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Abstract

This is a contribution to the formalization of the concept of
agents in multivariate Markov chains. Agents are commonly
defined as entities that act, perceive, and are goal-directed. In
a multivariate Markov chain (e.g. a cellular automaton) the
transition matrix completely determines the dynamics. This
seems to contradict the possibility of acting entities within
such a system. Here we present definitions of actions and per-
ceptions within multivariate Markov chains based on entity-
sets. Entity-sets represent a largely independent choice of a
set of spatiotemporal patterns that are considered as all the
entities within the Markov chain. For example, the entity-
set can be chosen according to operational closure conditions
or complete specific integration. Importantly, the perception-
action loop also induces an entity-set and is a multivariate
Markov chain. We then show that our definition of actions
leads to non-heteronomy and that of perceptions specialize to
the usual concept of perception in the perception-action loop.

1 Introduction
The perception-action loop (PA-loop) has been used to for-
malize, in mostly information theoretic terms, various prop-
erties associated to agents. These include empowerment
Klyubin et al. (2005), autonomy (Bertschinger et al., 2008),
decisions (Tishby and Polani, 2011), and embodiment (Za-
hedi and Ay, 2013).

In the literature agents are usually seen as entities that act,
perceive, and are in some way goal-directed (cmp. Barandi-
aran et al., 2009).

The PA-loop assumes that the entities that make up agents
as well as their environments can be captured by interacting
stochastic processes. This is a convenient assumption since
actions and perceptions can then be easily identified with
the interactions (see Section 3). Further requirements (e.g.
autonomy) can then be introduced to distinguish stochastic
processes that actually constitute agents.

It has not been formally established whether the assump-
tion that the set of entities that contains agents can be repre-
sented by stochastic processes is justified. We have argued
in previous work, that (naively) using stochastic processes
to capture entities within a given multivariate Markov chain
(for example cellular automata like the Game of Life) fails

to account for essential proporties of agents irrespective of
chosen additional conditions. Instead, we have argued for
the use of spatiotemporal patterns (STPs, previously em-
ployed by Beer, 2014b,a) to represent entities. The imme-
diate advantage is that STPs are a superset of structures like
gliders in the game of life, spots in reaction diffusion sys-
tems (Virgo, 2011; Froese et al., 2014; Bartlett and Bullock,
2015), and particle based systems exhibiting individuation
into multi-particle “cells” (Schmickl et al., 2016). Formally
capturing these structures then becomes a matter of selecting
the according subsets of STPs i.e. the entity-sets (see below).

A disadvantage of the STP based entities is that they lack
the formal construction/interpretation of actions and percep-
tions that the PA-loop provides. As far as we know, no
formal definitions of actions and perception exists for STP
based entities. The first contribution of this paper are pro-
posals of such formal definitions called entity action (Sec-
tion 4) and entity perception (Section 5).

The second contribution is a formal connection between
the PA-loop and our STP-based entity actions and percep-
tions (Section 6). This connection is achieved via the no-
tion of entity-sets. This is just the set of those STPs in a
multivariate Markov chain that are considered as entities ac-
cording to an independently specified criterion (e.g. organi-
zational closure (Beer, 2014a) or complete local integration
(Biehl et al., 2017, 2016)). Importantly, we can quite natu-
rally identify an entity-set for the PA-loop and use our defini-
tions of entity action and entity perception for this entity-set.
The result is that our entity perception coincides with the
standard notion of perceptions in the PA-loop and that en-
tity actions are a necessary and sufficient condition for non-
heteronomy. Non-heteronomy (i.e. not being determined by
the environment) was proposed in Bertschinger et al. (2008)
as part of an information theoretic measure of autonomy.

The most closely related work is that of Beer (2014b).
Apart from a generalization to stochastic systems our set of
entity perceptions seems to be a straightforward (but sur-
prisingingly tedious) formalization of the cognitive domain
of STPs described for the glider in game of life. We use
“perceptions” instead of “cognitive domain” only because
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our motivation came more from the PA-loop and unlike Beer
(2014b) not directly from autopoiesis. Concerning the en-
tity actions we deviate from Beer (2014b) by requiring more
from an action than just the continuation of the entity.

We note that Ikegami and Taiji (1998) propose to use pos-
sible/compatible counterfactual trajectories of game players
as signs of autonomy. We construct the capability to act
from the counterfactual trajectories and find that they imply
non-heteronomy which is a related to autonomy.

