
Statistical Performance Analysis with Dynamic Workload
using S-NET

Volkmar Wieser
∗

Software Competence Center
Hagenberg

Softwarepark 21
4232 Hagenberg

volkmar.wieser@scch.at

Philip K.F. Hölzenspies
University of St Andrews

School of Computer Science
North Haugh, St Andrews,

KY16 9AJ
pkfh@st-andrews.ac.uk

Raimund Kirner
University of Hertfordshire

Hatfield, AL10 9AB
United Kingdom

r.kirner@herts.ac.uk

Michael Roßbory
Software Competence Center

Hagenberg
Softwarepark 21
4232 Hagenberg

michael.rossbory@scch.at

ABSTRACT
In this paper the ADVANCE approach for engineering con-
current software systems with well-balanced hardware ef-
ficiency is adressed using the stream processing language
S-Net. To obtain the cost information in the concurrent
system the metrics throughput, latency, and jitter are evalu-
ated by analyzing generated synthetical data as well as using
an industrial related application in the future. As fall-out an
Eclipse plugin for S-Net has been developed to provide sup-
port for syntax highlighting, content assistance, hover help,
and more, for easier and faster development. The presented
results of the current work are on the one hand an indicator
for the status quo of the ADVANCE vision and on the other
hand used to improve the applied statistical analysis tech-
niques within ADVANCE. Like the ADVANCE project, this
work is still under development, but further improvements
and speedups are expected in the near future.

General Terms
Design, Algorithms, Performance, Load Balance

Keywords
S-NET, SAC, ADVANCE, Auto-Parallelization, Image Pro-
cessing

1. INTRODUCTION
∗Corresponding author, for questions please mail to
volkmar.wieser@scch.at

Image processing in industrial environments, especially in
the field of quality inspection, e.g., for the production of
foils, industrial woven fabrics, or stainless steel plates for
end-consumer devices, has to cope with a complex phe-
nomenology of textures and defects and in addition with
real time requirements on high speed installations, e.g., with
an achievable scanning speed up to 300m/min, i.e. about
80MB/sec per camera systems. This requires the applica-
tion of advanced cost-intensive algorithms for image process-
ing as well as machine learning, the use of high-performance
computational hardware like GPUs or multi-core systems,
and the exploitation of parallelization potentials. Regarding
performance the analysis of the whole processing pipeline in
Figure 1 (image acquisition, preprocessing, feature extrac-
tion, registration, defect detection and classification) using
standard languages is a resource- and time-intensive chal-
lenge.

Especially in the field of quality inspection, blob analysis is
an elementary step in defect detection (module “Candidate
Detection” in Figure 1) to extract features for defect classifi-
cation, e.g., using support vector machines (module “Defect
Classification” in Figure 1). Furthermore, for huge data sets
the statistical evaluation of distinct regions in images is a
time consuming task.

What is needed is a convenient abstract language that sup-
ports automatic parallelization on different architectures with-
out the need of source code changes but gains robust per-
formance benefits on the one hand, and a stream processing
language, which orchestrates various numbers of modules to
achieve an optimal workload balance, on the other hand.

One of the visions in the IST-FP7 supported ADVANCE
project is to realize both an automatic and optimal distri-
bution of workload on heterogeneous platforms to achieve
the best performance gain during application run, especially
if the amount of input data is changing during inspection,
e.g., due to varying numbers or sizes of regions of interest
(ROIs). To analyze such a workload behavior we have de-

Figure 1: General image processing pipeline for
quality inspection

veloped a simple and easy to understand blob analysis tool
(see Figure 2) to simulate an industrial use case. First, this
tool reads images from an image database and preprocesses
them applying an anisotropic filter [7, 11]. In a second step
an “ImageLabeler” is used to identify the regions of interest.
These two steps must be executed in a sequential order only
once. In contrast, the statistical blob analysis itself (calcu-
lation of perimeter, area, centroid, compactness, and mo-
ments) must be accomplished for each labeled region. Since
some modules rely on the output of others, e.g., to calcu-
late the compactness, the results of perimeter and area are
necessary, synchronization points are needed, depicted as
vertical lines in the lower dashed-bordered rectangle in Fig-
ure 2. Finally, the results of all modules are written to the
output.

