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Abstract
This paper revisits the ideas of seeking unconstrained minima by following a continuous
steepest descent path (CSDP). We are especially interestedin the merits of such an ap-
proach in regions where the objective function is non-convex and Newton-like methods
become ineffective. The paper combines ODE-trajectory following with trust-region ideas
to give an algorithm which performs curvilinear searches oneach iteration. Progress along
the CSDP is governed both by the decrease in function value and measures of the accuracy
of a local quadratic model. Experience with a prototype implementation of the algorithm
is promising and it is shown to be competitive with more conventional line search and
trust region approaches. In particular, it is also shown to perform well in comparison with
the, superficially similar, gradient-flow method proposed by Behrman.

1 Introduction

In this paper, we are concerned with finding a local solution of the unconstrained
optimisation problem

Minimise F(x); where x= (x1;x2; :::;xn)T 2 Rn; (1.1)

whereF(x) is a single real valued function assumed to be twice continuous differ-
entiable. Problems of this type arise in many practical situations such as finance,
science, engineering and management. As is well known, the first order neces-
sary condition at a local solutionx� of (1.1) is given by the system ofn non-linear
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equations
∇F(x�) = 0

and the second order condition is that the Hessian matrix∇2F(x�) is positive-
definite.

There are many iterative numerical optimization techniques which can be applied
to (1.1). Most of these methods use an iteration of the form

xk+1 = xk+αkpk;
wherepk is a descent search direction andαk is a step length obtained by a one-
dimensional search to ensure thatF(xk+1)< F(xk). Sometimes these techniques
enter a region where the Hessian∇2F is not positive-definite and they may then
exhibit slow convergence or even fail. For instance, the Newton search direction

p=�∇2F�1∇F;
may point towards a saddle or a local maximum if∇2F is not positive-definite.
Similarly, quasi-Newton methods, whose search directionsare based an approxi-
mation of∇2F , will be unable to use a standard updating formula to revise their
Hessian estimate when a step is taken along a direction of negative curvature. In
fact, in a non-convex region, none of the iterative methods whose search direction
is based on minimising a quadratic model function have much theoretical validity.

One approach which does make sense in non-convex regions is the trust region
method[1] [2]. The strategy we discuss in this paper is related to trust region
methods and is based on following theContinuous Steepest Descent Path(CSDP).
This approach has already been looked at by a number of authors (e.g. [3], [4],
[5],[6], [7], [8], [9], [10]) and, essentially, it uses a system of ordinary differen-
tial equations to construct a path leading to the solution ofproblem (1.1). Such
approaches have not been as widely used as search-direction/linesearch methods,
such as the Newton, quasi-Newton and conjugate gradient methods, perhaps be-
cause of the perceived difficulties inherent in accurately solving a system ofnon-
linear ordinary differential equations.

The structure of this paper is as follows. In the next sectionwe introduce the
idea of Continuous Steepest Descent Path methods for unconstrained optimiza-
tion. We look at ways of approximating the CSDP in order to solve problems of
the form (1.1) and give an outline of some possible algorithms. In section 3, the
performance of these algorithms is illustrated and compared on a small example.
In section 4, we look more closely at some of the algorithmic choices involved in
the CSDP method and give some numerical results in which their performace is
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compared with that of some other well known methods from the MATLAB opti-
mization toolbox [11]. Conclusions and a discussion of further work are given in
section 5.

2 The Continuous Steepest Gradient Path

Consider the unconstrained optimization problem (1.1). Wesuppose it involves a
nonlinear twice continuously differentiable objective functionF(x). At each point
the gradient vector is∇F(x) and the Hessian is∇2F(x) (which will sometimes be
denoted byG(x)).
Three well-known techniques based on a line search are
Steepest Descent,

xk+1 = xk�αk∇F(xk); (2.1)

Newton,
xk+1 = xk�αkG

�1(xk)∇F(xk); (2.2)

andQuasi-Newton
xk+1 = xk�αkH(xk)∇F(xk): (2.3)

whereH denotes a positive-definite approximation ofG�1(x) which is updated at
the end of each iteration. From a given starting pointx0, and the scalar step length
αk, (normally chosen to ensureF(xk+1)< F(xk)) these iterative schemes generate
a sequence of points (xk+1) designed to converge to the true solutionx�.
TheContinuous Steepest Descent Pathwhich is analogous to (2.1) can be defined
as the solution to the initial value problem

dx
dt

=�∇F(x(t)); x(0) = x0: (2.4)

If the solutionx(t) of (2.4) for t > 0 has a limit point such that limt!∞ x(t) = x�,
thenx� is a stationary point ofF(x) ([3], [4],[6], [7]). Since this point is reached
by a path of continuous descent thenx� must be a local minimum or a saddle
point, depending on whether or not∇2F(x�) is positive-definite.

