
Complexity Reduction: Local Activity Ranking By
Resource Entropy For QoS-aware Cloud Scheduling

Huankai Chen∗, Frank Wang∗, Matteo Migliavacca∗, Leon O. Chua†, Na Helian‡
∗Future Computing Group, School of Computing, Canterbury, UK

{HC269, F.Z.Wang, M.Migliavacca}@kent.ac.uk
†Depart. of Electrical Engineering and Computer Science, University of California, Berkeley, USA

‡School of Computing, University of Hertfordshire, Hertfordshire, UK

Abstract—The principle of local activity originated from elec-
tronic circuits, but can easily translate into other non-electrical
homogeneous/heterogeneous media. Cloud resource is an example
of a locally-active device, which is the origin of complexity
in cloud scheduling system. However, most of the researchers
implicitly assume the cloud resource to be locally passive when
constructing new scheduling strategies. As a result, their research
solutions perform poorly in the complex cloud environment. In
this paper, we first study several complexity factors caused by
the locally-active cloud resource. And then we extended the
”Local Activity Principle” concept with a quantitative measure-
ment based on Entropy Theory. Furthermore, we classify the
scheduling system into ”Order” or ”Chaos” state with simulating
complexity in the cloud. Finally, we propose a new approach to
controlling the chaos based on resource’s Local Activity Ranking
for QoS-aware cloud scheduling and implement such idea in
Spark. Experiments demonstrate that our approach outperforms
the native Spark Fair Scheduler with server cost reduced by 23%,
average response time improved by 15% - 20% and standard
deviation of response time minimized by 30% - 45%.

Keywords—Local Activity Principle, Entropy Theory, Cloud
Scheduling, Quality of Service, Complex System, Order and
Chaos

I. INTRODUCTION

”Local Activity Principle” was originally used for study

the complex system in physics, chemistry, biology and brain

research, which is capable of explaining the emergence of

complex pattern in a homogeneous medium [1]. However,

the application of local activity principle in complex cloud

scheduling system is limited. In cloud computing, complexity

limited the system’s ability to better satisfy the QoS re-

quirements of applications, such as cost budget, average task

runtime and reliability [4]. As the origin of complexity, the

locally-active resource, is assumed to be locally passive in

most of the research solutions. Such improper assumption may

lead the scheduling solution to be less robust in the real world

complex cloud environment.

Scheduling is an NP-complete problem, the complexity

of which increase substantially in heterogeneous cloud en-

vironment [6]. Cloud application that disposes of scheduler,

which automatically and efficiently find the most appropriate

resources to execute a group of tasks, must cope with world’s

natural tendency to disorder. In the cloud application, jobs

are scheduled on a set of cloud resources that are locally

active, which performance is supposed to change dynamically

during runtime [2]. Such performance diversion may cause by

hardware/software failures, resources CPU overload, resource

over- or under-provisioning, or application misbehaviours. We

want resource local activity yield coherent global schedule

system order. However, widespread experience warns us that

optimizing systems that exhibit both local activity and global

order are not easy. The experience that anything that can go

wrong will go wrong and at the worst possible moment is sum-

marized informally as Murphys Law [5]. Scheduling systems

are not immune to Murphy. As the degree of cloud resource

activity increase, the level of complexity in scheduling system

increase, which may lead the system falls into the chaotic

state. In chaotic state, the scheduling system performance is

degraded and become harder to be predicted, and the QoS

requirements of application become harder to be satisfied as

well.
At the root of the ubiquity of disordering tendencies is

the Second Law of Thermodynamics [3], Energy sponta-

neously tends to flow only from being concentrated in one

place to becoming diffused or dispersed and spread out. In

cloud scheduling system, adding resources to a system may

overcome the Second Law spontaneous tendency and lead

to increasing the systems order. However, this way does not

work well all the time, especially when the cloud resources

are locally active, which is the origin of complexity [1]. The

scheduling system becomes more complex as more resources

need to manage. In such case, the way to decide the number

of resources allocated to the application initially and finding

a suitable set of resources for the jobs during runtime become

a critical problem in cloud scheduling. To solve the above

problem, we need to know: 1) The state of cloud scheduling

system, ”Order”,”Edge of Chaos” or ”Chaos”, when meeting

the different level of complexity with the number of allocated

resource. 2) The degree of local activity for allocated resources

during runtime, which has a direct impact on the system’s

complexity level.
The main contributions of our paper are the following:

• ”Local Activity Principle” was first applied on cloud

scheduling system in the literature to find the origin of

complexity in cloud computing.

