagine the following simplified scenario:

You are a practitioner thinking about starting to use fault
prediction models. You hope that such models will help you
to identify the most fault prone parts of your system. You
then plan to target your test effort on those parts of the sys-
tem. You think that doing this may reduce the faults deliv-
ered to your users and reduce the cost of your system. You
are not an expert in fault prediction models yourself, but you
have seen many such models published in the literature. You
identify several published models that have been developed in
a similar software development context to your own. You
decide to evaluate the performance of these models with a
view to trying out the top three models in your project. How-
ever when you look at the model performance figures they are
reported using a variety of different performance measures.

Several studies report Precision1 and Recall. Some report
Error Rate. Some report pd and pf. Others report Popt.
A few report Area Under the Curve of the Receiver Opera-
tor Curve. One provides a confusion matrix. It is beyond
your expertise to identify a comparative point of reference
amongst these different measures. You struggle to under-
stand how the overall performance of a model compares to
the others. And so you decide that fault prediction models
are too complicated to use and abandon the idea.

This type of scenario may partially explain why the uptake
of fault prediction models is low in industry. This low uptake
is important as finding and fixing faults in code costs the
software industry many millions of dollars every year. Pre-
dicting effectively where faults are in code occupies many re-
searchers and practitioners. Our previous work [14] showed
that 208 software fault prediction studies were published be-
tween January 2000 and December 2010. These 208 studies
contained many hundreds of fault prediction models.

Despite this significant research effort it remains difficult or
inconvenient to compare the performance of these models.
The difficulty in comparing predictive performance means
that identifying which fault prediction models perform best
in a given context is complex. This complexity in comparing
the performance of models is not only a likely barrier to
practitioners using fault prediction models, but also makes
it difficult for researchers to meta-analyse fault prediction
studies [8]. This lack of opportunity to meta-analyse limits
the ability of the fault prediction community to mature, as
we are not building an evidence base that is as useful as it
should be.

One of the difficulties when comparing the performance of
fault prediction models stems from the many performance
measurement schemes devised, used and reported by stud-
ies. Many of the schemes used by studies highlight differ-
ent aspects of predictive performance. For example, Men-
zies et al. [25] use pd and pf to highlight standard predic-
tive performance, while Mende and Koschke [23] use Popt
to assess effort-awareness. The different performance mea-
surement schemes used mean that directly comparing the

1Definitions of particular measures are given in Section Two.



performance reported by individual studies is difficult and
potentially misleading. Such comparisons cannot compare
like with like as there is no adequate point of comparison.

It is perfectly legitimate for studies to report different per-
formance measures. Studies may be interested in report-
ing prediction models with particular qualities. Some stud-
ies may be interested in reporting models which reduce the
amount of effort wasted on code predicted as faulty which
turns out not to be faulty. In these cases, measures based on
the number of false positives will be of most interest. Other
studies may be developing models focused on identifying the
maximum number of faults in the system. In which case
measures related to the number of true positives are likely
to be the performance focus. The qualities needed in a fault
prediction model depend on, for example, application do-
main. Models used in the safety critical domain are likely to
need different predictive qualities to those in other domains.
However developers and potential users of models may want
to compare performance in terms of a particular predictive
quality. This requires a conversion of performance figures
from those reported to those reflecting the predictive qual-
ity of interest. The ability to convert predictive measures in
this way allows the predictive performance of a wide range
of models to be compared.

We previously found [14] that Precision and Recall were the
most commonly reported predictive performance measures
used with binary2 fault prediction models (e.g. [1, 6, 11,
20]). However, many studies provide only limited predictive
performance data, often only reporting performance using
their preferred performance measures. This preferred data
often represents the performance of specific models in the
most positive light. An issue also highlighted by Zeller et al.
[34]. This preferred measurement data may be unusual and
rarely reported in other studies. For example, only a few
studies report the use of Error Rate [19, 29, 33] or Popt
[23]. Without additional performance data that is more
commonly reported by studies, it is difficult to satisfacto-
rily compare the predictive performance of such models. A
common point of comparison is needed.

The confusion matrix is usually at the centre of measuring
the predictive performance of models (the confusion matrix
is discussed in detail in Section Two). Most other predic-
tive performance measures are calculated from the confusion
matrix. The confusion matrix is a powerful point of com-
parative reference. All models reporting binary results can
have their predictive performance expressed via a confusion
matrix [26]. This means that it is a relatively universal com-
parative basis. It is also a simple and understandable way to
show predictive performance. More sophisticated measures
of predictive performance can be calculated from a confusion
matrix. The confusion matrix provides measurement flexi-
bility as specific measures may be derived from the confusion
matrix which evaluate particular model qualities. The im-
portance of the confusion matrix is discussed in detail by

2Binary models are those predicting that code units (e.g.
modules or classes) are either fault prone (fp) or not fault
prone (nfp). Binary models do not predict the number of
faults in code units. In this paper we restrict ourselves to
considering only binary models that are based on machine
learning techniques.

Pizzi et al. [28].

In this paper we present a process by which we transform a
variety of reported predictive performance measures back to
a confusion matrix [5]. These measures cover most of those
reported by the 208 fault prediction studies we previously
reviewed [14]. We illustrate this process by constructing the
confusion matrix for a number of published models. From
these confusion matrices we compute a range of alternative
performance measures. We finally evaluate the use of our
transformation process.