Figure 2: Abstract blob analysis tool for statistical
performance analysis

The workload of individual modules as shown in Figure 2
as well as the workload of the used CPU/GPU units is not
predictable in advance. This means that in most industrial
use cases the occurrence, the size, and the complexity of such
regions of interest have an arbitrary behavior. Additionally,
the processing time of the single modules in the blob analysis
tool differ because of the varied mathematical complexity.

In general, the route within ADVANCE leads towards dy-
namic specialisation and optimisation of the concurrent ap-
plication based on feedback of statistic performance data [4].
So far a Light-weight Parallel Execution Layer (lpel), ex-
plained in section 3, has been developed for S-Net that

improves the efficiency of S-Net application by using user-
level threading on top of workers, which are pinned to pro-
cessing resources. Even though first experiments with lpel
have shown that it can in most cases outperform the tra-
ditional implementation based on threads on the operating
system level for each S-Net work unit. Towards further op-
timisation we will work on the optimisation outlined by the
ADVANCE agenda. The novel approach we will use is based
on property aggregation over individual S-Net work units
in order to optimise the resource management. For this we
have developed a property description language that allows
to characterise individual S-Net work units, called Con-
straint Aggregation Language (CAL) [9]. We will extend
lpel with a hardware virtualisation technique that exports
key parameters of the hardware platform in order to allow
for an application-wide resource optimisation based on CAL
units and statistical performance data.

In this paper an analysis of the static and dynamic work-
load of the blob analysis tool in Figure 2 using S-Net is
performed with respect to throughput, latency and jitter.
The remainder of the paper is structured as follows. After
a general overview of the used language S-Net in section 2
and its underlying runtime layer lpel in section 3, a theoret-
ical explanation of the use cases is given in section 4. Next,
a general discussion of the developed S-Net Eclipse plugin
is presented in section 5. Afterwards, the S-Net implemen-
tation and the practical experiments with the used image
database of the applied use cases are shown in section 6 to
analyse the results of the statistical workload on a multi-core
system. Finally, section 7 summarizes the published work
and gives a short outlook of the ADVANCE project.

2. S-NET: ASYNCHRONOUS COMBINATO-
RIAL STREAM PROGRAMMING

Networked stream programming goes back to Kahn’s net-
works [6] which are fixed graphs with message streams flow-
ing along the edges and stream-processing functions placed
at the vertices. The importance of this type of computing
is in its simple fixed-point semantics and the static nature
of task distribution. It is due to these characteristics that
networked stream programming is used widely in control
systems (for example the Airbus software [2] is written in
a stream processing language esterel [1]). However, with
the advent of multicore systems and especially large, het-
erogeneous, many-/multicore architectures, the synchrony
found in most programming tools of this kind will become
more and more of a limiting factor for throughput and uti-
lization maximization. Consequently asynchronous stream-
processing languages, such as S-Net [5] are likely to prove
to be useful. The principles behind asynchronous stream-
processing can be found in [10]; here we only restate some
ideas required to understand the work presented in this pa-
per.

S-Net is a declarative coordination language for asynchro-
nous stream programming. Every network in S-Net is Single-
Input, Single-Output (siso). This means that every network
transforms an input stream to an output stream. A stream
is a (potentially infinite) sequence of non-overlapping, dis-
crete data items, called records. The basic networks are
primitive networks, that can be combined by using network
combinators into (non-primitive, siso) networks.

Primitive networks perform either processing or synchro-
nization. Processing networks are stateless functions, de-
fined by the user in one of two possible ways: A box, imple-
mented in a programming language (referred to as the box
language), or a filter, specified in S-Net terms. Synchro-
nization networks, known as synchrocells, combine records
based on their type.

Records are sets of name-value pairs. Values come in two
variants: fields, which are values in terms of the box lan-
guage and are opaque at the S-Net-level, and tags, which
are integer values that can be read and written by both the
box language and S-Net. The type of a record is the set
of all the names it contains. A subtype relation on record
types is defined as the superset relation on sets, i.e. when
record type t contains strictly more names than record type
t′, then t is a subtype of t′. This subtype relation is transi-
tive, e.g. {A,B} is a subtype of {B}, which is a subtype of
{}, so {A,B} is a subtype of {} also.

