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ABSTRACT

We present a proper motion survey of the Galactic plane, using IPHAS data

and POSS-I Schmidt plate data as a first epoch, that probes down to proper

motions below 50 milliarcseconds per year. The IPHAS survey covers the

northern plane (|b| < 5◦) with CCD photometry in the r, i and Hα pass-

bands. We examine roughly 1400 sq. deg. of the IPHAS survey area and draw

up a catalogue containing 103058 objects with significant proper motions be-

low 150 millarcseconds per year in the magnitude range 13.5< r′ <19. Our

survey sample contains large samples of white dwarfs and subdwarfs which can

be identified using a reduced proper motion diagram. We also found several

objects with IPHAS colours suggesting Hα emission and significant proper

motions. One is the known cataclysmic variable GD552; two are known DB

white dwarfs and five others are found to be non-DA (DB and DC) white

dwarfs, which were included in the Hα emission line catalogue due to their

lack of absorption in the Hα narrow-band.

http://arxiv.org/abs/0905.2594v1
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1 INTRODUCTION

The INT Photometric Hα Survey (IPHAS, Drew et al., 2005) is a deep (r <21), CCD

based survey in three filters (r, i, Hα) covering 1800 sq. deg. of the northern Galactic Plane

(|b| < 5◦). IPHAS forms part of the European Galactic Plane Surveys (EGAPS), which also

includes the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Plane Survey (Lawrence

et al., 2007, Lucas et al. 2008) covering 1800 sq. deg. of the plane in J , H , K to a depth

of K=19 and the UV EXcess survey (UVEX, Groot et al. in prep.). UVEX is planned to

complement IPHAS by covering the same area but in u, g and HeI 5875Åwith an additional

r band epoch. These surveys also have upcoming southern counterparts. With the number

density of stars highly concentrated on the Plane, IPHAS and EGAPS provide ideal tools

to study a whole range of stellar and Galactic research topics. They have already yielded

significant discoveries in fields such as cataclysmic variables (Witham et al., 2007), planetary

nebulae (Mampaso et al., 2006, Wesson et al., 2008), young low mass objects (Valdivielso et

al., 2009), star forming regions (Vink et al., 2008) and extinction in the Galactic plane (Sale

et al., 2009). Large scale CCD-based astronomical surveys such as IPHAS provide accurate

photometric and astrometric data on large numbers of astronomical objects. In addition to

their main science goals, surveys such as EGAPS make their data public (see Gonzalez-

Solares et al., 2008 for details on public IPHAS data) and they can be used by anyone in

the astronomical community to pursue their own research aims. Combining IPHAS data

with those from other surveys with different wavebands or epochs can lead to discoveries of

variable objects and can also allow the parameter space of each object to be expanded to

include not only magnitudes and positions but proper motions as well. Here we undertake

the first comprehensive, optical, wide field survey to identify proper motions below 0.1

arcseconds per year in the Galactic Plane by cross-referencing the IPHAS database with

SuperCOSMOS (Hambly et al., 2001) scans of the POSS-I plates taken in the 1950s. This

gives us a proper motion baseline of approximately fifty years.

Early proper motion surveys utilised blink comparators and exceptional patience to in-
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dentify moving stars manually. The early manual work of Luyten is brought together in two

samples, the Luyten Half-Arcsecond Survey (LHS, Luyten, 1979a) which catalogued 3561

objects with proper motions greater than half an arcsecond per year and the New Luyten

Two Tenths Catalogue (NLTT, Luyten, 1979b) which contained 58845 objects with µ >0.2

arcseconds per year(”/yr). Both these surveys ran into difficulties in the Galactic Plane with

the NLTT survey less than 50% complete for |b| < 15◦ at magnitudes fainter than V =16

(Lepine & Shara, 2005). The main modern computational study is that of Lepine (2008).

