
Query Optimization over a Heterogeneously
Distributed Scientific Database

Helen X. Xiang
Computer Science, University of Hertfordshire, UK

Email: h.xiang@herts.ac.uk

Abstract—This paper briefly discusses about the concepts
about distributed databases management system and distributed
query processing. It then talks about the need of distributing
large Scientific datasets such as the Sloan Digital Sky Survey.
The main focus of this paper is to investigate fully distributed
queries involving cross-joins across a heterogeneously distributed
scientific database.

I. INTRODUCTION

The concepts of Distributed Database Management System
(DDBMS) and Distributed Query Processing (DQP) are very
much related but they have distinct meanings. A DDBMS
uses two or more DBMSs to distribute data in a distributed
system that appears to an application or user as a single
database. A DQP system is used to distribute application
tasks among different databases and different computers in
a network. DDBMS technology is mainly about distributing
data. DQP technology is mainly about distributing computing
processes. As well as being used to modify the global database,
the implementation of DQP is used in distributed database
applications to access both local and remote data in a DDBMS.

A distributed database is normally composed of a set of data
with different parts stored in separated DBMSs that operate
on different hardware systems with independent computer
systems. Each participating computer system has its own right
in controlling its own local applications, while taking part in
the global transactions and applications of the DDBMS as a
whole. A homogenous DDBMS uses the same DBMS at all the
distributed sites, whereas a heterogeneous DDBMS employs
two or more DBMSs. The global transactions in a DDBMS
often involve data from multiple distributed sites. However,
such characteristics of a DDBMS should be hidden from the
end users. In other words, the users should not be aware
of the distribution and heterogeneity of the data. Please see
[11] for an in-depth review of distributed databases systems
technologies.

The Sloan Digital Sky Survey (SDSS) is the first wide-
are suvey to use electronic light detectors, collecting accurate
images and building a very detailed digital map of the visible
stars and galaxies in the night sky [17], [18]. Currently,
the SDSS-III collaboration is making the map of the Milky
Way and searching for extrasolar planets as well as trying
to solve the mystery of dark energy [3]. At the point of
writing this paper, there have been nine major data releases
from the SDSS project. The size of the SDSS database has

increased considerably in size with each new release. With
the latest release (DR9), the data produced by the survey is
summarised in an sixty-terabyte relational database containing
photometric objects and spectroscopic information with 14,555
square degrees of the sky coverage. The SDSS data is available
to the scientists and the general public via the SkyServer
(http://skyserver.sdss.org), the Science Archive Server (SAS)
DR9 (http://dr9.sdss3.org) or various mirror sites. The SDSS
telescope is collecting data from the sky every night. Terabytes
of raw data has been gathered every year since the SDSS
project started in April 2000. Even though storage is getting
cheaper, hosting such a data repository on a single site will not
only become expensive, but may eventually be a performance
bottleneck too. The growth of datasets such as the SDSS re-
quires new scientific methods to organise the rapidly growing
volume of data. In the long term, we suppose distributing the
SDSS database over multiple sites may be the most feasible
way to house the data.

In our past papers we described how we created a het-
erogeneous distributed version of the SDSS database [9],
[10], [12], [14] and experimented with data integration using
union queries [16] via the Grid middleware. This is based
on OGSA-DQP Distributed Query Processing [19] and the
OGSA-DAI middleware[1]. We used OGSA-DAI and OGSA-
DQP to integrate the data across different sites—forming a
logical distributed database system. Global distributed queries
can be processed over this logical database system [11].

Our last publication [15] began to discuss distributed query
processes involve joins within a single database. In this paper,
we are going to look at fully distributed join queries, involving
cross-joins.

Please refer to [10], [12] for the details of how we
distributed the SDSS MyBestDR5 database system among
hosts within the University of Portsmouth and between the
universities of Manchester and Portsmouth.

See [14] for the details of the OGSA-DQP system and its
architecture. This paper follows on from our earlier publica-
tions [8], [9], [10], [12], [13], [14], [15], [16].

