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Abstract 
 

Learning affordances can be defined as learning action potentials, i.e., learning that an object exhibiting certain 
“regularities” offers the possibilit y of performing a particular action. We propose a method to endow an agent 
with the capabilit y of acquiring this knowledge by relating the object invariants with the potentialit y of 
performing an action via interaction episodes with each object. We introduce a biologicall y inspired model to 
test this learning hypothesis and a set of experiments to check its validity in a Webots simulator with a Khepera 
robot in a simple environment. The experiment set aims to show the use of a GWR network to cluster the 
sensory input of the agent; furthermore, that the aforementioned algorithm for neural clustering can be used as a 
starting point to build agents that learn the relevant functional bindings between the cues in the environment and 
the internal needs of an agent. 
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1 Introduction 
 
One of the main challenges for autonomous agents that have to survive in a changing and uncertain 
environment is to be able to make the right decisions in their interactions with the environment. This is 
the so-called behaviour or action selection problem, deciding “what to do next” (what behaviour to 
execute in a particular situation) to survive. The degree to which interactions will contribute to the 
agent's survival (to which these satisfy the agent's internal needs) will depend on the choice of a 
suitable object for the interaction. 
 
Some proposed behaviour selection architectures make the agent's survival depend on their capabili ty 
to maintain the stabili ty of agent's internal milieu (survival related variables defining its needs), 
drawing on Ashby's notion of viability [1,5]. However, these architectures concentrate on the design of 
algorithms to select a behaviour according to the internal state of the agent, disregarding the state of 
the environment in their design considerations. In particular, apprehension of the appropriate 
functionali ties of objects for one or another interaction has been overlooked, and information about the 
objects' potential for action has usually been hard-wired. Nevertheless, we argue that knowing the 
functionali ty of an object is also part of the adaptation problem. 
 
Related to this, Gibson introduced the notion of affordance [7], which could be defined as the 
functionali ty an object offers to an agent. An affordance depends on the agent's morphology, on its 
abili ties to interact and on the perception of the object. Therefore, the same set of affordances are only 
valid in the framework of a particular agent and environment. A first approach towards 



implementation was introduced in [3] with a very simple model that characterised the potentiali ty of 
performing certain actions to a set of objects via supervised learning; object features were perceived as 
a pattern to which to attach a value of appropriateness to perform an action. However, affordances are 
held to be directly available from the environment, without the integration of perceived features into 
object representations [2], affordances are based on the manner and flavour with which an agent 
perceives, on its own invariants. 
 
In response to this idea, the architecture introduced in this paper aims at endowing the agent with the 
capabili ty of building its own functional perception based on the invariants in the agent's environment, 
which the agent uses to decide to execute or not certain behaviour [6]. For example, we know that a 
table affords support, because it has a more or less flat surface at the right height whereon to sit. 
However, some large stones may also afford support. This example highlights the fact that to perform 
an action, the perception of certain regularities of each object in order to decide the right behaviour is 
fundamental. Therefore, we intend to use the agent's perceptual modali ties (the agent's senses) to 
classify the regularities in the agent's sensory space and to match “sets of regularities” with “potentials 
of action”1. We suggest that this relation between perception and action is an implementation of 
Gibson's affordances. 
 
We expect that affordances will extend the autonomy of the agent by providing the functional 
knowledge of the environment needed to guide the behaviour decision making, and hence to facili tate 
the agent's survival in an uncertain environment. 
 
This paper is divided into several subsections: this introduction, a section to introduce related research 
issues, followed by subsection to present the Affordance Learning and Behaviour Selection Model. 
Then the section of experiments, which have been run to test our hypothesis with an autonomous agent 
in a simulated scenario. The goal is to show the different regularities perceived from different objects, 
and to test the aforementioned method to establish functional definitions of objects. The results and 
future endeavours are summarised in the last concluding subsection. 
 