2 Notation
We restrict ourselves to finite, time-discrete, multivariate
Markov chains. These are unrolled in time and can then be
formally described as Bayesian networks (BNs). We index
the random variables in the BN via the index set V = J ×T
where T is the set of all timesteps and J is the set of (spa-
tial) degrees of freedom. If i ∈ V is an index we also write
i = (j, t) ∈ J × T where convenient. The BN is then
a set {Xi}i∈V of random variables together with a set of
edges determining the parents pa(i) = pa(j, t) of each node
i ∈ V , and associated mechanisms p(j,t)(xj,t|xpa(j,t)). We
assume that the parents of any node are a subset of the nodes
at the previous timestep pa(j, t) ⊆ (J, t) := {(j, t)|j ∈ J}.
We write XA := (Xi)i∈A for the joint random variable con-
sisting of random variables indexed by elements of A ⊆ V .
We also sometimes write At := {(j, t)|j ∈ A} for the el-
ements in A that correspond to indices at timestep t. We
refer to At as the time-slice of A at t. The state space of
random variable Xi is denoted as Xi and the specific val-
ues are denoted by lower case letters xi, yi, x̂i, ... ∈ Xi.
For joint random variables we write XA :=

∏
i∈A Xi and

xA, yA, x̂A, ... ∈ XA.
A spatiotemporal pattern (STP) is a value xA ∈ XA of

a joint random variable XA with A ⊆ V . Since A ⊆ V
is an arbitrary subset of V a STP can specify the values
of random variables at multiple timesteps and multiple spa-
tial locations. The set of all STPs is:

⋃
A⊆V XA = {xA ∈

XA|A ⊆ V } . It is important to envision the difference be-
tween the set of all STPs and the set of all subsets of random
variables of {Xi}i∈V . The latter is isomorphic to the power
set of V and can be written as

⋃
A⊆V {XA} = {XA|A ⊆ V }

and is a set of random variables not a set of values of random
variables.

A trajectory is a STP xV that occupies all random vari-
ables in the BN {Xi}i∈V . We then say that a STP yA ∈ XA
occurs within trajectory xV if yA = xA.

An entity-set E({Xi}i∈V ) is a subset of all STPs. One
choice would be to use the entire set of STPs as the entity
set. Other choices include using organizational closure con-
ditions like in Beer (2014b) or the complete specific inte-
gration criterion (Biehl et al., 2016, 2017). The following
definitions and theorems all assume that {Xi}i∈V is a mul-
tivariate Markov chain with V = J × T and E is a given
entity-set.

E0 E1 E2

M0 M1 M2

Figure 1: First timesteps of the PA-loop BN. The processes repre-
sent environment {Et}t∈T , and agent memory {Mt}t∈T .

3 Perception-action loop
Given two interacting stochastic processes (e.g. Fig. 1) we
can always extract random stochastic process that explicitly
represent the interactions. If we see one of the processes as
the agent’s memory process {Mt}t∈T and the other as the
environment process {Et}t∈T then these extracted random
variables can be seen as the perceptions and actions of the
agent. Perceptions {St}t∈T then capture exactly all the in-
fluence of the environment on the agent and actions {At}t∈T
capture the influence of the agent on the environment.

This means we introduce another BN containing two
more processes, the action process {At}t∈T and the sen-
sor process {St}t∈T . The result of this extraction is an ex-
tended BN (Fig. 2) with identical joint probability distribu-
tion over the two initial stochastic processes {Mt}t∈T and
{Et}t∈T . This perception action loop is used for example in
Bertschinger et al. (2008).

The idea behind the extraction of perceptions {St}t∈T
(and conversely actions {At}t∈T ) is to partition the state
space Et of the environment at t into blocks having identical
influence on the next memory state Mt+1. These blocks are
then the possible perceptions i.e. the states of St. Formally:

Definition 1. For each time t ∈ T and êt, ēt ∈ Et let

êt ≡εt ēt
⇔ ∀mt+1 ∈Mt+1,mt ∈Mt :

pMt+1(mt+1|mt, êt) = pMt+1(mt+1|mt, ēt).

(1)

Then:
(i) The sensor partition1 εt is then defined as the set of equiv-

alence classes of the equivalence relation ≡εt .
(ii) The set of sensor values is defined as St := εt and an

element st ∈ St (which is also a block in εt is called a
perception of a sensor value.

