
Abstract

We propose a novel, biologically plausible cost/fitness function for sen-
sorimotor control, formalized with the information-theoretic principle of
empowerment, a task-independent universal utility. Empowerment cap-
tures uncertainty in the perception–action loop of different nature (e.g.
noise, delays, etc.) in a single quantity. We present the formalism in a
Fitts’ law type goal-directed arm movement task and suggest that empow-
erment is one potential underlying determinant of movement trajectory
planning in the presence of signal-dependent sensorimotor noise. Sim-
ulation results demonstrate the temporal relation of empowerment and
various plausible control strategies for this specific task.
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1 Introduction and Background

Goal-directed arm movement entails the localization of the hand and the tar-
get, motor planning and execution. In all of these phases, neural signals are
corrupted by noise imposing limits on human performance. Sensor noise leads
to uncertainty about objects’ position, degrading perception, while motor noise
leads to loss in precision, resulting in movement inaccuracy and variability. It
has been shown that the standard deviation in isometric force production is pro-
portional to the mean force [Schmidt et al., 1979, Meyer et al., 1988], consistent
with psychophysical observations reflected by Fitts’ law [Fitts, 1954] – i.e. the
variability of motor errors increases with the magnitude of movement. Since
fast movements require large control signals, which increase the variability in
the final position due to signal-dependent noise, this implies a trade-off between
movement duration and terminal accuracy.

Motor planning determines the optimal actions based on signals from sensory
inputs and motor outputs. The redundancy in the motor system allows for infi-
nite possibilities for performing a specific movement, however, humans tend to
produce stereotypical patterns, which suggests that movement control may have
evolved so as to optimize a specific cost function subject to certain biophysical
constraints [Harris, 1998]. For arm trajectories, which are typically smooth with
approximately straight paths and bell-shaped velocity profiles [Morasso, 1981,
Kelso et al., 1979], it has been proposed that the cost function being optimized is
the mean-squared jerk of the hand [Hogan, 1984, Flash and Hogan, 1985] or the
mean-squared rate of change of the joint torques [Uno et al., 1989]. Although
these cost functions predict the observed movement well, they are heuristic in
their nature and are hard to compute by the brain. An ideal cost would be
universal for all systems (e.g. the eye and the arm alike), simple to compute,
and have some identifiable evolutionary advantage.
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Figure 1: The graphs represent transitions between perception states x, y, z
when executing actions u. Intuitively, empowerment characterizes the number
of actions available to the agent the outcome of which it can perceive. It is
low if regardless of the action the perception will be the same (in green) and is
high if every action implies a distinct perception (in red and blue). In the top
(green) graph the agent has no real choice of an action as both outcomes yield
the same perception state. In the middle and bottom graphs the empowerment
in the initial nodes (y1, z1 and z2 respectively) is high as different actions lead
to distinct outcomes.
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We propose that empowerment, a universal and generic information-theoretic
utility measure introduced by Klyubin et al [Klyubin et al., 2008], is one poten-
tial cost function humans optimize in sensorimotor control. The concept of
empowerment is based on an information-theoretic model of the perception–
action loop of an embodied agent and its environment. It provides a task- and
representation-independent utility function that quantifies the maximum poten-
tial information flow from the agent’s actuators to its sensors through the envi-
ronment. Empowerment captures uncertainty of various sources (e.g. noise, de-
lays, errors, etc.) in a generic theoretical measure, reflecting the level of perceiv-
able control or influence an agent has over its environment (see Figure 1). Previ-
ously proposed cost functions [Hogan, 1984, Flash and Hogan, 1985, Uno et al., 1989]
imply smooth optimal arm trajectories, since abrupt changes would require large
motor commands and thus higher noise, which supports the view of empower-
ment as a good candidate for providing a unified perspective of uncertainty
inherent in sensorimotor control.

2 Empowerment

Empowerment is defined for stochastic dynamic systems (e.g. an agent inter-
acting with an environment) in which transitions arise as the result of decision-
making. It is fully specified by the dynamics of the agent–environment coupling
and measures the amount of information an agent can inject into its environ-
ment and later perceive by its sensors, based on the channel capacity from the
sequence of actions Ut−n, Ut−n+1, ..., Ut−1 to the perceptions Yt after an arbi-
trary number of time-steps

C(Ut−n, ..., Ut−1 → Yt) = sup
p(~u)

I(Ut−n, ..., Ut−1;Yt),

where p(~u) denotes the probability distribution of the action sequences (see
Figure 2). For simplicity, we will assume full observability, where the agent
perceives the true state of the world X and hence X ≡ Y. Given discrete state
X and action U spaces, the transition function is given in terms of a density
p(xt+1|xt, ut) reflecting the probability of moving from state xt to xt+1 when
selecting action ut. Let X ′ denote the random variable associated with x′ given
x, and let the choice of a particular action u be modelled by a random variable
U . The empowerment E(x) in state x is defined as the Shannon channel capacity
between the choice of an action sequence U and the resulting successor state
X ′, which depends on the temporal horizon