• We extend the concept of ”Local Activity Principle”

by introducing Degree of Local Activity, which can

be quantitatively measured by resource Entropy for the

2016 IEEE International Conference on Services Computing

978-1-5090-2628-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SCC.2016.82

585

purpose of complexity reduction and chaos control.

• We study the negative impact of complexity in cloud

scheduling system through simulation, such as perfor-

mance degradation and QoS guarantees violation.

• We confirm the finding of chaotic behaviour on cloud

scheduling system in some complexity region and provide

a way to classify the system state, ”Order” or ”Chaos”.

• A new Entropy Scheduler was developed based on Re-

source Local Activity Ranking to ensure QoS guaran-

teed on the real world cloud analysis engine - Spark.

Experiments show that our proposed Entropy Scheduler

outperform the native Spark Fair Scheduler for better QoS

satisfaction.

In this paper, following the short introduction on the ”Local

Activity Principle” [1] and the application of Entropy as the

quantitative measure of the degree of cloud resource local

activity, we use Damage Spreading Method [9] as a tool to

analysis the simulation results provided by ComplexCloudSim

in Section III. We will then describe the experiment that runs

on the real world cloud analysis engine which implements our

proposal idea as a plug-in scheduler and evaluates the results in

Section IV. Section V contains some conclusion and possible

future research direction.

II. LOCALLY-ACTIVE RESOURCE : ORIGIN OF

COMPLEXITY IN CLOUD SCHEDULING

The principle of local activity originated from electronic

circuits, but can easily translate into other non-electrical

homogeneous/heterogeneous media [1]. In cloud computing,

the cloud resource is an example of a locally-active device,

whereby a ”small” (estimated runtime of allocated task) input

signal can convert into a ”large” (Actual processing time

to finish the assigned task) output signal at the expense of

an energy supply (cost of resource), as shown in Figure

1. By definition, a resource is locally passive if it is not

locally active, in the sense that a resource with fixed cost is

guaranteed to provide a never changed performance during

runtime. However, in the real world cloud, the resources are

seldom in the passive mode, they always exhibit the different

degree of local activity. For example, on average, a physical

resource is less active than a virtual resource with the same

configuration and the degree of activity for the same resource

varies during runtime.

A. Complexity Caused By Locally-Active Cloud Resource

As the origin of complexity, the local activity resource has

a direct impact on the complexity level of cloud scheduling

system. In electronic circuits with homogeneous media, the

locally active cells will put the system to be in the ”Edge

of Chaos” [12] state in some parameter regions, which have

a chance to turn into a complete Chaotic state. In cloud

environment,such complexity effects causing by locally ac-

tive resource will appears more frequently. When the cloud

scheduling system is in chaotic state, its performance is

degraded and become harder to predict and it fails to better

fulfil the QoS requirements of the application. However, in the

Fig. 1. Locally-Active Resource Vs. Locally-Passive Resource

literature, most of the researchers ignore the impacts of local

activity of resource on cloud scheduling system and assume

the resources to be locally passive when constructing new

scheduler. So their research solution always fail to provide

better QoS when running on real world cloud environment.

The scheduling problem in cloud computing is not new at

all; as a matter of fact it is one of the most studied problems in

the optimization community [13] [15]. However, in the cloud

the complexity causing by locally active resources that makes

the problem more challenge. Some of the complexity factors

related to the resource are the following:

• Heterogeneity : Cloud systems act as large virtual su-

percomputer, yet the computational resources could be

very disparate, ranging from laptops, desktops, clusters,

supercomputers and even small devices of limited compu-

tational resources like the smart phone. Current Cloud in-

frastructures are not yet much versatile but heterogeneity

is among most important features to take into account in

any cloud system. With the development of virtualization

technology, a single physical host can run multiple virtual

machines (Vms) simultaneously. Nevertheless, the virtu-

alization also brings about new challenges to the resource

scheduling in clouds since multiple VMs can share the

hardware resources (e.g. CPU, memory, I/O, network,

etc.) of a physical machine. In such situation, it is difficult

to accurately measure the actual performance of rented

VMs. For example, in Amazon EC2, the provisioning

of resources to virtual machines is based on computing

units instead of fixed performance measures. Different

host machines provide a different amount of computing

power per provisioned compute unit, effectuating in het-

erogeneity among VM performance [16]. That means, in

real world, the cloud could never be homogeneous, it

should always be heterogeneous.