They used a sophisticated algorithm to degrade POSS-II images to the same quality as

the older POSS-I images. The two could then be subtracted and high proper motion stars

identified. This survey is complete to V=20 and µ=0.15”/yr. However the survey suffers

from crowding in the Galactic Plane leading to a reduction in completeness. Lepine & Shara

estimate they are only 80-90% complete down to V=19 within 15 degrees of the Galactic

Plane. Fedorov et al. (2009) predict their upcoming catalogue will cover low proper mo-

tions in the Galactic Plane but will not provide a consistent proper motion range due to

a varying maximum proper motion. Gould & Kollmeier (2004) used data from the Sloan

Digital Sky Survey photographic plate data to produce a proper motion survey below 100

milliarcseconds per year. However this avoided the Galactic plane. The study of Folkes et al.

(2007) attempts to fill in the Galactic Plane gap left by southern surveys such as Deacon &

Hambly (2007), Pokorny et al. (2004) and Finch et al. (2007) (all of which avoid the Plane)

by combining UKST and 2MASS data in a similar manner to Deacon & Hambly (2007) to

identify candidate low mass stars and brown dwarfs from their proper motion.

2 METHOD

In order to plan our proper motion survey we had to first consider the datasets available.

Two datasets are available for use as a first epoch, both having been scanned using the

SuperCOSMOS plate scanning machine (Hambly et al. 2001). As well as the POSS-I plates,

the newer, higher quality POSS-II plates with better emulsion sensitivity and improved

resolution are also available. These provide better astrometric accuracy but a much shorter

time baseline with respect to IPHAS (10-15 years compared to the IPHAS data versus the

roughly 50 year epoch difference betweeen IPHAS and POSS-I). However a shorter baseline

means less contamination due to spurious pairings; nspurious ∝ (µmax∆t)2, where nspurious is

the number of spurious pairings, µmax is the maximum proper motion and ∆t is the epoch
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Figure 1. The astrometric errors (in arcseconds) between the IPHAS and UVEX surveys.

difference. nspurious is also proportional to the density of objects around the target. This is

one of the reasons most proper motion surveys have avoided higher density areas of the sky

such as the Galactic Plane. Along with these data we also have the upcoming UV EXcess

(UVEX) survey (Groot et al., in prep.) which will be a blue companion to IPHAS and a

second r epoch. This will provide us with CCD quality second epoch astrometry, observed

by the same telescope and camera, reduced by the same pipeline but with only a 3-5 year

baseline. Examining the positional errors between IPHAS and UVEX we found that they

were typically 40 milliarcseconds (see Figure 1), rising to 50 mas at r=19 (where POSS-I

plate astrometry becomes difficult, see Figure 2) and to roughly 100 mas, as the survey limit

(r∼21) is approached. Hence we can assume that with a three year baseline, the minimum

5σ proper motion detectable between IPHAS and UVEX at the survey limit (r∼21) is

roughly 166 mas/yr. At the limit at which astrometry on the POSS-I plates becomes difficult

(RF =19) the minimum proper motion becomes 100 mas/yr. Hence below this latter limit

(also below the µ=0.15”/yr lower proper motion limit of Lepine & Shara, 2008) there is
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the potential for a lower proper motion survey to probe to previously unexplored proper

motions in the Galactic Plane. To coincide with the lower limit of a potential IPHAS-UVEX

proper motion survey (less then 100 mas/yr for objects brighter the r=19) and leaving

some overlap we decided on a maximum proper motion of 0.15”/yr. This means that even

with the exceptionally long baseline between IPHAS and the POSS-I plates the maximum

pairing radius is only ∼10”, making spurious pairings unlikely. This is due not only to

the low chance probability of another object lying in this region near to the target but

also because many chance objects which lie so close to the target may also be deblended

by the SuperCOSMOS software Hambly et al. (2001). For reasons of poor astrometry, we

have excluded all deblended objects. The advantage of the POSS-II plates over the POSS-

I plates is their better astrometry and photometry. However with the long IPHAS-POSS-I

time baseline, even this better quality POSS-II astrometry cannot produce a lower minimum

proper motion than using POSS-I plates and we have CCD quality photometry available

from the IPHAS survey. The SuperCOSMOS scans of POSS-I plates only extend to δ ∼ 2.5◦,

south of this we use SuperCOMSOS UK Schmidt Telescope R plates.

