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1. Degeneracy, Robustness, and Complexity

Recently, we witness a significant amount of effort be-
ing put into a research of robustness of complex computer
systems. Computer scientists noticed that, despite decades
of investigations into dependability, computer systems
still lack the degree of resilience which can be seen in
biological systems. In the biological context, one of the
main aspects that stand behind a system’s robustness is
degeneracy [1] also known as distributed robustness [2].

We say that a system has a high degree of degener-
acy if a high number of the system’s parts functionally
overlap. A system designer can harness degeneracy and
provide fault-tolerance through procedural (in contrast to
structural) redundancy. A system element is structurally
redundant if another element in the system provides iden-
tical functionality. However, an element is procedurally
redundant if various system parts can interact in such
a way that it is possible to reproduce the element’s
functionality.

For illustration, consider a hypothetical calculator which
was designed for degeneracy. Such a calculator does not
have a central CPU, but its functionality is rather dis-
tributed among number of function blocks which provide
basic arithmetic operations (plus, minus, multiplication,
and division). If one of the function blocks is affected by
a permanent error, there is no other functionally identical
element which could take over the lost function. Yet, the
blocks functionally overlap. If, for example, the multipli-
cation operator failed, the calculator could transform any
multiplication into a sequence of additions and use the plus
operator. If the plus operator failed, the minus operator can
be used in a similar fashion.

Dependable computer system of today are still clumsily
“inorganic”, with a nonexistent or very low degree of
adaptability. Procedural redundancy due to degeneracy is
a promising way to achieve highly robust and adaptable
systems. But designing for degeneracy, and that is where
we want to make our point, requires a paradigm shift in
the way computing is done. We argue for a novel model
of computation which enables a design for degeneracy.

2. Hierarchies

Alongside degeneracy, hierarchical structure, too, is
essential for robustness – both in biological and artificial
systems. System components on all levels of a hierarchy

exhibit the same pattern: intra-component interactions are
strong and frequent whereas the inter-component ones are
relatively weak and sporadic. This pattern is responsible
for near-decomposability of a system and this in turn
provides for adaptability. A system component at a certain
level of hierarchy can be replaced by another component at
the same level (structural redundancy) or recreated through
interactions of other components (procedural redundancy
due to degeneracy).

With embedded systems – which lay at the borderline
of hardware and software – we face a particular situation.
There are two separate, unrelated hierarchies: hardware
and software. Indeed, any software abstraction dissolves
the moment a program is compiled into a machine code
and executed, one instruction after another. The hard-
ware layer is an execution platform for software and a
software hierarchy is in no sense a continuation of the
hardware hierarchy: software components are expressed in
programming languages which do not reflect the structure
of hardware.

The reason why current embedded systems do not
exhibit degeneracy and do not make use of procedural
redundancy is exactly the separation of the two hierarchies.
Besides structural redundancy, present systems do not
provide any other way to recover, for example, a failed PID
controller. Indeed, it is because the PID controller is not
expressed in terms of lower-level component interactions
and therefore the system cannot make use of a procedural
redundancy as in the calculator example. Even if the
PID controller was expressed in terms of component
interactions (and note that due to its simplicity, the lower-
level components would need to be in fact basic arithmetic
operations or similarly simple functions) it would not be
of any help as long as the system itself is not able to
separately invoke other lower-level components in a new
context and thus recreate the PID functionality.

Edelman and Gally [1] pointed out that degeneracy
can be observed only in sufficiently complex systems. In
order to achieve a high degree of degeneracy in embedded
systems, we need to change the way computation is done –
we need to connect the software and hardware hierarchies.

3. A Design for Degeneracy

In order to create a computer system with a high degree
of degeneracy (so that we can take advantage of procedural
redundancy) we must meet the following requirements:



1) Each non-atomic component is expressed as a com-
bination of lower-level components from a common
component set.

2) Atomic components form fault-containment units
and

3) they are also the basic building blocks of a program-
ming language used to implement the system.

4) The system is built in a bottom-up fashion.
5) A good degree of a functional overlap is preserved

on all levels of the system hierarchy.
6) The system has a sufficient degree of complexity.
The first requirement ensures that a system has a hier-

archical structure and particular system elements belong
to a common component set, that is, they can be invoked
independently in different contexts. Recovery, diagnosis,
and procedural redundancy would be very difficult to
achieve, if the system design did not meet the second point
requiring a physical separation of atomic components.
The argument behind the point 3 is that in a strictly
hierarchical design, a programmer expresses each system
part as a combination of lower-level system parts and a
programming language must capture this feature by mak-
ing the system’s atomic components its own basic building
blocks. Top-down design leads to a creation of specific
purpose components which cannot be easily reused in
different contexts, in contrast, a bottom-up design leads to
a set of general purpose components which are repeatedly
used across the whole system. Although the bottom-up
approach is a help, only if a designer chooses the sets
of components on different levels of the system hierarchy
carefully, the resulting system will obtain a high degree
of degeneracy; this requirement is captured by the point
5. Although the sixth requirement is probably the least
specific one, it has a great importance. Even with an
intuitive understanding of complexity, we can see that a
component can be made procedurally redundant only if
the system provides a number of functionally overlapping
parts. Such complexity is lacking, for example, in a simple
control system containing a few sensors, actuators, and a
controller. However, in the next section, we shall show
that by connecting the hardware and software hierarchies,
even this simple system can make use of degeneracy.

4. Dense-network-based Computation

Although current software engineering practice favors
a top-down system design, large-scale distributed systems
of today (e.g., those seen on the Internet) can show
degeneracy and make use of procedural redundancy. The
complexity of such systems is arguably sufficient, com-
puter nodes (i.e., servers) form fault-containment units,
and there is no reason why the rest of the six requirements
from Section 3 could not be met. However, in embedded
systems we once again face a particular situation:

• either a computer node (or an IP core) is seen as
an atomic, fault-containment unit thus meeting the
second requirement, but failing to meet the first
and fourth because the computer nodes implement

application specific and high-level components such
as a controller, actuator, etc.,

• or the high-level components are expressed in terms
of lower-level components interactions, but then the
later ones do not form fault-containment units due to
the separation of hardware and software hierarchies.

For these reasons, we argue for a new computational
paradigm based on computation via dense-networks [3]
and present our vision of a dense-network processor
(DNP).

A DNP moves away from the current instruction ex-
ecution paradigm towards a network-based computing.
The core of the processor comprises thousands of atomic,
simple, and highly interconnected computational nodes. A
program for such a processor expresses its functionality
strictly in terms of creating connections and addressing
among the atomic components. An operational memory is
replaced by a component repository where the description
of components is stored along with the component’s state.
A controller/scheduler oversees the processor’s operation
and authorizes components instantiations, serialization,
addressing, and so forth. A DNP merges software and
hardware hierarchies (each software component can be
directly mapped to a dynamic hardware structure) and
makes a design for degeneracy and procedural redundancy
possible. With DNPs, we can meet all the six requirements
from Section 3 and achieve a high degree of degeneracy
even in embedded systems. On a system level, projects
such as GENESYS [4] could provide the needed hierar-
chical continuation to the low-level degeneracy established
by DNPs.

We believe that investigations of procedural redundancy
via dense-network-based computing yields a very promis-
ing research program with a vast potential. With new nano-
scale technologies emerging, a DNP need not remain only
a vision.
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