
Modeling Streams-based Variants of Ant Colony
Optimisation for Parallel Systems

A Dataflow-driven Approach Using S-Net

Wei Cheng
SAP AG

SAP Research
Karlsruhe, Germany
wei.cheng@sap.com

Frank Penczek
University of Hertfordshire

School of Computer Science
Hatfield, UK

f.penczek@herts.ac.uk

Clemens Grelck
University of Amsterdam
Institute of Informatics

Amsterdam, Netherlands
c.grelck@uva.nl

Raimund Kirner
University of Hertfordshire

School of Computer Science
Hatfield, UK

r.kirner@herts.ac.uk

Bernd Scheuermann
SAP AG

SAP Research
Karlsruhe, Germany

bernd.scheuermann@sap.com

Alex Shafarenko
University of Hertfordshire

School of Computer Science
Hatfield, UK

a.shafarenko@herts.ac.uk

ABSTRACT
In this paper we present the implementation of a concurrent
ant colony optimisation based solver for the combinatorial
Single Machine Total Weighted Tardiness Problem (ACO-
SMTWTP). We introduce S-Net, a coordination language
based on dataflow principles, report on the performance of
the implementation and compare it against a sequential and
a parallel implementation of the same algorithm in C. As
the workload of the optimisation algorithm is highly irregu-
lar we consider this application to be an important use-case
for runtime measurement directed optimisations of the co-
ordination rogram as much as for guiding optimisations of
numerical code.

1. INTRODUCTION
ACO is a meta-heuristic inspired by the foraging behaviour
of ants [5]. A number of artificial ants iteratively construct
solutions to a given combinatorial optimisation problem.
Ants are thereby guided by so called pheromone information
that previous ants, which have found good solutions, have
disposed to mark their decisions in the solution construction
process. Since the artificial ants construct their solutions
independently and since the core of the algorithm consists
of iteratively repeated instructions, ACO is very attractive
for parallel execution on multi processor architectures (for
an overview see [18]). The large majority of parallel ACO
implementations were presented during the last ten years.
These implementations mainly follow two distinct paralleli-
sation approaches. In the master-slave approach, a mas-
ter processes global information (like updating pheromone
information, or determining globally best solution) and a
number number of slaves (or workers) execute subordinate
tasks (like constructing solution, or calculating fitness). The
other main group follows a multi-colony approach where a
number of colonies search for good solutions using their own
pheromone matrices while exchanging information in certain
time intervals.

In this publication, we discuss dataflow-oriented variants of
parallel ACO algorithms targeting multi-core systems. A
new approach to modeling such algorithms as a stream-

ing network is presented. Streaming-based ACO algorithms
differ from the above-mentioned parallelisation principles
as they consider a continuous (possibly non-generational)
stream of artificial ants being piped through pheromone in-
formation which is spread across multiple parallel process-
ing units in a fixed mapping (or vice versa). The presented
ACO variants shall be distinguished from prior work, where
the complexity of streaming-based ACO algorithms has been
examined for the theoretical RMesh computing model [16],
or hardware-oriented and very fine-grained variants of ACO
have been implemented for FPGAs using VHDL (see e.g.
[24]). Therefore the paper at hand is the only known dataflow-
driven approach to modeling streaming-oriented ACO in
software directly addressing and exploiting the steadily in-
creasing degree of parallelism in present and future multicore
systems. Furthermore, the coordination technology used for
the implementation allows for flexibly modeling and adapt-
ing the degree of parallelism and granularity of the ACO
implementation according to the target system.

ACO algorithms are of the sort that lends itself easily to
parallel decomposition in two ways. First of all, the process
of ant-colony optimisation naturally breaks down into con-
structing solutions, selecting the best one and updating the
underlying pathway structure. These stages interact with
each other in a pipelined manner: the output of one stage
delivers the necessary data to the input of another. The
second form of decomposition is into individual activities of
the same kind. Those can be of greatly varying duration and
can cause the computational load to drift from one locus of
a distributed system to the next, creating flash points, load
imbalances, congestion, etc. It is worth repeating that these
issues, viz. pipeline decomposition and asynchronous stream
processing are common to a range of distributed, irregular
problems from molecular dynamics [21] to machine graph-
ics [20] to various signal processing and control applications.
However the case in point may be seen as somewhat more
peculiar than others.

ACO is a good example of a multilevel separation of con-
cerns. There is a general skeleton of ant-colony optimisa-
tion, but there is also a set of specific implementations that

can be changed from time to time to suit different optimi-
sation agendas. Here we have the combination of a soft-
ware engineering challenge: keeping the building blocks of
the application suitably encapsulated and abstracted, and
a distributed computing challenge: supplying the necessary
resources to those blocks and properly connecting them with
sufficiently low-latency, high throughput data streams. This
is where the coordination technology introduced with S-Net
comes into play. S-Net [10] was designed for keeping the two
concerns separate while at the same time enabling the ap-
plication designer to focus on the distribution aspect of the
code. Being a coordination language as well as a compo-
nent technology it allows different distribution solutions to
be expressed abstractly, in network form, as well as properly
instrumenting the components and profiling the application
run-time behaviour.