In Section Two we describe the measurement of predictive
performance by discussing in detail the basis of the confusion
matrix and related compound measures of performance. In
Section Three we present our method of transforming a va-
riety of performance measures to the confusion matrix and
explain how alternative measures can then be derived from
this matrix. Section Four provides the results of worked
examples from the literature in which we transform the re-
ported performance measures back to the confusion matrix.
Section Five identifies the threats to the validity of the study.
Section Six discusses the implications of transforming per-
formance measures. We conclude and summarise in Section
Seven.

2. MEASURING PREDICTIVE
PERFORMANCE

This section is based on several previous studies which pro-
vide an excellent overview of measuring the predictive per-
formance of fault models (e.g. [26], [16] and [22]).

2.1 The Confusion Matrix
The measurement of predictive performance is often based
on the analysis of data in a confusion matrix (see [26]). Pizzi
et al. [28] discuss the confusion matrix in more detail. This
matrix reports how the model classified the different fault
categories compared to their actual classification (i.e. pre-
dicted versus observed). This is represented by four pieces
of data:

- True Positive (TP): An item is predicted as faulty and
it is faulty

- False Positive (FP): An item is predicted as faulty and
it is not faulty

- True Negative (TN): An item is predicted as not faulty
and it is not faulty

- False Negative (FN): An item is predicted as not faulty
and it is faulty

Table 1 shows the structure of a confusion matrix.

Table 1: Confusion matrix
observed true observed false

predicted true TP FP
predicted false FN TN



Table 2: Confusion matrix with example summed
instances

observed true observed false
predicted true 33 2
predicted false 17 98

In a confusion matrix, it is normal for the sum of the in-
stances of each possibility to be reported, see Table 2.

Few studies report complete confusion matrices for their ex-
periments. Studies that do include [27], [36] and [18]. Most
studies prefer to report a sub-set of the compound perfor-
mance measures shown in Table 3.

2.2 Compound Measures
Many performance measures are related to components of
the confusion matrix. Table 3 shows how some commonly
used performance measures are calculated relative to the
confusion matrix.

Table 3 shows that Accuracy is the proportion of units cor-
rectly classified. Table 3 also shows that Recall (otherwise
known as the true positive rate, probability of detection (pd)
or Sensitivity) describes the proportion of faulty code units
(usually files, modules or packages) correctly predicted as
such. Precision describes how reliable a prediction is in
terms of what proportion of code predicted as faulty actually
was faulty. Both Recall and Precision are important when
test sets are imbalanced (see the following sub-section), but
there is a trade-off between these two measures (see [16] for
a more detailed analysis of this trade-off). An additional
composite measure is the false positive rate (pf) which de-
scribes the proportion of erroneously predicted faulty units.
The optimal classifier would achieve a pd of 1, Precision of
1, a pf of 0 and an f-measure of 1. The performance measure
balance combines pd and pf. A high Balance value (near 1)
is achieved with a high pd and low pf. Balance can also be
adjusted to factor in the cost of false alarms which typically
do not result in fault fixes. Matthews Correlation Coefficient
(MCC) is a measure rarely used in software fault prediction
[3]. MCC is more commonly used in medical research and
bioinformatics e.g. [3, 30]. It is a Chi Square based perfor-
mance measure on which all four quadrants of the confusion
matrix are included in the calculation. MCC results are the
equivalent of reporting R2 in regression modelling and re-
sults range from -1 to 1 (with 0 indicating random results).
Popt defined by Mende and Koschke [23] is a an effort aware
performance measure which ranges between 0 and 1 with 1
being desirable.

The Receiver Operator Curve (ROC) is an important mea-
sure of predictive performance. When the combinations of
Recall and pf for a series of experiments are plotted they pro-
duce a ROC. It is usual to report the area under the curve
(AUC) as varying between 0 and 1, with 1 being the ideal
value. Because the AUC is a result of a series of experiments
where the meta-parameters are varied, it is not possible to
compute the confusion matrix from AUC and visa versa3.

3Although AUC is a valuable measure of performance, it is

Previous studies have critiqued the use of these various mea-
sures of performance. For example, Zhang and Zhang [35],
Menzies et al. [24] and Gray et al. [13] discuss the use of
precision. However such a critique is beyond the scope of
the work reported here.

2.3 Imbalanced Data
Substantially imbalanced data sets are commonly used in
fault prediction studies (i.e. there are usually many more
non-faulty units than faulty units in the data sets used in
fault prediction) [7], [35]. An extreme example of this is
seen in the NASA data set PC2, which has only 0.4% of
data points belonging to the faulty class (23 out of 5589
data points). This distribution of faulty and non-faulty units
has important implications in fault prediction. Imbalanced
data can strongly influence the suitability of predictive per-
formance measures. Measures which favour the majority
class (such as Accuracy and Error Rate) are not sufficient by
themselves [15]. More appropriate measures for imbalanced
data sets include: Precision, Recall, f-measure, MCC and
G-mean [15]. Consequently data imbalance is an important
consideration in our method of recomputing the confusion
matrix4.