II. DISTRIBUTED JOIN QUERIES

This paper discusses running more complicated distributed
queries through OGSA-DQP. The distributed join queries we
will execute through OGSA-DQP typically involve local joins
and cross joins. Local joins join tables in the same database
while cross joins join tables from different databases. For



example, suppose we have an original query like this:

SELECT <select-list> FROM tableA, tableB WHERE <predicate>

(1)
To run a query equivalent to 1 on a database distributed on
two hosts the query needs to be broken down into local joins
and cross joins. In OGSA-DQP the local joins would be like
this:
SELECT <select-list> FROM host1_tableA, host1_tableB WHERE <predicate>
SELECT <select-list> FROM host2_tableA, host2_tableB WHERE <predicate>

(2)
and the cross joins would be like this:
SELECT <select-list> FROM host1_tableA, host2_tableB WHERE <predicate>
SELECT <select-list> FROM host2_tableA, host1_tableB WHERE <predicate>

(3)
Here host1 and host2 are the identifiers for the two data
resources. The above four queries would then be united with
the UNION operations of OGSA-DQP.

Most query examples in the previous publications use
OBJID in the WHERE clauses. These queries are relative easy
to execute because we used OBJID to partition the SDSS
database. The OBJID is a unique SDSS identifier composed
from the several columns including skyVersion, rerun,
run, camcol, field, and obj (see Table I).

Stepping back to real life, the majority of the SDSS users
are not interested in searching the database by OBJID. They
are interested in measured properties of objects. Therefore,
we are going to test a couple of astronomical queries from the
SkyServer Sample Queries [6].

Two different types of distributed queries will be considered
here:

1) Data exists in all distributed sites, for example query 4.
2) Some of the data only exists on one of the distributed

sites but not the others, for example query 5.
The Galaxies blended with stars query from SkyServer

looks like this:
-- Find galaxies that are blended with a star, and
-- output the deblended galaxy magnitudes.

SELECT Galaxy.ObjID, Galaxy.u, Galaxy.g,
Galaxy.r, Galaxy.i, Galaxy.z

-- get the ObjID and final magnitudes.
FROM Galaxy, Star

-- use two Views, Galaxy and Star, as a
-- convenient mechanism to compare objects

WHERE Galaxy.parentID > 0
-- galaxy has a "parent", which tells
-- object was deblended...

AND Galaxy.parentID = Star.parentID
-- ... and the star has the same parent.

(4)
Query 4 returns 26, 978 rows on the MyBestDR5 database,
taking about 4 seconds.

The Star view contains the photometric parameters for all
primary point-like objects (including quasars) from another
view PhotoPrimary, while the Galaxy view contains
all objects classified as galaxies from PhotoPrimary [5].
Derived from table PhotoObjAll, view PhotoPrimary
contains the primary survey objects with no redshifts or spec-
troscopic parameters. Therefore, views Star and Glaxy are
subsets of table PhotoObjAll with rows divided between
sites hosting our distributed SDSS database.

The Stars in specific fields query from SkyServer looks like
this:

-- Return the PSF colours of all stars brighter than g = 20
-- that have PSP_STATUS = 2.

SELECT Star.psfMag_g, Star.run, Star.camCol,
Star.rerun, Star.field

FROM Star, Field
WHERE Star.fieldID = Field.fieldID
AND Star.psfMag_g < 20
AND Field.pspStatus = 2

(5)
Query 5 returns 91 rows on the MyBestDR5 database, taking
about 1 second. Schema object Star has data at all our
distributed sites, but Schema object Field only has data in
the partition on Ace—not in any of our SDSS Oracle partitions
at Portsmouth or Manchester.

Database MyBestDR5 is distributed among three databases
at three different hosts: buck on Gizmo, icg on Gizmo2
and MyBestDR5one on Ace. To run query 4 and query 5
on the distributed MyBestDR5 database through OGSA-DQP,
we need to break each query into three local joins and six
cross joins, and integrate those join results using the UNION
ALL operations. This leads to the very lengthy queries that are
displayed in Figures 1 and 2.

We tested the OGSA-DQP query 4 on Ace against the
distributed MyBestDR5 database. The individual queries of
local joins and cross joins through OGSA-DQP went well,
and the times taken were between 25 seconds and 1 minute
59 seconds. But the union query of Figure 1 appeared to just
hang, and never finished.