A CSDP method can be outlined as follows. Fromx(0) = x0, let p(t) be a curve,
with p(0) = 0; which is anapproximationto the integral curvex(t) which solves
(2.4). The method then searches alongp(t) for t > 0, continuing to increaset as
long as the objective function is beingsufficiently reducedandp(t) is remaining
sufficiently closeto x(t). (We shall discuss these criteria in more detail later on.)
If the search alongp(t) is terminated at a pointx1 (e.g. becausep(t) seems too far
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from x(t)) then another search pathp(t) is constructed as an approximate solution
of problem (2.4) with the initial condition changed tox(0) = x1. A search along
p(t) will then yield a new pointx2; and this process can be repeated until a point
is found that satisfies a convergence test such asjj∇F(x�)jj< ε, whereε is some
specified tolerance.

A gradient flow methodof the kind just described has been proposed by Behrman
[3]. Thek-th iteration of Behrman’s algorithm uses an approximationof the vector
field�∇F aboutx= xk involving the integral curves of the linearised CSDP

dx
dt

=�∇F(xk)�∇2F(xk)(x�xk) (2.5)

wherexk is the starting point of thekth iteration. Equation (2.5) has an analytical
solution throughxk given by

x(t) = xk+ pk(t)
where

pk(t) =�RΛRTgk (2.6)

andR= R(xk) is the matrix whose columns are the normalised eigenvectorsof
∇2F(xk) while Λ is a diagonal matrix whose elements are derived from the eigen-
valuesd1; :::;dn via

Λii =� 1
dii

�
e�dii t �1

�
for dii 6= 0

t for dii = 0
(2.7)

From any given point, Behrman’s algorithm calculates a curve that is initially
tangent to the negative gradient. HenceF(xk+ pk(t)) is initially decreasing ast
increases. A new pointxk+1 is found alongxk + pk(t) such thatF(xk+ pk(t))<
F(xk) (and also certain other criteria are met) and the process is repeated.

Theorem [3] Let x(t) be the solution to (2.5). For a fixedt0� 0 if ∇F(x(t)) 6= 0
for all t > t0, thenF(x(t)) is strictly decreasing with respect tot, for all t > t0.
Proof: We know

dF(x(t)
dt

= ∇F(x(t))T dx(t)
dt

=�∇F(x(t))T∇F(x(t)) =�jj∇F(x(t))jj22:
Since∇F(x(t)) 6= 0 whent > t0, it follows that

dF(x(t)
dt

< 0;
i.e. F(x(t) is strictly decreasing fort > t0.�
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It can be seen from (2.5) that, if the only information given about F at xk is its
gradient∇F(xk), we can usepk(t) =�t∇F(xk) as the solution to (2.5). Using the
ray xk + pk(t) to search for a new point that satisfies certain search criteria and
repeating the process is just the steepest descent method.

For a quadratic objective function, the curve that Behrman’s algorithm calculates
is the exact integral curve, and for a positive-definite quadratic the algorithm finds
the minimiser in one step. This is identical to the Newton step.

If F(x) is a general function for which∇F(xk) and∇2F(xk) are known then we
can use (2.6) to compute a pathpk(t) corresponding to a quadratic approximation
of the function aboutxk. Starting at pointx0, we computep0(t) and findx1 along
the curvex0+ p0(t). The search is continued in this way to find other pointsxk

and pathspk(t). By joining these curvespk(t) together and pasting parts of them
to form a piecewise-smooth curvep(t) we can connect the initial pointx0 with
a critical pointx� of F as shown in Figure 1. (The dotted curves in Figure 1
represent the CSDP that would be obtained by solving (2.4) exactly.)

Figure 1: An approximate CSDP

On each iteration, the algorithm’s search curve is initially tangent to the negative
gradient, and if the Hessian at the initial point of the search curve is positive
definite, then the search curve will be bounded and the step tothe end of the curve
is a Newton step. Hence, we can obtain quadratic convergencenear the solution.

The objective function value of an indefinite quadratic is unbounded below. We
shall see in the next section how to deal with this case.
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2.1 Approximating CSDP

In this section we consider practical algorithms for solving (1.1), which approxi-
mate the CSDP by finding a numerical solution to (2.4).