• Dynamicity : The dynamic changes of resource perfor-

mance at runtime is another important factor of com-

plexity inherent to cloud computing [17]. In the real

world scenario, such dynamicity of resource performance

may be caused by hardware/software failures, resource

586

Fig. 2. Complexity Reduction & Chaos Control: Resource Entropy Based Local Activity Ranking

CPU overload, resource over- or under-provisioning, or

application misbehaviours. The cloud resource is also

affected by the amount of running jobs that assigned

to it and exhibited local activity, which is the origin

of complexity. Furthermore, sharing common underlying

hardware infrastructure with other VMs will bring the

resource dynamicity up to a more complex level.

• Uncertainty : The vast majority of the research efforts in

scheduling assumes complete information about the state

of cloud resource. However, in the cloud computing, the

ready time and the computing capacity of a resource are

subject to considerable uncertainty during provisioning

[18]. We argue that such uncertainty is the main hassle

of cloud computing bringing additional challenges to

predict the execution time of tasks, which is a crucial

point for many scheduling algorithms. Resource states in

cloud environment can change dramatically. Most of the

time, it is impossible to get exact knowledge about the

resource. It is hard to estimate runtime of tasks accurately,

improve prediction by historical data, prediction correc-

tion, prediction fallback, etc. The inaccurate execution

prediction leaves the associated scheduling performance

under considerable uncertainty.

B. Emergence Of Complex Patterns In Cloud Scheduling:
Order, Edge Of Chaos And Chaos

The principle of local activity is the cause of symmetry

breaking in homogeneous media, which offers a rigorous and

effective tool to identify the states (See Figure 2) of scheduling

system and also fine tuning such states into a relatively small

subset called the edge of chaos where the emergence of

complex phenomena is most likely [1].

The increment of activity on local resource will lead to the

increment of global scheduling system’s complexity, which

means the system will have a higher chance to fall into

chaos. Thus, we propose the following solution to reduce the

complexity and control the chaos, as shown in Figure 2:

”Avoid allocate tasks to the resources with high degree
of local activity or allocate tasks to the set of resources
with similar degree of local activity when making scheduling

decision.”

However, it brings up another challenging problem:

”How to provide a quantitative measurement of resource
local activity during runtime in an efficient and reliable way?”

Therefore, to solve the problem, we introduce Entropy as

the quantitative measurement to compare the degree of Local

Activity among cloud resources. The aim of Local Activity

measurement is to be able to obtain a numerical scale to

compare the activity degree on different resources. In practical,

the degree of local activity is difficult to obtain directly

on runtime. However, we can judge how active a resource

is through the study of its performance history in respect

of CPU Utilization. General speaking, if the resource CPU

Utilization history exhibit unstable oscillation (disorder), it

is under relatively high activity and vice verses. Therefore,

Entropy, as the measurement of the degree of disorder in a

system, is used to provided a quantitative measurement of the

local activity degree associated with the cloud resources.

The concept of entropy is originally known as the second

law of thermodynamics, which has been adapted in other fields

of study, including information theory, production planning,

resource management, computer modelling and simulation.

Shannon describes the entropy as a measure of information

or uncertainty on random variables, which take different

probabilities among the states into account [20]. The average

uncertainty associated with an outcome is represented by

discrete random variable X on a finite set X = x1, ..., xn

with probability distribution function p(xi) being in state i,
(i = 1, ..., n). The Shannon’s information entropy H(X) of

X is defined as

H(X) = −
n∑

i=1

p(xi)log2p(xi) (1)

This paper focuses on calculating the entropy value based

on the resource CPU utilization history, which represents how

efficiently the resource uses the CPU throughout the jobs

executions. This is highly relevant for making scheduling

decision as it is directly related to the resource’s performance

during runtime. The resource entropy is calculated according

to the algorithms 1.