The main form of glue characteristic of S-Net is a single
connecting stream. The local state of computation is em-
bodied in a record that floats down that stream from one
component to another. The receiving component has the
ability to process a part of the data contained in the record
while not caring and having no knowledge of any other parts,
which is a property called “flow inheritance” in S-Net lingo.
An output record from a component will retain a copy of
such parts (hence “inheritance”), which is explained in Sec-
tion 2. In contrast to OOP, this form of inheritance allows
for subsequent stages of a cascaded processing scheme to
access the information not affected by earlier stages locally
thus avoiding the linkage between hierarchical and physical
remoteness, characteristic of object-based solutions.

The ability of S-Net to float the local computation state,
while preserving inheritance, also makes processing compo-
nents virtually stateless, since any state they may require is
appended to the state record without being exposed to irrel-
evant components (that is taken care of by the type system,
which checks that only those items that are declared by a
component’s type signature is ever affected by the compo-
nent). Thus the state record, which can be circulated around
a component, turns a temporal sequence of state transitions
as it is observed normally within statefull objects, into a
“spatial” stream of state records.

What is the advantage of such an approach? Indeed at first
glance there are only disadvantages: a seemingly higher stor-
age demand, the need to keep inherited baggage local to its
consumer, while at the same time avoiding excessive copy-
ing, etc. However, these problems are well understood and
satisfactory solutions are available [8]. The biggest gain of
S-Net technology is its ability to place work at zero cost on a
distributed system. This comes from the fact that the S-Net
components are stateless and hence can be replicated at zero
cost and placed anywhere, including at multiple sites in a
distributed system. The real cost is, of course, storage, not
primarily the storage for records, which is highly optimised
by reference-counting and intelligent caching, but synchro-
nisation storage, i.e. memory for records that need to be
joined with other records yet to be produced. Again, the
unique advantage of S-Net is the fact that synchronisation
storage is componentised, and that those components are
devoid of domain-specific semantics, being fully defined by
the coordination language. It is therefore quite possible to
manage, instrument and profile synchro-storage in a manner
independent of the evolving code of processing components

(called “boxes” in S-Net lingo).

This paper will demonstrate how separation of box and coor-
dination concerns, inheritance-based component hierarchies
and encapsulated synchro-storage help to design a more ex-
pressive, better manageable and more easily profileable ACO
code. The remainder of the paper is organised as follows:
Sections 2 and 3 elaborate on the S-Net coordination tech-
nology and the corresponding toolchain. Sections 4 and 5
introduce the concept of ant colony optimisation in greater
detail and explain our S-Net implementation. We report on
extensive experiments with this S-Net implementation of ant
colony optimisation on a 48-core server system in Section 6.
Section 7 sketches out some related work before we draw
conclusions in Section 8.

2. S-NET IN A NUTSHELL
S-Net is a high-level, declarative coordination language based
on the concept of stream processing. As such S-Net pro-
motes functions implemented in a standard programming
language into asynchronously executed stream-processing com-
ponents, coined boxes. Both imperative and declarative pro-
gramming languages qualify as box implementation languages
for S-Net, but we require any box implementation to be free
of state on the coordination level. More precisely, a box
must not carry over any information between two consecu-
tive activations on the streaming layer.

Each box is connected to the rest of the network by two
typed streams: one for input and one for output. Mes-
sages on these typed streams are organised as non-recursive
records, i.e. sets of label-value pairs. The labels are subdi-
vided into fields and tags. The fields are associated with val-
ues from the box language domain; they are entirely opaque
to S-Net. Tags are associated with integer numbers, which
are accessible both on the coordination and on the box level.
Tag labels are distinguished from field labels by angular
brackets.

Operationally, a box is triggered by receiving a record on its
input stream. As soon as that happened, the box applies its
box function to the record. In the course of function execu-
tion the box may communicate records on its output stream.
Once the execution of the box function has terminated, the
box is ready to receive and to process the next record on the
input stream.

On the S-Net level a box is characterised by a box signature:
a mapping from an input type to a disjunction of output
types. For example,

box foo ((a,) -> (c) | (c,d,<e>));

declares a box foo that expects records with a field labelled a

and a tag labelled b. The box responds with an unspecified
number of records that either have just field c or fields c

and d as well as tag e. The associated box function foo is
supposed to be of arity two: the first argument is of type
void* to qualify for any opaque data; the second argument
is of type int as the joint interpretation of tag values by the
coordination and the box/application layer.

The box signature naturally induces a type signature. Whereas
a concrete sequence of fields and tags is essential for the
proper specification of the box interface, we drop the or-
dering when reasoning about boxes in the S-Net domain.

Consequently, this step turns tuples of labels into sets of
labels. Hence, the type signature of box foo is

{a,} -> {c} | {c,d,<e>} .

We call the left hand side of this type mapping the input type
and the right hand side the output type. We use curly brack-
ets instead of round brackets to emphasise the set nature of
types.

To be precise, this type signature makes foo accept any
input record that has at least field a and tag , but may
well contain further fields and tags. The formal foundation
of this behaviour is structural subtyping on records: Any
record type t1 is a subtype of t2 iff t2 ⊆ t1. This subtyping
relationship extends to multivariant types, e.g. the output
type of box foo: A multivariant type x is a subtype of y if
every variant v ∈ x is a subtype of some variant w ∈ y.