We examined the DQP evaluator’s log file on Ace. It
contained the following exception message:

java.net.SocketTimeoutException: Read timed out

With more careful investigation we figured out the reason for
the failure: the OGSA-DQP EXCHANGE operation inside the
evaluator was timing out after about ten minutes. We saw a
similar problem previously with the standard implementation
of OGSA-DQP client. In that case, as described in an earlier
publication [14], the client was waiting for the query results
from the coordinator and it also timed out after ten minutes.
Here, the process involves three different DQP evaluators at
three hosts: Ace, Gizmo and Gizmo2. One evaluator was wait-
ing on another evaluator for the UNION ALL operations—this
waiting timed out after ten minutes.

The EXCHANGE operation timeout problem was
solved by modifying the OGSA-DQP evaluator’s
TransportHandler class, adding the following code:

((Stub)transportPort).setTimeout(0);

After this modification, the union query of Figure 1 runs
through OGSA-DQP successfully and returns the correct result
sets. A final run only took three minutes in total1 (the time for
executing the original SDSS query 4 was about 4 seconds.)

We should note that both schema objects in the FROM
clause of query 4 have data entries on all distributed SDSS

1We do not have a good explanation for the final run time being less than
the previously observed timeout period.



(((SELECT MyBestDR5one_Galaxy.objID, MyBestDR5one_Galaxy.u, MyBestDR5one_Galaxy.g,
MyBestDR5one_Galaxy.r, MyBestDR5one_Galaxy.i, MyBestDR5one_Galaxy.z

FROM MyBestDR5one_Galaxy, MyBestDR5one_Star
WHERE MyBestDR5one_Galaxy.parentID=MyBestDR5one_Star.parentID AND MyBestDR5one_Galaxy.parentID>0)

UNION ALL
(SELECT buck_GALAXY.OBJID, buck_GALAXY.U, buck_GALAXY.G, buck_GALAXY.R, buck_GALAXY.I, buck_GALAXY.Z
FROM buck_GALAXY, buck_STAR WHERE buck_GALAXY.PARENTID=buck_STAR.PARENTID AND buck_GALAXY.PARENTID>0))

UNION ALL
(SELECT icg_GALAXY.OBJID, icg_GALAXY.U, icg_GALAXY.G, icg_GALAXY.R, icg_GALAXY.I, icg_GALAXY.Z
FROM icg_GALAXY, icg_STAR WHERE icg_GALAXY.PARENTID=icg_STAR.PARENTID AND icg_GALAXY.PARENTID>0))

UNION ALL
((((SELECT MyBestDR5one_Galaxy.objID, MyBestDR5one_Galaxy.u, MyBestDR5one_Galaxy.g,

MyBestDR5one_Galaxy.r, MyBestDR5one_Galaxy.i, MyBestDR5one_Galaxy.z
FROM MyBestDR5one_Galaxy, buck_STAR
WHERE MyBestDR5one_Galaxy.parentID=buck_STAR.PARENTID AND MyBestDR5one_Galaxy.parentID>0)

UNION ALL
(SELECT MyBestDR5one_Galaxy.objID, MyBestDR5one_Galaxy.u, MyBestDR5one_Galaxy.g,

MyBestDR5one_Galaxy.r, MyBestDR5one_Galaxy.i, MyBestDR5one_Galaxy.z
FROM MyBestDR5one_Galaxy, icg_STAR
WHERE MyBestDR5one_Galaxy.parentID=icg_STAR.PARENTID AND MyBestDR5one_Galaxy.parentID>0) )

UNION ALL
(SELECT buck_GALAXY.OBJID, buck_GALAXY.U, buck_GALAXY.G, buck_GALAXY.R, buck_GALAXY.I, buck_GALAXY.Z
FROM buck_GALAXY, MyBestDR5one_Star WHERE buck_GALAXY.PARENTID=MyBestDR5one_Star.parentID AND buck_GALAXY.PARENTID>0) )

UNION ALL
(((SELECT buck_GALAXY.OBJID, buck_GALAXY.U, buck_GALAXY.G, buck_GALAXY.R, buck_GALAXY.I, buck_GALAXY.Z