E(x) = max
p(~u|x)

I(X ′;U|x) = max
p(~u|x)

{H(X ′|x)−H(X ′|U , x)}. (1)

The maximization of mutual information is with respect to all possible distribu-
tions over U , where the entropies are given by H(X ′|x) = −

∑
x′∈X p(x′|x) log p(x′|x)

and H(X ′|U , x) = −
∑N
ν=1 p(uν)H(X ′|U = uν , x) = −

∑N
ν=1 p(uν)

∑
x′∈X p(x′|x, uν) log p(x′|x, uν).
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Figure 2: A causal Bayesian network representation of the perception–action
loop unrolled in time, viewed as a communication channel – when the agent
performs an action U , it injects information into the environment X (follow-
ing the red arcs), and subsequently reacquires part of this information from
the environment via its sensors Y , where all elements are modelled as random
variables. Empowerment captures the causal effect, which is a function of the
agents embodiment, describing how the agents sensors and actuators interact
with the environment.

Empowerment maximization enables the agent to benefit most from its sen-
sors and actuators by keeping most of its options for influencing the environment
open. Intuitively, empowerment measures on a logarithmic scale the number of
actions available to the agent the outcome of which it can perceive. It is zero
if regardless of the action the perception will be the same and is maximal if
every action implies a distinct perception. Empowerment can be interpreted as
the capacity of an agent to control or influence its environment as perceived by
its sensors, i.e. it captures the uncertainty in agent’s perceptions related to its
actions.

3 Control Model

We computed empowerment in a goal-directed arm movement task using a linear
model of the arm described by the following discrete-time system (some non-
linear models could be approximated too)

xt+1 = Axt + But + wt, (2)

where xt is a 2-dimensional state (arm’s linear velocity and acceleration) and
ut is the control input (jerk) at time t. Since our model assumes position-
invariance of empowerment, for brevity, this property is not included in the state
space. A is a 2× 2 system transfer matrix and B a 2× 1 vector describing the
dynamics of the system. In order to demonstrate the trade-off between different
sources of noise we assumed two components of wt, a linear Gaussian noise
on velocity N (0, k1xt,1) and a quadratic Gaussian noise on jerk N (0, k2u

2
t,2),

following evidence of a quadratic relationship between standard deviation of
signal-dependent noise and magnitude of control [Harris and Wolpert, 1998].
Following the control model of Equation 2 we consider decision-making (i.e.
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motor planning) a continuous closed-loop feedback process, where, for simplicity,
we ignore delays inherent in the perception–action loop, which are addressed in
a separate study [Trendafilov and Murray-Smith, 2013].

4 Simulations

Using the above model, we performed series of simulations with various sys-
tem’s parameters A and B, and noise levels w. Based on simulated stochastic
transition functions we evaluated 1-step empowerment in a discrete 2-D grid
as a function of velocity and acceleration. Figure 3 presents the empowerment
landscape of one simulation run in which, as expected, empowerment decreases
from its peak at rest point with increasing velocity and acceleration, as agent’s
perception related to its actions deteriorates due to signal-dependent noise. For
this particular set of parameters acceleration has a stronger impact on empow-
erment than velocity (i.e. imposes a higher noise penalty), reinforced by the
quadratic term. The model demonstrates how two types of disturbances in the
sensorimotor loop can be combined in a single generic measure of uncertainty.
The empowerment landscape is not symmetric along the acceleration axis due
to a trade-off between acceleration and velocity. This is particularly visible at
high velocity where negative acceleration yields higher empowerment than the
corresponding levels of positive acceleration.

From the landscape in Figure 3 we computed the average empowerment
( 1
T

∑
Et) over movement trajectories corresponding to the four bell-shaped ve-

locity profiles shown in Figure 4/b. The respective acceleration profiles (see
Figure 4/c) were selected from the family of Clausen functions defined by

Cln(ϕ) =

∞∑
k=1

sin kϕ

kn
, (3)

and achieving identical terminal accuracy (16cm) and movement time (200ms)
(see Figure 4/a). Figure 4/d presents running and average empowerment (solid
and dashed lines) corresponding to different control strategies, indicating that
Cl1.3 yields the highest average empowerment (0.94 bits), while sine wave – the
lowest (0.82 bits). Figure 4/bc reveals how larger initial control of Cl1.3 helps
containing acceleration within [-20,20] m/sec2 and velocity below 1.3 m/sec,
while more sluggish control profiles require higher acceleration (up to 25 m/sec2)
and velocity (up to 1.6 m/sec).