Subtyping on input types of boxes raises the question what
happens to the excess fields and tags. S-Net supports the
concept of flow inheritance whereby excess fields and tags
from incoming records are not just ignored in the input
record of a network entity, but are also attached to any
outgoing record produced by it in response to that record.
Subtyping and flow inheritance prove to be indispensable
features when it comes to make boxes that were designed in
isolation collaborate in a streaming network.

It is a distinguishing feature of S-Net that it neither intro-
duces streams as explicit objects nor that it defines network
connectivity through explicit wiring. Instead, it uses alge-
braic formulae to describe streaming networks. The restric-
tion of boxes to a single input and a single output stream
(SISO) is essential for this. S-Net provides four network
combinators: static serial and parallel composition of two
networks and dynamic serial and parallel replication of a
single network. These combinators preserve the SISO prop-
erty: any network, regardless of its complexity, is an SISO
entity in its own right.

Let A and B denote two S-Net networks or boxes. Serial com-
bination (A..B) constructs a new network where the output
stream of A becomes the input stream of B, and the input
stream of A and the output stream of B become the input
and output streams of the combined network, respectively.
As a consequence, A and B operate in a pipeline.

Parallel combination (A|B) constructs a network where in-
coming records are either sent to A or to B and the resulting
record streams are merged to form the overall output stream
of the combined network. The type system controls the flow
of records. Each operand network is associated with a type
signature inferred by the compiler. Any incoming record is
directed towards the operand network whose input type is
better matched by the type of the record. If both operand
network’s input types are matched equally well, one alterna-
tive is selected non-deterministically. Parallel composition
can be used to route different kinds of records through dif-
ferent branches of the network (like branches in imperative
languages) or, in the presence of subtyping, to create generic
and specific alternatives triggered by the presence or the ab-
sence of certain fields or tags.

The parallel and serial composition combinators have their
infinite counterparts: serial and parallel replication combi-
nators for a single operand network. The serial replication

A B

..net X connect A B

(a) Serial composition

B

A

net X connect A B|

(b) Parallel composition

A A

{stop}

*net X connect A {stop}

(c) Serial replication

A

A

<T>

!net X connect A <T>

(d) Parallel replication
Figure 1: Illustration of the four S-Net network combinators

combinator A*type constructs an infinite chain of replicas
of A connected by serial combinators. The chain is tapped
before every replica to extract records that match the type
specified as the second operand. More precisely, the type
acts as a so-called type pattern; pattern matching is defined
via the same subtype relationship as defined above. Hence,
a record leaves a serial replication context as soon as its type
is a subtype of the type specified in the type pattern. The
parallel replication combinator A!<tag > also replicates net-
work A infinitely, but this time the replicas are connected
in parallel. All incoming records must carry the tag <tag>.
This tag’s value determines the network replica to which a
record is sent.

In practice, we often see boxes that mostly or entirely serve
housekeeping purposes, such as renaming, duplication or
elimination of fields and tags or simple arithmetic operations
on tag values. While all this can be easily accomplished us-
ing a user-implemented box, it is often more convenient to
do this housekeeping on the S-Net level as it directly affects
network construction. The construct we introduce for these
purposes is called a filter and it looks as follows:

[pattern→ record1; record2; . . . recordn] .
The type pattern on the left is a set of labels while each
of the record specifiers on the right defines the output. For
example, the filter

[{a, b, <c>} -> {a, z=a, <t>};
{b, a=b, <c=c+1>}]

consumes a record with fields a,b and the tag c and creates
two new records: The first record has field a with the original
value, field z with the same value and a tag <t> set to zero.
The second record has fields b with the original value, a

with the same value as b and the tag <c>, whose value is
incremented by 1:

While any box or filter can split a record into parts, we
so far lack means to express the complementary operation:
merging two records into one. For this purpose, S-Net fea-
tures dedicated synchrocells. A synchrocell has the syntac-
tic form [|type,type |]. Similar to serial replication the
types act as patterns for incoming records. A record that
matches one of the patterns is kept in the synchrocell. As
soon as a record arrives that matches the other pattern,
the two records are merged into one, which is forwarded
to the output stream. Incoming records that only match
previously matched patterns are immediately forwarded to
the output stream. Hence, a synchrocell becomes an iden-
tity after successful synchronisation and may be removed

Compiler:

parser
context checker
type inference
optimiser
code generator

Common Runtime Interface

Multi-
Threaded
Runtime
System

Sequential
Runtime
System

Micro-
Threaded
Runtime
System

Runtime Components

CRI Deployment Functions

Types &
Patterns

Threading StreamsI/O
Box

Language
Interface

Figure 2: S-Net toolchain architecture

by a runtime system. The extremely simplified behaviour of
synchrocells captures the essential notion of synchronisation
in the context of streaming networks. More complex syn-
chronisation behaviours, e.g. continuous synchronisation of
matching pairs in the input stream, can easily be achieved
using synchrocells and network combinators. Details can be
found in [7].