FROM buck_GALAXY, icg_STAR WHERE buck_GALAXY.PARENTID=icg_STAR.PARENTID AND buck_GALAXY.PARENTID>0)
UNION ALL

(SELECT icg_GALAXY.OBJID, icg_GALAXY.U, icg_GALAXY.G, icg_GALAXY.R, icg_GALAXY.I, icg_GALAXY.Z
FROM icg_GALAXY, MyBestDR5one_Star WHERE icg_GALAXY.PARENTID=MyBestDR5one_Star.parentID AND icg_GALAXY.PARENTID>0) )

UNION ALL
(SELECT icg_GALAXY.OBJID, icg_GALAXY.U, icg_GALAXY.G, icg_GALAXY.R, icg_GALAXY.I, icg_GALAXY.Z
FROM icg_GALAXY, buck_STAR WHERE icg_GALAXY.PARENTID=buck_STAR.PARENTID AND icg_GALAXY.PARENTID>0) ))

Fig. 1. OGSA-DQP version of query 4 for distributed MyBestDR5 database.

(((SELECT MyBestDR5one_Star.psfMag_g, MyBestDR5one_Star.run, MyBestDR5one_Star.camcol,
MyBestDR5one_Star.rerun, MyBestDR5one_Star.field

FROM MyBestDR5one_Star, MyBestDR5one_Field
WHERE MyBestDR5one_Star.fieldID = MyBestDR5one_Field.fieldID

AND MyBestDR5one_Star.psfMag_g < 20 AND MyBestDR5one_Field.pspStatus = 2)
UNION ALL
(SELECT buck_STAR.PSFMAG_G, buck_STAR.RUN, buck_STAR.CAMCOL, buck_STAR.RERUN, buck_STAR.FIELD
FROM buck_STAR, buck_FIELD
WHERE buck_STAR.FIELDID = buck_FIELD.FIELDID AND buck_STAR.PSFMAG_G < 20 AND buck_FIELD.PSPSTATUS = 2))

UNION ALL
(SELECT icg_STAR.PSFMAG_G, icg_STAR.RUN, icg_STAR.CAMCOL, icg_STAR.RERUN, icg_STAR.FIELD
FROM icg_STAR, icg_FIELD
WHERE icg_STAR.FIELDID = icg_FIELD.FIELDID AND icg_STAR.PSFMAG_G < 20 AND icg_FIELD.PSPSTATUS = 2))

UNION ALL
((((SELECT MyBestDR5one_Star.psfMag_g, MyBestDR5one_Star.run, MyBestDR5one_Star.camcol,

MyBestDR5one_Star.rerun, MyBestDR5one_Star.field
FROM MyBestDR5one_Star, buck_FIELD
WHERE MyBestDR5one_Star.fieldID = buck_FIELD.FIELDID AND MyBestDR5one_Star.psfMag_g < 20 AND buck_FIELD.PSPSTATUS = 2) )

UNION ALL
(SELECT MyBestDR5one_Star.psfMag_g, MyBestDR5one_Star.run, MyBestDR5one_Star.camcol,

MyBestDR5one_Star.rerun, MyBestDR5one_Star.field
FROM MyBestDR5one_Star, icg_FIELD
WHERE MyBestDR5one_Star.fieldID = icg_FIELD.FIELDID AND MyBestDR5one_Star.psfMag_g < 20 AND icg_FIELD.PSPSTATUS = 2) )

UNION ALL
(SELECT buck_STAR.PSFMAG_G, buck_STAR.RUN, buck_STAR.CAMCOL, buck_STAR.RERUN, buck_STAR.FIELD
FROM buck_STAR, MyBestDR5one_Field
WHERE buck_STAR.FIELDID = MyBestDR5one_Field.fieldID AND buck_STAR.PSFMAG_G < 20 AND MyBestDR5one_Field.pspStatus = 2) )

UNION ALL
(((SELECT buck_STAR.PSFMAG_G, buck_STAR.RUN, buck_STAR.CAMCOL, buck_STAR.RERUN, buck_STAR.FIELD

FROM buck_STAR, icg_FIELD
WHERE buck_STAR.FIELDID = icg_FIELD.FIELDID AND buck_STAR.PSFMAG_G < 20 AND icg_FIELD.PSPSTATUS = 2)

