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ABSTRACT

Aims. We investigate the nature of the massive star [OMN2000] LS1 and use these results to constrain the history of star formation
within the host complex W51.
Methods. We utilised a combination of near-IR spectroscopy and non-LTE model atmosphere analysis to derive the physical properties
of [OMN2000] LS1, and a combination of theoretical evolutionary calculations and Monte Carlo simulations to apply limits on the
star formation history of W51.
Results. We find the spectrum of [OMN2000] LS1 to be consistent with that of a P Cygni supergiant. With a temperature in the
range of 13.2–13.7 kK and log(L∗/L�) ≤ 5.75, it is significantly cooler, less luminous, and less massive than proposed by previous
authors. The presence of such a star within W51 shows that star formation has been underway for at least 3 Myr, while the formation
of massive O stars is still on going. The lack of a population of evolved red supergiants within the complex shows that the rate of
formation of young massive clusters at ages ≥9 Myr was lower than currently observed. We find no evidence of internally triggered,
sequential star formation within W51, and favour the suggestion that star formation has proceeded at multiple indepedent sites within
the GMC. Along with other examples, such as the G305 and Carina star-forming regions, we suggest that W51 is a Galactic analogue
of the ubiquitous star cluster complexes seen in external galaxies such as M51 and NGC2403.
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1. Introduction

While the physical mechanism for building massive (>20 M�)
OB stars remains hotly debated, it appears likely that the ma-
jority of these stars form in star clusters (de Grijs 2005, Parker
& Goodwin 2007) rather than isolation. Moreover, observations
of nearby galaxies reveal that such clusters form in larger com-
plexes (e.g. M51; Bastian et al. 2005). Unfortunately, the pro-
cess(es) that converts giant molecular clouds (GMCs) into such
complexes and the timescale for their formation currently remain
opaque. This in part is a consequence of the restricted spatial
resolution of extragalactic studies, which compromises the de-
termination of both stellar and cluster ages and mass functions.

Consequently, it is instructive to search for Galactic ana-
logues of star-forming complexes that may be observed with
enough resolution that individual (proto-)stars may be studied.
First detected by Westerhout (1958), W51 consists of two giant
H ii regions, W51A and W51B, both of which may in turn be
resolved into smaller components (e.g. Mehringer 1994; Nanda
Kumar et al. 2004, and references therein). With an angular ex-
tent of 1o×1o, and a mass of ∼106 M�, W51 is amongst the most
massive Galactic GMCs (Carpenter & Sanders 1998), while the

giant H ii regions imply a large population of O stars to yield the
requisite UV ionising flux; it therefore represents an excellent
candidate for a massive star formation (SF) complex.

Near-IR imaging of W51 by Okumura et al. (2000;
OMN2000) and Nanda Kumar et al. (2004) indicated a sig-
nificant population of young O stars and massive young stel-
lar objects (YSOs). Subsequent spectroscopic observations by
Figueredo et al. (2008) and Barbosa et al. (2008) confirmed these
findings, identifying several early-mid O stars within W51A and
resolved the subregion W51 IRS2 (see Fig. 1) into a proto clus-
ter containing an ∼O3 star and a massive YSO. With the recent
results of Zapata et al. (2008) revealing the possible formation of
a further massive (∼40 M�) proto star in the nearby region W51
North, it is clear that vigorous SF is currently underway within
W51A.

In order to investigate the stellar content and SF history of
W51 in detail we embarked on a comprehensive spectroscopic
and imaging survey of the complex from near-IR to radio wave-
lengths. Here we present the first results of this investigation,
focusing on the source [OMN2000] LS1, located at one extrem-
ity of the complex (Fig. 1; RA = 19 23 47.64 δ = +14 36
38.4). OMN2000 described it as a ‘P Cygni type supergiant’ and
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Fig. 1. Spitzer 3 colour image of W51 (blue – 3.6 μm, green – 4.5 μm and red – 8.0 μm) with the position of [OMN2000] LS1 indicated. The overal
length of the W51 complex is ∼100(d/6 kpc) pc, with the apparent wind blown bubble surrounding [OMN2000] LS1 being ∼(1.8×1.0)(d/6 kpc) pc.
For clarity we also indicate SF regions 1 and 3 as defined by OMN2000 (the latter containing the O star candidates identified by Figueredo et al.
2008), the heavily embedded massive YSO forming complex IRS2 and 3 further regions throughout the W51 complex which Nanda Kumar et al.
(2004) find to host massive young stellar clusters (the fourth region studied in detail by Nanda Kumar et al. encompasses IRS2 and is located within
Region 3 of OMN2000). Note that for reasons of clarity not all the locations of star formation activity identified by these authors are indicated in
this figure.