2 Related Work 
 
The notion of affordance has been defined in the adaptive behaviour community as the notion that acts 
as a bridge between the perception of an object and the inference of the set of actions that the agent 
executes. Furthermore, this schema relating the action performance, the object and the agent has 
provided the necessary support for studying and reproducing imitative phenomena in artificial agents 
[4,10]. Affordances have also been brought back to the arena thanks to the neuroscientific research of 
Rizzolatti et al. [13], who recently demonstrated that some sets of neurons (mirror neurons) in the pre-
motor cortex of some mammals exhibit the same activation pattern for the demonstrator as for the 
observer, making it possible for the learner to perform actions with objects she or he had never 
manipulated before. These neurons seem to mirror the perception and action pattern of the 
demonstrator in the learner, acting therefore as a bridge between the perception of the environment 
and the performance of a behaviour; that is, they seem to be part of the neural support for affordances. 
 
Related to our work is the architecture of Guazzelli [8], who proposed a behaviour selection model to 
simulate the behaviour of rats navigating a T-maze that integrates drives and affordances for 
navigation. Nevertheless, in that case there was no learning; the affordances were already coded in and 
only related to navigation by interpreting affordance as the possibil ity of moving in one or another 
direction. 
 

                                                
1 Unlike Gibson's studies of the optical flow, we have to deal with other perceptual modaliti es (the agent's senses). 



Furthermore, Cooper et al. [2] introduced a symbolic model of affordance learning by relating object 
features to action schemas. In their approach, object features are symbolically integrated into objects 
to bias one or another action, in analogous fashion to our previous schema [3]. We aim to bypass this 
feature-set to object integration via the use of a topological network (Self-Organising Feature Map ---
SOFM). Related to this, Marsland et al. have recently introduced a topological network  ---Growing 
When Required (GWR) [11], capable of clustering the regularities in the environment in an 
unsupervised manner. 
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Figura 1: Affordance Learning and Behaviour Selection Model 

 

3 Affordance Learning and Behaviour Selection Model 
 
The model we introduce (refer to figure 1) aims at showing the possibility of learning affordances by 
relating the regularities (invariants) the agent perceives from an object at the moment of starting the 
execution of a behaviour with the success or failure of that interaction. We expect that if these 
interactions are performed repeatedly, patterns of success and failure will arise, relating the sensory 
regularities and the behaviour potential2, building a causal relationship between them. We suggest that 
this set of relationships between the perceived regularities of the object and the possibility of 
performing a behaviour define the set of affordances of that particular agent in that particular scenario. 
 
Furthermore, this knowledge endows the agent with the ability of anticipating the outcome of an 
interaction with some degree of certainty; hence, on the basis of this expectation, it can decide whether 
it is worth carrying out that action with that object or if it is preferable to search for an alternative. As 
shown by Cos-Aguilera et al. [3], using this ability results in a better adaptation to the environment 
and in a longer life span. 
 
The model described below comprises several parts: a Perception Clustering Module to extract the 
patterns of regularities from the environment, an Architecture for Behaviour Selection to choose the 
behaviour to run next and a Learning Module to relate the active clusters with the outcome of each 
interaction. 
 
3.1 Perception Clustering Module 
                                                
2 We have allowed ourselves to rephrase the concept of action potential for high level behaviours. 



 
The first problem to face is the building of an appropriate neural representation of regularities in the 
environment of the robot. To this aim we have chosen to use biological inspiration and the simplest 
possible schema, according to Pfeifer's ecological point of view [12]. 
 
According to these criteria, a Growing When Required (GWR) network has been chosen [11]. This 
network has the advantage of dynamically adapting to the level of entropy of the environment (loosely 
speaking, to its level of variabili ty) and of doing so in a Hebbian manner --- commonly used synapses 
are strengthened, conversely for the rarely triggered ones, which tend to fade and to disappear on a 
long-term basis. By following this procedure, the network's node-space adapts its topology to the 
sensory signal patterns. The representation therefore organises in sets of nodes ---clusters, which can 
be identified and numbered, matching the regularities of the environment, see figure 3. The network is 
64 dimensional, and has as an input a 64-D vector of the level of ill umination of the objects in the 
environment of the agent. Figures 4 and 5 show four sets of 2-D PCA projection of the sensory 
patterns together with the nodes of the SOFM matching the data. 
 
This sort of network, unlike Kohonen networks [9], has the advantage of adapting their shape to the 
perception of the environment in a hebbian manner; hence, the most commonly perceived patterns will 
be represented by clusters with a higher amount of nodes, conversely for seldom encountered patterns. 
 