The Entropy measurement above represents the following

relationship with the degree of resource local activity:

587

Algorithm 1 Calculate Resource Entropy

1: Require: CUV ← CPU Utilization Vector of resource

2: procedure CACULATEENTROPY(CUV)

3: �cuV ← Vector for changes of CPU Utilization

4: Mean(�cu)← Average Changes of CPU Utilization

5:

6: if �cu ≥Mean(�cu) then
7: Statea ← Above average state

8: else Stateb ← Below average state

9:

10: Pa ← Probability of �cu in Statea
11: Pb ← Probability of �cu in Stateb
12: Entropy H(�cu) = −(Pa ∗ log2Pa + Pb ∗ log2Pb)

• Entropy is a non-negative quantity: H(�cu) ≥ 0, since

0 ≤ Pa, Pb ≤ 1. The degree of resource local activity is

proportion to the resource entropy value.

• Entropy achieves its maximum value (H(�cu) =
log2(2) = 1) when both Statea and Stateb occur with

the same probability (Pa = Pb = 1/2), so the resource

performance is being in most uncertain and unpredictable

region, which means the degree of resource local activity

is maximum.

• Entropy attains its minimum value H(�cu) = 0 when

only one state occurs with probability 1 (Pa = 1 or

Pb = 1), so the resource performance is known with

complete certainty, then the degree of resource local

activity is minimum.

III. ORDER AND CHAOS IN COMPLEX SCHEDULING

SYSTEM

In this section, we first use ComplexCloudSim, which is

an extension to popular CloudSim tool-kit with providing

the capacity to model the complexity factors (Heterogeneity,

Dynamicity and Uncertainty), to simulate the impacts of

complexity causing by locally-active resources on the cloud

scheduling system. In the simulation, we use a Montage work-

flow come with CloudSim, which consists of 1000 jobs with

groups of random number sub tasks. For the initial simulation

configuration, we set the number of VMs Numbervm = 5
and the degree of resource complexity Degreecomplexity = 0.

The workload will run with MinMin algorithm, which is a

simple and efficient algorithm that produces a better schedule

that minimizes the total completion time of jobs than other

algorithms in the literature [13] [14], on the initial configura-

tion 100 times to generate baseline performance. As what we

have expected, the workflow runtime was determined in all the

100 simulation runs with zero variance without considering the

complexity, which is shown in Table I.

And then, we run the simulation with the same number

of VMs Numbervm = 5 but different degree of complexity

Degreecomplexity ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. The results of the

experiment outlined above are displayed in Figure 3 and 4.

Over the course of the entire experiments, the average runtime

of the Montage workflow between 3,220 and 3,424 minutes

TABLE I
BASELINE SIMULATION RESULT WITH INITIAL CONFIGURATION :

Numbervm = 5,Degreecomplexity = 0

Algorithm Average Runtime Variance Standard Deviation

MinMin 2864 Minutes 0 0

have been observed in Figure 3, which means around 13%

- 23% runtime degradation compared with the performance

baseline. Clearly, the complexity factors have a considerable

impact on QoS of cloud scheduling system.

We also find that the average runtime degradation does not

change as much as the increase of the degree of complexity.

However, the growth of standard deviation for workflow

runtime is proportional to the increase of the degree of

complexity with range from 20% to 120%, as shown on Figure

4. Apparently, the increase of standard deviation leads to less

reliable scheduling performance. Thus, the cloud scheduling

QoS is depended on the degree of complexity.

Fig. 3. Complexity Simulation: Average Workflow Runtime
(MinMin,Numbervm = 5)

Finally, we introduce Damage Spreading Analysis (DSA)

[8], which is a tool originally developed to study biologically

motivated complex systems, and it appears in the literature on

various research areas including complex network models as

a way to observe the complex behaviour of the systems. DSA

investigates the evolution of slightly different configuration

of variables in a complex system, which are subjected to

the same number sequence. Knowledge of whether or not a

small perturbation (”damage” to the conditions) added to the

variables spreads or stays at the same level (even disappears)

can help us to investigate the robustness of the system over

disturbance.