UNION ALL
(SELECT icg_STAR.PSFMAG_G, icg_STAR.RUN, icg_STAR.CAMCOL, icg_STAR.RERUN, icg_STAR.FIELD
FROM icg_STAR, MyBestDR5one_Field
WHERE icg_STAR.FIELDID = MyBestDR5one_Field.fieldID AND icg_STAR.PSFMAG_G < 20 AND MyBestDR5one_Field.pspStatus = 2) )

UNION ALL
(SELECT icg_STAR.PSFMAG_G, icg_STAR.RUN, icg_STAR.CAMCOL, icg_STAR.RERUN, icg_STAR.FIELD
FROM icg_STAR, buck_FIELD
WHERE icg_STAR.FIELDID = buck_FIELD.FIELDID AND icg_STAR.PSFMAG_G < 20 AND buck_FIELD.PSPSTATUS = 2) ))

Fig. 2. OGSA-DQP version of query 5 for distributed MyBestDR5 database.



Bits Length (#
of bits)

Mask Assignment Description

0 1 0x8000000000000000 empty unassigned
1-4 4 0x7800000000000000 skyVersion resolved sky version (0=TARGET,

1=BEST, 2-15=RUNS)
5-15 11 0x07FF000000000000 rerun number of pipeline rerun
16-31 16 0x0000FFFF00000000 run run number
32-34 3 0x00000000E0000000 camcol camera column (1-6)
35 1 0x0000000010000000 firstField is this the first field in segment?
36-47 12 0x000000000FFF0000 field field number within run
48-63 16 0x000000000000FFFF object object number within field

TABLE I
THE ENCODING OF THE objID OF THE PHOTOMETRIC OBJECTS [4]

sites. Query 4 uses column parentID in the WHERE clause.
We know from the Sky Survey schema browser [5] that
parentID is either the pointer to an object’s parent object
if it is deblended, or its bright object detection, or nothing,
in which case it is set to 0. In other words, an object’s
parentID is another object’s objID or 0. Due to the way
the partitioning is done on our distributed SDSS database ([11]
describes this in more details), stars and galaxies with the same
parent (if they have one) will all come from the same objID
range. That is why the result data of query 4 comes from the
same partitions. Therefore, the six cross joins queries of the
OGSA-DQP query of Figure 1 actually return nothing. The
final result of the nine-query union in Figure 1 is in fact from
the three local join queries. In other words, all the result data
is from three local joins that took place within the individual
SDSS sites (please refer to [15] for more details on local joins).

So this is not an ideal test, but actually the evaluator is
doing just as much work on the cross joins as it would if they
produced non-zero results.

From the data origin point of view, query 5 is different from
query 4. There are two schema objects in the FROM clause of
query 5: Star and Field. All the data of the Field table
is located in the SQL Server database on Ace and none on the
Oracle databases on Gizmo and Gizmo2. However, data of the
view Star is distributed across three sites: Ace, Gizmo and
Gizmo2.

For the OGSA-DQP query of Figure 2, no result will come
back from local joins at buck and icg, but there are possible
results from local join at MyBestDR5one and the cross joins
between different databases.

The individual local joins and cross joins in the query of
Figure 2 all went well through OGSA-DQP. The total run
time took between 4 and 14 seconds. However, the OGSA-
DQP query 5 failed when run from Ace over the distributed
MyBestDR5 database—again we had problem with the result
sets union.

To break down the problem, we first tried to union the result
set from the cross join from Gizmo to Ace with the result set

from the local join on Ace. This leads us to query 6:

(SELECT MyBestDR5one_Star.psfMag_g, MyBestDR5one_Star.run,
MyBestDR5one_Star.camcol, MyBestDR5one_Star.rerun,
MyBestDR5one_Star.field

FROM MyBestDR5one_Star, MyBestDR5one_Field
WHERE MyBestDR5one_Star.fieldID = MyBestDR5one_Field.fieldID
AND MyBestDR5one_Star.psfMag_g < 20
AND MyBestDR5one_Field.pspStatus = 2)
UNION ALL
(SELECT buck_STAR.PSFMAG_G, buck_STAR.RUN, buck_STAR.CAMCOL,

buck_STAR.RERUN, buck_STAR.FIELD
FROM buck_STAR, MyBestDR5one_Field
WHERE buck_STAR.FIELDID = MyBestDR5one_Field.fieldID
AND buck_STAR.PSFMAG_G < 20
AND MyBestDR5one_Field.pspStatus = 2)