The parameters of the network are: activity (
2

iix
t ea

���� ), which is a function of the distance 

between $\xi$, the current sensory reading, and the position of node i ( i
� ). Unlike for the original 

Marsland network, we calculate the square of the distance to obtain a normalising effect of the metric 
(nodes which are closer, near even more, and nodes which are apart, are considered to be further 
away). The second parameter is the habituation threshold th . This is a value signalling the limit of 

time we allow for a single node to place itself in the best fitting location; if more time is needed, it is 
considered that the node is not representing the data set sufficiently, hence a new node should be 
added. The third parameter is the age of each edge between nodes; edges connected to frequently used 
nodes are re-set to 0, conversely, a natural aging is experienced. Whenever the age of an edge 
surpasses the threshold is deleted. Nodes with no edges are also deleted. The final parameters are the 
shifting coefficients ( b

� ) and ( n
� ); which specify the dragging speed of the nodes towards the sample 

they are compared with. 
To use a GWR works along  the following lines: 
 

1. The network is trained with a series of sensory patterns3 to which it shall adapt its structure to. 
The adaptation algorithm compares each pattern to the node space of the network (measures 
the activity ( ta ) of each node with respect to the sample). The first and second more active 

nodes are selected. 
2. if the Euclidean distance between the closest node and the current interaction pattern is 

considered to be too far away, a new node is inserted and new bindings added; otherwise the 
closest node and the nodes at its neighbourhood are slightly dragged towards the input pattern, 
according to the next expression: )( sisbs xh ��� ���

and )( iinni xh 	
	 ���
, for the 

winning and direct neighbours, respectively ( 10  in �� ). Nodes seldomly close to the 

input pattern are deleted. A fully detailed description of the GWR algorithm is provided by 
[11]. 

                                                
3 A pattern is an instance of the input sensory signals. 



3. Network exploitation. Once the network has been grown and its nodes identified, it can be 
exploited. This consists of identifying the closest node to the sensory input, and of attaching to 
the closest node a connecting weight to the behaviour just executed. 

 
According to the Gibson's ecological approach, the perception of an animal is buil t in a functional 
manner by using the regularities of the optical flow to elucidate the action potentials of that situation 
(the affordances). In a very simple manner, the model the Perception Clustering Module introduces is 
the first step of a simple implementation of that view. This module can be identified within the figure 
of the complete model on the top-left side of figure 1. 
 
3.2 Architecture for Behaviour Selection 
 
This part of the architecture is a simpli fied version of that proposed in [1]. It consists of a set of 
homeostatic variables, survival-related internal variables that represent the internal resources of the 
agent, a set of drives that signal the need to compensate any homeostatic variable, a repertoire of 
behaviours and an arbitration mechanism to resolve conflicts among competing drives to choose the 
right behaviour. This architecture was fully described in [3]. 
 
The controlled homeostatic variables vary according to internal body dynamics and to the interactions 
of the agent with the environment. These are abstractions representing the internal resources that the 
agent has to keep under control to survive: nutrition, stamina and restlessness are the variables of our 
choice. Their values must be kept within the viability zone for the agent to remain alive; if their values 
overflow/underflow the upper/lower boundaries that define the variable's viabili ty variable the robot 
dies. Furthermore, each homeostatic variable can have a status of “normali ty” , excess or deficit. 
Homeostatic variables have a dual behaviour; while there is no successful interaction with the 
environment, they behave monotonically, either with an increasing (restlessness) or a decreasing 
(nutrition, stamina) tendency, depending on their nature. 
 
The drives are also abstractions that denote the urges for action based on the need to compensate a 
bodily need. When that need is detected, an appropriate mechanism of compensation is triggered. The 
drives monitor the levels of the homeostatic variables and initiate a process of compensation whenever 
they are in a deficit state. In our case, the mechanism of compensation is the selection and execution of 
a behaviour, that can solely be successfully executed if an appropriate object is nearby. In our schema, 
we have used three different drives: hunger (which controls nutrition), fatigue (controll ing stamina), 
and curiosity (controlli ng restlessness). At each time step, each drive is assigned an intensity 
proportional to the magnitude of the error of its controlled variable.  
 