classified it as O4 I, with a progenitor mass of ∼120 M�, making
it of considerable interest as one of the most massive, evolved
stars in the Galaxy. In this work we present new high resolution
spectroscopy of this object which allow us to better constrain its
stellar properties and discuss the implications of these results for
the distance to, and SF history of, W51.

2. Data reduction and presentation

Data was taken during the night of 27 September 2007, using
the Infra-Red Multi-Object Spectrograph (IRMOS, MacKenty
et al. 2003) mounted on the Mayall 4-m at the Kitt Peak National
Observatory, with a 1.9 to 2.2 micron (K1) band pass filter with
a grating providing l/dl of 3000. This gave us a resolution of
∼100 km s−1 in the the spectral range 2.0–2.2 microns. To cor-
rect for the variability in the remaining background signal, we
followed each science integration with a dark-frame of equal in-
tegration time. To compensate for variable sky background, we
limited our science exposures to 2 min. The star was dithered
along the slit by 2 arcsec every five science exposures to com-
pensate for artifacts on the detector. In total, we integrated on the
object for 1 h, with 30 individual science exposures All data re-
duction was done using custom-written routines in IDL. Initially,
each science frame had the dark frame taken closest in time sub-
tracted from it. The science frames were then coadded, and di-
vided through by the normalized flat-field.

Correction for geometric distortion in both the spatial and
dispersion directions are required prior to spectral extraction.
To accomplish this, the data were resampled onto a linear grid.
The spatial warping was characterized by fitting a 3rd degree
polynomial through the spectral traces of the star in each of the
dither positions. The warping in the dispersion direction was de-
termined by linear fits to the OH emission lines in the sky either
side of each spectral trace. Using the fits to the stellar spectral
trace and the sky lines as tie-points, the warping was fitted using

Fig. 2. High resolution K band spectrum of [OMN2000] LS1 (solid line)
with the best model fit superimposed (red dashed lines). The major
transitions present are He i 2.058 μm and 2.1128 μm, Brγ, and Mg ii
2.138/44 μm.

a two-dimensional, third-degree polynomial. The inverse of this
2-D fit was then applied to the data to resample it onto a linear
grid. As the wavelengths of the sky OH lines are known, the data
is wavelength-calibrated in this de-warping process. The spec-
trum was optimally-extracted from the de-warped data using the
algorithm of Horne (1986).

To remove the atmospheric absorption, the object spectrum
was divided through by that of a telluric standard (SAO 107138,
spectral type A8 V). Prior to division, the two spectra were first
cross-correlated to correct for any sub-pixel shifts which would
produce artifacts in the final spectrum. Finally, the data were nor-
malized by the mean continuum value, and the resultant spec-
trum plotted in Fig. 2.
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Table 1. Derived stellar parameters for [OMN2000] LS1 as a function distance (Sects. 3.1 and 3.3).

Distance R∗ Teff log(L∗/L�) H/He v∞ β f(r) Ṁ E(B − V) AK MK Minitial

(kpc) (R�) (kK) (km s−1) log(M�/yr) (M�)
6 145.0 13.2 5.75 0.5 / 1.5 400 3.0 0.08 –4.2 / –4.6 3.5 1.2 –8.90 ∼40

3.4 82.5 13.4 5.30 0.5 / 1.5 400 3.0 0.08 –4.6 / –5.0 3.5 1.2 –7.65 ∼25
2 48.0 13.7 4.86 0.5 / 1.5 400 3.0 0.08 –4.9 / –5.3 3.5 1.2 –6.50 ∼17

As described in Sect. 3.2, H/He ratios suffer from a modest degeneracy, resulting in a reduction in the mass loss rate by ∼60% for the H/He = 1.5
model compared to H/He = 0.5. We further estimate systematic uncertainties of ±50 km s−1 in v∞, ±300 K in Teff and ±0.1 dex in log(L∗/L�).