3. OUR METHOD OF RECOMPUTING THE
CONFUSION MATRIX

To compare the results of one study with the results of an-
other we recompute the confusion matrix for each study and
then calculate the preferred compound measures from this.
Zhang and Zhang [35] did something similar to this by re-

computing Precision for Menzies et al.’̇s [25] study which
originally reported pd and pf. Our approach is motivated
by Zhang and Zhang’s [35] work. We now describe the pro-
cess by which transformation from a variety of compound
measures to the confusion matrix can be achieved.

3.1 Creating a Frequency-Based Confusion Ma-
trix

The precise method needed to recompute the confusion ma-
trix varies slightly depending upon the original measures
reported. In most cases the first thing that needs to be
done is that we produce a frequency-based confusion ma-
trix. These confusion matrices are different from instance
based confusion matrices (an example of which was shown
in Table 2). Table 4 shows the frequencies (or proportions
for each confusion matrix quadrant) based on the instances
in Table 2. These frequencies are derived by dividing the
instances in each quadrant by the total number of instances
in the matrix. This shows the relative proportion each quad-
rant represents of the whole confusion matrix. From now on
we will append f to TP , TN , FP and FN to distinguish
frequency values from instance based values.

3.2 Calculating Faulty and Non-Faulty Data
Distributions

beyond the scope of our work as it is not possible to con-
struct a confusion matrix from AUC data.
4Data imbalance also has serious implications for the train-
ing of prediction models. Discussion of this is beyond the
scope of this work (instead see [13], [35], [31], [4] and [17]).



Table 3: Compound Performance Measures

Measures Defined As

Accuracy / Correct Classification Rate (CCR)
TP + TN

TP + TN + FP + FN

Error Rate
FP + FN

TP + TN + FP + FN

Recall / True Positive Rate / Sensitivity / Probability
of Detection (pd)

TP

TP + FN

True Negative Rate / Specificity
TN

TN + FP

False Positive Rate / Type I Error Rate / Probability
of False Alarm (pf)

FP

TN + FP

False Negative Rate / Type II Error Rate
FN

FN + TP

Precision
TP

TP + FP

F-Measure / F-Score
2×Recall × Precision

Recall + Precision

Balance 1−
√

(0− pf)2 + (1− pd)2√
2

G-mean
√
Recall × Precision

Matthews Correlation Coefficient (MCC)
TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)



Constructing a frequency based confusion matrix is possible
when the class distribution (i.e. the proportion of faulty
versus non-faulty units) is reported5. To do this we use d as
the frequency of the faulty units, where:

d =
TN + FN

TN + TP + FP + FN
(1)

Applying (1) to the example instances reported in Table 2
would result in:

n = 33 + 17 + 2 + 98, d =
33 + 17

n
= 0.3333

This shows that given the confusion matrix shown in Table
2, 33% of the units in the data set on which the model was
applied, were faulty.

Table 4: Frequency Confusion Matrix
observed true observed false

predicted true 0.2200 0.0133
predicted false 0.1133 0.6533

TNf + TPf + FPf + FNf = 1
d = 0.2200 + 0.1133 = 0.3333

3.3 Transforming Specific Compound Measures
A wide variety of compound measures are reported by stud-
ies. Our approach is successful when a particular sub-set of
these measures is reported by studies. Table 5 shows the pre-
requisite combinations of performance measures that must
be available.

Each of these combinations of measures requires a specific
method by which to recompute the confusion matrix. For-
mulae for the most common measures reported are now de-
scribed.

1. Transforming Precision, Recall and pf

We first need to know the frequency of the true class d.

1 = TPf + TNf + FPf + FNf (2)

d = TPf + FNf (3)

It then becomes possible to calculate TPf , FPf , TNf and
FNf as follows:
Given pf and d

TNf = (1− d)(1− pf) (4)

FPf = (1− d)pf (5)

Given Recall(r) and d

TPf = d× r (6)

FNf = d(1− r) (7)

5When this class distribution is not provided it is often pos-
sible to calculate the proportion of faulty units in a data
set.

Given FNR(TypeII(t2)), pf and d we already have (2), (4)
and (5)

FNf = t2× d (8)

TPf = 1− FNf − TNf − FPf (9)

Given Precision(p), Recall(r) and d we already have (2),
(6) and (7)

FPf =
TPf (1− p)

p
=

d(1− p)r

p
(10)

TNf = 1− FPf − FNf − TPf (11)

2. Transforming ErrorRate(er), TypeII(t2) and pf

d =
er − pf + pf × er

t2
(12)

which can then be used with (4),(5),(8) and (9)

3. Transforming Precision(p), Recall(r) and Accuracy(a)

d =
p(1− a)

p− 2pr + r
(13)

which can then be used with (6),(7),(10) and (11)

4. Transforming Accuracy(a), pf and FNR(TypeII(t2))

er = 1− a (14)

d =
er − pf

t2− pf
(15)

which can be used with (8) to give FNf and (5) to give FPf .

TPf = d(1− t2) (16)

which can be used with (11) to give TNf .

We have automated these conversations by developing a
tool6. This tool allows individual performance measurement
data to be input and will automatically recompute the con-
fusion matrix by iterating over the the equations until no
extra performance measures can be derived.

4. CONSTRUCTING THE CONFUSION MA-
TRIX FOR SOME EXAMPLE STUDIES

We have transformed the predictive performance data pro-
duced by 601 models reported in 42 published studies. A list
of these studies is provided in the Appendix. Space restric-
tions make it is impossible to report the detail for all these
transformations. Consequently in this section we present
transformations for four examples. We chose these four ex-
amples to illustrate recomputing the confusion matrix from
a range of different original measures.