Starting from the pointxk where the parametert = 0 and applyingEuler’s method
to (2.4), a new estimate of the point on the gradient trajectory corresponding to
t = δt can be given by

xk+1 = xk�δtgk (2.8)

wheregk = ∇F(xk). On the other hand, by using theImplicit Euler methodwe get

xk+1 = xk�δtgk+1: (2.9)

If Gk, denotes∇2F(x), then (2.9) can be approximated by

xk+1 = xk�δt (gk+Gk(xk+1�xk)) :
Hencexk+1 = xk+ pk wherepk is found by solving the system of equations(I +δtGk)pk =�δtgk: (2.10)

Even whenGk is non-positive definite, (2.10) gives a steppk which decreasesF,
so long asδt is sufficiently small.

We can also consider calculatingxk+1 by a second-order method which combines
(2.9) and (2.10) in a mixed explicit/implicit Euler step so that

xk+1 = xk� δt
2
[ gk+(I +δtGk)�1gk ℄: (2.11)

This can be written as

xk+1 = 1
2
(xE

k+1+xI
k+1)

wherexE
k+1 comes from (2.9) andxI

k+1 comes from (2.10).

Equation (2.10) gives a step similar to that of thetrust region methodswhich use(µI+Gk)pk =�gk (2.12)

whereµ in (2.12) is effectively the reciprocal of the step lengthδt in (2.10). Equa-
tion (2.10) gives the Newton step asδt ! ∞ while (2.12) gives the Newton step
whenµ= 0. Also equation (2.10) makespk parallel to�gk whenδt = 0 while
(2.12) makespk tend to a steepest descent step asµ! ∞. For a major survey of
trust region methods see [2].
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WhenGk is non-positive definite we can trace out a path away fromx0 by using a
sequence ofµvalues in (2.12). These must be chosen in a range∞> µ> µmin> 0,
whereµmin =�dmin, the most negative eigenvalue ofGk.

When solving (2.12) for several different values ofµ, we can either use a fresh
Cholesky factorisation of the coefficient matrix for eachµ or determine the eigen-
system ofGk via the orthogonal factorisationG=RDRT . In the second case, since
RRT = I , the system (2.12) can be written

R(µI+D)RT pk =�gk

and to solve for each value ofµ we may use

ĝk = RTgk; p̂k;i = ĝk;i
µ+dii

; i = 1; :::;n; pk =�Rp̂k: (2.13)

This calculation can be regarded as being comparable with those used in the
Behrman correction [3] given by (2.6), (2.7).

For a single solution of (2.12), the eigenvalue calculationis more expensive than a
Cholesky factorisation. But if many values ofµare tried then subsequent solutions
via (2.13) may be cheaper than re-factorisation. Thereforethe practical merit of
usingRDRT factors in the CSDP method depends on how far and how accurately
we want to pursue a curved path solution of (2.4).

We consider first the case whenGk is non positive definite (The Newton step with
µ= 0 in (2.12) is not appropriate because it is likely to lead towards a maximum or
saddle point). Hence we try a sequence of values forµ> µmin whereµmin = jdppj,
anddpp is the most negative element inD.

To trace out an approximate CSDP fromxk we must first select a suitably large
initial value of µ, – i.e. one which gives a quite small step in a near steepest
descent direction. We continue to use trials of decreasingµ values towardsµmin

so long as (2.12) yields a an improved pointxk+ pk which isclose enoughto the
CSDP. Our intention is to make a significant progress along this path to reach an
acceptable new pointxk+ pk where the Hessian will be recomputed.

2.2 Searching along the curved path

Our aim is to determineµ in (2.12) to ensure thatp is downhill step which pro-
duces an acceptable reduction in the objective function. Wecan do this by imitat-
ing the Wolfe condition for a conventional line search (see [1] for instance). We
want µ to giveF(xk + pk) < F(xk) and also to ensure bothjF(xk + pk)�F(xk)j
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andjjpkjj are bounded away from zero by a multiple ofjjgkjj. This might be done
by comparing the actual change inF with a first or second-order prediction. If we
chooseµ and then compute the correspondingp we can evaluateF+ = F(x+ p),
g+ = g(x+ p) and consider the following test ratios.

D1 = F+�F
pTg

; D2 = jF+� (F + pTg+ 1
2 pTGp)jjpTg+ 1

2 pTGpj
D3 = (g+Gp)Tg+jjg+Gpjjjjg+jj :

D1 compares the actual change inF with a first order prediction. IfD1 � 1 this
suggests that the step is too short. On the other handD1 < 0 indicates the search
has gone past the one-dimensional minimum. IfF is quadratic thenD1 = 0:5 at
the one dimensional minimum alongp.