Empowerment is highest at arm rest, as the agent can perceive best the
outcome of its actions the least the noise. With acceleration and velocity (and
noise) increase empowerment drops rapidly due to the loss of precision in per-
ceiving the outcome of agent’s actions. Empowerment reaches a local maxima
at zero acceleration and maximal velocity for Cl1.3 and Cl1.5 as the agent’s
perception is most impaired by the quadratic penalty on jerk noise. For Cl2
and sine wave this local maxima is offset due to higher maximal velocities and
acceleration/velocity trade-off.
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Figure 3: Empowerment landscape reflecting a particular set of model param-
eters evaluated in a discrete grid as a function of velocity and acceleration.
Empowerment peaks at rest point, as the agent can perceive best the outcome
of its actions the least the noise and gradually decreases with increasing magni-
tude of control as agent’s perception deteriorates due to signal-dependent noise.
Note that the empowerment profile is not symmetric along the acceleration axis.
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The empowerment trajectories have quasi symmetric shapes, except around
local maxima, where non-symmetric empowerment landscapes at high veloci-
ties induce minor deviations (see Figure 3). Although characterized by different
empowerment profiles, Cl1.3 and Cl1.5 achieve similar levels of average em-
powerment (0.94 vs. 0.93 bits), suggesting that empowerment-optimal control
strategies might not be unique, which is an interesting topic for future investi-
gation.

5 DISCUSSION

The control model investigated in this paper assumes a hypothetical set of pa-
rameters, such as noise levels and system transfer functions, for the sake of
argument. Furthermore, as an evaluation criterion empowerment mean was
chosen over more complex functionals, which could eventually provide differ-
ent shapes. Such properties characterising human sensorimotor control are not
completely understood yet and require further investigation. The evaluated
four bell-shaped velocity profiles were selected so as to reveal how variations
in control strategy affect empowerment. In this paper, we propose that in the
presence of signal-dependent noise humans might select the velocity profile that
maximizes empowerment subject to the specific model parameters discussed
above.

Simulation results demonstrate that empowerment could provide a universal
and generic measure of uncertainty in sensorimotor control tasks, such as goal-
directed arm movement. In this context, empowerment maximization subject
to internal signal-dependent noise provides a biologically plausible explanation
for the relevance of previously proposed cost functions, such as jerk and torque
change. However, the importance of empowerment for HCI research in general
goes beyond this. Fitts’ law has been studied extensively in a range of scenar-
ios including hand-held devices where external sources of noise abound. Un-
derstanding how different internal (sensorimotor) and external (environmental)
sources of noise interact with each other and how they influence uncertainty and
bound human performance is particularly important in mobile contexts where
noise is inevitable and often unpredictable.

Fast point-to-point movement studied with regard to Fitts’ law is typically
considered open-loop control, however we treat it as a closed-loop perception–
action process, which is supported by recent empirical evidence [Müller et al., 2017].
A number of studies on human sensorimotor control identify mechanisms of
Bayesian inference when we deal with uncertainty [Körding and Wolpert, 2006].
A recent study proposed an information-theoretic characterisation of variance in
aimed movement with feedback using Shannon channel capacity [Gori and Olivier, 2018].

The proposed approach has several important ramifications. Empowerment
is conceptually a new quantity in HCI research, which combines different types
of noise in a single theoretical measure. It provides a biologically plausible
theoretical underpinning for estimating the cost of arm movements, captured
by a universal and generic measure of control. A cost function, based solely on
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Figure 4: a) Position, b) velocity, c) acceleration, and d) empowerment series.
For given acceleration profiles (sine wave and three Clausen functions) velocity
and position are integrated. Movement time and terminal accuracy are aligned
to 200ms and 16cm, respectively. Empowerment levels (solid lines) correspond
to values in Figure 3. Cl1.3 achieves highest average empowerment (0.94 bits),
followed by Cl1.5 (0.93 bits) (dashed lines).
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uncertainty, such as empowerment, is directly available to the human brain via
feedback [Meyer et al., 1988]. Furthermore, the resulting optimal trajectories
would be inherently smooth, since abrupt changes would require large driving
signals, implying higher noise levels and degrading agent’s perception of the
outcome of its actions, leading to lower empowerment.

6 Conclusion

In this paper we propose that the information-theoretic principle of empower-
ment could provide a biologically plausible generic and universal cost/fitness
function for sensorimotor control. As an analytical measure it could explain
and predict human performance in the presence of stochastic disturbances and
serve as an objective optimality criterion in UI optimization as suggested in
[Trendafilov et al., 2015], trading off diverse sources of uncertainty. Validating
the approach in user studies is an exciting topic for future research. The aim of
this paper is to raise the awareness of the HCI community about the potential
empowerment has in providing more solid theoretical foundations for the science
of HCI.
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