4.1 Case Studies
Table 6 illustrates the original performance measurement
data reported by our four case study papers. Table 6 shows
that a wide range of different measurement data is reported

6This tool is available at:
https://bugcatcher.stca.herts.ac.uk/JConfusion/



Table 5: Pre-Requisite Combinations of Performance Measures for Re-Computing the Confusion Matrix.
Fault Frequency Type I Type II Precision Recall Accuracy pf Error Rate Specificity

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

4 4 4

NB this is not an exhaustive list. For example, it is possible to calculate d by dividing the number of defective instances by
the total number of instances.

Table 6: Reported Performance Measurement Data

Study pd pf Error Rate Type I Type II Precision Recall Accuracy Total Instances Faulty Instances
[19] 0.3134 0.3127 0.2826
[6] 0.682 0.621 0.641
[21] 0.471 0.0834 0.8515
[29] 0.1615 0.1304 0.2830 520 106

by these four papers. Given this range it is difficult to eval-
uate how the performance of these models compares against
each other.

We have recomputed the confusion matrix for these four case
studies (shown in Table 7). Based on this confusion matrix
data, we have computed the f-measure and MCC data for
each case study (also shown in Table 7). It is now possible to
comparatively evaluate the predictive performance of these
case studies using this common set of data7.

5. THREATS TO VALIDITY
There are internal and external validity issues that need to
be considered when using our approach to recomputing the
confusion matrix.

5.1 Internal Validity
The impact of cross-validation. Performance data re-
ported are usually based on some form of cross-validation.
This means that the numbers reported are usually average
figures across a specific number of folds and / or experi-
ments. This averaging process may introduce some minor
inaccuracies into our calculations8. The study by Elish and
Elish [12] provide a clearer understanding of the variation

7The aim of this paper is to provide an approach by which
others may perform comparative analysis of fault prediction
models. A comparative analysis is complex and requires
many factors to be taken into account, e.g. the aims of the
predictive model. It is beyond the scope of this paper to
provide a full comparative analysis of studies against each
other.
8An examination of the code for LibSVM shows that the
performance measure is an average value of the performance
measure for each fold.

in performance values across a series of experiments. The
results of rounding errors and variations in performance val-
ues helps to explain the negative TNf value computed in
Table 11.

Divide by zero problems. Several of our formulas are
based on divisions. Where some figures are very similar we
encounter divide by zero problems. This division problem is
exacerbated by rounding of very small numbers. These small
numbers may be very different, but when rounded become
the same number. Such numbers suffer from divide by zero
issues.

Data uncertainty. Identifying the balance of faulty and
non-faulty units is an important part of our recomputing
method. However in a few studies there is inconsistency in
the class distribution figures. For example, although an au-
thor may have cited a particular class distribution, when we
calculate the distribution figure inherent within the results
reported (i.e. via the calculation of d), the distribution is
different to that stated by the authors. Similarly in some
papers where the same data set has been used the distribu-
tion varies between experiments. This inconsistency casts
some uncertainty over the results in such cases. We sus-
pect that this distribution inconsistency is partly the result
of a particular machine learner dealing with the data that
it is processing differently to other learners, and partly the
result of studies not reporting the data pre-processing that
they have applied.

5.2 External Validity
Model tuning. Some models may have been developed
to maximise a particular quality (e.g. to reduce false pos-
itives). Such models are likely to perform best when their
performance is expressed using measures that are sympa-



Table 7: Computed Performance Measurement Data
Study TPf TNf FPf FNf f-measure MCC
[19] 0.0163 0.6710 0.3063 0.0064 0.0944 0.1288
[6] 0.3335 0.3075 0.1555 0.2035 0.6501 0.2845
[21] 0.0575 0.7940 0.0732 0.0646 0.4549 0.3755
[29] 0.1422 0.6963 0.1000 0.0615 0.6377 0.5381

thetic to the qualities for which the model has been built.
Interpreting the performance of such models via alternative
performance measures should be treated with caution.

6. DISCUSSION
The process of translating the performance measures re-
ported by studies to the confusion matrix reveals a variety
of performance issues with studies that we now discuss.

6.1 Erroneous Results
In some cases our translation to the confusion matrix demon-
strated that the original results reported by some studies
could not have been possible. For example we found an er-
ror in [32]. This error was revealed as our transformations
would not work correctly. As a result of this we emailed the
authors to clarify the problem. The authors confirmed that
a typographical error had crept into their final draft. False
Alarms were reported instead of False Positives. It is easy
for such errors to creep into published work, especially in
an area as complex as fault prediction. Without very care-
ful interpretation such errors can easily be missed and be
misleading.

6.2 Definitions of Measures
While performing our transformations we have had diffi-
culty in making sense of the figures reported in some studies.
The reason for this was that a number of studies have used
non-standard definitions for some well-known performance
measures (e.g. [36] does not use a standard definition of
Precision and [27] does not use the standard definitions of
Sensitivity and Specificity (in both cases, the issues were
confirmed by emailing the authors)). Although the defini-
tions used were given in the paper, it is difficult for a reader
to pick-up on the nuances of measurement definitions (usu-
ally provided via formulae). Consequent mis-understanding
could have serious implications for subsequent model users.