3. The nature of [OMN2000] LS1

Comparison of the low resolution spectrum of OMN2000 to ours
reveals no obvious changes in a decade. Both spectra are dom-
inated by He i 2.058 μm and 2.112 μm, Brγ and Mg ii 2.138
and 2.114 μm emission. However, the improved resolution and
S/N(∼70) of our observations now clearly reveals the presence
of a P Cygni profile for He i 2.058 μm that was hinted at in
the spectrum of OMN2000; weak emission in He i 2.161 and
2.162 μm likely veil a similar feature in Brγ. The formal classi-
fication of O4 I by OMN2000 is incorrect, due to a lack of high
excitation species such as N iii and C iv (Hanson et al. 1996).
However, the qualitative description as a “P Cygni supergiant”
is more acccurate, with [OMN2000] LS1 bearing a close resem-
blance to known examples (which include confirmed and candi-
date Luminous Blue Variables (LBVs): Clark et al. 2003; Voors
et al. 2000). While a P Cygni profile in He i 2.058 μm is not seen
in all such stars, it is present in HD 316285 (Hillier et al. 1998)
and the Galactic Centre Ofpe/WN9 stars (Najarro et al. 1997;
also known as WN9-11 h stars) which have spectra similar to
known LBVs such as AG Car in the hot state. We therefore con-
clude that the spectrum of [OMN2000] LS1 is consistent with a
a qualitative classification as a P Cygni-type B supergiant (and
hence potentially a LBV).

3.1. The distance to [OMN2000] LS1

To derive the stellar parameters for [OMN2000] LS1 one must
adopt a distance to it and, by extension, the W51 complex.
Figueruedo et al. (2008) provides a summary of the results of
previous studies. These show that the kinematic estimate of
the distance – utilising radio recombination lines – of 5.5 kpc
(Russeil 2003), is broadly comparable to the results derived from
maser proper motion measurements; 6.1 ± 1.3 kpc (Imai et al.
2002) to 8.5 ± 2.5 kpc (Schneps et al. 1981). However, utilis-
ing 4 O stars which they classify as (Zero Age) Main Sequence
objects, Figueruedo et al. (2008) report a significantly smaller
distance to W51 of 2.0 ± 0.3 kpc. Subsequnetly, Barbosa et al.
(2008) suggest an upper limit of 5.8 kpc by equating the ra-
dio luminosity of IRS2 with the ionising flux from the O star
W51d under the assumption that it too is a Main Sequence star.
Finally and most recently, Xu et al. (2008) report a distance of
5.1+2.9
−1.4 kpc based on trigonometric parallax measurements.
Both Figueredo et al. (2008) and Xu et al. (2008) recog-

nise the difficulty in reconciling the spectroscopic distance with
the other estimates but are unable to provide an explanation for
this discrepancy. Possible reasons for underestimating the spc-
troscopic distance would be the adoption of an incorrect red-
dening law to W51, unrecognised binarity or multiplicity in the
stars or an incorrect spectral classification. Relating to the fi-
nal point we note that the luminosity of early O stars may be
determined from the Brγ line (Hanson et al. 2005), with super-
giants demonstrating infilling or emission. While the emission

observed in three of the four stars studied by Figueredo et al.
(2008) may result from incomplete nebular subtraction, if the
stars were Main Sequence objects, the stark absorption wings in
the Brγ profile would be visible given the S/N and resolution of
the spectra. Thus we suggest that the luminosity class of these
stars – adopted due to their proximity to a star forming region –
and hence their distance may be underestimated.

For a distance to W51 of 6 kpc, the O stars discussed by
Figueredo et al. (2008) are at projected distances of 2–4 pc from
the compact star forming region IRS2. While it might appear
unlikely for evolved stars to be located so close to regions of
ongoing SF, early O supergiants are found within the massive
star forming regions G305 (Leistra et al. 2005) and W43 (Blum
et al. 1999). Thus non-coevality of the stellar population(s) may
be a common feature of large star forming complexes such as
W51 and G305 (Davies et al., in prep.). Nevertheless, given this
uncertainty, we undertook our analysis of [OMN2000] LS1 for
both near, spectroscopic (2 kpc) and far, kinematic and paral-
lactic distances (for which we adopted a representative value of
6 kpc) as well as for a third, intermediate (3.4 kpc) distance, the
choice of which is justified in Sect. 3.3.