”Initial damage” here is defined as a slight change in the

degree of resource complexity Ccomplexity and the number

of VMs Cvm to run the same workload. We add small

change Ccomplexity = 0.1 and Cvm = 1 to simulation step

588

Fig. 4. Complexity Simulation: Standard Deviation of Workflow Runtime
(MinMin,Numbervm = 5)

by step, which will be executed 100 times with the same

workload. Then we investigate the changes are spread or not on

two important QoS requirements in the scheduling processes

(Changes of Average and Standard Deviation of workflow

runtime) after that.

Daverage(i, j) =

Raverage(i+ Cvm, j)−Raverage(i, j) (2)

Dstd(i, j) = Rstd(i, j + Ccomplexity) − Rstd(i, j) (3)

To evaluate the spread of the damages, we define damage

Daverage (Difference of average workflow runtime Raverage)

and Dstd (Difference of workflow runtime Standard De-

viation Rstd) between two simulations results, which are

calculated as shown in Formula 2 and 3, where i ∈
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] refers to number of VMs

and j ∈ [0.1, 0.2, 0.3, 0.4, 0.5] refers to degree of complexity.

The results of Daverage and Dstd are shown in Figure 5

and 6 respectively.

As we can see from Figure 5, for number of VMs i < 10,

the changes of Daverage for different degrees of complexity is

relatively small, in this region, the damage is not spread and

initial damage stays small.

From Figure 6, for number of VMs i < 9, the changes of

Dstd for different degrees of complexity highly unstable, but

the situation become relatively better as the number of VMs

increase when i > 9.

Then,we analysis the relation between number of increased

VMs i and spreading damage using the standard deviation

of Daverage and Dstd. We define standard deviation of

Daverage(i) as σaverage(i), and standard deviation of Dstd(i)
as σstd(i). And calculate the mean value Mean(σaverage) and

Fig. 5. Damage Spreading Evaluation: Daverage

Fig. 6. Damage Spreading Evaluation: : Dstd

Mean(σstd) of all σaverage and σstd, as shown on Table II

and III.

Now, we classify the system state loosely using such

mean value. We understand the state that σaverage(i) ≤
Mean(σaverage) or σstd ≤ Mean(σstd) as ”Order” state.

In this state, the correlation of initial damage and spread-

ing damage is maintained, the increase of number of VMs

will result in steady improvement of QoS, which means the

scheduling system is running relatively robust against the

changes of the degree of complexity. We also understand that

σaverage(i) > Mean(σaverage) or σstd > Mean(σstd) as

”Chaos” state, as highlighted in red colour in Table II and

III . In this state, small disturbance may spread throughout

the scheduling system and the performance is easily changed

totally against the degree of complexity, which means the

increased of number of VMs is hard to grantee better QoS

improvement.

The understanding of whether the scheduling system is

in ”Order” state or ”Chaos” state provide us an important

guideline for making the decision to achieve more robust

scheduling. For example, from simulation result, we may run

589

TABLE II
RELATION BETWEEN NUMBER OF VMS AND Daverage

Daverage(i)

Degree of Complexity Mean(σaverage)=23

(i) VMs 0.1 0.2 0.3 0.4 0.5 σaverage(i)

5 456 489 481 514 469 22

6 320 322 344 363 377 25

7 258 271 237 282 248 18

8 193 174 196 178 231 23

9 148 168 180 169 171 12

10 124 117 122 149 94 19

11 198 101 108 64 135 50

12 -1 96 98 104 86 44

13 80 81 65 83 86 8

14 69 68 67 83 71 7

TABLE III
RELATION BETWEEN NUMBER OF VMS AND Dstd

Dstd(i)

Degree of Complexity Mean(σstd)=24

(i) VMs 0.1 0.2 0.3 0.4 0.5 σstd(i)

5 58 69 94 73 80 49

6 48 37 79 63 61 38

7 42 43 39 71 48 31

8 78 23 60 34 40 30

9 46 9 41 44 32 21

10 32 23 39 20 34 18

11 42 25 31 24 26 18

12 41 26 26 28 24 17

13 19 32 15 26 22 13

14 0 37 15 24 20 11

14 21 18 22 11 22 11

the similar workload with over 9 VMs while avoiding choosing

11,12 VMs to satisfy the QoS requirement of application in

real world.