6.3 Reporting Performance Based on Predict-
ing Non-Faulty Units

Some papers have reported performance measures based on
predicting the majority (non-faulty class) rather than the
minority (faulty) class. In some of these cases it is also not
made clear that the predictive performance is on the major-
ity class. These issues can be very misleading when trying
to evaluate predictive performance. For example, Elish and
Elish [12] report a very influential fault prediction study us-
ing Support Vector Machines (SVM). Their study has been
cited more than 60 times and is considered a pivotal paper
in the use of SVMs. Table 8 shows the very good Accuracy,
Precision and Recall performances reported by Elish and
Elish for SVM using datasets cm1, pc1, kc1 and kc3 (taken
from [12]).

Our process to recompute the confusion matrix would not
work on these figures when we assumed that the values for
Precision and Recall were based on the non-faulty class. Ta-
bles 9 and 10 show our workings for this recomputation.
Our workings suggest that Elish and Elish have reported the
performance of their SVM models based on predicting non-
faulty units rather than faulty units. Since the vast majority
of units in data sets are non-faulty (ranging between 84.6%
and 93.7% in their case), predicting the majority class is very
easy and so high performance figures are to be expected.
Such models are not useful. Our findings are complemen-
tary to those of several other authors who report problems
reproducing the high predictive performances reported by
Elish and Elish when using their SVM settings. For exam-
ple [2] reports that most papers report a far lower Recall
value. [9] and [10] used the same SVM settings. [9] reported
Specificity and Sensitivity values and [10] reported Precision
and Recall for both the faulty and non-faulty classes which
are similar to our recomputed values. Despite emailing El-
ish and Elish several times we were unable to get a reply
confirming the basis of their performances.

Table 10: SVM Confusion Matrix of the Majority
Class

Dataset TPf FNf FPf TNf

cm1 0.9037 0.0000 0.0931 0.0032
pc1 0.9261 0.0049 0.0641 0.0049
kc1 0.8412 0.0047 0.1490 0.0051
kc3 0.9330 0.0039 0.0633 -0.0002*
* demonstrates that rounding errors occur.

Using our technique it is possible to calculate the Precision
and Recall of the faulty units in Elish and Elish’s study.
Table 11 shows the results of this calculation. Table 11
suggests that the performance of the SVMs in the Elish and
Elish study is much less positive. Table 11 shows that f-
measure ranges from 0.0 to 0.12. This is compared to their
original maximum f-measure of 0.96.

Table 11: Performance Measures for the Faulty
Class using the Values from Table 10

Dataset Accuracy Precision Recall f-measure
cm1 0.9069 1.0000 0.0332 0.0643
pc1 0.9310 0.5000 0.0710 0.1244
kc1 0.8463 0.5204 0.0331 0.0622
kc3 0.9328 -0.0541 -0.0032 -0.0060



Table 8: Accuracy, Precision and Recall [12]
Dataset Accuracy Precision Recall

cm1 0.9069 0.9066 1.0000
pc1 0.9310 0.9353 0.9947
kc1 0.8459 0.8495 0.9940
kc3 0.9328 0.9365 0.9958

Table 9: Frequency of the Class Identified as “True” and the Frequency of the Faulty class
Dataset computed d 1 - computed d Reported fault frequency

cm1 0.9037 0.0963 0.097
pc1 0.9311 0.0689 0.069
kc1 0.8462 0.1538 0.154
kc3 0.9370 0.0630 0.063

7. CONCLUSION
The predictive performance of published fault prediction
models is expressed using a variety of different performance
measures. This makes it difficult to compare the perfor-
mance of published prediction models. We have presented
an approach that enables the recomputation of the confu-
sion matrix for studies originally reporting a variety of per-
formance measures. From the confusion matrix a range of
other performance measures can be calculated. Expressing
the performance of fault prediction models using a consistent
set of measures allows comparative analysis. Our approach
has several advantages, including that it:

• allows comparative analysis of a set of fault prediction
models in terms of a preferred predictive quality.

• makes meta-analysis possible across the many fault
prediction studies published.

• enables the validation of the performance figures re-
ported in published studies.

The advantages of our approach have benefits for fault pre-
diction researchers, practitioners and reviewers. Researchers
can use our approach to evaluate predictive performance
across sets of models and perform meta-analysis of these
models. An evidence base of fault prediction can be built
by researchers that will enable more informed future model
building research. Practitioners can express model perfor-
mance to reflect the qualities that they are interested in, for
example practitioners wanting a model that values finding as
many faults as possible might might predominately focus on
Recall. Practitioners are then in a more informed position
to select a model that is appropriate for their development
context. Reviewers of fault prediction studies can use our
process as a relatively easy way to check that no errors have
crept into fault prediction studies. Without our ‘ready reck-
oner’ checking performance figures in studies submitted for
review is difficult. Model builders could themselves use our
process as a ‘ready reckoner’ to check their own figures are
correct. Model builders and reviewers doing this checking
could improve the quality of the fault prediction work that
is published.

Overall the approach that we present could significantly im-
prove the quality of fault prediction studies and enable meta-
analysis across studies. Achieving this is very important as
it will help this research area to mature and grow. Such
maturation could ultimately expand the industrial uptake
of fault prediction modelling.