Before beginning the proper motion survey it is important to have both surveys on the

same astrometric framework as our initial calculations will be based on the global astrometric

frameworks of both surveys. IPHAS is tied to the 2MASS astrometric framework so we

converted the POSS-I astrometry to the 2MASS astrometric reference frame. This was done

in an identical way to the transformation of UKST I plates to the 2MASS system described

in Section 2.1 of Deacon & Hambly (2007).

In order to estimate the minimum significant positional shift that can be detected we

robustly calculated the positional errors between the POSS-I plates and the IPHAS survey

(the error estimates calculated between the IPHAS and UVEX surveys found in Figure 1

were calculated in the same way). This was done by identifying the same objects in each

epoch and calculating the positional differences. These were then binned by magnitude and

the error calculated (Figure 2). After examining this plot, we determined the 5σ positional

shift to be at one arcsecond, this was then used as our minimum positional shift. This

means our minimum proper motion will be roughly 20 mas/yr. As we will calculate relative

astrometric solutions for each object in our final catalogue this number may vary slightly.

Our search methodology was as follows. Objects which were flagged as stellar sources

or probable stellar sources (classification flags -1 and -2, Drew et al., 2005) in IPHAS were

selected. This excludes saturated sources and hence introduces a bright limit to our survey
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Figure 2. The astrometric errors (in arcseconds) between the IPHAS and POSS-I data.

at approximately r=13.5. One initial problem encountered was the difference in the sizes

of the Point Spread Functions of the two surveys. Often two stars with a small separation

which are resolved in IPHAS will be blended together on the lower resolution POSS plates

leading to the erroneous conclusion that one or both of them have moved. To remove this

potential source of contamination any IPHAS object of brightness r = x (where x is in

magnitudes) which had another IPHAS object brighter than x− 2 within 6 arcseconds was

excluded. This magnitude difference was selected as typically objects which are two or more

magnitudes fainter than an object will not significantly affect its astrometry. This pairing

radius increased at brighter magnitudes, in line with the rough size of the POSS-I PSF (up

to 20” for stars brighter than r=9).

Subsequently, IPHAS objects which were not affected by such crowding had their posi-

tions compared with the POSS-I data to see if they had a companion within an arcsecond.

If they did they were judged not to have a significant proper motion and hence were ex-

cluded. Any potential POSS-I pair for these unpaired objects was then searched for. First
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the region within 6” was searched and if no pair was found the region within rmax = µmax∆t

was searched. Any potential pair had to have a POSS-I RF magnitude within 3σ (where

σ is approximated from the values for measurement errors quoted in Hambly et al. 2001,

roughly 0.2 magnitudes at best1) of the IPHAS r magnitude and had to be stellar sources

which had not been deblended and were not in close proximity to bright stars (note this 3σ

cut could exclude high proper motion variables). To ensure that the paired POSS-I object

does not have an IPHAS counterpart, the POSS-I positions were crosschecked with IPHAS

positions and any object with an IPHAS pair within one arcsecond was excluded.

2.1 Calculation of astrometric solution

In order to gain an insight into the local astrometric accuracy of each proper motion mea-

surement, a local relative astrometry mapping was carried out for each candidate. To do this

all objects in the same IPHAS field as the target with brightnesses within one magnitude of

the star in question were selected. These were then used to produce a 6 parameter plate-plate

fit using SlaLib routines (Wallace, 1998) to determine the astrometric differences between

the two reference frames and to estimate the random errors remaining once these differences

have been corrected for. This fit was then applied and used to calculate a proper motion

relative to this reference frame. This also yielded measures of the positional errors for each

field. However in cases with few reference stars (i.e. <20) the error will be underestimated.

To correct for this we carried out a series of simulations. Sets of reference stars on two differ-

ent reference frames were created. These were given small random bulk offsets between the

reference frames as well as individual random Gaussian errors. A fit between the reference

frames was carried out and the calculated positional error compared to the indiviual posi-

tional errors used. It was found that for few reference stars the error was underestimated.