D2 compares the actual change inF with the quadratic predicted reduction and if
the difference is relatively small then it seems reasonableto continue to extrapo-
late along the CSDP (so long asD1 > 0).

D3 compares the actual gradient with the quadratic model gradient (in terms of
cosine of the angle between them). Thus it is reasonable to keep extrapolating if
D3 is close to 1 (again providedD1 > 0).

Once we have computed the test ratios then we shall find either
i) x+ p is acceptable as a stopping point for the iteration
ii) x+ p is acceptable but it is worth extrapolating further by decreasingµ
iii) x+ p is unacceptable and we must interpolate by increasingµ

2.3 Algorithm for searching along CSDP

We can now formalise the steps of an iteration which uses the ideas discussed
above. We consider first the case whenGk is not positive definite.

Outline CSDP Algorithm for nonconvex regions

Given the parametersα > 1, β < 1, γ < 1, Dmin
1 , Dmax

1 , Dmax
2 andDmax

3 .
1) Setµ= αµmin

2) Computep from (2.12) and hence getx+ p, F+, g+, D1 ,D2 ,D3.
3) If D1 < Dmin

1 setµ= µ+ γ(µ�µmin) (to interpolate) and go to (2)
4) If D1 > Dmax

1 andD2 < Dmax
2 andj1�D3j< Dmax

3
setµ= µ�β(µ�µmin) (to extrapolate) and go to (2)
5) Otherwisex+ p is acceptable and the iteration is compete.
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In the case whenGk is positive definite we could revert to the standard well-
known linesearch version of the Newton method. However, it is still possible to
use a curvilinear search in terms ofµ as previously described. The strategy is to
choose an initial value ofµ = 0 and then computep, x+ p andF = F(x+ p).
In the positive definite case, however, we simplify the search and only use the
test ratioD1. Thus,ifD1 is too close to 1, it may be reasonable to extrapolate by
decreasingµ below zero, and this is done by replacingµ by

µ µ� β(µ�µmin): (2.14)

If D1 is too small or negative thenx+ p is unacceptable andµ is replaced by

µ µ+ γ(µ�µmin): (2.15)

The curvilinear search algorithm sketched above can be combined with several
different ways of calculatingpk. If we use (2.13) then the resulting algorithm
will be referred to asNIMP1. The algorithm using Behrman’s calculation ofpk

from (2.6), (2.7) will be calledUMINH as in [3] (although we emphasise that the
curvilinear search in our implementation is not the same as in Behrman’s). Finally,
if pk is obtained from (2.11) we call the algorithmNIMP2. In practice, the step
calculation inNIMP2 is done by first obtainingpk from (2.12) then setting ˜p= pk

and finally defining a newpk as

pk = 1
2
(�gk+ p̃):

3 Numerical results for test problem T1

As a simple test example we consider the functionT1 given by

F(x1;x2) = x1x2+(x2
1+2x2

2�10)2=100

with the initial conditionx0 = (2:05;1:6)T. We look at CSDP solutions using the
following values for parameters in the algorithm of section2.3:

α = 2; β = 0:5; γ = 0:25; Dmin
1 = 0:1; Dmax

1 = 0:6;
Dmax

2 = 0:1 and Dmax
3 = 0:5

The results in Table 1 were obtained usingMATLAB implementations ofNIMP1,
NIMP2 andUMINH along with the trust region method implemented asfminun
in theMATLAB optimization toolbox [11]. We denote this byTR.
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The method infminun is described in [12], [13] and it is comparable withNIMP1
in that it uses the exact Hessian of the objective function and works with a trust-
region subproblem on every iteration. The approach differsfrom NIMP1 how-
ever in not obtaining an exact solution to the trust-region subproblem but rather
by restricting itself to a two-dimensional subspace. This subspace is defined by
the negative gradient�gk together witheitheran approximate Newton direction,
n��G�1

k gk or a direction of negative curvature,s, such thatsTGks< 0. Obtain-
ing the Newton direction or a direction of negative curvature could involve the
solution of (2.12) withµ= 0 or the calculation of the eigensystem ofGk. How-
ever the method infminun seeks to avoid doing as much work asNIMP1 on each
iteration and hence it findsn or s, by applying a preconditioned conjugate gradi-
ent (PCG) method (see [14]) to the systemGkn = �gk. When the search is far
from the optimum thePCGmethod may be terminated with quite a low-accuracy
approximation to the Newton direction; and, in particular,if Gk is found to be non
positive-definite thePCGmethod returns a direction of negative curvature, rather
than an approximation to the Newton direction.