In the symmetrical way we define actions via a partition
ofMt and arrive at the extended PA-loop of Fig. 2. It is then
straightforward to prove the following theorem:

1The construction of the sensor partition is not new. It is also
used for example in Balduzzi (2011) to obtain coarser states (alpha-
bet) of joint random variables. The authors thank Benjamin Heuer
for originally pointing them to this construction.
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Figure 2: First time-steps of the BN of the extended PA-loop. The
processes {At}t∈T and {St}t∈T mediate all interactions between
{Mt}t∈T and {Et}t∈T without changing the probability distribu-
tions over the latter (see Theorem 1).

Theorem 1 (Invariant extension theorem). Given a per-
ception action loop {Xi}i∈V = {Mt, Et}t∈T and its ex-
tended PA-loop {Xi}i∈W = {Mt, At, St, Et}t∈N+ . Let
pV = pMT ,ET

be the probability distribution over the en-
tire perception action loop {Xi}i∈V and let pwMT ,ET

be the
marginal probability distribution over the memory and envi-
ronment process obtained from the probability distribution
pwW over the entire extended PA-loop. Then

pMT ,ET
= pwMT ,ET

. (2)

Proof. This is probably fairly well known but see Biehl
(2017) for an explicit proof.

This shows that the introduction of action and sensor pro-
cess in the above way only makes the interactions between
agent and environment processes explicit and does not intro-
duce any additional dynamics. The theorem also shows that
the sensor process (and conversely the actions) captures all
influences from the environment on the agent. Else the dy-
namics of the original processes could not remain identical.
In Section 5 we want to capture all influences of the envi-
ronment on a set of STPs / entities instead of on a stochastic
process like {Mt}t∈T . This will require a generalization of
the perception extraction procedure in Definition 1.

4 Entity action
We now define a concept of actions for a given entity-set in a
multivariate Markov chain. First we briefly sketch the main
ideas behind the definition.

Due to our setting of a given multivariate Markov chain
that actions have to occur within our concept of actions dif-
fers from other approaches. Paraphrasing Wilson and Sh-
pall (2012) only slightly, what distinguishes actions among
events is that they do not merely happen to individuals but
rather that they are made to happen by the individuals.

This is problematic in our setting where STPs (as entities)
take the role of individuals. What “happens” in a multivari-
ate Markov chain are the trajectories and the STPs occurring

within them. The Markov chain’s dynamics are determined
by its mechanisms pj,t with j ∈ J, t ∈ T . These in turn
determine (possibly stochastically) what is going to happen
at all times anywhere within the chain.

Therefore, it is impossible that a multivariate Markov
chain contains an STP or entity that can make something
happen beyond what happens anyway due to the mecha-
nisms. This means we have to explain and define actions
in a different way.

We should also note that unlike other accounts of actions
(Wilson and Shpall, 2012) we do not require actions to be
necessarily purposeful or goal-directed in any way. The way
we conceive agency an entity with actions will be considered
goal-directed if its actions are goal-directed in some sense.

To get to our own definition of actions we note that events
called actions are usually attributed to a limited or bounded
region or part of the universe e.g. the body of a living or-
ganism or sometimes just its brain if it has one. These
parts usually contain mechanisms or configurations of mat-
ter that are either a) not directly observable to a human ob-
server e.g. hidden in an opaque container, or b) not well
understood by the human observer, or c) both. These fac-
tors inevitably lead to unpredictability of such events. In
other words, events that are attributed to well understood
and therefore predictable mechanisms, e.g. sunrises, are not
considered actions.

From this point of view actions are not, beyond their pos-
sibly complex and unobserved origin, special events but may
appear as special to observers that lack the sensory and com-
putational capacity to resolve or understand them. In our ap-
proach we construct actions as events in such a way that they
are fundamentally unpredictable by any observer within the
system. As we will see this can be done without the need for
a definition of an observer.

Note that this approach remains compatible with
observer-dependent notions of apparent or as-if actions
(cmp. McGregor, 2017). The “fundamental” actions are ap-
parent actions for every possible observer while other events
are actions for some observers and plain, predictable events
for others.

Up to now we have ignored randomness. True random-
ness (in the sense of stochastic independence of the event
from any other event in the universe), if it exists in a sys-
tem, can never be explained, predicted, or understood. Com-
bined with our reasoning above this suggests that all random
events are actions and fundamentally so.

This is against our intuition, random events should not be
seen as actions of agents. However, we place the burden of
ruling out random events from being interpreted as actions of
agents on the entity-set and/or goal-directedness. We expect
useful notions of entities not to consist of (completely) in-
dependent events which would prevent such events from be-
coming actions in our approach. Furthermore independent
events seem not to be useful in order to achieve a particular
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goal. However, the usefulness of random number generators
might be seen as a counterexample. As of now we have no
formal definition of goal-directedness such that answering
these questions is future work.