We find that the correction factor is well fitted by the equation,

σtrue

σmeasured

≈ 1 +
19.8

n1.5
ref

(1)

Where σtrue is the actual error, σmeasured the measured error and nref the number of reference

stars. We find this relation holds fairly well down to as few as six reference stars. This

correction factor was used to ensure all our quoted errors are accurate. Where there were

not enough reference stars for any fit an error calculated from the global positional error

estimates shown in Figure 2 was used.

1 Note as the IPHAS photometric errors are typically much smaller than POSS-I errors we ignore them in our error estimation.
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Figure 3. Two reduced proper motion diagrams for our dataset. (a) shows all objects in our sample, (b) shows only those with
µ greater than 50mas/yr. The populations shown are as follows, the main locus is the main sequence, below and to the left are
the higher velocity and bluer subdwarfs and to the left of them are the intrinsically fainter white dwarfs. The large grey dots
represent the objects common between this catalogue and the catalogue of Hα emitters from Witham et al. (2008). These are
all plotted on both panels, regardless of their proper motions.

3 RESULTS

The final catalogue consists of 103058 objects spread across 14126 IPHAS fields (including

overlap fields) where the area of each field is roughly 0.3 sq.deg. These objects all have proper

motions more significant than 5σ where the proper motion errors were typically below 10

milliarcseconds per year (i.e. µmin < 40mas). A full list of all these objects will be provided in

the electronic edition. To check the sample a reduced proper motion diagram (Luyten, 1918,

credited to Hertzprung) was produced. Reduced proper motion takes observables (proper

motion and apparent magnitude) and combines them in such a way that the result only

depends on characteristics of the star (tangential velocity and absolute magnitude). The

definition we use is given below.
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Figure 4. Distribution of objects in our sample across the Galactic plane. The coverage is in general good, however the coverage
appears patchy in parts, particularly at low Galactic longditude (l <90). Also note the areas with no coverage, these either lie
outside the survey area (too far south) or have not yet been covered in the survey.

Figure 5. The density of stellar sources in the IPHAS survey with black being most dense and white being less dense. The
larger stellar density closer to the Galactic centre along with the patches of extinction close to the plane in this region can be

clearly seen.

Hr = r + 5 log10 µ + 5 log10(47.4)

Hr = Mr + 5 log10 d − 5 + 5 log10 vT − 5 log10(4.74) − 5 log10 d + 8.379

Hr = Mr + 5 log10 vT

(2)

Where µ is the proper motion in arcseconds per year, d is the distance in parsecs and vT

is the tangental velocity in km/s. The above definition of reduced proper motion is not the

most commonly used but is useful as it removes the constants needed to convert between

units. Our reduced proper motion diagram is shown in Figure 3. The form is roughly what

we would expect from a standard Galactic stellar population with clearly identifiable dwarf,

subdwarf and white dwarf loci. However after we studied the spatial distribution of objects
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Figure 6. The density of stellar sources in the IPHAS survey for each field vs. the number of proper motion objects detected
in each field. The solid line shows the mean number of objects for fields binned by stellar density. Note the general trend, dense
fields have fewer detected objects. This is because the crowding confusion reduction algorithm removes more of the area of
crowded fields.

Figure 7. Colour-colour diagrams for the objects. The panel on the left (a) shows all the objects in our sample while the panel
on the right (b) shows only those with proper motions greater than 50mas/yr. The main stellar locus runs from (0.0,0.1) to
(2.0,1.0), this is a near-perfect unreddened main sequence (see Drew et al., 2005). Below and to the left lie the bluer white
dwarfs and above and to the left lie potential Hα emitters. The large grey dots represent the objects common between this
catalogue and the catalogue of Hα emitters from Witham et al. (2008). These are all plotted on both panels, regardless of their
proper motions.
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Figure 8. A histogram of the separations of common proper motion pairs in our sample. The trend for coincidence objects
would be N∝ r. As we see no deviation from this trend at small seperations, we conclude that there is no significant population
of true common proper motion binaries in our sample.

it was found that there were several fields with many (more than 250) objects. After some

investigation it became clear that these fields had poor astrometric solutions in the IPHAS

data (mostly due to poor observing conditions). When we examined a histogram of number

of detected objects per field it was found that these fields lay beyond the point where the

main distribution had died away. Additionally when the reduced proper motion diagrams

for objects in these fields was examined it was found that it did not contain the expected

population distributions, indicating that the proper motion determinations were not correct.