(6)
Query 6 through OGSA-DQP likewise appears to hang. Its
query plan in Figure 3 indicates the UNION operation was
allocated to the evaluator on Gizmo. This is not a very effective
plan because the local join result from MyBestDR5one on
Ace would have to be transferred to Gizmo for the UNION
operation. The final result sets from UNION operation would
then be transferred back to the root evaluator (inside the
coordinator) on Ace.

We enabled the debugging and examined the evaluator’s
log files on both Gizmo and Ace. We turned on different
debugging messages and re-ran query 6 a few more times.
Interestingly, the query failed in different ways on different
occasions.

There are two streams of immediate data from Ace evaluator
to Gizmo evaluator as the two red data lines shown in Figure
3. In data stream A, EXCHANGE operation 2 is shipping the
result sets from the APPLY operation 1 at Ace to Gizmo for
the HASH_JOIN operation 3 (this is the Gizmo-Ace cross
join query). At the same time in data stream B, EXCHANGE
operation 9 is shipping the result sets to Gizmo for UNION
operation 6 from Ace’s APPLY operation 8 (for the Ace local
join). It seemed possible the evaluator on Gizmo was confused,
with some kind of sharing of data variables.

We decided to try another similar query. To simplify data
processing and avoid unnecessary data transfer between Ace
and Gizmo, the UNION operation should be done on the
evaluator on Ace. The decision on placement of the UNION
operation may be to do with the order of the sub-queries in the
union query. In query 6 the Gizmo-Ace cross join query on
the left UNION ALL operator and the Ace local join query is
on the right. In query 7, we switched the sub-queries positions



(root)

1. PRINT
0. EXCHANGE

Gizmo Evaluator
(root)

7. EXCHANGE

6. UNION

4. APPLY 

PROJECT: 

STAR.PSFMAG_G

, STAR.RUN, 

STAR.CAMCOL, 

STAR.RERUN, 

STAR.FIELD 

5. EXCHANGE

3. HASH_JOIN

0. EXCHANGE 2. APPLY 

PROJECT: 

STAR.RUN, 

STAR.RERUN, 

STAR.CAMCOL, 

STAR.FIELD, 

STAR.PSFMAG_G, 

STAR.FIELDID 

1. TABLE_SCAN: 

STAR

(root)

9. EXCHANGE

8. APPLY 

PROJECT: Star.psfMag_g, 

Star.run, Star.camcol, 

Star.rerun, Star.field 

7. HASH_JOIN

3. TABLE_SCAN: 

Field

6. APPLY 

PROJECT: 

Star.run, 

Star.rerun, 

Star.camcol, 

Star.field, 

Star.psfMag_g

, Star.field

4. APPLY 

PROJECT: 

Field.fieldID

5. TABLE_SCAN: 

Star

(root)

2. EXCHANGE

0. TABLE_SCAN: 

Field

1. APPLY 

PROJECT: 

Field.fieldID

ACE Evaluator

ACE Coordinator

Data A

Data B

Fig. 3. Query Plan for Query 6

like this:
(SELECT buck_STAR.PSFMAG_G, buck_STAR.RUN, buck_STAR.CAMCOL,

buck_STAR.RERUN, buck_STAR.FIELD
FROM buck_STAR, MyBestDR5one_Field
WHERE buck_STAR.FIELDID = MyBestDR5one_Field.fieldID
AND buck_STAR.PSFMAG_G < 20
AND MyBestDR5one_Field.pspStatus = 2)
UNION ALL
(SELECT MyBestDR5one_Star.psfMag_g, MyBestDR5one_Star.run,

MyBestDR5one_Star.camcol, MyBestDR5one_Star.rerun,
MyBestDR5one_Star.field

FROM MyBestDR5one_Star, MyBestDR5one_Field
WHERE MyBestDR5one_Star.fieldID = MyBestDR5one_Field.fieldID
AND MyBestDR5one_Star.psfMag_g < 20
AND MyBestDR5one_Field.pspStatus = 2)

(7)
The new query plan in Figure 4 looks more efficient. This

is consistent with our guess that DQP optimiser chooses the
query placed before the UNION ALL operator as the “leading
query”, and will try to perform the UNION ALL operation
on the related “leading” evaluator. The data from the query
placed after the UNION ALL operator will be shipped to the
“leading” database for the UNION operation. The final result
sets will then be transferred to the coordinator site where the
DQP query was issued (this is Ace in our examples).