Method No of Its No of fcn calls
NIMP1 7 12
NIMP2 6 20
UMINH 13 49

TR 8 9

Table 1: Results for the functionx1x2+(x2
1+2x2

2�10)2=100

We can observe thatNIMP1 and NIMP2 need fewer iterations thanTR and –
perhaps more significantly – they appear to be considerably more efficient than
UMINH . We also note of course that the CSDP methods use more function eval-
uations than the trust-region approach. This is plainly dueto step size used in
tracing out the CSDP – and this, in turn, depends on the rules for adjustingµ.
We can surmise that a smaller value ofα in step (1) of the outline algorithm or a
larger value ofβ in (2.14) would have given the same solution in fewer function
calls. The important point to be drawn from this first exampleis that the use of
curvilinear searches can reduce the number of iterationsand hence also reduce
the associated cost of computing second derivatives.

Clearly the results in Table 1 correspond to a single set of parameter values in
the outline CSDP algorithm. We shall consider the variationof some of these
parameters on a wider selection of problems in the next section.

The CSDP convergence paths forNIMP1, NIMP2andUMINH as shown in Figures
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2 - 4. The circled points mark the starts and ends of iterations and the dots indicate
points obtained with different values ofµ in (2.12) or (2.6),(2.7). It is clear from
the figures that the solution by all the three CSDP methods follows a different
curvilinear path through the non-convex region.

 Iterations of nimp1

−4 −3 −2 −1 0 1 2 3 4 5

−4
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2

3

4
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Figure 2: The solution path forNIMP1 on problem T1.

 Iterations of nimp2

−4 −3 −2 −1 0 1 2 3 4 5
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−3
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0

1

2

3

4

5

Figure 3: The solution path forNIMP2 on problem T1.
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 Iterations of behrman
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Figure 4: The solution path forUMINH on problem T1.

4 Further algorithmic investigation

Results for problem T1 suggest that the CSDP techniques usedhere are worth fur-
ther investigation. The algorithm stated in section 2.3 involves several parameters
and in this section we shall consider how performance can be affected by different
choices of two of them.

4.1 Varying the parameter Dmax
3

We can consider varying the threshold on the accuracy parameter D3 which con-
trols how far the search is pursued along the approximate CSDP. Figures 5 – 7
relate to problemT1 and show how theNIMP1 path varies asDmax

3 changes. Fig-
ure 5 shows that, in some sense, the testj1�D3j < 0:5 lets the first iteration go
”too far” and obtains a pointx1 lying some way off a direct route to the minimum.
On the other hand, insisting thatj1�D3j < 0:05 or j1�D3j < 0:01 (Figures 6
and 7) may not let the first search go far enough, leaving the second iteration with
some work still to do to escape from the non-convex region. Infact, if we count
the dots, we find that the Figure 5 represents the solution using the fewest function
evaluations.
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 Iterations of nimp1
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Figure 5: The solution path forNIMP1 on problemT1 usingDmax
3 = 0:5.

 Iterations of nimp1
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Figure 6: The solution path forNIMP1 on problemT1 usingDmax
3 = 0:05

4.2 Choosing an initial µ for each iteration

We look now atα which is involved in determining an initial value ofµ on each
iteration. As in the trust region methods we could relate this to an estimate of the
size of the steppk. Supposeδk = jjxk�xk�1jj2 is the size of the step taken to reach
the current pointxk (δ0 must be set arbitrarily). Because of the orthogonality of

13



 Iterations of nimp1

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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Figure 7: The solution path forNIMP1 on problemT1 usingDmax
3 = 0:01

the matrixR used in the calculation scheme (2.13) forNIMP1, we deduce thatjjpkjj � 1
µ+λmin

jjgjj2;
and in order to givejjpkjj2 < δk, we require

1
µ+λmin

� δkjjgjj2 and soµ� jjgjj2
δk
�λmin:

Since we must haveµ> µmin, an initialµ on an iteration can therefore be obtained
from the safeguarded formula

µ= Max

�
αµmin; jjgjj2δk

�λmin

� : (4.1)

for someα > 1. Some results with this safeguarded formulae are given in Table
2. The first rows of the table show what happens when the CSDP methods are
applied to problem T1 with fixed values ofα while the last row uses the formula
(4.1) withα = 2. The other parameter values are