To summarise S-Net is an abstract notation for streaming
networks of asynchronous components. It is a notation that
allows programmers to express concurrency in an abstract
and intuitive way without the need to reason about the typ-
ical annoyances of machine-level concurrent programming.
Readers are referred to [8, 10] for a more thorough presen-
tation of S-Net and to [11, 19] for other case studies on
application programming with S-Net.

3. S-NET TOOL CHAIN
Fig. 2 illustrates the multi-layered architecture of the S-Net
toolchain. The S-Net compiler snetc reads S-Net source
code and checks it for lexicographic and syntactic correct-
ness. The core of the compiler is the type inference system
that associates any combinator subexpression with an S-Net
type that defines routing of records through the network.
The S-Net compiler emits fairly high-level C code with calls
to S-Net library functions, the common runtime interface.
In fact, the C code still very much resembles the original
S-Net source code with individual library functions imple-
menting boxes, filters, synchrocells and the network combi-
nators, properly parameterised for the concrete application.

The common runtime interface features several implemen-
tations; in this paper we focus on the multithreaded runtime
system [9]. It consists of two layers that are mutually depen-
dent: the deployment layer sets up a system of asynchronous
components communicating via bounded buffers in shared
memory. At this level, combinators are resolved into split
and merge style components. The component layer imple-
ments the dynamic behaviour of the various S-Net compo-
nents. Both layers depend on each other as networks with
replication combinators dynamically evolve.

The component layer of the runtime system is based on a
number of separate auxiliary modules that manage records,
implement type pattern matching, realise streams as buffers
and, last not least, control the interfacing of S-Net with the
outside world on the global begin and end of the stream-
ing network and towards the box languages used to im-
plement the boxes. The most important of these modules
is the threading layer that controls low-level thread man-
agement. We currently have two implementations of the
threading layer: one maps each S-Net component to its
own Posix thread and, thus, leaves the scheduling of S-Net

1 initialize;
2 while termination condition not met do
3 foreach ant do
4 constructSolution;
5 end
6 pickBest;
7 update;

8 end

Algorithm 1: Top-level structure of a typical, generic ACO
algorithm

components to the operating system. The more elaborate
threading layer implementation, named LPEL [23], actively
manages S-Net components as non-preemptive tasks with
low-overhead scheduling of tasks to a fixed small number
of Posix threads for effective utilisation of multi-core pro-
cessors. This threading layer is used in the experiments
reported in Section 6; it provides ample opportunities for
runtime profiling.

4. ACO ALGORITHM
This section briefly introduces the structure and operation
of a typical sequential ACO algorithm from a generic per-
spective for static combinatorial optimisation problems (for
a more detailed introduction to ACO refer to e.g. [5]). The
description conforms with the conventional (non-streaming
oriented) programming style. As shown in Algorithm 1, Line
1, the algorithm begins by initialising problem-dependent
parameters (e.g. calculating evaluation parameters, setting
initial pheromone values etc.). This is followed by an inter-
ative body, where a number of m ants repeatedly construct
solutions (Line 4) by making a sequence of local decisions,
e.g. successive selections of items in the solution vector.
Every decision is made randomly according to a probability
distribution over the so far unchosen items in selection set
S and depending on pheromone information and heuristic
information. Pheromone information is encoded in an n×n
pheromone matrix [τij]. Pheromone value τij expresses the
desirability to assign an item j to place i in the solution vec-
tor. Ant decisions are further supported by problem-specific
heuristic information ηij .

Assuming the ant is positioned in row i of the pheromone
matrix (assigning the i-th item in the solution vector), with
probability q0 the ant makes a deterministic decision and
with probability 1 − q0 it makes a random decision: De-
terministic decision: Item j ∈ S is selected which max-
imises ταij · ηβij . Random decision: With probability pij item

j ∈ S is selected with pij =
ταij ·η

β
ijP

h∈S τ
α
ih
·ηβ
ih

and pij = 0 if

j /∈ S. Parameters α and β determine the relative influence
of pheromone values and heuristic values.

At the end of an iteration, when m solutions have been gen-
erated, the best solution π∗ of all iterations (global-best so-
lution) is determined (Line 6) which is used to update the
pheromone matrix (Line 7): τij := (1−ρ)·τij+ρ·∆ij . Com-
monly, increment ∆ij enforces pheromones along the trail
of the best solution, i.e. ∆ij > 0 if π∗(i) = j and ∆ij = 0
otherwise. Parameter 0 < ρ ≤ 1 models the pheromone
evaporation rate. The ACO algorithm executes a number of
iterations until a specified stopping criterion has been met,

e.g. a predefined maximum number of iterations has been
executed (Line 2).

5. STREAMS-BASED ACO
This section describes various approaches to transferring se-
quential ACO algorithms into parallel streaming-based vari-
ants. ACO algorithms have been chosen as example as their
structure consisting of an initialisation followed by an iter-
ative body of repeatedly executed optimisation operators is
representative for a wealth of other meta-heuristics including
e.g. Evolutionary Algorithms, Simulated Annealing, Tabu
Search etc.