8. REFERENCES
[1] E. Arisholm, L. C. Briand, and M. Fuglerud. Data

mining techniques for building fault-proneness models
in telecom java software. In Software Reliability, 2007.
ISSRE ’07. The 18th IEEE International Symposium
on, pages 215 –224, nov. 2007.

[2] E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of
methods to build and evaluate fault prediction models.
Journal of Systems and Software, 83(1):2–17, 2010.

[3] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and
H. Nielsen. Assessing the accuracy of prediction
algorithms for classification: an overview.
Bioinformatics, 16(5):412–424, 2000.

[4] G. Batista, R. Prati, and M. Monard. A study of the
behavior of several methods for balancing machine
learning training data. ACM SIGKDD Explorations
Newsletter, 6(1):20–29, 2004.

[5] D. Bowes and D. Gray. Recomputing the confusion
matrix for prediction studies reporting categorical
output. Technical Report 509, University of
Hertfordshire, 2011.

[6] C. Catal, B. Diri, and B. Ozumut. An artificial
immune system approach for fault prediction in
object-oriented software. In Dependability of
Computer Systems, 2007. DepCoS-RELCOMEX ’07.
2nd International Conference on, pages 238 –245, june
2007.

[7] N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial:
special issue on learning from imbalanced data sets.
SIGKDD Explorations, 6(1):1–6, 2004.

[8] D. S. Cruzes and T. Dyb̊a. Research synthesis in
software engineering: A tertiary study. Inf. Softw.
Technol., 53:440–455, May 2011.

[9] A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz.
Predicting fault proneness of classes trough a
multiobjective particle swarm optimization algorithm.



In Tools with Artificial Intelligence, 2008. ICTAI ’08.
20th IEEE International Conference on, volume 2,
pages 387–394, 2008.

[10] A. B. de Carvalho, A. Pozo, and S. R. Vergilio. A
symbolic fault-prediction model based on
multiobjective particle swarm optimization. Journal of
Systems and Software, 83(5):868–882, 2010.

[11] G. Denaro and M. Pezzè. An empirical evaluation of
fault-proneness models. In Proceedings of the 24th
International Conference on Software Engineering,
ICSE ’02, pages 241–251, New York, NY, USA, 2002.
ACM.

[12] K. O. Elish and M. O. Elish. Predicting defect-prone
software modules using support vector machines.
Journal of Systems and Software, 81(5):649 – 660,
2008.

[13] D. Gray, D. Bowes, N. Davey, Y. Sun, and
B. Christianson. Further thoughts on precision. In
Evaluation and Assessment in Software Engineering
(EASE), 2011.

[14] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic review of fault prediction
performance in software engineering. Software
Engineering, IEEE Transactions on, PP(99):1, 2011.

[15] H. He and E. Garcia. Learning from imbalanced data.
IEEE Transactions on Knowledge and Data
Engineering, pages 1263–1284, 2008.

[16] Y. Jiang, B. Cukic, and Y. Ma. Techniques for
evaluating fault prediction models. Empirical Software
Engineering, 13(5):561–595, 2008.

[17] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto,
and K. Matsumoto. The effects of over and under
sampling on fault-prone module detection. In
Empirical Software Engineering and Measurement,
2007. ESEM 2007. First International Symposium on,
pages 196 –204, sept. 2007.

[18] A. Kaur, P. S. Sandhu, and A. S. Bra. Early software
fault prediction using real time defect data. In
Machine Vision, 2009. ICMV ’09. Second
International Conference on, pages 242–245. accept,
2009.

[19] T. Khoshgoftaar and N. Seliya. Comparative
assessment of software quality classification
techniques: An empirical case study. Empirical
Software Engineering, 9(3):229–257, 2004.

[20] A. Koru and H. Liu. Building effective
defect-prediction models in practice. Software, IEEE,
22(6):23 – 29, nov.-dec. 2005.

[21] O. Kutlubay, B. Turhan, and A. Bener. A two-step
model for defect density estimation. In Software
Engineering and Advanced Applications, 2007. 33rd
EUROMICRO Conference on, pages 322 –332, aug.
2007.

[22] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
Software Engineering, IEEE Transactions on,
34(4):485 –496, july-aug. 2008.

[23] T. Mende and R. Koschke. Effort-aware defect
prediction models. In Software Maintenance and
Reengineering (CSMR), 2010 14th European
Conference on, pages 107–116, 2010.

[24] T. Menzies, A. Dekhtyar, J. Distefano, and
J. Greenwald. Problems with precision: A response to
”comments on ’data mining static code attributes to
learn defect predictors’”. Software Engineering, IEEE
Transactions on, 33(9):637 –640, sept. 2007.

[25] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors.
Software Engineering, IEEE Transactions on, 33(1):2
–13, jan. 2007.

[26] T. Ostrand and E. Weyuker. How to measure success
of fault prediction models. In Fourth international
workshop on Software quality assurance: in
conjunction with the 6th ESEC/FSE joint meeting,
pages 25–30. ACM, 2007.

[27] G. Pai and J. Dugan. Empirical analysis of software
fault content and fault proneness using bayesian
methods. Software Engineering, IEEE Transactions
on, 33(10):675 –686, oct. 2007.