When we want to define actions for entities the first issue
we run into is that entities are already fixed STPs.

Therefore each entity xA ∈ E already consists of the con-
sequences of whatever actions (if any) it took. It is in this
sense the result of its own actions. There is no freedom left.
In order to investigate the actions we therefore have to de-
construct the entity and see what other actions it could have
taken time-slice by time-slice. For this we look for counter-
factual entities yB whose time-slice at t can occur in exactly
the same environment xVt\At

and has a different immediate
future. Requiring the co-occurrence with the same environ-
ment makes the different futures unpredictable for anything
part of that environment. No observer can therefore predict
these futures either. Even an observer that distinguished the
two entities in the past is in the same state at t independent
of the entity it is faced with. Therefore it must have forgot-
ten their difference. In this way we get a definition of actions
as unpredictable events for observers without needing to for-
mally define observers.

For the formal definition we first define:

Definition 2 (Environment of an STP). Let xA be a STP.
Then the environment of xA at time t is the spatial pattern
xVt\At

.

We now state the definition of an action of an entity at a
time t in a particular trajectory formally.

Definition 3 (Action and co-action of an entity). Let xV ∈
XV with pV (xV ) > 0. Also let xA be an entity with non-
empty time-slices at t, t + 1. Then xA performs an action
xAt+1

at time t in trajectory xV if there exists an entity yB
with non-empty time-slices at t, t+ 1 such that

(i) yB occurs in yV 6= xV with pV (yV ) > 0,
(ii) at t the entities xA and yB occupy the same random vari-

ables: Bt = At,
(iii) at t the trajectories xV and yV are otherwise identical:

xVt\At
= yVt\At

,
(iv) at t+ 1 the entities are different: xAt+1

6= yBt+1
.

We also call yB a co-action entity, yV a co-action trajectory,
and yBt+1

a co-action.

Note that all requirements are symmetric. Therefore, if
xA performs an action then its co-action also performs an
action. Also, the notion of co-action entities can easily be
extended to more than one co-action entity. We only have
to make sure that all entities in a set of co-action entities are
mutually different at t + 1. Furthermore, it is easy to gen-
eralise the definition of actions to situations where xA and
yB must occupy the same variables for an interval of time
[t −m : t] before the action. In that case, the environment
xV[t−m:t]

\A[t−m:t] must be identical during this interval.

Finally, note that the condition that the two acting entities
differ at time t + 1 can be fulfilled in two ways. If At+1 6=
Bt+1 then we call these actions extent actions. Else, if the
actions differ only in value i.e. we have At+1 = Bt+1 so
that xAt+1 6= yAt+1 then we call these actions value actions.

The difference between value actions and extent actions
is made possible due to our definition of entities as STPs.
An intriguing question for the future is whether the capa-
bilities of agents to act both in value and extent are truly
superior to agents that only act in value such as those mod-
elled by PA-loops. As we will see in Section 6 probabilistic
and information theoretic expressions are easy to formulate
for actions in value only. However, for actions in extent this
has not been done yet.

5 Entity perception
In this section we formally define perception for (STP-) en-
tities. We make no distinction here between perception,
experience, and sensory input. In the tradition of mod-
elling agent-environment systems using dynamical systems
or their probabilistic generalisations as stochastic processes
in PA-loops we define perception as all effects that the envi-
ronment has on an individual/agent (Beer, 1995).

We run into a similar problem as with the actions. An en-
tity is already a fixed STP that contains all influence that it
may have been subjected to. It is in this sense the result of
influence (or no influences) from its surroundings. In order
to investigate these influences we therefore have to decon-
struct the entity and see how it was “formed” by external
influences / perceptions time-slice by time-slice.

The idea is to fix the past of the entity up to t and use
the set of counterfactual entities with the same past as the
alternative futures. We can then partition the possible envi-
ronments of these counterfactual entities according to their
influence on the probability distribution over the entities’ fu-
tures. This is done in basically the same way as we defined
perception in the PA-loop in Definition 1. However, there
are some technical issues to overcome.