5.1 ACO in S-Net
Modelling the discussed ACO algorithm in S-Net is accom-
plished with minimal effort. The stages of Algorithm 1 are
implemented as boxes; the control-flow of the application
is straight-forwardly transformed into a data-flow represen-
tation as the resulting streaming network shown in Figure
3 illustrates. The implementation for each box is in large
parts provided by existing C code as S-Net provides inter-
faces for external programming languages (cf. [8] for a more
detailed interface description) such that for existing code
(e.g. written in C) only small wrapper functions need to be
supplied.

initialize ::
fname, C è
R, C, <ant_id>
| A!

Type R = {results, eval_data, tau} Type C = {<max_it>, <num_ants>}; Type A = {best_result, best_fit, <seen_ants>};

constructSolution ::
R,C, <ant_id> è
R, fit, <ant_id>

pickBest ::
R, fit, <ant_id> è
R,C, best_result,
best_fit
| A !

update::
R,C,best_result,best_fit
è
R, C, <ant_id>
| A | best_result, best_fit,
<done>!

[| sync |] ::
{A}!

{R, fit, <ant_id>} !

**{R,C, best_result, best_fit} **{<done>}

. . .

constructSolution ::
R,C, <ant_id> è
R, fit, <ant_id>

Figure 3: ACO algorithm modeled in S-Net

Assuming that the individual ant decisions are independent
(which is commonly true) our S-Net implementation fol-
lows the most intuitive approach to parallelise the ACO al-
gorithm by expressing the constructSolution procedures
(virtual ants) as concurrent components (an outlook on fur-
ther ACO streaming variants is given in Section 5.2). This is
achieved by using the indexed parallel replication operator
using <ant_id> as identification tag. The actual number of
parallel ants is determined by the range of <ant_id> tags
emitted by the initialize component which in turn is con-
nected to the remaining network via as serial combinator.

The box initialize reads input data, initialises the opti-
misation problem and sends a stream of ants according to
<ant_id> to different instances of the constructSolution

box. The streams carry records of various parameters, such
as constants C, iteratively updated best results A and iter-
ation related variables R.

After the parallel instances of constructSolution finish
processing the results are accumulated to identify the cur-
rent best solution. This is achieved by employing a merge
construction consisting of a synchro-cell and an accumulator

box: The synchro-cell keeps an accumulator record of type
A and joins this up with a result emitted from one of the
constructSolution instances. The pickBest box adds this
result to the accumulator. Through the star combinator (in-
dicated by two stars and an exit pattern in Fig. 3) a serial
chain of synchro-cells and pickBest instances is established.
The accumulator is sent down to the next stage of the chain
where it is joined up with a result of one of the remaining
constructSolution instances by a synchro-cell. Through
the <num_ants> tag the pickBest box determines when the
last result has been seen; in this case the merging process
ends and a record is sent on to the box update.

The box update has two choices: it can update the pheromone
matrix and start a new iteration, or stop the stream and out-
put answers if the stopping criterion is met, i.e. box update

may end the conceptually infinite pipeline with producing a
record containing the tag <done>.

5.2 Further Streaming Variants – An Outlook
The above-mentioned implementation in S-Net represents
the probably most straight-forward idea of a streaming-or-
iented ACO algorithm. In principle, this implementation
considers a set of m stationary ants processing a continu-
ous stream of pheromone matrices (and problem instances)
where each ant is assumed to construct and evaluate a com-
plete solution per call to constructSolution. This is fol-
lowed by a synchronisation before starting the comparison
and update procedures. Further research in streaming-orien-
ted ACO may respect the following variations: i) streaming
objects – to consider the pheromone matrix as stationary
unit which is traversed by a continuous stream of ants, ii)
partitioning – to sub-divide pheromone matrices or to split
ants into groups of consecutive ant decisions, iii) evaluation
– to also compute fitness evaluations in parallel with solu-
tion construction, iv) update – to also execute pheromone
updates in parallel with solution construction without prior
synchronisation (which may lead to a non-generational up-
date concept). For each variation, the fundamental instruc-
tions remain unchanged, to a large extend existing code can
be re-used. The main challenge is to model the problem
partitioning and the coordination of dataflow and synchro-
nisation. These tasks shall be largely supported by the ex-
pressiveness of S-Net and through the de-coupling of con-
currency and algorithm engineering.

6. PERFORMANCE EVALUATION
In this section, the setup and the results of the experimental
performance evaluation of ACO for the Single Machine To-
tal Weighted Tardiness Problem (SMTWTP) are presented.
For a detailed introduction we refer to e.g. [4].

6.1 ACO Instantiation for SMTWTP
The algorithm described here instantiates the generic ACO
algorithm (see Section 4) for the Single Machine Total Weighted
Tardiness Problem, where n jobs (items) need to be sched-
uled on a single machine. Associated with each job j are its
processing time pj , weight wj and due date dj . The goal of
SMTWTP is to find a job sequence π (solution vector repre-
sented by a permutation of job numbers 1, . . . , n) which min-
imises the total weighted tardiness TW =

Pn
i=1 wπ(i) ·Tπ(i),

where Tj = max{0, Cj − dj} denotes the tardiness and Cj
defines the completion time of job j = π(i). The complexity

of SMTWTWP was shown to be NP-hard [14]. For large
problem instances (n > 50,) exact algorithms often fail to
calculate the optimum in acceptable computation time [1,
3]. Therefore alternate approaches try to find good, near-
optimal, solutions by applying different heuristics, amongst
them ACO algorithms belong to the best performing meta-
heuristics [15]. For this paper, the Apparent Urgency (AU)
heuristic [22] was chosen to derive domain-specific guidance
ηij := 1/auj . The AU-heuristics sorts the jobs in non-
decreasing order of its apparent urgency auj = (wj/pj) ·
exp (−max{dj − Cj , 0}/kp̄) with p̄ expressing the average
processing time of the unscheduled jobs and k a parame-
ter chosen as suggested in [22]. AU exhibited a competitive
performance in prior evaluations [4]. For the sake of brevity,
additional local search routines are disregarded in this pa-
per. During the update process pheromone increments are
calculated as ∆ij = n/TW ∗ with TW ∗ denoting the total
weighted tardiness of the best schedule π∗.