[28] N. Pizzi, A. Summers, and W. Pedrycz. Software
quality prediction using median-adjusted class labels.
In Neural Networks, 2002. IJCNN ’02. Proceedings of
the 2002 International Joint Conference on, volume 3,
pages 2405 –2409, 2002.

[29] N. Seliya, T. Khoshgoftaar, and S. Zhong. Analyzing
software quality with limited fault-proneness defect
data. In High-Assurance Systems Engineering, 2005.
HASE 2005. Ninth IEEE International Symposium
on, pages 89 –98, oct. 2005.

[30] Y. Sun, C. Castellano, M. Robinson, R. Adams,
A. Rust, and N. Davey. Using pre & post-processing
methods to improve binding site predictions. Pattern
Recognition, 42(9):1949–1958, 2009.

[31] B. Turhan, G. Kocak, and A. Bener. Data mining
source code for locating software bugs: A case study
in telecommunication industry. Expert Systems with
Applications, 36(6):9986–9990, 2009.

[32] T. Wang and W.-h. Li. Naive bayes software defect
prediction model. In Computational Intelligence and
Software Engineering (CiSE), 2010 International
Conference on, pages 1–4. accept, 2010.

[33] L. Yi, T. M. Khoshgoftaar, and N. Seliya.
Evolutionary optimization of software quality
modeling with multiple repositories. Software
Engineering, IEEE Transactions on, 36(6):852–864,
2010.

[34] A. Zeller, T. Zimmermann, and C. Bird. Failure is a
four-letter word: a parody in empirical research. In
Proceedings of the 7th International Conference on
Predictive Models in Software Engineering, Promise
’11, pages 5:1–5:7, New York, NY, USA, 2011. ACM.

[35] H. Zhang and X. Zhang. Comments on ”data mining
static code attributes to learn defect predictors”.
Software Engineering, IEEE Transactions on,
33(9):635 –637, sept. 2007.

[36] Y. Zhou and H. Leung. Empirical analysis of
object-oriented design metrics for predicting high and
low severity faults. Software Engineering, IEEE
Transactions on, 32(10):771 –789, oct. 2006.



APPENDIX
List of Papers from which we have Recomputed Confusion
Matrices.
E. Arisholm, L. C. Briand, and M. Fuglerud. Data mining techniques for build-

ing fault-proneness models in telecom java software. In ISSRE ’07. The 18th IEEE

Intern Symp on, pages 215 –224, 2007.

E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and compre-

hensive investigation of methods to build and evaluate fault prediction models.

Journal of Systems and Software, 83(1):2–17, 2010.

C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu. Putting it all

together: Using socio-technical networks to predict failures. In 20th International

Symposium on Software Reliability Engineering, pages 109–119. IEEE, 2009.

L. Briand, W. Melo, and J. Wust. Assessing the applicability of fault-proneness

models across object-oriented software projects. Software Engineering, IEEE Trans-

actions on, 28(7):706 – 720, 2002.

B. Caglayan, A. Bener, and S. Koch. Merits of using repository metrics in

defect prediction for open source projects. In FLOSS ’09. ICSE Workshop on, pages

31–36, 2009.

G. Calikli, A. Tosun, A. Bener, and M. Celik. The effect of granularity level on

software defect prediction. In Computer and Information Sciences, 2009. ISCIS 2009.

24th International Symposium on, pages 531 –536, 2009.

C. Catal, B. Diri, and B. Ozumut. An artificial immune system approach for

fault prediction in object-oriented software. In Dependability of Computer Systems,

2007. DepCoS-RELCOMEX ’07. 2nd International Conference on, pages 238 –245, 2007.

C. Cruz and A. Erika. Exploratory study of a uml metric for fault prediction.

In Proceedings of the 32nd ACM/IEEE Intern Conf on Software Engineering, pages 361–

364. 2010.

A. B. de Carvalho, A. Pozo, S. Vergilio, and A. Lenz. Predicting fault prone-

ness of classes trough a multiobjective particle swarm optimization algorithm.

In Tools with Artificial Intelligence, 2008. ICTAI ’08. 20th IEEE International Conference

on, volume 2, pages 387–394, 2008.

A. B. de Carvalho, A. Pozo, and S. R. Vergilio. A symbolic fault-prediction

model based on multiobjective particle swarm optimization. J of Sys & Soft,

83(5):868–882, 2010.

G. Denaro and M. Pezzè. An empirical evaluation of fault-proneness models.

In Proceedings of the 24th International Conference on Software Engineering, ICSE ’02,

pages 241–251, NY, USA, 2002. ACM.

L. Guo, Y. Ma, B. Cukic, and H. Singh. Robust prediction of fault-proneness

by random forests. In Software Reliability Engineering, 2004. ISSRE 2004. 15th Interna-

tional Symposium on, pages 417 – 428, 2004.

T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented

metrics on open source software for fault prediction. Software Engineering, IEEE

Transactions on, 31(10):897 – 910, 2005.

Z. Hongyu. An investigation of the relationships between lines of code and

defects. In Software Maintenance, 2009. IEEE Intern Conf on, pages 274–283, 2009.

Y. Jiang, B. Cukic, and Y. Ma. Techniques for evaluating fault prediction

models. Empirical Software Engineering, 13(5):561–595, 2008.