δ0 = 1; β = 0:5; γ = 0:25; Dmin
1 = 0:1; Dmax

1 = 0:6
Dmax

2 = 0:1 and Dmax
3 = 0:5

It is clear that varyingα has an appreciable effect on the numbers of function
evaluations and, to a lesser extent, on the numbers of iterations. It is clear that we
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α = NIMP1 NIMP2 UMINH
Its/Fcs Its/Fcs Its/Fcs

1.5 7/10 5/13 15/53
2 7/12 7/19 13/49
3 7/14 7/21 16/55
4 7/16 5/18 15/50
5 7/16 7/23 16/55
10 7/18 6/23 18/54
15 5/18 6/24 17/67
20 6/20 6/25 18/58
30 6/21 6/26 17/72
50 7/24 5/26 18/62
100 7/25 5/28 17/64
200 7/27 5/30 17/68
1000 6/31 7/39 18/78

(4.1)α = 2 6/13 6/18 18/47

Table 2: Results using different values ofα in CSDP applied to problem T1

cannot useα = 1 since this would make (2.12) a singular system. However it is
interesting that we can takeα fairly close to 1 without encountering difficulties.
On the other hand, large values ofα may reduce the number of iterations but also
imply that more steps are taken along the curved path at each iteration, giving
a corresponding increase in function calls. The automatic choice (4.1) seems to
yield a good compromise.

5 Further numerical results

We now consider the performance of CSDP methods on a wider range of prob-
lems. These have been specially chosen to test the features of the CSDP method
and hence they involve functions with large non-convex regions – and sometimes
saddle-points – which are quite close to local minima. The problems are:

T1: F = x1x2+0:01(x2
1+2x2

2�10)2. Starting pointx0 = (2:05;1:6)T

T1r: F =�(1+φ(x1;x2))�1 where φ = x1x2+(x2
1+2x2

2�10)2=100.
Starting pointx0 = (2:05;1:6)T
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T1r2: F =�(1+φ(x1;x2))�2 where φ = x1x2+(x2
1+2x2

2�10)2=100.
Starting pointx0 = (2:05;1:6)T

T1a: F(x1;x2) = x1x2+0:01 maxf0;(x2
1+2x2

2�10)g2.
Starting pointx0 = (2:05;1:6)T

T1b: F(x1;x2) = x1x2+0:01 maxf0;(x2
1+2x2

2�10)g2.
Starting pointx0 = (0:26;0:16)T

T1ar: F(x1;x2) =�(1+φ(x1;x2))�1

whereφ(x1;x2) = x1x2+0:01 maxf0;(x2
1+2x2

2�10)g2.
Starting pointx0 = (0:26;0:16)T

T2: F(x1;x2) = x1x2+0:001(x2
1+2x2

2�10)4. Starting pointx0 = (2:5;1:6)T

T2r: F(x1;x2) =�(1+φ(x1;x2))�1

where φ(x1;x2) = x1x2+0:001(x2
1+2x2

2�10)4.
Starting pointx0 = (2:5;1:6)T

T3: F(x1;x2;x3) = x1x2x3+0:01(x2
1+2x2

2+3x2
3�10)2.

Starting pointx0 = (0:4;0:3;0:2)T

T4(n): F = (1+xTQx)�1

whereQ= H +0:01I whereH is then�n Hilbert matrix.
Starting pointx0 = (3;3; :::;3)T

T4r(n): F = �(1+ φ(x))�1 where φ(x) = (1+ xTQx)�1 andQ = H + 0:01I
whereH is the (n�n) Hilbert matrix.
Starting pointx0 = (3;3; :::;3)T

T5: F(x1;x2) = x3
1+(x2

1+2x2
2�10)2. Starting pointx0 = (�1;0:1)T

T5a: F(x1;x2) = x3
1+(x2

1+5x2
2�10)2. Starting pointx0 = (�1;0:1)T

The functions of the formF(x) = �1=1+φ(x))�1 are suggested by the shape of
the famous Runge function used to demonstrate the inadequacies of polynomial
interpolation. F(x) will have a local minimum at the same point asφ(x), but
as x moves away from this minimum the function can be expected to become
non-convex and to flatten out. Figure 8 illustrates this behaviour by showing the
surface corresponding to problem T4(2). If an optimizationsearch is started in a
flattened non-convex region of the kind shown in Figure 8 thena significant test of
the CSDP approach will be to consider how effectively it is able to make progress
towards the convex area the minimum.
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Figure 8: Surface plot for Problem T4

In Tables 3 and 4 we summarise some results for the test problems using the
parameter values

δ0 = 1, β = 0:5, γ = 0:25,Dmin
1 = 0:1, Dmax

1 = 0:6, Dmax
2 = 0:1 andDmax

3 = 0:5.