6.2 Experimental Setup and Evaluation
The common starting point for the comparative study was a
sequential ACO algorithm for SMTWTP written in C. This
code was de-composed to derive a concurrent streaming-
oriented variant using S-Net as outlined in Section 5. As
counterpart for the experimental evaluation, the sequential
C code was manually parallelised (without streaming) us-
ing PThreads such that each ant executed in a separate
thread. Both algorithms perform the same calculations such
that their optimisation behaviour is identical and the perfor-
mance evaluation can be restricted to a pure runtime com-
parison. The runtime measurements presented in this sec-
tion were collected on a 48-core computation server, com-
prising 4 sockets with 2 by 6 core AMD Opteron 6174 pro-
cessors. The machine is equipped with 256GB of main mem-
ory and runs Linux kernel version 2.6.35. The experiments
have been repeated three times with stable measurements
(average deviation of runtime < 1%).

A first set of experiments has been conducted to assess the
overall performance of the implementation. In Fig. 4 the ab-
solute runtimes on several problem sizes are presented. Each
of the graphs shows the recorded runtime of the S-Net and
C/PThreads implementation. For small problem sizes where
each solving step per ant only takes a fraction of a second the
results clearly show the overheads that the S-Net implemen-
tation comes with. For larger problem sizes, and accordingly
longer runtimes, these overheads are less significant and the
performance is closer to that of the hand-parallelised code.
These overheads stem mostly from the differences in memory
allocation strategies; where the C code operates on global ar-
rays that are allocated only once in the beginning, the S-Net
implementation reallocates temporary arrays in each itera-
tion. This is owed to the state-freeness of boxes that are not
allowed to share state through global variables. In addition
to this, the merging phase of the S-Net implementation that
iteratively collects all sub-results in an accumulator incurs
higher costs in comparison to the barrier synchronisation
that is used in the C implementation.

A second class of experiments was run to further quantify the
efficiency of the implementations. In these experiments each
implementation was given 40 inputs. From the total runtime
measures, the runtime per record was computed. Due to
the streaming nature of S-Nets, the S-Net implementation

0

10

20

30

40

50

60

70

80

1 10 20 30 40 45

ru
ni

m
te

 in
 s

ec
on

ds

number of ants

50 jobs, 1000 iterations

S-Net C / PThread

(a) small problem size

0

50

100

150

200

250

1 10 20 30 40 45

ru
ni

m
te

 in
 s

ec
on

ds

number of ants

650 jobs, 1000 iterations

S-Net C / PThread

(b) medium problem size

0

50

100

150

200

250

300

350

1 10 20 30 40 45

ru
ni

m
te

 in
 s

ec
on

ds

number of ants

1000 jobs, 1000 iterations

S-Net C / PThread

(c) large problem size
Figure 4: Absolute runtimes of the algorithm implemented
in C and S-Net on various problem sizes.

0

5

10

15

20

25

30

50 250 450 650 850

tim
e

pe
r r

ec
or

d

number of jobs

10 ants, 500 iterations

S-Net C / PThread

(a) 10 ants on various problem sizes

0

10

20

30

40

50

60

50 250 450 650 850

tim
e

pe
r r

ec
or

d

number of jobs

40 ants, 500 iterations

S-Net C / PThread

(b) 40 ants on various problem sizes
Figure 5: Runtimes of the S-Net and multi-threaded C im-
plementation for 10 ants (a) and 40 ants(b) on several prob-
lem sizes. The runtime shown is for one record computed
from the runtime on input of 40 problems.

0.49

5.44

11.86

17.45

23.98

0.95

6.06

11.20

16.94

23.30

0.00 5.00 10.00 15.00 20.00 25.00 30.00

50

250

450

650

850

speed up

nu
m

be
r o

f j
ob

s
Speed up vs. C sequential

C / PThread S-Net

Figure 6: Speed up of S-Net and multi-threaded C compared
to a sequential implementation.