The behaviours are coarse grained, and include a subset of actions. In this study to grasp, to shelter 
and to interact have been the chosen behaviours. The execution of the behaviour results in an 
interaction with an object in the environment that may reflect a compensation of the error for the most 
critical internal variable; contributing therefore to compensate the drives. In the general case, different 
behaviours can contribute to compensate a drive, but in our simpli fied model each drive can be 
satisfied by one behaviour only, “eat” (grasp an object) satisfies hunger, “shelter” satisfies fatigue, and 
“ interact” satisfies curiosity. 
 
The arbitration mechanism for behaviour selection follows a winner-take-all policy, using the drive 
that exhibits the highest urgency (the one with the highest level) to choose the behaviour to execute 
next. In our simpli fied model this is very easy because there is a single behaviour that can satisfy each 
drive. 
 
 
Unlike for the model introduced in [3], we have further introduced two Hormones: Frustration and 
Satisfaction, that are respectively triggered when the outcome of an interaction episode with an object 



is successful or failed. Therefore, hormones indicate the success or failure of an interaction, which is 
used as an attentional (triggering) mechanism to learn that the particular object the agent interacted 
with, has or lacks the functionality it just attempted to perform. The values of the hormones are 1, if 
they are active, and 0 otherwise. They are represented in the centre of figure 1.  
 
3.3 The Learning Mechanism 
 
The problem posed consists of learning via interaction with the environment ---with the objects it 
contains--- to relate the perceived regularities to the possibility of performing one or more actions. 
Thus, the proposed method of learning is as follows: 
 �

Everytime the agent detects an object, the closest node in the state space is identified. Figures 4 
and 5 show the topologies representing the objects contained in the Khepera world used for 
simulation (x-axis represents the size and y-axis the shape of the object). 

� In case the interaction succeeds, the hormone satisfaction will be released, conversely, it will be 
the hormone frustration. The release of one or another hormone indicates to the algorithm that fills 
in the table of results the positive or negative significance of the event, respectively, and whether 
to increment or decrement the value in the table related to the active (perceived) nodes and the 
executed behaviour (0.1 and -0.1 are the used increments). 

� The learning results in a set of weights relating each node in the sensory space to each behaviour, 
signalling therefore the potentiality of performing that behaviour whenever the agent is facing a 
particular object. 

 
Figura 2: Simulated Khepera Environment 

 
This learning procedure is called one-step backup reinforcement [14]. Several interaction episodes 
happen repeatedly throughout the duration of the simulation. The values are normalised after the end 
of the simulation; values close to 1.0 for a certain cluster and behaviour would mean that the 
behaviour is likely to be successful with that object, and the opposite if it is close to -1.0. These values 
measure the matching between the cluster (the regularity in the environment) and the behaviour 
potentials in an analogous fashion to a normalised probability value between -1.0 and 1.0. 
 

4 Experiments and Results 
 
The goal of the first experiment set is to demonstrate that artificial agents can learn to relate the 
invariants of the objects in the environment (clusters in the GWR) with the outcome of goal-oriented 



interactions. This would be analogous, loosely speaking, to learning to select appropriate objects (or 
the equivalent set of regularities) to successfully perform an interaction4. 
 
4.1 The Environment 
 
A single environment, c.f. figure 2, has been chosen to show the applicabili ty of the learning method 
mentioned above. A set of nine different objects have been placed in different locations of a simulated 
environment. The chosen objects are octahedral, from relative side sizes ranging between 0.08 and 
0.01. The size of the arena is 0.5 x 0.5 units. 
 
4.2 The Method 
 
The method proposed to learn the affordances has been sub-divided into two phases; a clustering 
phase and an exploitation phase. Each phase is explained to follow on a step-by-step fashion. 
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Figura 3: First 2 Principal Components of a Growing Neural Gas Network at its initial and final growing stage, 
left and right, respectively. The network (the dots bound by the edges) overlaps the sensory data (the cloud of 
fine dots). 
 
Clustering Phase 
 
1 The robot is placed in the environment. By following a random selection policy, it wanders 

around in the environment, interacting with the different objects, and building the GWR on the 
basis of a 64-D horizontal ill umination vector of visual information, extracted from the objects 
in the environment with the camera.  

2 Everytime an object is encountered, the object is centered, and always at the same distance, a 
snapshot of the object is taken. 

3 The from object is extracted from the image, and reduced to a single 64-D vector. Thus objects 
in the environment have vertical symmetry, the horizontal vectors the image is composed of, are 
the same. Hence, we can choose to use a single vector without any loss of information about the 
object. 