However, query 7 failed in a similar way, despite a better
query plan.

The evaluator log files in both cases ap-
peared to show problems occurring inside
org.apache.axis.message.addressing. This
package is part of the Apache implementation of WS-

Addressing, used by the Web Services Resource Framework
(WSRF). The problem arises in a query plan where the
evaluator issues two concurrent SQL queries to the local
data service resource. It was eventually attributed to a race
condition occurring in the Addressing handlers invoked in the
client (evaluator) side of the request. Two instances of these
handlers concurrently call out into the getUUIDGen()
method of the UUIDGenFactory class in Apache Axis
SOAP implementation (Axis) 1.2RC2. This method in turn
calls the newInstance() of AxisProperties. The
race condition seems to occur somewhere inside this core
Axis class2. Making the newInstance() method into a
synchronized method resolved the problem.

After fixing this problem in Axis, query 6 ran successfully
through OGSA-DQP, taking 19 seconds. The original 9-union
query of Figure 2 also ran successfully and only took 28
seconds in total (the time for executing the original SDSS
query 5 was about 1 second.)

2The non-determinism we observed is exactly the behaviour expected if
some global variable is unintentionally shared between two threads, leading
to classic non-determinism in a concurrent program. We did not have time
to trace the exact location of the problem, which could be deep inside the
AxisProperties class. It could either be a bug in Axis, or it could be
that the original Axis method was never meant to be called more than once
concurrently, and the WS-Addressing handlers were wrong to use it like this.



(root)

1. PRINT
0. EXCHANGE

ACE Evaluator

4. APPLY 

PROJECT: 

STAR.PSFMAG_G

, STAR.RUN, 

STAR.CAMCOL, 

STAR.RERUN, 

STAR.FIELD 

(root)

5. EXCHANGE

3. HASH_JOIN

0. EXCHANGE
2. APPLY 

PROJECT: 

STAR.RUN, 

STAR.RERUN, 

STAR.CAMCOL, 

STAR.FIELD, 

STAR.PSFMAG_G, 

STAR.FIELDID 

1. TABLE_SCAN: 

STAR

Gizmo Evaluator

9. EXCHANGE

5. APPLY 

PROJECT: Star.psfMag_g, 

Star.run, Star.camcol, 

Star.rerun, Star.field 

4. HASH_JOIN

6. TABLE_SCAN: 

Field

3. APPLY 

PROJECT: 

Star.run, 

Star.rerun, 

Star.camcol, 

Star.field, 

Star.psfMag_g

, Star.field

7. APPLY 

PROJECT: 

Field.fieldID

2. TABLE_SCAN: 

Star

(root)

8. EXCHANGE

0. TABLE_SCAN: 

Field

1. APPLY 

PROJECT: 

Field.fieldID

(root)

11. EXCHANGE

10. UNION

ACE Coordinator

Fig. 4. Query Plan for Query 7

SUMMARY AND FUTURE WORK

This paper tested a couple of astronomical queries against
the distributed MyBestDR5 database. The SQL distributed
queries were broken into an OGSADQP format of local joins
and cross joins, integrated with UNION ALL operator. We
intervened in the TransportHandler class of the DQP
evaluator to address a timeout issue. We also resolved a race
condition by synchronizing the newInstance() method of
the AxisProperties class in Axis. Finally, we successfully
used OGSA-DQP to run the queries that involve local joins
and cross joins against a Heterogeneously distributed gigabyte-
database—MyBestDR5. We will move on to runing similar
queries against a geographically distributed terabyte database
next.