is able to process the stream of input records concurrently
in a pipelined fashion. As each iteration step is carried out
in its own instance of the solver network, each iteration es-
tablishes a new stage of a computational pipeline in which
all stages may run in parallel. In S-Net it is very simple and
straight-forward to further increase the degree of exploitable
concurrency by using the parallel replication combinator. If
applied to the top-level network several instances of the ap-
plication are deployed in parallel. The number of instances
is controlled by tag values that are inserted into the input
records. Each value corresponds to one instance of the repli-
cation combinator’s operand. We have used values between
1 and 8 which distributed the records of the input stream
round-robin to the instances of the entire network, i.e. 5
records are processed by each instance where all instances
may potentially execute in parallel. Fig. 5 shows the effect
that capitalising on the pipeline parallelism and the appli-
cation of the split combinator to the outer-most network
have. A comparison to the multi-threaded C implementa-
tion which processed the 40 problems one after the other is
not fully suitable for a fair comparison as for a small number
of ants the S-Net implementation is able to make use of more
of the available computing resources than the C implemen-
tation. This results in considerably lower runtimes for the
S-Net implementation. For larger numbers of ants for which
the C implementation also claims most of the available re-
sources the difference in runtime per record diminishes. In
this setting both implementations perform very similar as
shown in the second graph of Fig. 6. We include the mea-
surements here nevertheless as they demonstrate how S-Net
combinators may be used to rapidly devise experiments for
various scheduling techniques to maximise exploitable con-
currency.

In order to compare the multi-threaded C implementation
and the S-Net implementation to the original, sequential im-
plementation of the application Fig. 6 shows the speed-up
of the parallel versions against the sequential code. These
numbers are based on runtimes for 40 ants and 500 iterations
on various problem sizes. As can be seen, both implementa-
tions show very similar behaviour; for smaller problems the
C implementation shows better speed-up, for problems with
450 jobs and more the speed-up of the S-Net implementation
is larger than that of the C implementation.

7. RELATED WORK
Stream processing has a long history of research and is well
suited for parallel hardware due to the implicit pipeline par-
allelism that can be easily exploited by stream processing.

An early model of stream-processing have been Kahn Pro-

cess Networks [13]. A Kahn Process Network consists of
processes that read from one or more FIFO input channels
and write to one or more FIFO output channels. A process
gets fired (i.e., becomes ready) when data are available on
all its input channels. Kahn Process Networks are determin-
istic in the sense that the same input data allways produce
the same output data. This is based on the assumption that
each process behaves in a deterministic way, i.e., the input
data are read in a deterministic order and the process blocks
while there are no data available on the input. Though the
original specification of Kahn Process Networks defines the
capacity of any FIFO channel as infinite, i.e., a write to the
channel cannot block. However, real implementations with
bounded channel capacity introduce artificial deadlocks.

Stream processing has evolved into a complete program-
ming paradigm, resulting into various approaches combin-
ing stream processing with software engineering methods.
For example, stream processing has become quite popular
for embedded computing with the arising of synchronous
strictly time-triggered approaches, like Giotto [12], Scade [6],
or StreamIt [25].

Reo is a coordination language for stream processing that de-
ploys software engineering methods to structure streaming
networks hierarchically [2]. Connectors are explicit entities
in Reo. The atomic connector is called channel and exposes
properties like capacity, lossy communication, or allowing
only synchronous read and write. Connectors can be con-
structed as networks of channels and may be reconfigured
at runtime. WaveScript is an example of a stream-based
programming language that does not follow the concept of a
coordination language, as stream-based communication and
logic programming are interweaved [17].

S-Net positions itself as a stream-based coordination lan-
guage that supports asynchronous and non-deterministic com-
putation. Further, S-Net facilitates typed messages and pro-
vides language interfaces for different process implementa-
tion languages.

8. CONCLUSION
The paper focuses on a particular form of combinatorial
technique called Ant Colony Optimisation, which is known
to be useful for solving various graph-based problems of
practical significance. Using an application of ACO as an
example of a highly irregular, distributed problem, we have
demonstrated that the data-flow-style, stream-processing com-
ponent technology S-Net facilitates both the development
and distribution/parallelisation of the code with high-level
and easy to use language constructs, while keeping the per-
formance in the same league as the hand-coded solutions
utilised by industry.

The performance evaluation of the ACO implementation
shows that the performance of S-Net lies within the same
range as that of hand-parallelised C code. Still, as the max-
imal measured speed-up on a 48-core machine is slightly be-
low 24 further investigations are required to identify ways
to increase the efficiency of the S-Net implementation. A
finer granularity of the decomposition of the application is
expected to be essential in achieving a higher utilisation of
the machine. Experiments with additional problem sizes,
different scheduling techniques and dynamic load balanc-
ing will provide further insight and guidance towards find-

ing current inefficiencies. Also, a measurement framework
that allows for capturing several properties such as execu-
tion time, waiting time, throughput and latency of single
tasks and networks is currently under development. Even
in its current prototypical state it already helps to pinpoint
hot-spots in the application and the S-Net runtime system.
Work in this area is expected to substantially contribute to
future developments of the S-Net tool chain. Ultimately, we
plan to use runtime observations to apply dynamic network
optimisations on the coordination level as well as to provide
the compilation process of the box language with collected
information in order to generate more specialised and opti-
mised code.

On the algorithmic side, future steps include producing a va-
riety of stream processing schemes for ACO, coded in S-Net,
to investigate their relative efficacies.

Acknowledgements
This work is partially supported by the European Union
through the STREP project Advance (Asynchronous and
Automatic Virtualisation through Performance Analysis to
Support Concurrency Engineering, project no. FP7 248828).