The set of entities with identical pasts up to time t can be
interpreted as the set of entities that are the most like xA up
to t. These are different entities but they only differ in the
future. Their futures (including their next time-slices) are
therefore a close analogue to the next states mt+1 of agent
memories in the PA-loop. To make sure however that the
entities have a next time-slice we also require that they have
non-empty next time-slice. These requirements together de-
fine the notion of the co-perception entities of an entity xA
at time t. These are entities that also perceive something
(maybe the same thing) at t (in their trajectories) if xA per-
ceives something at t.

Definition 4 (Co-perception entities of an entity at t). Let
xA ∈ E be an entity with non-empty time-slices at t and
t+1. The set of co-perception entities S(xA, t) of entity xA
at t is the set of entities with non-empty time-slices at t and
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t+ 1, and that are identical up to t:

S(xA, t) := {yB ∈ E : Bt, Bt+1 6= ∅, yB�t
= xA�t

}.
(3)

Next we want to define a conditional probability
distribution over these co-perception entities similar to
pMt+1(mt+1|et,mt). For this we need a random variable
that ranges over all the possible futures of the co-perception
entities. The naivest way to do this would be to use for
xkAk ∈ S(xA, t):

pS(xkAk
�t
|xVt\At

, xA�t
) :=

pAk,Vt\At
(xk
Ak
�t
, xVt\At

, xA�t
)

pVt\At,A�t
(xVt\At

, xA�t
)

.

(4)
However, this has two problems. The first is that in gen-
eral the denominator may vanish for some environments
xVt\At

∈ XVt\At
. The second is that it is not a condi-

tional probability since the sum over all co-perception in-
dices is not necessarily one. These problems can be solved
by restricting the set of environments and by introducing
a mutual-exclusivity condition on the futures of the co-
perception entities.

To restrict the environments we therefore define the co-
perception environments in the following way.

Definition 5 (Co-perception environments). Let xA ∈ E
be an entity with non-empty time-slices at t and t + 1 and
S(xA, t) its co-perception entities. Then define the associ-
ated co-perception environments XS

Vt\At
⊆ XVt\At

by

XS
Vt\At

:=

{x̄Vt\At
: ∃yB ∈ S(xA, t), pB,Vt\At

(yB , x̄Vt\At
) > 0}.

(5)

The co-perception environments of a co-perception set
S(xA, t) are then the spatial patterns XVt\At

at t that can
co-occur with at least one co-perception environment. By
definition of the co-perception environments the denomina-
tor of Eq. (4) cannot vanish anymore if we require that the
construction only allows co-perception environments. How-
ever, in order for the sum over all co-perception entities to
equal one (for all co-perception environments) we need to
have∑

k

pAk,XVt\At
(xkAk

�t
, xVt\At

, xA�t
)

= pVt\At,A�t
(xkAk

�t
, xVt\At

, xA�t
).

(6)

This is the case in general if for all xVt\At
∈ XS

VtbsAt
and

all co-perception entities’ futures are mutually exclusive, i.e.
for all xkAk 6= xlAl ∈ S(xA, t) we have

Pr(xkAk , x
l
Al , xVt\At

, xA�t
) = 0. (7)

This condition can be guaranteed if we require a form
of non-interpenetration. This condition on entity-sets states
that there cannot be two different entities which are identi-
cal up to some point in time t and then, in the same single
trajectory (with positive probability), at some point “reveal”
their difference. If entities with identical pasts ever reveal
their difference they must be in different trajectories i.e. they
must be mutually exclusive.

Definition 6 (Non-interpenetration). An entity-set
E ⊆

⋃
B⊆V XB satisfies non-interpenetration or is

non-interpenetrating if for all yB , zC ∈ E we have

∃t ∈ T : yB�t
= zC�t

and yBt≺ 6= zCt≺

⇒ Pr(XBt≺ = yBt≺ , XBt≺ = zCt≺ |yB�t
) = 0.

(8)

Non-interpenetration implies that co-perception entities
are mutually exclusive:

Theorem 2. Let xA ∈ E be an entity with non-empty time-
slices at t and t+ 1 and S(xA, t) its co-perception entities.
If E satisfies non-interpenetration then S(xA, t) is mutually
exclusive.

Proof. Let yB , zC ∈ S(xA, t) with yB 6= zC . Then they
have identical pasts and so we have yB�t

= zC�t
. From

non-interpenetration we then get

Pr(XB = yB , XC = zC) = 0. (9)

This is stronger than Eq. (7).

This means that under non-interpenetration Eq. (4) is a
well defined conditional probability distribution . However,
this conditional probability distribution is still quite differ-
ent from pMt+1(mt+1|et,mt) since it ranges over the entire
futures xk

Ak
�t

of the co-perception entities and not just next
timesteps.