S. Kanmani, V. Uthariaraj, V. Sankaranarayanan, and P. Thambidurai. Object-

oriented software fault prediction using neural networks. Information and Software

Technology, 49(5):483–492, 2007.

A. Kaur and R. Malhotra. Application of random forest in predicting fault-

prone classes. In Advanced Computer Theory and Engineering, 2008, Internl Conf on,

37–43, 2008.

A. Kaur, P. S. Sandhu, and A. S. Bra. Early software fault prediction using

real time defect data. In Machine Vision, 2009. Intern Conf on, pages 242–245.

T. Khoshgoftaar and N. Seliya. Comparative assessment of software quality

classification techniques: An empirical case study. Empirical Software Engineering,

9(3):229–257, 2004.

T. Khoshgoftaar, X. Yuan, E. Allen, W. Jones, and J. Hudepohl. Uncer-

tain classification of fault-prone software modules. Empirical Software Engineering,

7(4):297–318, 2002.

A. Koru and H. Liu. Building effective defect-prediction models in practice.

Software, IEEE, 22(6):23 – 29, 2005.

O. Kutlubay, B. Turhan, and A. Bener. A two-step model for defect density

estimation. In Software Engineering and Advanced Applications, 2007. 33rd EUROMICRO

Conference on, pages 322 –332, 2007.

Y. Ma, L. Guo, and B. Cukic. Advances in Machine Learning Applications in Software

Engineering, chapter A statistical framework for the prediction of fault-proneness,

pages 237–265. IGI Global, 2006.

T. Mende and R. Koschke. Effort-aware defect prediction models. In Software

Maintenance and Reengineering (CSMR), 2010 14th European Conference on, pages 107–

116, 2010.

T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes

to learn defect predictors. Software Engineering, IEEE Transactions on, 33(1):2 –13,

2007.

O. Mizuno, S. Ikami, S. Nakaichi, and T. Kikuno. Spam filter based approach

for finding fault-prone software modules. In Mining Software Repositories, 2007. ICSE

’07. International Workshop on, page 4, 2007.

O. Mizuno and T. Kikuno. Training on errors experiment to detect fault-prone

software modules by spam filter. In Procs European Software Engineering Conf and the

ACM SIGSOFT symp on The foundations of software engineering, ESEC-FSE ’07, pages

405–414, 2007. ACM.

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency

of change metrics and static code attributes for defect prediction. In Software

Engineering, 2008. ICSE ’08. ACM/IEEE 30th Intern Conf on, pages 181–190.

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy. Change

bursts as defect predictors. In Software Reliability Engineering (ISSRE), 2010 IEEE

21st International Symposium on, pages 309–318.

A. Nugroho, M. R. V. Chaudron, and E. Arisholm. Assessing uml design met-

rics for predicting fault-prone classes in a java system. In Mining Software Reposi-

tories (MSR), 2010 7th IEEE Working Conference on, pages 21–30.

G. Pai and J. Dugan. Empirical analysis of software fault content and fault

proneness using bayesian methods. Software Engineering, IEEE Trans on, 33(10):675–

686, 2007.

A. Schröter, T. Zimmermann, and A. Zeller. Predicting component failures at

design time. In Proceedings of the 2006 ACM/IEEE international symposium on Empirical

software engineering, pages 18–27. ACM, 2006.

N. Seliya, T. Khoshgoftaar, and S. Zhong. Analyzing software quality with

limited fault-proneness defect data. In High-Assurance Systems Engineering, 2005.

IEEE Internl Symp on, pages 89 –98, 2005.

S. Shivaji, E. J. Whitehead, R. Akella, and K. Sunghun. Reducing features

to improve bug prediction. In Automated Software Engineering, 2009. ASE ’09. 24th

IEEE/ACM International Conference on, pages 600–604.

Y. Singh, A. Kaur, and R. Malhotra. Predicting software fault proneness model

using neural network. Product-Focused Software Process Improvement, 5089:204–214,

2008.

A. Tosun and A. Bener. Reducing false alarms in software defect prediction by

decision threshold optimization. In Empirical Software Engineering and Measurement,

ESEM 2009. International Symposium on, pages 477–480.

B. Turhan and A. Bener. A multivariate analysis of static code attributes for

defect prediction. In Quality Software, 2007. Intern Conf on, pages 231 –237, 2007.

O. Vandecruys, D. Martens, B. Baesens, C. Mues, M. De Backer, and R. Hae-

sen. Mining software repositories for comprehensible software fault prediction

models. Journal of Systems and Software, 81(5):823–839, 2008.

R. Vivanco, Y. Kamei, A. Monden, K. Matsumoto, and D. Jin. Using search-

based metric selection and oversampling to predict fault prone modules. In Elec-

trical and Computer Engineering, 2010, Canadian Conf on, pages 1–6.

L. Yi, T. M. Khoshgoftaar, and N. Seliya. Evolutionary optimization of soft-

ware quality modeling with multiple repositories. Soft Engin, IEEE Trans on, 36(6):852–

864, 2010.

Y. Zhou and H. Leung. Empirical analysis of object-oriented design metrics

for predicting high and low severity faults. Software Engineering, IEEE Trans on,

32(10):771–789, 2006.

T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In

Predictor Models in Software Engineering, 2007. PROMISE’07, page 9, 2007.