9. REFERENCES
[1] T. S. Abdul-Razaq, C. N. Potts, and L. N. V.

Wassenhove. A survey of algorithms for the single
machine total weighted tardiness scheduling problem.
Discrete Applied Mathematics, 26:235–253, 1990.

[2] F. Arbab. Reo: A channel-based coordination model
for component composition. Mathematical Structures
in Comp. Sci., 14(3):329–366, June 2004.

[3] H. A. J. Crauwels, C. N. Potts, and L. N.
Van Wassenhove. Local search heuristics for the single
machine total weighted tardiness scheduling problem.
Informs Journal On Computing, 10(3):341–350, 1998.

[4] M. den Besten, T. Stützle, and M. Dorigo. Ant colony
optimization for the total weighted tardiness problem.
In M. Schoenauer et al., editors, Parallel Problem
Solving from Nature: 6th international conference,
volume 1917 of LNCS, pages 611–620, Berlin,
September 2000. Springer Verlag.

[5] M. Dorigo and T. Stützle. Ant Colony Optimization.
Bradford Book, 2004.

[6] F.-X. Dormoy. Scade 6: A model based solution for
safety critical software development. In Proc. 4th
ERTS, Toulouse, France, 2008.

[7] C. Grelck. The essence of synchronisation in
asynchronous data flow. In 25th IEEEIPDPS’11,
Anchorage, USA. IEEE Computer Society Press, 2011.

[8] C. Grelck, A. S. (eds):, F. Penczek, C. Grelck, H. Cai,
J. Julku, P. Hölzenspies, S. Scholz, and A. Shafarenko.
S-Net Language Report 2.0. Technical Report 499,
University of Hertfordshire, UK, 2010.

[9] C. Grelck and F. Penczek. Implementation
Architecture and Multithreaded Runtime System of
S-Net. In S. Scholz and O. Chitil, editors, Proc.
IFL’08, volume 5836 of LNCS. Springer-Verlag, 2010.

[10] C. Grelck, S. Scholz, and A. Shafarenko. Asynchronous
Stream Processing with S-Net. International Journal
of Parallel Programming, 38(1):38–67, 2010.

[11] C. Grelck, S.-B. Scholz, and A. Shafarenko.
Coordinating Data Parallel SAC Programs with
S-Net. In Proceedings of IPDPS’07, Long Beach,
California, USA. IEEE Computer Society Press, Los
Alamitos, California, USA, 2007.

[12] T. A. Henzinger, C. M. Kirsch, and S. Matic.
Composable code generation for distributed Giotto. In
Proc. ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded
Systems (LCTES). ACM Press, 2005.

[13] G. Kahn. The semantics of a simple language for
parallel programming. In J. L. Rosenfeld, editor, Proc.
IFIP Congress on Information Processing, Stockholm,
Sweden, Aug. 1974. ISBN: 0-7204-2803-3.

[14] J. Lenstra, A. Rinnooy Kan, and B. P. Complexity of
machine scheduling problems. Annals of Discrete
Mathematics, pages 343–362, 1977.

[15] D. Merkle and M. Middendorf. An ant algorithm with
a new pheromone evaluation rule for total tardiness
problems. In Proceeding of the EvoWorkshops 2000,
number 1803 in LNCS, pages 287–296. Springer
Verlag, 2000.

[16] D. Merkle and M. Middendorf. Fast ant colony
optimization on runtime reconfigurable processor
arrays. Genetic Programming and Evolvable Machines,
3(4):345–361, 2002.

[17] R. Newton, L. Girod, M. C. abd Sam Madden, and
G. Morrisett. WaveScript: A case-study in applying a
distributed stream-processing language. Technical
Report TR-2008-005, MIT/CSAIL, Cambridge, USA,
Jan. 2008.

[18] M. Pedemonte, S. Nesmachnow, and H. Cancela. A
survey on parallel ant colony optimization. Applied
Soft Computing, May 2011.

[19] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz,
A. Shafarenko, R. Barrière, and E. Lenormand.
Parallel signal processing with S-Net. Procedia
Computer Science, 1(1):2079 – 2088, 2010. ICCS 2010.

[20] F. Penczek, S. Herhut, S.-B. Scholz, A. Shafarenko,
J. Yang, C.-Y. Chen, N. Bagherzadeh, and C. Grelck.
Message Driven Programming with S-Net:
Methodology and Performance. ICPP Workshops,
0:405–412, 2010.

[21] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kalé, and K. Schulten. Scalable molecular dynamics
with namd. Journal of Computational Chemistry,
26(16):1781–1802, 2005.

[22] C. N. Potts and L. N. Van Wassenhove. Single
machine tardiness sequencing heuristics. IIE
Transactions, 23(4):346–354, 1991.

[23] D. Prokesch. A light-weight parallel execution layer
for shared-memory stream processing. Master’s thesis,
Technische Universität Wien, Austria, Feb. 2010.

[24] B. Scheuermann. Ant Colony Optimization on
Runtime Reconfigurable Architectures. PhD thesis,
Universität Karlsruhe (TH), 2005.

[25] B. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A language for streaming applications. In
Proc. 11th International Conference on Compiler
Construction (CC’02), pages 179–196, London, UK,
2002. Springer Verlag.