IV. SPARK IMPLEMENTATION AND EVALUATION :

SCHEDULING JOBS BY ENTROPY GUIDED RESOURCE

LOCAL ACTIVITY RANKING

Through the study from Section III, we understand the

impact of complexity on the performance of cloud scheduling

and how it lead to the violation of application’s QoS require-

ments. We try to choose the suitable initial number of VMs

to achieve more robust scheduling by understanding whether

the system is in ”Order” state or ”Chaos” state. Generally

speaking, complexity reduction is a way to improve QoS in

cloud scheduling [19]. Although we can use simulation and try

to reduce the complexity, however, there is limitation in this

way since the simulation only models part of the complexity

in the real world. In the real world cloud environment, there

are complexity form of other media such as dynamic &

unpredictable workload and heterogeneous links among the

resources, which are hard to control or even uncontrollable

during runtime. Relatively speaking, the cloud resources form

of cloud is easier to control, as we can know its average

performance from history by monitoring its CPU utilization.

Learning from the concept of ”taking human being as the

essential to improve the quality of project management”, we

know the resource is the essential part to achieve better

scheduling in the complex cloud. Thus, in this section, we

will focus on resource-oriented complexity reduction.

A. Spark Entropy Scheduler : New Approach To Better Satisfy
QoS In Complex Cloud

Spark [21] is part of the Apache Software Foundation and

claims speedups up to 100x faster than Hadoop MapReduce in-

memory, or 10x faster on disk. The ability to bring response

time of distributed data analysis into sub-second range has

enabled powerful new application development - Cloud Anal-

ysis as a Service (CAaaS). In such case, user-facing services

will be able to run sophisticated parallel computation, such

as language translation, voice reorganization, highly search

personalizations and context recommendation, on a per-query

basis. However, when meeting with high concurrent of service

query, the Spark performance become less reliable. Spark’s

performance is closely tied to its job scheduler. Most of

the time, we need to deploy more resources to handling the

increased service query, which will cause the increment of

complexity in the scheduling system. Although the current

scheduler in Spark works well in homogeneous environment

with low query request, but it failed to better fulfil the QoS

requirement of CAaaS as the cloud become more complex.

If the scheduling strategy cannot provide an optimal way to

guarantee the QoS, it will be difficult to popularize the service.

The current scheduler in Spark implicitly assumes that all

the resource are homogeneous and local passive and randomly

allocate resources to jobs. Without considering the local ac-

tivity in cloud resource, such schedulers perform poorly when

meeting the increasing complexity of the cloud.

In our proposed Entropy Scheduler, instead of randomly

picking up resources, we first calculate the local activity rank-

ing of all offered resources (Algorithm 2), and then schedule

tasks inside a job according to the ranking. Tasks are scheduled

with similar ranking resource so as to improve overall QoS

satisfaction and reliability of scheduling performance.

Algorithm 2 Calculate Resource Local Activity Ranking

1: Require: Rcu ← Current Resource CPU Utilization

2: Require: Re ← Resource Entropy

3: Require: Ncpu ← Number of Available CPU cores

4: Require: Scpu ← CPU Core Clock Speed

5: procedure CACULATERANKING(Rcu, Re, Ncpu, Scpu)

6: RANKresource ← Resource Local Activity Ranking

7: RANKresource = Ncpu ∗Scpu ∗ (1−Rcu) ∗ (1−Re)

B. Experiments And Evaluation

In order to evaluate our proposed Entropy Scheduler, we

conduct experiments on a private cloud with 3 heterogeneous

590

physical resource. The resource specifications and Spark con-

figuration are shown on Table IV. A simple Spark application

has been deployed on the server with the ability to accept user

query to calculate π with a predefined number of CPU cores

concurrently. We use Apache Bench to load testing the Spark

application under different schedulers (Our Entropy Scheduler

and Spark Fair Scheduler [22]). The load testing will spawn a

number of threads which continuously execute the same query.

Each thread remains loaded and continues processing queries

until all threads have finished, and the query response time

of all requests from every thread will use for performance

comparison.