Hence any object lying in these fields was excluded from the final catalogue. A plot of the

spatial distribution of the remaining objects can be found in Figure 4. It shows that for the

majority of the northern plane, the coverage is good with a few patches of incompleteness.

However moving along the plane towards the Galactic centre the number of objects drops

off dramatically. This is due to our selection criteria excluding crowded regions as well as

large numbers of objects in these regions being blended with other images (again a result of

high stellar density). This can be seen in Figure 5 which shows the density of stellar sources

in each IPHAS field: there are clearly fewer high proper motion objects detected in areas of

higher stellar density 2. This is also shown by the inverse correleation between the density

of stellar sources in a field and the typical number of detected proper motion sources in that

field (see Figure 6). Figure 7 shows an IPHAS colour-colour plot for our objects. The main

locus is a clear, unreddened main sequence (see Drew et al., 2005), widened by the fact that

2 The general trend towards more crowded fields towards the Galactic centre can be seen in Figure 3 of Gonzalez-Solares et

al. 2008
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the IPHAS photometry is not yet globally calibrated. Approximately 96% of objects in the

catalogue lie on or close to this main sequence. There is also a white dwarf locus present

lying below and to the left of the main sequence. Many objects lie above and to the left of the

main sequence. While this may suggest Hα emission, it may also be due to poor photometry

in a particular field. Hence rather than select all these as potential Hα emitters, in the next

section we will use the study of Witham et al. (2008) to identify objects which appear to

have significant Hα emission relative to the main sequence on the particular field . Finally we

checked our sample for common proper motion binaries. To investigate if we had a distinct

population of common proper motion binaries, we plotted a histogram of the separations

of all the objects with proper motions within 2σ of each other. The trend for coincidence

objects should be N∝ r and any excess above this at small separations would indicate a

separate population of physically bound common proper motion objects. Figure 8 shows our

histogram, clearly there is no distinct population of common proper motion binaries present.

3.1 Comparisons with other IPHAS studies

As stated earlier, the IPHAS survey is currently being exploited for many different scientific

goals. One study utilising IPHAS photometry is that of Witham et al. (2008). Here IPHAS

photometry is used to identify objects which lie significantly above the main stellar locus

on a colour-colour diagram similar to Figure 7. As there will be offsets in the photometry

from field to field, Witham et al. (2008) identifies potential Hα emitters relative to the

colour-colour diagram for the field the object lies in. Hence objects which appear to be Hα

emitters due to the poor photometry of an individual field are not included in Witham et

al’s sample. This allows us to treat this dataset as a clean sample of potential Hα emitters.

Cross-referencing this with our own proper motion sample will remove highly reddened (and

distant) Be stars from the Witham sample and should leave only potential Cataclysmic

Variables candidates, dMe stars and non-DA white dwarfs (ie. nearby stellar sources showing

either Hα emission or less than expected Hα absorption). In this cross-referencing, we also

included objects found in our study with proper motions between 0.2 and 0.15 arcseconds

per year and objects with r magnitudes between 19 and 20. These were not included in the

final catalogue as these objects were found to suffer from a high level of contamination.

The thirty six crossmatches are shown in Table 1. Note eight crossmatches were excluded

from this list and from Figures 3 and 7 after inspection of the images by eye found that
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Table 1. Objects common between our catalogue and the Hα catalogue of Witham et al. (2008). IPHASJ225040+632838 is the
known proper motion CV system GD 552 (Greenstein & Giclas 1978), IPHASJ043839+410931 is (GD 61 Giclas, Burham & Thomas,
1965), IPHASJ210951+425705 is EGGR 334 (Greenstein, 1974) and IPHASJ032825+580645 is the known high proper motion star
LSPM J0328+5806 (Lepine & Shara, 2005). spectral type sources 1 WHT spectroscopy, 2 FAST spectroscopy, 3 Giclas, Burham &
Thomas (1965), 4 Greenstein (1974), 5 Greenstein & Giclas 1978