3.2. Physical parameters of [OMN2000] LS1

We have used CMFGEN, the iterative, non-LTE line blanket-
ing method presented by Hillier & Miller (1998) to model
[OMN2000] LS1 and estimate the physical properties of the
star. The method solves the radiative transfer equation in the
co-moving frame and in spherical geometry for the expanding
atmospheres of early-type stars. The model is prescribed by the
stellar radius, R∗, the stellar luminosity, L∗, the mass-loss rate Ṁ,
the velocity field, v(r) (defined by v∞ and β), the volume filling
factor characterizing the clumping of the stellar wind, f(r), and
elemental abundances. Hillier & Miller (1998, 1999) present a
detailed discussion of the code.

For the present analysis, we have assumed solar metalicities
for an atmosphere composed of H, He, C, N, O, Mg, Si, S, Fe and
Ni. Observational constraints are provided by the K-band spec-
trum and the 2MASS J, H and K photometry. The validity of
our technique has been demonstrated in Najarro et al. (1999) and
Najarro (2001) by calibrating our method against stars with sim-
ilar spectral type such as P Cygni and HDE 316285 (for which
optical and UV spectra are also available). We refer to Najarro
et al. (2008) for a detailed review on the analysis technique and
present the results from fits for the three distances adopted in
Table 1. As described by Najarro et al. (2008), the computation-
ally intensive analysis precludes sufficient numbers of models
being calculated to permit statistically robust error estimates to
be made for all parameters. Consequently, the uncertainties pre-
sented in Table 1 represent the range of values for which an ac-
ceptable fit to the available data is acheived, an approach also
adopted by Martins et al. (2007).
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The primary diagnostics used were the presence and relative
strengths of the three He i emission lines at 2.058 μm, 2.112 μm,
2.185 μm, the He i (7–4) complex around 2.16 μm, Brγ and the
Mg ii lines (2.138 μm and 2.144 μm). A lower temperature solu-
tion may be excluded due to the lack of any Fe ii semi-forbidden
lines (seen in emission for cooler P Cygni supergiants; Geballe
et al. 2000), while the He i 2.058 μm line would also be ex-
pected to be significantly weaker. Conversely, higher tempera-
tures would lead to significantly stronger emission in this line
– both in absolute terms and also in relation to Brγ – than is
observed.

P Cygni supergiants with high mass loss rates potentially
demonstrate a degeneracy between the H/He ratio and mass loss
rate. This occurs when the combination of stellar temperature
and high wind density causes He ii to recombine to He i very
close to the photosphere. In such a situation any He/H ratio may
fit the observations with an appropiate scaling of the mass loss
rate and a small variation of the stellar temperature; this effect
is observed in e.g. HD 316285 (see Hillier et al. 1998, for a dis-
cussion). However, unlike this star, the lower mass loss rate for
[OMN2000] LS1 leads to a reduced wind density which, when
combined with a higher effective temperature, minimises the ef-
fect of this degeneracy. H/He ratios of 0.5 to 1.5 are permitted
by our modeling; if H/He were higher then the He i 2.112 and
2.185 μm lines and He i (7–4) complex would be weaker than ob-
served. Following the scaling determined by Hillier et al. (1998)
for HD 316285, these abundances correspond to a reduction in
the mass loss rate of ∼60% for H/He = 1.5 when compared to
that determined for H/He = 0.5 (Table 1) but only a small change
(<300 K) in temperature. For this parameter regime, τ ∼ 2/3
is already reached at the base of the wind, and so no informa-
tion is obtained from the hydrostatic layers of the star, the strong
wind consequently fully determining Teff (which is defined at
τ ∼ 2/3).