TABLE IV
EXPERIMENTAL PLATFORM:RESOURCE SPECIFICATION

Specification Node 1 Node 2 Node 3
Spark Role Master&Worker Worker Worker

CPU Xeon 3Ghz x 2 Xeon 2.8Ghz x 2 Xeon 1.8Ghz
Cores 8 8 4
RAM 16GB 12GB 12GB

1) Experiment 1: Performance under Different Concurrent
Level of HTTP Request Workload: This experiment is used to

verify the query response time and degree of satisfying of QoS

requirement with Entropy Scheduler and Fair Scheduler under

different concurrent level of request workload. The results are

shown as follows in Figure 7, Figure 8 and Figure 9.

Fig. 7. Experiment 1: Response time statistics result

Figure 7 shows that Entropy Scheduler has better perfor-

mance and a higher degree of satisfying of QoS requirement,

which result in improvement of the overall server throughput

as well (Figure 8).

However, increasing workload concurrency pose various

challenges to the scheduling system. The cloud experience per-

formance degradation with increasing workload concurrency.

As seen from Figure 9, although Entropy Scheduler reduce

a significant amount of failed requests compared with Fair

Scheduler, it still has same performance bottlenecks inhibiting

sub-second query response time which motivates future work

of other optimization options.

Fig. 8. Experiment 1: Spark analysis server throughput result

Fig. 9. Experiment 1: HTTP request failure rate result

2) Experiment 2: Load Testing with 100,000 Query Re-
quests at the Concurrent Level of 10: Table V compare

the various aspects of load testing result by each scheduler.

Our results throughout the Evaluation section show Entropy

Scheduler outperforms native Fair Scheduler in respect of

QoS satisfaction. On average, in this heterogeneous cluster

experiment, Entropy Scheduler is able to shorten the load

testing completion time by 23%, reduce the average response

time by 23% and standard deviation by 35%, and improve the

overall server throughput by 30% compared with native Fair

Scheduler.

TABLE V
EXPERIMENT 2:LOAD TESTING WITH 100,000 QUERY REQUESTS AT THE

CONCURRENT LEVEL OF 10

Load Testing Result Fair Scheduler Entropy Scheduler
Testing Completion Time (Sec.) 951.52 732.15 (- 23%)

Throughput (Request/Sec.) 10.51 13.66 (+ 30%)
Number of failed request 75 0

Average Response Time (ms) 951 732 (- 23%)
Standard Deviation 298.9 194.7 (- 35%)

Figure 10 indicates that 90% of queries are completed

591

within 1 second under Entropy Scheduler, while only 50%

under Fair Scheduler. Such result shows that Entropy Sched-

uler is more capable of running CAaaS that providing web

service with QoS guarantee.

Fig. 10. Experiment 2: Percentage of the requests served within a certain
time (Million Seconds)

C. Discussion

Our experiments on 3 resources with 20 cores is small-scale,

but the experimental results provide intuition for developing

new scheduler based on entropy with large-scale of local active

resources. From experiment 1, we have learned the critical

bottleneck in current Spark Jobs Scheduling causing by han-

dling high concurrent queries when the system complexity is

increase. Compare with native Spark FAIR scheduler, Entropy

Scheduler reduces the query Failure Rate by around 7%. The

results in Experiment 2 show Entropy Scheduler out-perform

FAIR Scheduler for CAaaS in complex cloud environment,

which will be a starting point for future work, where we hope

to run the low-latency query with better QoS guarantee.

V. CONCLUSION AND FUTURE WORK

The complexity is an important issue that affects QoS satis-

faction bringing additional challenges to scheduling problem.

In the present paper, the negative impact of complexity on

deterministic cloud scheduling system was used to motivate

the new scheduler development based on Entropy Theory to

schedule tasks to resources involving local activity in the real

world cloud. With the results in the paper, we provide both a

concrete solution for a class of complex systems, as well as

a number of ideas valuable for conventional engines running

on the cloud.

Research on Complexity has just emerged in the area of

cloud scheduling. The understandings of the origin of com-

plexity (Locally-active cloud resource) and impact of complex-

ity (Performance degradation, QoS guarantees violation and

potential Chaotic behaviour) would offer useful information

to find the limitation of current scheduling solutions and

motivate new scheduler development under complex cloud

environment. However, this paper focuses on the resource-

oriented complexity. In the future, complexity raising from

other media (etc. workload, links between resources, outer

environment) are also need to be studied.