Name Position µα µδ σµα
σµδ

r i Hα SpT
”/yr ”/yr ”/yr ”/yr

IPHASJ000528+663951 00 05 28.05 +66 39 51.5 0.031 -0.051 0.009 0.0092 13.582 13.001 13.190
IPHASJ002156+630635 00 21 56.62 +63 06 35.8 -0.044 -0.026 0.005 0.0052 17.105 17.183 16.993
IPHASJ010749+582709 01 07 49.39 +58 27 09.3 0.022 -0.031 0.005 0.0062 14.171 13.279 13.657
IPHASJ031119+600110 03 11 19.21 +60 01 10.8 0.044 -0.053 0.005 0.0061 18.181 15.995 17.058
IPHASJ032327+534705 03 23 27.39 +53 47 05.4 0.061 -0.054 0.005 0.0051 16.734 16.980 16.576
IPHASJ032825+580645 03 28 25.12 +58 06 45.8 0.144 -0.042 0.006 0.0072 17.684 17.917 17.550
IPHASJ032905+563606 03 29 05.01 +56 36 06.8 -0.019 -0.034 0.006 0.0072 14.704 13.503 14.053
IPHASJ033805+563518 03 38 05.68 +56 35 18.7 0.029 -0.038 0.006 0.0062 13.743 12.461 13.077 dMe2

IPHASJ034042+573053 03 40 42.96 +57 30 53.7 0.069 -0.033 0.006 0.0062 13.724 12.685 13.164 dM2

IPHASJ040147+540650 04 01 47.07 +54 06 50.8 0.044 -0.058 0.006 0.0072 16.122 14.727 15.361

IPHASJ043839+410931 04 38 39.38 +41 09 31.9 -0.011 -0.110 0.005 0.0062 14.673 14.816 14.556 DB3

IPHASJ045400+470031 04 54 00.68 +47 00 31.0 0.004 -0.023 0.006 0.0031 17.723 17.691 17.563
IPHASJ053015+251137 05 30 15.51 +25 11 37.3 0.031 0.044 0.005 0.0052 13.429 12.580 12.862 dM2

IPHASJ055551+324150 05 55 51.14 +32 41 50.3 -0.037 -0.001 0.006 0.0062 17.829 17.707 17.599 DC2

IPHASJ055752+274641 05 57 52.90 +27 46 41.8 0.025 -0.044 0.005 0.0061 17.264 17.415 17.189 DC2

IPHASJ061409+171136 06 14 09.36 +17 11 36.0 0.003 -0.044 0.006 0.0062 16.670 14.917 15.628
IPHASJ062809+163158 06 28 09.40 +16 31 58.7 -0.046 -0.012 0.006 0.0062 17.833 17.909 17.642 DB1

IPHASJ183523+014245 18 35 23.26 +01 42 45.4 0.154 0.015 0.006 0.0062 17.700 16.172 16.921
IPHASJ184306+004111 18 43 06.88 +00 41 11.3 -0.031 -0.048 0.005 0.0052 18.020 18.071 17.930
IPHASJ185929-040304 18 59 29.38 −04 03 04.3 0.051 -0.027 0.005 0.0052 13.335 11.604 12.384
IPHASJ190132+145807 19 01 32.77 +14 58 07.6 0.082 0.076 0.006 0.0071 15.905 15.870 15.823 DC2