(It is worth noting, in view of the comments in section 4.1, that the results were
very little changed whenDmax

3 was set to 0.25.) The second column of Tables 3
and 4 shows the value ofα used to choose an initialµ= αµmin on each iteration.
The symbol ’a’ denotes the use of formula (4.1) withα = 2. The tables also show
the numbers of iterations and function calls needed by the truncated-Newton/trust-
region method from theMATLAB optimization toolbox. For each problem in
these tables we highlight in bold the entry which gives best performance measured
primarily in terms of numbers of iterations. Whenever the entry which represents
the best performance in terms of function evaluations is different from the one
marked in bold we distinguish it by italics. Finally, to reflect the fact that we
are usually interested in both these measures, we underlinethe entry which gives
the smallest sum of iterations and function calls. (We recognize, of course, that
these are rather unsophisticated ways of assessing performance which overlook
the overhead algorithmic costs in computing search directions etc.)

The results in Tables 3 show thatNIMP1 consistently does better thanNIMP2 and
UMINH . In particular, it seems thatUMINH is rarely competitive.NIMP1 also
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usually outperformsTR in terms of iteration count – appreciably so on problems
T1b and T3. The choice ofα does not greatly affect the numbers of iterations
needed by the CSDP methods. All these remarks are fairly consistent with what
was observed on problem T1.

The results in Table 4 show some features different from those in Table 3. For
instance, on the various instances of problem T4, the CSDP methods are all much
more sensitive to the choice ofα. Interestingly,UMINH appears to do better on
these problems than on the others in the test set, sometimes needing fewer itera-
tions than eitherNIMP1 or NIMP2. Even then, however, the number of function
evaluations is usually higher. We may also note thatNIMP2 andUMINH behave
in a rather similar way on theT4 problems while on all the other examples the
performance ofNIMP2 is more like that ofNIMP1. NIMP1 is also less competitive
with TR on the T4 and T4r problems.

It is significant to note that the pilot version ofNIMP1 often appears quite com-
petitive with the trust-region routineTR. In the next section we consider some
refinements to the CSDP algorithms which can be expected to improve their per-
formance.

6 Discussion and Conclusions

We have been considering two methods (NIMP1 and NIMP2) derived from the
implicit Euler method to estimate the CSDP through a non-convex region. Many
CSDP algorithms have already been proposed (see [3] – [10]) but we believe our
work differs in the way we useµ as a curvilinear search parameter and in the use
of a 2nd order estimate of the CSDP step inNIMP2.

In calculating correction steps in bothNIMP1 andNIMP2 we have to solve(µI+G)p=�g (6.1)

for a range of values forµ. We have chosen to do these repeated solutions via a
once-and-for-all calculation of the eigenvalues ofG by anRDRT decomposition.
This approach is similar to that employed by another CSDP method calledUMINH
which is due to Behrman [3] and is based on the exact solution of (2.4), also
making use of the eigenvalues and eigenvectors ofG. To justify the cost of such an
expensive matrix decomposition on each iteration we want tomake good progress
along the resulting curved pathp(µ). Hence the main purpose of this paper has
been to explore ways of choosing steps alongp(µ) which keep sufficiently close
to CSDP while giving an acceptable decrease in the objectivefunction.
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Fctns Methods NIMP1 NIMP2 UMINH TR
α = Its/Fcs Its/Fcs Its/Fcs Its/Fcs

T1 2 7/12 7/19 13/49
100 7/25 5/28 17/64 8/9
a 6/13 6/18 18/47

T1r 2 8/14 8/35 15/42
100 8/33 7/44 9/10 11/28
a 7/15 8/22 16/45

T1r2 2 9/13 7/19 16/43
100 7/37 8/48 14/72 9/10
a 9/18 8/23 17/46

T1a 2 5/10 5/15 15/38
100 5/18 5/23 12/51 9/10
a 5/11 4/14 17/45

T1b 2 5/12 5/17 19/58
100 5/12 5/25 17/82 9/10
a 5/12 5/17 19/58

T1ar 2 6/14 7/25 17/68
100 7/33 8/47 17/87 9/10
a 6/14 7/24 16/50

T2 2 9/11 8/18 18/46
100 8/23 9/40 19/63 9/10
a 8/14 9/21 19/41

T2r 2 8/13 8/29 15/45
100 6/23 7/33 14/57 9/10
a 6/10 8/24 15/38

T3 2 7/20 7/36 23/78
100 7/33 6/39 21/106 14/15
a 7/20 7/28 21/66

Table 3: Results fromNIMP1,NIMP2,UMINH andTR.