At each transition from time-step t to t + 1 the co-
perception entities S(xA, t) split up into sets of entities that
are identical up to t+1 (we will call these sets the branches).
Only one of these sets is the set S(xA, t + 1). For example
an entity yB ∈ S(xA, t) with the same past up to t but with
a different time-slice at t + 1 i.e. yBt+1

6= xAt+1
is part of

a different branch. In that case this branch is S(yB , t + 1)
and we have S(yB , t+ 1)∩S(xA, t+ 1) = ∅. In summary
then the dynamics of the system split up the co-perception
entities of xA up to t into disjoint sets (the branches) of en-
tities with identical pasts up to t + 1. We can then interpret
the branches at the time t + 1 as the distinctions among the
co-perception entities that are revealed at time t + 1. Fur-
ther distinctions among the co-perception entities are only
revealed at later times. This also means that these are all
differences that could possibly be due to the influence of the
environment at t and that show their effect at t+1 (not later).
In this way the perceptions at t should also be defined with
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respect to these branches. We call the partition that is de-
fined via the identification of entities in S(xA, t) that are
identical up to t+ 1 the branching partition.

Definition 7 (Branching partition). Let xA ∈ E be an entity
with non-empty time-slices at t and t + 1 and S(xA, t) its
co-perception entities. Then define the branching partition
η(xA, t) of S(xA, t) as the partition induced by the equiva-
lence classes of the equivalence relation

yB ∼zC
⇔ yBt+1

= zCt+1
,

(10)

where yB , zC ∈ S(xA, t).

We note that the definition of the branching partition can
easily be generalised to more than one time-step into the fu-
ture. Instead of requiring equality at t + 1 we can require
equality for the next r time-steps.

Given the branching partition η(xA, t) for a non-
interpenetrating entity set we can then define a conditional
probability distribution over the branches by just summing
up the probabilities of all entities in each branch (remember
that they are all mutually exclusive) to get the probability of
a branch. This gives us the branch-morph defined below.2

Definition 8 (Branch-morph). Let {Xi}i∈V be a multivari-
ate Markov chain with index set V = J×T and entity set E.
Let xA ∈ E be an entity with non-empty time-slices at t and
t+1 and S(xA, t) its co-perception entities and η(xA, t) the
branching partition. Furthermore, let XS

Vt\At
⊆ XVt\At

be
the associated co-perception environments. Also write for
every block b ∈ η(xA, t):

p(b|x̂Vt\At
, xA�t

) :=
∑
yB∈b

pBt≺,Vt\At
(yBt≺ |x̂Vt\At

, xA�t
).

(11)
Then for each x̂Vt\At

∈ XS
Vt\At

we define the branch-
morph over η(xA, t) as the probability distribution
pη(xA,t)(.|x̂Vt\At

, xA�t
) : η(xA, t)→ [0, 1] with

pη(xA,t)(b|x̂Vt\At
, xA�t

) :=
p(b|x̂Vt\At

, xA�t
)∑

c∈η(xA,t)
p(c|x̂Vt\At

, xA�t
)
,

(12)
for all b ∈ η(xA, t).

With the branch-morph we can then define, as expected,
the perceptions as equivalence classes of the co-perception
environments with respect to the associated branch-morph.
First we define a partition of the co-perception environments
called the co-perception environment partition. The percep-
tions are then the blocks of this partition.

2We note here that for entity-sets that exhibit interpenetration
we can still define branch-morphs for mutually-exclusive subsets
of the co-perception entities. Since the choice of these subsets is
arbitrary however this does not lead to a uniquely defined notion of
perception. For more details see Biehl (2017).

Definition 9. Let {Xi}i∈V be a multivariate Markov chain
with index set V = J×T and entity set E. Let xA ∈ E be an
entity with non-empty time-slices at t and t+1 and S(xA, t)
its co-perception entities and η(xA, t) the branching parti-
tion. Furthermore, let XS

Vt\At
⊆ XVt\At

be the associated
co-perception environments. Then define the co-perception
environment partition πS(xA, t) of XS

Vt\At
as the partition

induced by the equivalence classes of the equivalence rela-
tion

x̂Vt\At
∼ x̄Vt\At

⇔ ∀b ∈ η(xA, t) :

pη(xA,t)(b|x̂Vt\At
, xA�t

) = pη(xA,t)(b|x̄Vt\At
, xA�t

).