REFERENCES

[1] The OGSA-DAI project home page. http://www.ogsdai.org.
[2] The OGSA-DQP project.

http://www.ogsadai.org/about/ogsa-dqp/.
[3] SDSS-III

http://http://www.sdss3.org/.
[4] SDSS ObjID Encoding

http://cas.sdss.org/astro/en/help/docs/algorithm.asp?key=objID/.
[5] SkyServer Schema Browser

http://cas.sdss.org/dr5/en/help/browser/browser.asp/.
[6] SkyServer Sample SQL Queries

http://cas.sdss.org/dr5/en/help/docs/realquery.asp/.

[7] Sun Microsystems, Inc. Mapping SQL and Java types.
http://java.sun.com/j2se/1.5.0/docs/guide/jdbc/getstart/
mapping.html.

[8] H. Xiang, M. Baker, and R. Nichol. Experiences mirroring and distribut-
ing the Sloan Digital Sky Survey. In Fifth International Conference on
Grid and Cooperative Computing Workshops (GCC 2006), Changsha,
China, pages 518–521. IEEE Computer Society, October 2006.

[9] H. X. Xiang. Experiences acquiring and distributing a large scientific
database. Future Generation Communication and Networking Symposia,
2:14–19, 2008.

[10] H. X. Xiang. A grid-based distributed database solution for large
astronomy datasets. Computer Science and Software Engineering, 3:66–
69, 2008.

[11] H. X. Xiang. A Grid-based Distributed Database Solution for Large
Astronomy Datasets. PhD thesis, Portsmouth, UK, February 2008.

[12] H. X. Xiang. Experiences running ogsa-dqp queries against a heteroge-
neous distributed scientific database. In ICPADS ’09: Proceedings of the
2009 15th International Conference on Parallel and Distributed Systems,
pages 706–710, Washington, DC, USA, 2009. IEEE Computer Society.

[13] H. X. Xiang. Supporting complex scientific database schemas in a grid
middleware. In AINA ’09: Proceedings of the 2009 International Confer-
ence on Advanced Information Networking and Applications, pages 937–
944, University of Bradford, Bradford, UK, May 2009. IEEE Computer
Society.

[14] H. X. Xiang. Using grid middleware to query a heterogeneous distributed
version of the sdss database. In ICPADS ’09: Proceedings of the 2009
15th International Conference on Parallel and Distributed Systems, pages
870–875, Washington, DC, USA, 2009. IEEE Computer Society.

[15] H. X. Xiang. Local Join Optimization over a Heterogeneously Dis-
tributed Scientific Database. In Proceedings of the IEEE 2013 Interna-
tional Conference on Big Data (IEEE BigData 2013), Silicon Valley, CA,
USA. IEEE Computer Society.

[16] H. X. Xiang. Integrated Queries over a Heterogeneously Distributed
Scientific Database using OGSA-DQP In ITAIC 2011: Proceedings of the



2011 6th IEEE Joint International Information Technology and Artificial
Intelligence Conference, 421-425, Washington, DC, USA, 2009. IEEE
Computer Society.

[17] D. G. York et al. The Sloan Digital Sky Survey: Technical summary.
Astronomical Journal, 120:1579–1587, 2000. http://www.sdss.org.

[18] H. Aihara et al. The The Eighth Data Release of the Sloan Digital Sky
Survey: First Data from SDSS-III. The Astrophysical Journal Supplement
Series, 193:29, 2011. http://stacks.iop.org/0067-0049/193/i=2/a=29

[19] S. Lynden, A. Mukherjee, A. C. Hume,A. A. A. Fernandes, N. W.
Paton, R. Sakellariou, and P. Watson The design and implementation
of OGSA-DQP: A service-based distributed query processor. In Fu-
ture Generation Computer Systems, 25: 224-236, March 2009, Elsevier.
http://www.cs.man.ac.uk/ norm/publications.php

[20] L. D. Shapiro Join processing in database systems with large main
memories. In ACM Trans. Database Syst., 11: 2239–264, New York, NY,
USA, 1986. ACM Press. http://www.cs.man.ac.uk/ norm/publications.php

[21] G. Graefe Query evaluation techniques for large databases. In ACM
Computing Surveys, 25: 73-170, June 1993. ACM Press.