A network takes records from its input stream and results
in records on its output stream. Thus, network types are
defined in terms of record types. Networks take records
of one type and result in zero-or-more records of possibly
different types. Networks can take different types of records
as input. These are referred to as input variants. The types
of the records on a network’s output stream depend on the
input variant and (often) also on the values contained in the
corresponding record on the network’s input stream. Thus,
for every input variant, a set of output variants (record types
of records that the network can produce in response to the
input) is given.

Networks defined for a specific input type can be fed records
of that type or of any subtype thereof. Values correspond-
ing to names not specified in the input type of a primitive
network are flow inherited, i.e. added to all outputs of that
primitive network, produced in response to the correspond-
ing input record. S-Net’s type system and the mechanism
of flow inheritance provide the user with a powerful compo-
sitionality and enable reusability in a broad sense. Further-
more, it provides means for routing records through a net-
work, based on the strongest match (most names) between a
record’s type and that of the possible networks’ input types.

The primary motivation for S-Net is the separation of con-
cerns between application engineering on one hand and con-
currency engineering on the other. Also, it creates a porta-
bility across different system architectures (different granu-
larities of computing resources, memory hierarchies, degrees
of heterogeneity, etc.) much in the same way higher level
programming languages provide portability across different
processor architectures.

3. LPEL
The Light-weight Parallel Execution Layer (lpel) [8] is a
user-level work distribution abstraction, which was devel-
oped as a run-time system for S-Net. Instead of threads
on the operating system level for all independent work units
in an S-Net-program, lpel manages a set of workers. If
possible, one worker corresponds to one processing resource
to which it is pinned, so as to exploit cache locality and
avoid expensive thread migration. Workers execute tasks,

where—on the S-Net-level—one task corresponds to the
computation of one box firing for one record. By using user-
level threads instead of kernel-level threads, task schedulers
can take into account specific (predictable) behaviour of a
specific S-Net-program. In other words, it allows for an in-
formed choice of scheduler and for the scheduler, in turn, to
be more informed than an operating system scheduler.

Since a key goal of this work is to perform statistical perfor-
mance analysis, lpel also gathers performance data cheaply
and (nearly) transparently. Monitoring can be disabled when
not required, to save what little overhead it incurs. One way
of ensuring little overhead and transparent measurement of
performance is by letting workers use co-operative multi-
tasking, i.e. workers can not be forcefully interrupted. Com-
munication between workers is facilitated by asynchronous
message passing via many-writers-single-reader queues. Each
worker has one such queue, that it consults between the ex-
ecution of any two tasks. Because of this predetermined
structure of communication, all inter-thread communication
can be implemented using concurrent data structures with
lock-free techniques. This incurs minimal overheads for the
multi-threading coordination.

4. USE CASES
This section gives a brief theoretical introduction on the blob
analysis tool and its modules. As shown in Figure 2 the tool
has a simple design based on elementary modules which are
commonly used in the field of binary blob analysis. A region
of interest R as shown in Figure 3 is charaterized by differ-
ent features to identify R positive. One is the perimeter P
of R which is defined as the number of pixels of its contour
C. Another is the area A which is defined as the number of
pixels in region R (see Figure 2 and Equation 1 and 2). To
calculate the coordinates xs and ys of the centroid S, the
pixels in x and in y direction have to be summed up sep-
arately and normalized by A (see Equation 3 and 4). The
second moments in Equation 5, 6, and 7 describe the rota-
tion of the region in the defined direction, where σxx, σyy,
and σxy are calculated using the standard deviation. Finally,
the compactness K in Equation 8 defines the roundness of a
region, whereat K = 1 denotes a circle and K > 1 denotes a
line. To calculate the compactness K, P and A have to be
known.