IPHASJ190142-043621 19 01 42.09 −04 36 21.1 0.001 -0.034 0.007 0.0061 15.999 14.622 15.201
IPHASJ190338-025232 19 03 38.54 −02 52 32.4 0.032 -0.010 0.005 0.0051 16.514 15.243 15.768
IPHASJ191733+031937 19 17 33.35 +03 19 37.9 0.138 -0.032 0.005 0.0062 15.406 14.984 14.830
IPHASJ192206+053238 19 22 06.11 +05 32 38.5 0.031 0.000 0.005 0.0052 16.254 14.723 15.450
IPHASJ201409+265254 20 14 09.92 +26 52 54.1 0.035 0.038 0.005 0.0061 15.113 13.408 14.187
IPHASJ210541+534334 21 05 41.78 +53 43 34.5 0.025 -0.020 0.005 0.0052 14.891 13.451 14.055
IPHASJ210923+515607 21 09 23.85 +51 56 07.8 0.027 0.038 0.006 0.0062 17.632 15.631 16.531
IPHASJ210951+425705 21 09 51.24 +42 57 05.1 0.192 -0.018 0.010 0.0051 15.552 15.559 15.340 DB4

IPHASJ215029+554250 21 50 29.23 +55 42 50.6 0.027 0.006 0.005 0.0051 17.477 15.492 16.283
IPHASJ223541+590745 22 35 41.31 +59 07 45.7 0.026 -0.005 0.004 0.0051 16.644 16.729 16.547
IPHASJ224918+614903 22 49 18.57 +61 49 03.9 -0.039 -0.023 0.004 0.0052 17.508 17.475 17.436 DA1

IPHASJ225040+632838 22 50 40.03 +63 28 38.2 0.102 -0.037 0.005 0.0062 16.389 16.406 14.714 CV5

IPHASJ232003+571736 23 20 03.28 +57 17 36.6 -0.035 0.000 0.007 0.0072 13.537 12.965 13.170
IPHASJ232158+581034 23 21 58.03 +58 10 34.6 0.030 -0.011 0.006 0.0051 16.037 14.454 15.129
IPHASJ232908+615911 23 29 08.78 +61 59 11.0 -0.183 -0.067 0.007 0.0042 17.626 17.304 17.330 DC1

they may be blended objects. Examining Figure 7 we can see that many of the grey dots

(representing Witham et al.’s Hα emitters with significant proper motions) fall along the

main sequence. It is possible that these are true Hα emitters and appear in this part of

the diagram due to uncorrected field to field photometric offsets or some selection effect.

Of these objects one (IPHASJ053015+251137) appears to share a common proper motion

with the nearby (separation 42”) star TYC 1852-777-1 (Hog et al., 1998). The two proper

motions agree within one sigma implying these are a true bound pair or part of the same

moving group. Three other objects redder than r − i = 0.4 have spectra from FAST follow-

up observations of IPHAS sources. Of these one (IPHASJ033805+563518) was found to be

an M dwarf with Hα emission. The question remains as to why these objects appeared in
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Witham et al.’s catalogue. Witham et al. fitted a curve to the unreddened main sequence

in each field and identified emitters as objects which lay significantly above this curve. The

two non-emitting M dwarfs lie in the brightest selection bin of Witham et al.’s selection

process (r <16). Here the number of objects defining the unreddened main sequence will be

smallest. It could be that these are marginal selections where the unreddened main sequence

is affected by poor statistics. It is also possible that these are objects with variable weak

Hα emission. One moderately red object (IPHASJ191733+031937) appears to lie on the

subdwarf sequence.

Fifteen of the cross matches objects which appear to lie on the white dwarf sequence in

the reduced proper motion diagram (Figure 3). Of these IPHASJ225040+632838 is the low

state CV system GD 552 (Greenstein & Giclas 1978). Another two, IPHASJ043839+410931

(GD 61, Giclas, Burham & Thomas, 1965) and IPHASJ210951+425705 (EGGR 334, Green-

stein, 1974) are known DB white dwarfs. Additionally three objects had spectra taken in

the IPHAS spectroscopic follow-up programme with the FAST spectrograph on the 1.5m

Tillinghast telescope on Mount Hopkins. Of the remaining nine objects, three had spectra

taken using the ISIS spectrograph on the William Herschel Telescope (WHT) on La Palma.

These spectra were used to provide rough spectral classifications which can be found in Ta-

ble 1. Seven of the eight spectrally classified objects which lie bluewards of r − i=0.4 in the

colour-colour diagram (excluding the known CV GD 552) are non-DA white dwarfs. Hence

we believe the remaining objects are good non-DA white dwarf candidates.