4 This vector is used to feed the GWR network. The parameters used for the network are: 
5.0�energy , 5.0�

b
� , 006.0�

n
� , 50max

�a . The final clustering of the environment 

together with the nodes representing them, are introduced in the sequence of figure 3. From left 

                                                
4 By successful we mean the interaction compensating the agent's internal deficits. 



to right, we can see a 2-D Principal Component Analysis (PCA) representation of the samples 
of visual information, and of the corresponding SOFM fitting them. 

 
5 The second phase is started whenever the structure of the network is stable. 
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Figura 4: 2D-PCA with GWR overlapping with 4 and 8 nodes, left and right, respectively. 
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Figura 5: 2D-PCA with GWR overlapping with 15 and 42 nodes, left and right, respectively.  
 
Exploitation Phase 
 
1 The homeostatic variables of the agent are initialised to their optimal value. Table 1 shows the 

exponential decay parameters for each homeostatic variable ( � ) and their optimal values. They 
all range between 0.0 and 1.0. 

2 The behaviour to execute next is decided on the basis of the highest drive at the end of each 
interaction episode. Each of the drives is hard-wired to a behaviour, “hunger” to grasp (eat), 
“ fatigue” to stamina and to “ touch” (make contact) to curiosity, respectively. 

3 Once an object is encountered, its closest node in the neural representation (GWR) is identified. 
4 The behaviour is carried out. If the object is appropriate (affords that behaviour), the interaction 

will be successful, otherwise it will fail . In the former case, the homeostatic variable related to 
the performed behaviour varies towards its compensation, in the latter, it has no effect on the 
motivations5. 

                                                
5 Unlike for the first set of experiments publi shed in [3], where a negative outcome implied a negative impact on the level of 
the homeostatic variables. 



5 Furthermore, if it succeeds, the hormone satisfactions signals a 1, conversely the hormone 
frustration is triggered to the same value. 

6 A set of weights, relating each node to each behaviour are updated at the end of each 
interaction. For the node perceived as active during the interaction (in our case it will be only 
one at a time) and for the behaviour currently run, an increment of 0.1 is given to the weight 
connecting node to behaviour. Conversely, it is decremented by -0.1. Positive increments are 
related to the activation of the hormone satisfaction and negative to the hormone frustration. 

 
 

Name Tendency � �  Optimal Values 
Nutrition 
Stamina 
Restlessness 

Decreasing 
Decreasing 
Decreasing 

1E-5 
1E-5 
1E-5 

0.9 
0.8 
0.1 

Tabla 1: Internal Milieu Values. 
 
The same sequence, for training and for exploitation has been performed with four different networks 
32, 16, 8 and 4 nodes have been used (c.f. figures 4 and 5). 
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Figura 6: Number of Nodes vs. Accuracy. 

 
4.3  Results 
 
Four series of five simulations each have been run with each network in order to test the learning of 
the weights connecting each node to the behaviours. The results are shown in histograms in figures 7 
and 8. X-axis is the node id for each network, and y-axis the affordance value, mediated over five 
simulations and ranging from -1 to 1, obtained through simulation. The two programmed affordances 
here are shelter and grasp. The relationship between the size of the objects and the morphology of the 
agent is only given via physical interaction in the latter case, for which the width of the gripper is the 
physical boundary to grasp or not an object. Conversely, the boundary to succeed in sheltering has 
been simulated; if the diameter of the base of the object is larger than a certain threshold, the object 
affords shelter. This reflects in the histograms; the nodes that afford shelter are, in fact, the ones 
representing the largest objects. 
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Figura 6: Learnt affordance values for behaviours grasp, shelter and touch/interact--- (top-down) for GWR with 
4 and 8 nodes, left and right, respectively. 

 
Furthermore, if the threshold of shelter is set appropriately, we can assume that large objects afford 
shelter and small objects afford grasping. This roughly reflects on figure 7, which suggests their 
sufficient level of representativity for the environment. 
 
However, the GWR has also some representation limitations, thus there are some nodes, whose 
affordance is unclear. This means that they are representing objects whose size is, close to the width of 
the gripper for the case of grasping, and close to the shelter threshold for the case of shelter. 
 