REFERENCES

[1] Chua, Leon O. ”Local activity is the origin of complexity.” International
journal of bifurcation and chaos 15.11 (2005): 3435-3456.

[2] Bar-Yam, Yaneer. Dynamics of complex systems. Vol. 213. Reading, MA:
Addison-Wesley, 1997.

[3] Boltzmann, Ludwig. ”The second law of thermodynamics.” Theoretical
physics and philosophical problems. Springer Netherlands, 1974. 13-32.

[4] Plestys, Rimantas, et al. ”The measurement of grid QoS parameters.”
Information Technology Interfaces, 2007. ITI 2007. 29th International
Conference on. IEEE, 2007.

[5] Matthews, Robert AJ. ”The science of Murphy’s law.” PROCEEDINGS-
ROYAL INSTITUTION OF GREAT BRITAIN. Vol. 70. Oxford Univer-
sity Press, 1999.

[6] Zhang, Qi, Lu Cheng, and Raouf Boutaba. ”Cloud computing: state-
of-the-art and research challenges.” Journal of internet services and
applications 1.1 (2010): 7-18.

[7] Chen, Huankai, and Frank Z. Wang. ”Spark on entropy: A reliable &
efficient scheduler for low-latency parallel jobs in heterogeneous cloud.”
Local Computer Networks Conference Workshops (LCN Workshops),
2015 IEEE 40th. IEEE, 2015.

[8] Grassberger, Peter. ”Damage spreading and critical exponents for model
A Ising dynamics.” Physica A: Statistical Mechanics and its Applications
214.4 (1995): 547-559.

[9] Bagnoli, F., R. Rechtman, and S. Ruffo. ”Damage spreading and Lya-
punov exponents in cellular automata.” Physics Letters A 172.1 (1992):
34-38.

[10] Boccaletti, Stefano, et al. ”The control of chaos: theory and applica-
tions.” Physics reports 329.3 (2000): 103-197.

[11] Cambel, Ali Bulent. Applied chaos theory: A paradigm for complexity.
Elsevier, 1992.

[12] Chua, Leon. Memristor, Hodgkin-Huxley, and edge of chaos. Springer
International Publishing, 2014.

[13] Braun, Tracy D., et al. ”A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems.” Journal of Parallel and Distributed computing 61.6
(2001): 810-837.

[14] Chen, Huankai, et al. ”User-priority guided Min-Min scheduling al-
gorithm for load balancing in cloud computing.” Parallel Computing
Technologies (PARCOMPTECH), 2013 National Conference on. IEEE,
2013.

[15] Bala, Anju, and Inderveer Chana. ”A survey of various workflow
scheduling algorithms in cloud environment.” 2nd National Conference
on Information and Communication Technology (NCICT). 2011.

[16] Iosup, Alexandru, Nezih Yigitbasi, and Dick Epema. ”On the perfor-
mance variability of production cloud services.” Cluster, Cloud and Grid
Computing (CCGrid), 2011 11th IEEE/ACM International Symposium
on. IEEE, 2011.

[17] Schad, Jrg, Jens Dittrich, and Jorge-Arnulfo Quian-Ruiz. ”Runtime
measurements in the cloud: observing, analyzing, and reducing variance.”
Proceedings of the VLDB Endowment 3.1-2 (2010): 460-471.

[18] Herroelen, Willy, and Roel Leus. ”Project scheduling under uncertainty:
Survey and research potentials.” European journal of operational research
165.2 (2005): 289-306.

[19] Tndel, Petter, and Tor A. Johansen. ”Complexity reduction in explicit
linear model predictive control.” Proc. of 15-th IFAC world congress.
2002.

[20] RRNYI, ALFRPED. ”On measures of entropy and information.” (1961).
[21] Zaharia, Matei, et al. ”Spark: Cluster Computing with Working Sets.”

HotCloud 10 (2010): 10-10.
[22] Zaharia, Matei. ”Job scheduling with the fair and capacity schedulers.”

Hadoop Summit 9 (2009).

592