(13)

This means all associated co-perception environments in
the same block of πS(xA, t) have the same branch-morph.
In other words they lead to the same branch of entity fu-
tures (i.e. the same future branch) with the same probabil-
ities. Then all elements of these environment blocks have
identical effects on the future branches and these branches
cannot distinguish between environments within the blocks.

Definition 10 (Perceptions). Let {Xi}i∈V be a multivari-
ate Markov chain with index set V = J × T and entity set
E. Let xA ∈ E be an entity with non-empty time-slices at t
and t + 1 and S(xA, t) its co-perception entities. Further-
more, let XS

Vt\At
⊆ XVt\At

be the associated co-perception
environments and πS(xA, t) its co-perception environment
partition.

Then the blocks of πS(xA, t) are called the perceptions
of xA at t.

6 Entity action and perception in the PA-loop
We now show that agent-environment systems as modelled
by the PA-loop are multivariate Markov chains containing a
specific choice of entity sets.

In the PA-loop each trajectory xV is considered to consist
of a time-evolution mT of the agent and a time-evolution
of the environment eT . The agent therefore occurs in every
trajectory and occupies the same degree of freedom in every
trajectory. Each of the time-evolutions mT is a STP in the
PA-loop. Since for us entities are STPs we define the entity-
set EPA of a PA-loop as the set of time-evolutions of the
agent process i.e.

EPA := {mT ∈
∏
t∈T
Mt}. (14)

Similarly, we can define entities for the environments and
add them to EPA.

Entity actions in the PA-loop We can write every trajec-
tory as a pair (mT , eT ) where mT is an entity. The entity
mT then performs an entity action at time t in trajectory
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(mT , eT ) with pMT ,ET
(mT , eT ) > 0 if there is an entity

m̄t such that
• m̄T occurs in (m̄T , ēT ) 6= (mT , eT ) with
pMT ,ET

(m̄T , ēT ) > 0,
• at t entities mT and m̄T occupy the same random vari-

ables, which is the case for all entities in EPA,
• at t environments of mT and m̄T are identical: et = ēt,
• at t+ 1 the entities are different: mt+1 6= m̄t+1.
Since all entities occupy the same random variables we can
only have value actions in the PA-loop.

If we assume that these conditions are fulfilled at
some time t for two entities mT , m̄T we can derive that
the conditional entropy H(Mt+1|Et) of the next agent
state given the current environment state is greater than
zero. To see this note that from pMT ,ET

(mT , eT ) >
0 and pMT ,ET

(m̄T , ēT ) > 0 it directly follows that
pMt+1

(mt+1|et) > 0, pMt+1
(m̄t+1|et) > 0 and pEt

(et) >
0. Plugging this into the definition we get H(Mt+1|Et) > 0.

It can also be seen that the more different co-action enti-
ties there are for a time t the higher the conditional entropy
H(Mt+1|Et) can get. The final value of H(Mt+1|Et) de-
pends on the actual probabilities but the maximum value for
n co-actions is log n. Also note that if there are no actions
at t i.e. no co-action entity in no co-action trajectory at t
then H(Mt+1|Et) = 0. Entity actions of entities in EPA are
therefore necessary and sufficient for H(Mt+1|Et) > 0. The
conditional entropy H(Mt+1|Et) measures the uncertainty
about the next agent state when the current environment state
is known. It has been proposed as part of an autonomy mea-
sure as a measure of non-heteronomy in Bertschinger et al.
(2008). Non-heteronomy means that the agent is not deter-
mined by the history of the environment. In this terminol-
ogy entity actions are a necessary and sufficient condition
for non-heteronomy.

Entity perception in the PA-loop We now look at how
entity perception as defined in Section 5 specialises to the
case of the PA-loop. This argument in effect constitutes
a proof that our Definition 8 of the branch-morph is a
generalisation of the conditional probability distributions
pMt+1

(.|mt, et) : Mt+1 → [0, 1] to non-interpenetrating
arbitrary sets of co-perception entities This result is not sur-
prising since we set out to do just this but it is also instruc-
tive to work through the recovery of the original expression
of the conditional probability distribution starting from the
general branch-morph.

We pick an entity mT from the entity set EPA and con-
sider its perceptions at an arbitrary time-step t ∈ T . In order
to get the perceptions at t we need

1. the co-perception entities S(mT , t) of mT at t,
2. the branching partition η(mT , t) with its branches,
3. the co-perception environments,
4. the branch-morphs for each environment,

5. and the co-perception environment partition πS(xA, t)
with its blocks, the perceptions.