Figure 3: blob analysis

P =
∑

(x,y)∈C

1 (1)

A =
∑

(x,y)∈R

1 (2)

xs =
1

A

∑
(x,y)∈R

x (3)

ys =
1

A

∑
(x,y)∈R

y (4)

σxx =
1

A

∑
(x,y)∈R

(x− xs)2 (5)

σyy =
1

A

∑
(x,y)∈R

(y − ys)2 (6)

σxy =
1

A

∑
(x,y)∈R

(y − ys) · (x− xs) (7)

K =
P 2

4 · π ·A (8)

5. S-NET ECLIPSE PLUGIN
The syntax of S-Net makes heavy use of all kinds of brackets
and symbols like pipes, exclamation marks, dots and others.
Furthermore these brackets and symbols can be combinated
which gives them additional meanings. This makes the syn-
tax of S-Net network definitions confusing and error prone.
To support the development of S-Net applications a plugin
for eclipse has been developed, which provids many features
a developer is used to when working with IDEs.

To develop the S-Net plugin, Xtext1 has been used, which
is a kind of language development framework, mainly used
to create domain-specific languages. To define the different
aspects of a language, Xtext provides a set of APIs and
domain-specific languages, within which the grammar lan-
guage (very close to EBNF) builds the corner stone. Based
on that information the core components of the language are
generated, which include a parser, an abstract syntax tree,
a code formatter, compiler checks and static validation and
a code generator or interpreter.

The foundation of the S-Net plugin is the formal defini-
tion of the syntax and metadata of S-Net implemented us-
ing the grammar language of Xtext. Based on that def-
inition the above mentioned runtime components are gen-
erated. These generated components have been enhanced
since most of them only provide some basic implemetation.
Enhancements include for example the scope definition, the
outline view or the syntax highlighting.

The plugin is still under development, but it already pro-
vides features like static validation (including error marking
in the editor as ususal in Eclipse), an outline view, code as-
sistance (aka code completion), syntax coloring, code tem-
plates, code folding, linking or reference finding. In con-
junction with the CDT plugin for C/C++ development the
whole S-Net application development can be done using
Eclipse.

The vision is to provide a graphical editor for S-Net appli-
cations including code generation as known from e.g., tools
for class diagram development that generate the source code

1Xtext: http://www.eclipse.org/Xtext/

for the defined classes. In the case of S-Net networks could
be developed graphically and subsequently the network def-
inition and the box declarations can be generated automat-
ically for a given box language. Since the runtime compo-
nents generated with Xtext integrate with and are based on
the Eclipse Modeling Framework (EMF)2, this effectively
allows the use of Xtext together with other EMF frame-
works like for instance the Graphical Modeling Framework
(GMF)3.

6. EXPERIMENTS AND EVALUATION
In our experiments we use a small set of images (see Fig-
ure 4(a) to Figure 4(d)), to analyse the behavior of S-Net
comparing sequential versus parallel execution. The main
focus in our evaluation is on throughput (T), latency (L)
and jitter (J). The first two images (see Figure 4(a) to Fig-
ure 4(b)) include blobs with constant sizes to simulate con-
tinuous steady workload whereas the other two images (see
Figure 4(c) to Figure 4(d)) include blobs with different sizes,
simulating varying workload. The images demonstrate the
characteristics of a static versus a dynamic workload within
S-Net. Furthermore, to exploit the nature of a stream pro-
cessing pipeline and to simulate the continued acquisition
and inspection process of a real-world application the im-
ages are processed 5 times in a loop.

(a) 25 blobs (b) 400 blobs

(c) 88 blobs (d) 389 blobs

Figure 4: Test images for benchmarking

The benchmarks should demonstrate the CPU workload bal-
ance using S-Net. For the benchmark tests a SONY VAIOTM

PCG-81112M with an Intel R© CoreTM I7-740QM Proces-
sor, 8GB RAM and a NVIDIA GeForce GT 425M graph-
ics card is used. The operating system is Ubuntu 10.10.
The used frameworks are OpenCV2.3 [3], SaC 1.00 17510
frameworks, S-Net-1.x.20120110 and lpel-1.x.20120110.