In general terms, these results confirm the expectation, thus we can appreciate that for networks with a 
larger amount of nodes than 16, the precision of the estimation is acceptable. The criterion to say so 
consists of examining the mean and variance of the affordance values obtained for each node. For the 
networks networks in figures 7, the mean and the variance values for most of the nodes are either 
larger than 0 or smaller, but they do not cross this threshold. This confirms that the interaction 
episodes with objects in the environment represented by these nodes are, with a certain degree of 
reliability, resulting in the same outcome. This does not happen for the networks with 4 and 8 nodes. 
Figure 5 shows the accuracy vs. number of nodes obtained by measuring the euclidean distance 
between each of the network nodes to 2000 snapshots of the objects in the environment. The 
affordance of touching (the third graph in the aforementioned depictions) is always positive, thus all 
objects afford to be touched. 
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Figura 7: Learnt affordance values for behaviours grasp, shelter and touch (top-down) for GWR with 16 and 32 
nodes, left and right, respectively. 

 
This experiment suggests that GWR is a flexible representation that may be extended in real time to 
add nodes when required and the learning mechanism appropriate to these particular objects and 



simple environments. Furthermore, the case of the border nodes, whose affordances are not well 
define, suggests that depending on the degree of vicinity of the new node to the previous ones, it shall 
be possible to infer the affordances of the new cluster with a good degree of accuracy. 
 

5 Conclusions and Future Work 
 
The results obtained in the two experiment sets have been run according to an extended view of 
Gibson's ecological perception with a simulated agent. This suggests, that the GWR may be suff icient 
to identify the invariants of the objects in the environment, and that one-step backup reinforcement is 
suff icient to learn the potentiali ty of executing each behaviour within the repertoire of the agent. 
 
This fact also highlights that affordances, while respecting its traditional definition: the functionality 
an object affords to an agent, could also be re-defined as follows: the relationship between the 
regularities in the sensory flow6 of an agent and the action potentials these offer to that particular 
agent. This contains not only the functional view of an affordance, but also the learning procedure 
agents may use, and according to Gibson, the way evolution endowed an agent with the capabili ty to 
adapt to its environment. In fact, the form of an animal depends on its environment, which modifies 
during its li fetime due to this dual relationship. The animal exploits the environment to satisfy its 
internal goals, and the environment, being never static, obliges the animal to continuously modify its 
behaviour patterns to adapt to the new situation to remain alive, e.g., the progressive depletion of 
water from a region may oblige the agent to walk longer distances or to modify its physiology to 
require less water.   
 
According to the definition given above, affordances seem a sensible way to process sensory 
information, to ground the right environmental representation with the right behaviour and therefore to 
maintain the internal milieu within the agent's viabili ty zone. We also argue that affordances, at least 
partly, are invariant based; several studies in neuroscience support examples of invariants used by 
some animals to detect the significant elements in the environment. 
 
Nevertheless, we wish to stress the fact that affordances are task-, environment- and agent related. 
Hence, to be able to learn and use affordances, it is necessary to define the aforemenentioned 
framework. Each affordance will then depend on the morphology of the agent, on its set of internal 
goals and behaviours. This specificity can be optimised by using the appropriate sensory processing, 
such that reliably detects the necessary cues, adapting to the required level of discrimination of the 
behaviours to the level of complexity of the environment. However, to learn them, the execution of a 
behaviour must reflect on the internal goals of the agent. If the object or the required cues in the 
environment are matched, the effect must be considered positive, conversely negative. Therefore, only 
the affordances whose related cues are detectable and whose effect can be measured by the agent will 
be learnable, i.e., only these will constitute the set of affordances of that particular agent in that 
particular scenario. 
 
Future experiments will address contemporary the fitting of the topology of the GWR to the 
environment with the assignment of affordance weights to the behaviour repertoire of the agent. 
Furthermore, the use of the camera in an environment with a single ill umination point situated far 
above the centre of the environment, restricts the perception of the objects to their size (the edges are 
not detectable); being orientation independent. This often provokes imprecisions in the manipulation 
and a slight unreliabili ty in the interaction outcomes. Hence, we intend to include orientation as a 
factor to perceive the objects in future experiments and to compare this procedure to other behaviour-
based algorithms for object recognition. 
 

                                                
6 Sequence of sensory patterns perceived by an agent. 
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