The value of the reddening presented in Table 1 was deter-
mined via comparison of the predicted stellar near IR colour to
2MASS photometry of the source in order to determine the near
IR excess due to reddening, E(J−K). A value of AK was then cal-
culated via the relation AK = 0.67E(J−K) and finally converted
to E(B−V) via the relations 0.112AV = AK and AV = 3.1E(B−V)
(Rieke & Lebofsky 1985). The random error for the observed
(J−K) from the 2MASS data is small (±0.03 mag), as is the sys-
tematic uncertainty in the intrinsic (J−K)o colour of the star (due
to the range of mass loss rates permitted by the modeling); we
conservatively estimate an uncertainty in AK of ±0.1 mag. The
well developed P Cygni profile in He i 2.058 μm permits a deter-
mination of the terminal velocity of the wind (v∞) of ±50 km s−1.
Finally, we assume an uncertainty in log(Lbol) of±0.1 dex, which
we regard as highly conservative, given the small systematic
uncertaintites in both reddening and the temperature dependant
bolometric correction.

3.3. The evolutionary state of [OMN2000] LS1

Based on the near-IR magnitudes of [OMN2000 LS1] and the
properties of the wind blown bubble surrounding it (H ii region
j), OMN2000 propose Teff ∼ 40 kK and log(L∗/L�) ∼ 6.3, yield-
ing an initial mass of ∼120 M�. Irrespective of whether a dis-
tance of 2 or 6 kpc is correct, we find these values to be signifi-
cant overestimates. We may also use our results to discriminate
between the two distance estimates on the grounds of self con-
sistency from both observational and theoretical perspectives.

Firstly, the K band spectrum suggests a classification as a P
Cygni supergiant. If it were located at 2 kpc, [OMN2000 LS1]

would have a luminosity ≥0.4 dex below the lower end of the
range observed for such stars (log(L∗/L�) ∼ 5.3 as seen for
HD 168625; Clark et al. 2005b). In contrast the resultant lumi-
nosity at 6 kpc is entirely consistent with such a spectral clas-
sificaton. Moreover the other physical parameters such as mass
loss rate, terminal wind velocity and H/He ratio are also fully
consistent with those derived from non-LTE modeling of other
P Cygni-type supergiants such as P Cygni, HD 316285 (Hillier
et al. 1998) and AG Car (Groh et al. 2009) and the closely related
WN9-11 stars (e.g. Najarro et al. 1997; Martins et al. 2007).

With the temperatures and luminosities given in Table 1,
comparison to the evolutionary tracks of Meynet & Maeder
(2000) suggest initial masses in the region of ∼40 M� and
∼17 M� for 6 kpc and 2 kpc respectively (Table 1). While it is
thought that stars between 25–40 M� will encounter a P Cygni
supergiant phase during their post-red supergiant (RSG) blue-
wards evolution across the HR diagram, it is not expected that
lower mass stars will evolve in such a manner, instead exploding
as SNe while RSGs, again favouring a larger distance.

We may test this theoretical prediction via observations
of the stellar populations of young, massive coeval clusters.
Several P Cygni supergiants have been identified in Westerlund 1
(∼4–5 Myr; Clark et al. 2005) and the Galactic Centre (∼6 Myr;
Najarro et al. 1997; Martins et al. 2007; Paumard et al. 2006),
Quintuplet ( ∼4 ± 1 Myr; Figer et al. 1999) and 1806-20
(∼3–5 Myr; Figer et al. 2005; Bibby et al. 2008) clusters. In all
cases the stellar contents and ages of these clusters are consistent
with progenitor masses for these stars in the ∼30–60 M� range.
In contrast, despite a sample size of 30 clusters which are mas-
sive enough to host blue and/or red supergiants and have ages in
excess of 10 Myr (Eggenberger et al. 2002; Davies et al. 2007,
2008) – appropiate for the post-Main Sequence (MS) evolution
of stars of ≤20 M� – to the best of our knowledge to date no P
Cygni supergiant has been identified within any of them1. This
is even true for such massive, well stocked clusters as RSGC1
and 2 (Davies et al. 2008) and we therefore conclude that stars
of such relatively low masses do not pass through such a phase
at solar metalicities.