6.1 S-NET Source Code
The S-Net implementation of the blob analysis tool is done
as follows

2EMF: http://www.eclipse.org/modeling/emf/
3GMF: http://www.eclipse.org/modeling/gmp/

Source code of blob analysis tool using S-NET
1 #define REPLICATION_NUMBER 2

2

3 net blobanalysis

4 {

5 box ImageReader((imagePath , <imageReplicationCnt >) ->

6 (image , <imageNum >));

7 box PrintStats((area , perimeter , compactness , moments ,

8 centroidX , centroidY , <blobNum >) ->);

9

10 net PreProcessing

11 {

12 box AnisotropicFilter((image) -> (filteredImage));

13 box ImageLabeler((filteredImage , <blobReplicationCnt >) ->

14 (blobList , <blobCount >));

15 }

16 connect

17 (AnisotropicFilter!<imageNum >) ..

18 (ImageLabeler!<imageNum >)

19 ;

20

21 net Analysis

22 {

23 box SplitBlobList((blobList , <blobCount >) -> (blob , <blobNum >));

24 net Properties

25 {

26 box AreaComputation((blobCalculationCopy) -> (area));

27 box PerimeterComputation((blobCalculationCopy) -> (perimeter));

28 box CompactnessComputation((areaCopy , perimeterCopy) ->

29 (compactness));

30 }

31 connect

32 [{} -> {<area >}; {<perimeter >}] ..

33 (

34 ([{<area >} -> {}] .. AreaComputation) ||

35 ([{<perimeter >} -> {}] .. PerimeterComputation)

36) ..

37 ([| {area}, {perimeter} |] * {area , perimeter }) ..

38 [{area , perimeter} -> {area , perimeter , areaCopy = area ,

39 perimeterCopy = perimeter }] ..

40 CompactnessComputation

41 ;

42 net Geometry

43 {

44 box MomentsComputation ((blobCalculationCopy) -> (moments));

45 box CentroidComputation ((momentsCopy) -> (centroidX , centroidY));

46 }

47 connect

48 MomentsComputation ..

49 [{ moments} -> {moments , momentsCopy = moments }] ..

50 CentroidComputation

51 ;

52 }

53 connect

54 SplitBlobList ..

55 [{blob , <blobNum >} -> {blob , blobCalculationCopy = blob , <blobNum >}] ..

56 (

57 [{blob , blobCalculationCopy , <blobNum >} -> {blob , blobCalculationCopy ,

58 <blobNum >, <k = blobNum % REPLICATION_NUMBER >}] ..

59 (

60 (

61 [{} -> {<properties >}; {<geometry >}] ..

62 (

63 ([{<properties >} -> {}] .. Properties) ||

64 ([{<geometry >} -> {}] .. Geometry)

65) ..

66 ([| {area , perimeter , compactness},

67 {moments , centroidX , centroidY} |] *

68 {area , perimeter , compactness , moments ,

69 centroidX , centroidY})

70) ! <k>

71)

72)

73 ;

74 }

75 connect

76 ImageReader ..

77 PreProcessing ..

78 Analysis ..

79 PrintStats

80 ;

The listing above shows the implementation of the blob anal-
ysis tool (described in Section 1) using S-Net. As depicted
in Figure 2 the tool consists of several modules (blue boxes)
which are connected either sequential or parallel according
to their dependencies to the results of other modules. Each
of these modules corresponds to a box definition (e.g. Im-
ageLabeler in line 6) in the S-Net network. Those mod-
ules/boxes hold the sequential code for image reading, fil-
tering, labeling and calculating a blobs properties. Further-
more the boxes are grouped into networks the same way as
the modules in Figure 2.

The boxes AnisotropicFilter and ImageLabeler build up the
Preprocessing network and are connected sequentially in-

side of this net. The output of this net is a list of all blobs
found in the given image. The Analysis network consists of
all boxes responsible for analyzing a blob. This network is
split into a Properties network, which calculates the area,
perimeter and compactness of a blob, and a Geometry net-
work, to compute the moments and centroid. This way those
two sub networks can easily be connected for parallel execu-
tion, because those values do not rely on each other. Inside
of the Properties network the boxes for area and perimeter
computation are also connected parallel. The output of the
Analysis network are all the properties of one blob.

After each parallel execution of networks or boxes a synchro-
nization box is placed to synchronize the computed proper-
ties of a box, so that values of different blobs do not get inter-
mixed. The box SplitBlobList is an additional box between
preprocessing and analysis, which takes the list of blobs pro-
duced by the ImageLabeler box and writes the single blobs to
the output stream. Since those blobs are independent they
can be analyzed in parallel. This is done using the parallel
replication combinator (!), which replicates the whole Anal-
ysis network dynamically during runtime. The maximum
replication number is defined by REPLICATION NUMBER
(defined in the line 1 of the listening).