Valdivielso et al. (2008) have produced a sample of young, low mass objects using IPHAS

data. Clearly identifying the proper motions of such objects could establish a connection with

a known star forming association or moving group. Unfortunately none of these objects

appear in our catalogue.

4 DISCUSSION

In order to provide a rough estimate of our completeness, we plotted a cumulative proper

motion histogram. This is shown in Figure 9. Assuming uniform spatial and velocity dis-

tributions and a fully complete survey, the distribution should scale as N∝ µ−3. This is

represented by the solid line in the plot. It is clear that we begin to become incomplete be-

low 60 milliarcseconds per year. This is due to a combination of our limiting magnitude and

some objects falling in fields with poor astrometry (hence having proper motions which are
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Figure 9. A cumulative proper motion histogram for our the objects in our catalogue. The solid line represents the N∝ µ−3

relation that would be expected with no incompleteness. It is clear that our survey begins to become incomplete below about
60 milliarcseconds per year and that below 20 millarcseconds per year there are virtually no objects. The dotted line represents
the study of Gould & Kollmeier (2004). Clearly their study is complete to lower proper motions than ours. In the region where
our survey is most complete there is a factor of 2 difference between the numbers.

not significant enough). Below about 25 mas/yr it is clear the distribution flattens off and

we can say we have no significant population below this mark. We have also compared our

results with those in Gould & Kollmeier (2004). Figure 9 shows that in the proper motion

range where both surveys have similar proper motion completeness, we have half the number

of objects that Gould & Kollmeier have. This is despite the two surveys having similar areas

(both around 1400 sq. deg.). However our survey covers a much more crowded area than

theirs. Deacon, Hambly & Cooke (2005) calculated the area lost to bright and blended stars

across the southern sky. Examining their Figure 10, it is clear that in the southern regions of

the sky at similar Galactic latitude to ours, the completeness is often 50% or worse. Hence

we believe this difference in numbers is due the more crowded nature of our survey area.

The IPHAS survey consists of 15270 pointings, which between them cover the 1800

square-degree survey area twice or more. Hence simply taking the size of the detector and

multiplying it by the number of fields our survey covers (12362) will not yield an accurate

estimate of our current survey area. A rough estimate can be provided by multiplying the

fraction of the fields we cover (approximately 81%) by the total final survey area of 1800
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sq. deg. This yields and approximate area for our proper motion survey of 1457 sq. deg.

However as stated above, due to crowding we are only likely to identify proper motion

objects in roughly half this total area. Once data from the few unobserved IPHAS fields

have been relaesed we will apply the same method to the remaining fields, completing our

proper motion survey.

In calculating our astrometric solutions we use sets of reference stars. These may have

small bulk motions. Additionally for the objects where we have too few reference stars the

raw IPHAS positions are used. These are tied to the 2MASS (Skrutskie et al. 2006) system

using reference stars. Hence we will measure proper motions relative to these reference stars

rather than absolute proper motions. Lepine (2008) also encountered this problem. They

concluded that the difference between absolute and relative proper motions was typically

less than their measurement errors. As our measurement errors are similar to theirs (typicall

below their quoted global errors of 8mas/yr in each axis), we deduce that any offset between

the relative and absolute proper motions of our sample will also be below our calculated

errors.

5 CONCLUSIONS

We have completed the first comprehensive wide field proper motion survey of the northern

Galactic plane (|b| < 5◦) covering proper motions between 150 and approximately 30 arcsec-

onds per year. This sample covers a large section (1457 sq. deg.) of the northern plane and

contains 57249 objects with significant proper motions. We also identify seventeen objects

in common between our catalogue and the Hα emission catalogue of Witham et al. (2008).

These objects fell in to two distinct groups, a blue group dominated by non-DA white dwarfs

and a red group dominated by maginally selected ordinary main sequence objects. This sam-

ple will clearly be useful in the study of populations such as white dwarfs and subdwarfs

in the Galactic plane. We will seek to complete the catalogue for the full survey area and

will use the upcoming UVEX data to extend it to higher proper motions above the current

imposed limit of 0.15 arcseconds per year.
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