Thus, while we cannot a priori exclude the possibility that
the P Cygni supergiant phase occurs at sufficiently low (≤20 M�)
masses to be reconciled with a distance to [OMN2000 LS1] of
2 kpc, we suggest that a distance of ∼6 kpc is more consistent
with current observational and theoretical constraints on the na-
ture of such stars and the majority of current distance estimates
for W51, including the recent parallactic estimate of Xu et al.
(2008). Finally, requiring the luminosity of [OMN2000 LS1] to
match that of the faintest P Cygni supergiant identified to date
(log(L∗/L�) ∼ 5.3; see above) results in a distance of 3.4 kpc
(Table 1). Such a luminosity would correspond to an initial stel-
lar mass of ∼25 M� – a value on the cusp of that required by
theoretical predictions for a star to evolve bluewards after ex-
iting the RSG phase and hence potentially become a P Cygni
supergiant2.

We conclude that [OMN2000] LS1 is an evolved massive
star in a P Cygni supergiant phase, with a high mass loss rate and
evidence for chemical enrichment. While such a classification

1 Note that the intrinsic luminosity and strong emission line spectrum
of a P Cygni supergiant would identify them in either a spectroscopic
or a broad+narrow (e.g. Hα) band imaging survey.
2 Indeed two clusters in the Large Magellanic Cloud are found to con-
tain the closely related Ofpe/WN9 stars; LH39 (∼8–10 Myr) and LH89
(∼5–7 Myr); both ages from Massey et al. (2000). Thus it appears that
under certain conditions stars with masses as low as ∼25 M� may be-
come P Cygni supergiants.
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does not premit an exact distance to be determined, we favour a
distance compatable with recent kinematic and parallactic esti-
mates to W51, which would imply a progenitor mass of the order
of ∼40 M�.

4. The star formation history of W51

Combined with the identification of massive protostars, the pres-
ence of [OMN2000] LS1 within W51A indicates that massive
star formation has been underway for a significant period of
time. OMN2000 report ages of only 1.9 Myr and 2.3 Myr for
[OM2000] LS1 and the region of W51 which hosts it (their
“Region 1”; Fig. 1). However, comparison of our modelling re-
sults to the theoretical predictions of Meynet & Maeder (2000)
suggest this is an underestimate, with the episode of SF that
yielded [OMN2000] LS1 occuring at least ∼3 Myr ago. Precise
limits depend on both distance and stellar rotation, which is cur-
rently unquantifiable, but both theoretical and observational con-
siderations suggest 3–6 Myr for a distance of 6 kpc and >10 Myr
for 2 kpc, if such a low luminosity solution is tenable (with the
intermediate value of 3.4 kpc implying a range of ∼5–10 Myr).

In an analagous manner, the numbers and ratios of OB
supergiants to Wolf Rayets and cool evolved stars such as
Yellow Hypergiants and RSGs also potentially constrain recent
(∼20 Myr) SF within W51. Hadfield et al. (2007) showed that
hot post-MS evolutionary phases may be identified by an IR ex-
cess due to stellar winds. While a number of stars with such
excesses are found within the W51 complex (van Dyk et al.
2008, priv. comm.), photometric data alone do not allow for
the discrimination of their precise evolutionary state, which is
necessary to constrain the SF history3. However, cool evolved
stars such as RSGs are readily identifiable even at a distance of
6 kpc and Av = 25 mag (Davies et al. 2008). Examination of
the 2MASS data for the complex reveals only a single bright
candidate (2MASS J19225290+1411210; J = 7.21, H = 5.50,
K = 4.63), with colours consistent with a moderately reddened
M star (Av ∼ 8; colours from Elias et al. 1985), for which we in-
fer log(L/L�) ∼ 5.5 (5.0) for a putative spectral type of M0 I (M5
I; bolometric corrections from Levesque et al. 2005) at a dis-
tance of 6 kpc and hence an age in the range of ∼10–14 Myr (e.g.
Davies et al. 2008), noting that the comparatively low extinction
could be the result of clearing of the local ISM by precursor O
stars (as suggested by the anonymous referee).