In the outermost network (bloblanalysis) the ImageReader
box, the PreProcessing and Analysis networks are connected
sequential, since they rely on the output of each other. Fi-
nally the PrintStats box prints the results to standard out.

Source code of area computation S-NET box
1

2 void* AreaComputation(void* hnd , /*CBlob blob*/ c4snet_data_t* blob)

3 {

4 void* blobData = (void*) C4SNetDataGetData(blob);

5 unsigned int* area = (unsigned int*) malloc(sizeof(unsigned int));

6 *area = ComputeArea(blobData);

7

8 c4snet_data_t* areaData = C4SNetDataCreate(CTYPE_uint , area);

9 C4SNetOut(hnd , 1, areaData);

10 return hnd;

11 }

The code listening above shows an easy but representative
example of a box implementation using C as box language.
The main part of the implementation deals with handling
input and output data of the box. All data fields, except
integer values, have to be passed between the boxes using
pointers. Additionally these pointers have to be boxed into a
special container (c4snet data t), which holds size and type
of data and the pointer to the data itself. To retrieve the
pointer from that container, the function C4SNetDataGetData
has to be used (line 4), in this case the pointer to a CBlob.
The area of this blob is calculated (line 6) and stored (mem-
ory allocated in line 5). The pointer to the area again has to
be boxed (line 8) and finally written to the output stream
(line 9). The pointer named hnd is a pointer to a structure
internally used by S-Net, which has to be the first param-
eter of every box declaration and has to be returned in the
end.

For the blob analysis OpenCV and another external library
(cvblobslib)4 have been used, whereas the latter is imple-

4CvBlobsLib: http://opencv.willowgarage.com/wiki/
cvBlobsLib

mented in C++. To be able to use that library, a wrapper
in C has to be written and provided as shared library.

6.2 Evaluation - Sequential Execution (SE)
For behavior analysis we have the proposed blob analy-
sis tool implemented with OpenCV2.3 [3], which is a com-
mon used library in computer vision and encapsulated with
S-Net. First, we analyse the sequential execution of the
S-Net blob analysis tool (see Table 1 to Table 3), whereas
afterwards the analysis of the parallel execution is done (see
Table 4 and Table 6).

Table 1: Throughput (T) of seq. exec. [recs/s]

Figure:blobs

Module 4(a):25 4(b):400 4(c):88 4(d):389

Perimeter 3558 7754 5062 7365
Area 3139 5529 4281 6771
Compactness 6452 8349 7259 8319
Centroid 13699 8758 6830 9283
Moments 4097 5832 4922 6360
Total 3139 5832 4281 6360

Table 2: Latency (L) of seq. exec. [ms]

Figure:blobs

Module 4(a):25 4(b):400 4(c):88 4(d):389

Perimeter 281 129 198 164
Area 319 181 234 53
Compactness 155 120 138 151
Centroid 73 114 146 114
Moments 244 171 203 223
Total 1072 715 919 705

Table 3: Jitter (J) of seq. exec. [ms]

Figure:blobs

Module 4(a):25 4(b):400 4(c):88 4(d):389

Perimeter 410 93 249 164
Area 0 50 24 53
Compactness 229 144 185 151
Centroid 40 106 385 114
Moments 139 277 252 223
Total 818 670 1095 705

6.3 Evaluation - Parallel
S-Net is used to connect the C++/OpenCV modules, which
are exemplarily defined in Section 6.1 to a blob analysis com-
position defined in Figure 2. In detail, the Figure 2 contains
the composition ”BlobAnalysis” which is for behavior anal-
ysis the main focus because these modules must be calcu-
lated for each blob, i.e., for n blobs n times. The vision is,
if one module has over a period of time a lower throughput
or higher latency or jitter the system should provide more
resources to it.