There is scope further work on the details of algorithms which approximate CSDP;
but preliminary results with our prototype implementations are rather encourag-
ing. NIMP1 – and to a lesser extentNIMP2 – appear to outperformUMINH com-
fortably. Moreover they also seem to do better (on some problems) than a trust
region approach. This applies particularly to the numbers of iterations used rather
than the numbers of functions evaluations. This last remarkunderlines the need
for further work on the curvilinear search.
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Fctns Methods NIMP1 NIMP2 UMINH TR
α = Its/Fcs Its/Fcs Its/Fcs Its/Fcs

T4 2 2 5/6 7/29 12/47
100 41/70 16/82 19/83 8/9
a 7/8 9/21 15/39

T4 4 2 15/38 9/60 12/90
100 53/90 18/99 19/107 22/23
a 23/25 12/35 14/46

T4 10 2 33/51 10/56 13/60
100 44/94 22/105 24/121 12/13
a 33/34 15/30 18/36

T4 20 2 34/54 13/81 13/83
100 54/116 25/125 28/143 12/13
a 14/16 20/52 22/70

T4 50 2 34/65 13/87 16/101
100 39/114 30/145 32/147 15/16
a 21/23 26/65 28/79

T4 100 2 45/83 15/101 9/42
100 47/132 32/155 36/176 17/18
a 16/19 29/83 32/105

T4r 20 2 34/40 11/66 11/88
100 55/120 26/136 26/135 12/13
a 14/16 15/31 19/40

T5 2 8/12 9/23 19/45
100 8/32 9/48 20/73 9/10
a 8/14 9/28 19/46

T5a 2 12/16 10/33 22/56
100 16/83 11/58 22/85 18/19
a 9/16 9/24 22/61

Table 4: Further results fromNIMP1,NIMP2,UMINH andTR.

Perhaps the most important issue for the development ofNIMP1 andNIMP2 is the
choice and adjustment of the parameterµ in (6.1) which controls progress along
the approximate CSDP. The automatic method (4.1) for choosing the initialµ for
each iteration is quite closely related to the step calculation in NIMP1. This may
partly explain whyNIMP1 has proved to be the best of the CSDP methods in the
numerical tests we have reported; and it may be possible to devise alternatives
to (4.1) which are more appropriate forNIMP2 andUMINH and which can bring
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about improvements in their performance.

As regards the adjustment ofµ, the versions ofNIMP1, NIMP2 andUMINH de-
scribed in this paper have all used rather simple expansion/contraction rules (2.15),
2.14). It is, however, easy to imagine a more flexible strategy which would, for
instance, allowµ to decrease more whenD1� 1 than whenD1� Dmax

1 .

Of possibly lesser importance, but still worth further investigation, are choices
of thresholdsDmin

1 ;Dmax
1 ;Dmax

2 ;Dmax
3 . We have given some consideration to the

choice ofDmax
3 and have noted that the performance shown in Tables 3 and 4 does

not seem to be much affected whenDmax
3 is decreased from 0.5 to 0.75. We have

also shown in section 4.1, however, that setting the more demanding requirements
with Dmax

3 < 0:1 may result in premature termination of the the curvilinearsearch.
In other words the choice ofDmax

3 is of some significance but, within a reasonable
range, it does not appear to be critical We would expect similar remarks to be true
for the other parameters.

One further research question for the implementation ofNIMP1 andNIMP2 relates
to the repeated solution of the system (6.1) for different values forµ. Instead of
using theRDRT factors ofG in the calculation scheme (2.13) we could simply per-
form a freshLLT factorization for each value ofµ. The eigenvalue decomposition
is expensive and may well require more computing effort thanseveral Cholesky
solutions. Such a change in the method of calculatingp(µ) will, of course, not
change the counts of iterations and function evaluations shown in the comparison
tables: but it may well have an appreciable effect on the run-times for solving
larger problems.

As a final remark, it is worth pointing out that it one could explore quasi-Newton
variants ofNIMP1 andNIMP2 in which the exact Hessian is replaced by an updated
approximation which is not forced to be positive definite.
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