Irrespective of the actual classification of 2MASS
J19225290+1411210, a large population of RSGs appears
to be absent from W51. Following the methodology of Davies
et al. (2008, and refs. therein) we may utilise this observation
to interpret the prior SF history. We built synthetic clusters of
differing masses in the 1–40 000 M� range, populating them ac-
cording to a Kroupa type Initial Mass Function (Kroupa 2001)4,
and evolving stars according to the rotating (vrot = 300 km s−1),
solar metalicity evolutionary tracks of Meynet & Maeder (2000).
RSGs were classified as those stars with log(L/L�) > 4.5 and
T < 4500 K, and 200 trials per age interval were employed to
reduce random noise. Results from these simulations, in terms

3 There exists the potential for the miss-identification of pre-MS ob-
jects as post-MS stars, with Hadfield et al. (2007) finding a large number
of B[e] stars using their IR selection criteria; a heterogeneous classifica-
tion containing stars at very different evolutionary stages (Lamers et al.
1998).
4 Previous simulations of RSGC1-3 (Davies et al. 2007, 2008; Clark
et al. 2009) had assumed a Salpeter IMF – for a given population of
RSGs the Kroupa IMF yeilds more low mass stars, resulting in an in-
crease in cluster mass by ∼30% over the estimates given in these works.

Fig. 3. Plot showing the mean number of RSGs expected for clusters
with masses of 3 and 10 × 103 M� as a function of cluster age, the
hashed regions indicating the formal 1σ range derived from the Monte
Carlo simulations. By comparison, current SF within W51 is forming
clusters in the 2−10 × 103 M� range, and the Orion Nebula cluster is
∼2000 M� (Sect. 4). The dip between 14–20 Myr is caused by the onset
of a blue loop for a restricted mass range of progenitors.

Fig. 4. Plot showing the probability that a cluster of given age and mass
has no RSGs present (Sect. 4).

of both the mean number of RSGs expected and the probability
that none will be present, as a function of cluster mass and age,
are presented in Figs. 3 and 4.

These results clearly demonstrate that, given the brevity of
the RSG phase, statistically significant conclusions may only
been drawn for very massive (	104 M�) clusters which, by
extention, may host correspondingly rich populations of RSGs.
Indeed, RSGs are so rare at ages of <8 Myr that no meaningful
constraints may be placed on the properties of individual host
clusters, even for such extreme masses. These uncertainties are
further exacerbated in the event that constraints on the age of the
RSG population are unavailable, which would occur if no esti-
mate of the stellar luminosity were available. Since this would be
the case for 2MASS J19225290+1411210 if it were a RSG, we
may only infer that any putative natal cluster must be greater
than 5 Myr in age. However, we may compare the results of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911980&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200911980&pdf_id=4
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the Monte Carlo simulations to the properties of the ensemble
of clusters identified by Nanda Kumar et al. (2004) to inves-
tigate whether the global rate of SF in the W51 complex was
larger or smaller in the past. Nanda Kumar et al. (2004; Fig. 1)
reported the discovery of 5 massive (2−10 × 103 M�), young
(0.7–3 Myr) clusters in the 4 fields they surveyed. Given the re-
sults presented in Fig. 4, if these clusters were to be observed at
an age of 9(20) Myr we would expect a total of 3(20) RSGs to
be present, with only a <5% chance that none would be present
at either epoch. We therefore conclude that the current SF differs
from past (>9 Myr) epochs in the sense that greater numbers of
massive clusters are currently being formed.

While we defer a detailed description of the Spitzer data to
a future paper, we note that the morphology of the emission
also casts doubt on the hypothesis of OMN2000 that SF in their
Region 1 subsequently triggered similar activity in their Region
3 (which contains the massive proto-cluster IRS2; Figueredo
et al. 2008; Barbosa et al. 2008). Under such a scenario we might
expect to see a mid-IR morphology similar to that of the G305
SF complex (Clark & Porter 2004), with IRS2 residing on the
periphery of a large wind blown cavity, which would be readily
visible in e.g. Spitzer data (Churchwell et al. 2006). While such
structures are found within Region 1 of OMN2000 (Fig. 1), IRS2
clearly resides beyond their boundaries, implying that it formed
independently of this activity.