7. CONCLUSION
In this article we have shown some first results for the IST-
FP7 project ADVANCE. First, we have pointed out the need

Table 4: Throughput (T) of par. exec. [recs/s]

Figure:blobs

Module 4(a):25 4(b):400 4(c):88 4(d):389

Perimeter 7771 10642 10167 11148
Area 10846 12141 14934 13872
Compactness 14060 14324 13832 13043
Centroid 7320 19430 16120 19287
Moments 4304 9239 7161 8992
Total 4304 9239 7161 8992

Table 5: Latency (L) of par. exec. [ms]

Figure:blobs

Module 4(a):25 4(b):400 4(c):88 4(d):389

Perimeter 311 211 204 197
Area 194 194 142 149
Compactness 150 141 148 170
Centroid 137 106 146 107
Moments 484 220 284 233
Total 1276 872 924 856

Table 6: Jitter (J) of par. exec. [ms]

Figure:blobs

Module 4(a):25 4(b):400 4(c):88 4(d):389

Perimeter 250 171 130 133
Area 355 136 110 102
Compactness 179 186 196 210
Centroid 169 86 206 108
Moments 241 145 217 219
Total 1194 724 859 772

for high performance image processing in industrial applica-
tions and the high demand of abstract modeling tools to sup-
port development on heterogeneous platforms with multi-
core CPUs or many-core GPUs. As exposed, this support
is provided by the stream processing language S-Net. Fur-
thermore, we introduced the Light-weight Parallel Execution
Layer lpel which was developed as run-time system for
S-Net to gather performance data during application ex-
ecution. For demonstration, a blob analysis tool has been
developed to analyse the static as well as the dynamic run-
time behavior of S-Net. The achieved performance results
are showing the nature of the sequential and parallel execu-
tion by means of throughput, latency and jitter as well as
the equal work load on all modules.

In the future, lpel will be extended with a hardware vir-
tualisation technique that exports key parameters of the
hardware platform in order to allow for an application-wide
resource optimisation based on CAL units and statistical
performance data. Additionally, a vision is to have a graph-
ical editor for S-Net applications including code generation
using Xtext together with the Graphical Modeling Frame-
work.

8. ACKNOWLEDGMENTS
The work has been funded by the EU FP7-project AD-
VANCE.

9. REFERENCES
[1] G. Berry and G. Gonthier. The Esterel synchronous

programming language: design, semantics,
implementation. Science of Computer Programming,
19(2):87–152, Nov. 1992.

[2] J. Binder. Safety-critical software for aerospace
systems. Aerospace America, pages 26–27, August
2004.

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[4] C. Grelck, K. Hammond, H. Hertlein, P. Hölzenspies,
C. Jesshope, R. Kirner, B. Scheuermann,
A. Shafarenko, I. T. Boekhorst, and V. Wieser.
Engineering concurrent software guided by statistical
performance analysis. In Proc. International
Conference on Parallel Computing, Ghent, Belgium,
Aug./Sep. 2011.

[5] C. Grelck, S.-B. Scholz, and A. Shafarenko. A Gentle
Introduction to S-Net: Typed Stream Processing and
Declarative Coordination of Asynchronous
Components. Parallel Processing Letters,
18(2):221–237, 2008.

[6] G. Kahn. The semantics of a simple language for
parallel programming. In L. Rosenfeld, editor,
Information Processing 74, Proc. IFIP Congress 74.
August 5-10, Stockholm, Sweden, pages 471–475.
North-Holland, 1974.

[7] P. Perona and J. Malik. Scale-space and edge
detection using anisotropic diffusion. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 12:629–639, 1990.

[8] D. Prokesch. A light-weight parallel execution layer
for shared-memory stream processing. Master’s thesis,
Technische Universität Wien, Vienna, Austria, Feb.
2010.

[9] A. Shafarenko and R. Kirner. CAL: A language for
aggregating functional and extrafunctional constraints
in streaming networks. Technical report, University of
Hertfordshire, Hatfield, UK, Jan. 2011. available at
http://arxiv.org/abs/1101.3356.

[10] S-Net. S-Net declarative coordination language,
2008.

[11] V. Wieser, C. Grelck, H. Schoener, P. Haslinger, and
B. Moser. GPU-based Image Precessing Use Cases: A
High-Level Approach. In Advances in Parallel
Computing. IOS Press, 2011.