These can be identified in the following way.
1. The co-perception entities S(mT , t) are the entities in

EPA that have non-empty time-slices at t, t+ 1, and that are
identical to mT up to t. All entities in EPA have non-empty
time slices at all times. So we have:

S(mT , t) = {m̄T ∈ EPA : m̄�t = m�t} (15)

2. First note that the entity set EPA satisfies non-
interpenetration since they all occupy the same set {Mt}t∈T
of random variables. The branching partition η(mT , t) is
composed out of blocks (the branches) of co-perception en-
tities that are identical up to t+ 1 i.e.

m̂T ∼m̄T

⇔ m̂t+1 = m̄t+1.
(16)

We can therefore identify the blocks of η(mT , t) i.e. the fu-
ture branches by the values that the entities take at t + 1.
Define the branch b(m̄t+1) associated to m̄t+1 ∈Mt+1 via

b(m̄t+1) := {m̂T ∈ S(mT , t) : m̂t+1 = m̄t+1}. (17)

The branching partition is then:

η(mT , t) = {b(m̄t+1) ⊆ S(mT , t) : m̄t+1 ∈Mt+1}.
(18)

3. The co-perception environments are the STPs xVt\At

compatible with at least one co-perception entity. For the
PA-loop and entity mT at t we have XVt\At

= Et and there-
fore XS

Vt\At
= ESt . Where ESt is

ESt = {et ∈ Et : ∃m̄T ∈ S(mT , t), pMT ,Et
(m̄T , et) > 0}.

(19)
If we marginalize overM�t we can see that this is equivalent
to

ESt = {et ∈ Et : pMt,Et
(m̄t, et) > 0}. (20)

4. The branch-morphs are the probability distributions
pη(mT ,t)(.|et,m�t) : η(mT , t) → [0, 1] over the branches
for each co-perception environment et ∈ ESt . These are de-
fined using Eq. (11) which for the perception-loop becomes

p(b(m̄t+1), et|m�t) :=
∑

m̂T∈b(m̄t+1)

pMt≺,Et(m̂t≺, et|m�t).

(21)
We can rewrite the sum on the right hand side using Eq. (17)
for b(m̄t+1) and then S(mT , t)t≺ =Mt≺:

p(b(m̄t+1), et|m�t) = pMt+1,Et
(m̄t+1, et|m�t). (22)
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The definition of the branch-morph for the PA-loop is

pη(mT ,t)(b(m̄t+1)|et,m�t) : =
p(b(m̄t+1), et|m�t)∑
b∈η(mT ,t)

p(b, et|m�t)
(23)

which can be rewritten (with some work) as

pη(mT ,t)(b(m̄t+1)|et,m�t) = pMt+1(m̄t+1|et,m�t)
(24)

= pMt+1
(m̄t+1|et,mt) (25)

where we used the BN of the PA-loop.
5.The co-perception environment partition πS(mT , t) of

ESt = is induced by Eq. (13) which, using the PA-loop and
Eq. (24) becomes

êt ∼ ēt
⇔ ∀mt+1 ∈Mt+1 :

pMt+1
(mt+1|êt,mt) = pMt+1

(mt+1|ēt,mt)

(26)

which is just the equivalence relation of Eq. (1) used to ex-
tract the sensor-values in Section 3.

So we have seen that our definitions of Section 5 spe-
cialise in the case of the PA-loop to the same concept of
perception as in Section 3.

7 Conclusion
We have defined actions and perceptions for entity-sets and
therefore for sets of spatiotemporal patterns. This provides
a formally defined way to associate gliders and similar spa-
tiotemporal patterns in reaction-diffusion systems with ac-
tions and perceptions. This is a step towards a foramiza-
tion of agency of such patterns. Here a notion of goal-
directedness is still missing and future work. We have
also shown how our definitions specialize to a necessary
and sufficient condition for non-heteronomy and the stan-
dard notion of perceptions of the agent process in the PA-
loop. For future research it is interesting to note that the
branch-morphs are generalisations of the conditional proba-
bility distribution pMt+1(.|et,mt). These conditional prob-
ability distributions play a role in various information theo-
retic concepts formulated for the PA-loop. This suggests we
might be able to translate bakc and forth between PA-loop
concepts and those for spatiotemporal patterns in the future.

We noted that a unique definition of entity perception is
dependent on the condition of non-interpenetration of the
entity-set.
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