Therefore, in summary we are able to conclude that SF ac-
tivity within the W51 complex resulting in the production of
massive O stars is ongoing and has proceeded at multiple sites
throughout the cloud over at least the last ∼3 Myr, with no cur-
rent evidence for widespread internal sequential triggering, al-
though the simultaneity of these events does suggest a large scale
external trigger (c.f Nanda Kumar et al. 2004).

Recent observations of external galaxies such as M51 have
revealed that SF appears to yield complexes of star clusters
with a range of ages (∼10 Myr; Bastian et al. 2005) and it ap-
pears likely that W51, along with other complexes such as G305
(Clark & Porter 2004) and the Carina Nebula (Smith & Brooks
2007) are Galactic analogues. However, despite the physical
similarities demonstrated by these complexes – a heirarchical
distribution of star formation on multiple spatial scales which
likely reflect the fractal nature of their natal GMCs (Elmegreen
2008) – differences between the locations of distinct stellar pop-
ulations are apparent. For example the extragalactic Giant HII
region NGC2403-I consists of a halo of 7–10 Myr old RSGs sur-
rounding a population of significantly younger (2–6 Myr) mas-
sive stellar clusters (Drissen et al. 1999). Conversely 30 Dor and
the G305 complex comprise dense central clusters (2–5 Myr)
which are triggering new waves of SF (≤1 Myr) on the periph-
ery of wind blown bubbles (Walborn et al. 2002; Clark & Porter
2004), while we currently find no evidence for spatially segre-
gated, sequentially triggered star formation in W51.

5. Conclusions

Utilising new near-IR spectroscopic observations we find that
[OMN2000] LS1 is a massive evolved star best classified as
an extreme P Cygni B supergiant. Our non-LTE analysis of the
star suggests a significant downwards revision in stellar temper-
ature, luminosity and initial mass when compared to the val-
ues presented by OMN2000. Assuming the spectroscopically
determined distance of 2 kpc to W51 (Figueredo et al. 2008)
results in a luminosity and progenitor mass significantly lower
than expected for such stars on both observational and theoret-
ical grounds. In contrast, a distance of 6 kpc – representative

of both kinematic and parallactic estimates – results in a lumi-
nosity of log(L/L�) ∼ 5.75, an initial mass of order ∼40 M�, a
mass loss rate of 6.6×10−5 M�yr−1 and and elevated He/H ratio;
entirely consistent with quantitative analyses of other P Cygni
supergiants, LBVs and the closely related WN9-11 stars. Given
a current empirical minimum luminosity of log(L/L�) ∼ 5.3 for
the P Cygni supergiants, we suggest a corresponding minimum
distance of ∼3.4 kpc for [OMN2000] LS1.

Nevertheless, for either distance, this result demonstrates
that massive SF in W51 has been underway for a minimum of
3 Myr and is still ongoing (e.g. Figueredo et al. 2008). However,
the lack of a significant population of RSGs – if indeed any are
present – within the complex suggests that the formation of star
clusters differed in the past, such that the massive clusters be-
ing formed now (Nanda Kumar et al. 2004) were not forming
≥9 Myr ago.

The morphology of the mid-IR emission surrouding
[OMN2000] LS1 casts doubt upon the hypothesis of OMN2000
that sequential, internally triggered SF has occurred within W51,
but is consistent with the suggestion of Nanda Kumar et al.
(2004) of activity at multiple sites initiated by an external trig-
ger. In this respect W51 differs from other complexes such as
G305 and the Carina nebula, where ongoing SF triggered by the
first generation of stars appears to be occuring on the periphery
of a wind blown cavity in the GMC.

Nevertheless, all three regions appear to be Galactic counter-
parts to the star forming complexes identified in external galax-
eis such as M51 (Bastian et al. 2005) and NGC2403 (Drissen
et al. 1999), which are characterised by SF on multiple spa-
tial scales and over a comparatively short (∼10 Myr) period
of time. While the global, heirarchical properties of such com-
plexes likely reflect the initial conditions of the natal GMCs
(Elmegreen 2008), the relative magnitudes of, and interplay be-
tween, internal (feedback from OB stars and SNe) and external
triggering processes (SNe, passage of galactic density waves and
interaction with external galaxies) presumably play a key role in
determining the detailed SF history and morphology of individ-
ual examples.
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