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Abstract—Despite that ongoing and future networks become
denser and increasingly irregular, prior works in the area of
cell-free (CF) massive multiple-input-multiple-output (mMIMO)
systems relied on the strong assumption of uniformly distributed
access points (APs). Actually, this randomness was accounted for
only during the simulation and not in the analysis. Consequently,
the direction of this paper is towards the application and
investigation of a more realistic model for the spatial randomness
of the APs in terms of a Poisson point process (PPP). Specifically,
we derive the downlink coverage probability (CP) of CF mMIMO
systems by means of stochastic geometry and deterministic
equivalent tools. Notably, it is the only work having derived the
CP for CF mMIMO systems. Among the results, we highlight
the outperformance of CF mMIMO systems against small cells
(SCs), which increases with the density of the APs due to channel
hardening, favorable propagation, and interference suppression.
Moreover, we observe the saturation of the CP at high AP density.

Index Terms—Cell-free massive MIMO systems, heterogeneous
networks, coverage probability, stochastic geometry, determinis-
tic equivalents.

I. INTRODUCTION

The adoption of massive multiple-input-multiple-output
(mMIMO) technology from fifth generation (5G) networks has
been well-grounded [1]. In particular, the mMIMO topology
appears with two extremes being a large collocated antenna
array in each cell and a large number of geographically
distributed antenna arrays [2], [3]. The latter architecture has
attracted more attention recently in [3] under the name of
cell-free (CF) mMIMO systems by enjoying the benefits of
both network MIMO [4] and mMIMO systems [2] such as in-
creased macrodiversity and favorable propagation, respectively.
Especially, a large number of access points (APs) serves jointly
a smaller number of users by utilizing only local channel state
information (CSI) at each AP. Contrary to cellular mMIMO
systems, serving poorly the cell-edge users because of the inter-
cell interference, in CF mMIMO systems, the cell boundaries
are dissolved as well as the quality of service and expected
coverage are improved since the distances between the APs
and the users are reduced.

Indisputably, CF mMIMO systems have attracted a lot of
scientific interest, e.g., [3], [5]–[9]. Especially, [3] presents the
outperformance of CF mMIMO systems against small cells
(SCs). In [5], the APs were equipped with multiple antennas

towards the study of energy efficiency, while in [6], downlink
training was suggested to improve the performance. Other
interesting works have considered the limited backhaul, being
an obstacle in distributed systems, and a user-centric approach
to provide a large achievable rate with reduced backhaul
overload in [7] and [8], respectively. Interestingly, [9] studied
the assumptions that should hold for favorable propagation and
channel hardening by accounting for the spatial randomness
of the APs in the analysis.

Disregarding the importance for consideration of the spatial
randomness of the APs in CF mMIMO systems due to their
highly irregular and opportunistic layout, the majority of works,
concerning CF mMIMO systems, has relied on the idealized
and inaccurate assumption of uniformly distributed APs in a
finite region, e.g., [3]. In fact, this assumption has been taken
into account only during the simulation while the analysis lacks
this aspect. Note that in the case of SCs, tractable and accurate
models, considering the spatial randomness of the base stations
by means of stochastic geometry and the theory of Poisson
point processes (PPPs), have been presented, for example, in
[10]–[12] to model the heterogeneous cell-densification met in
5G networks.

Following this direction, this work covers the arising need for
consideration of the spatial randomness of the APs by a more
realistic and accurate model, where the APs are PPP distributed
and do not just follow a uniform placement such as in [3].
Moreover, contrary to [9], dealing with mainly the effects of
favorable propagation and channel hardening, we focus on the
performance of CF mMIMO systems by means of the coverage
probability (CP). Specifically, we first derive the downlink
deterministic equivalent (DE) of the signal-to-interference-plus-
noise ratio (SINR) with conjugate beamforming, and then, the
CP by means of stochastic geometry. Notably, as far as the
authors are aware, these are the only analytical results deriving
DE expressions and providing the uplink CP for CF mMIMO
systems.

The remainder of this paper is structured as follows. Section
II presents the system model for CF mMIMO systems with PPP
distributed APs. Section III describes the channel estimation
phase. In Section IV, we present the downlink transmission
and the DE SINR, while Section V provides the CP. Then
numerical results follow, and Section VII concludes the paper.



II. SYSTEM MODEL

A. Arrangement of APs

We consider a CF mMIMO systems where a large number
of APs each equipped with N ≥ 1 antennas serves jointly
K single-antenna users in the same time-frequency resources.
In particular, aiming at realistic results, we assume that the
AP locations {xi} ⊂ R2 are generated randomly in a finite-
sized geographic area A of space space S(A) m2 and follow
a two-dimensional homogeneous PPP ΦAP with density λAP[
APs/km2

]
. Let M the number of APs in a specific realization

of the PPP ΦAP. Then, M is a Poisson random variable with
mean M̃ = E [M ] given by

M̃ = λAPS(A) . (1)

In this regard, we denoteW = MN being a Poisson random
variable with mean E [W] = M̃N and expressing the total
number of antennas in A. The locations of the users are
distributed according to some independent stationary point
process [13] while their number is obtained by means of a
scheduling algorithm allowing the selection of K from a large
set of users.

Based on Slivnyak’s theorem, we focus on a typical user
chosen at random from amongst all users in the network, in
order to conduct the analysis and investigate the performance
of the network [14]. For the sake of exposition and without any
loss of generality, we assume that the typical user is located at
the origin and is denoted henceforth by the arbitrary index k.

B. Channel Model

In a specific realization of the PPP ΦAP with M APs, let
hmk be the N × 1 channel vector between the mth AP and
the typical user which is expressed as

hmk = l
1/2
mkgmk, m = 1, . . . ,M and k = 1, . . . ,K (2)

with lmk and gmk representing the independent large-scale
and small-scale fadings, respectively. Regarding the large-scale
fading, we assume a non-singular bounded pathloss model
described by lmk (rmk) = min

(
1, r−αmk

)
with α > 0 being the

path-loss exponent and rmk the distance between the mth AP
and the typical user [15]. Instead of an unbounded path-loss
model such as lmk (rmk) = r−αmk , this choice relies on the fact
that the latter would result in unrealistically high power gain
in the case of CF massive MIMO systems, where an AP can
approach arbitrarily close to a user. Specifically, we assume
that the distance rmk, actually involving the communication
between a random AP and a random user, follows the uniform
distribution in A. In addition, the distances from other users are
independent and follow the uniform distribution. Concerning,
gmk, it models Rayleigh fading, i.e., it consists of small-
scale fading elements, which are independent and identically
distributed (i.i.d.) CN (0, 1) random variables.

We assume that the coherence time of each coherence interval
is τc = BcTc samples (channel uses), where Bc in Hz and Tc

in s denote the coherence bandwidth and time, respectively.
In τc, we include the uplink training phase of τtr symbols as

well as the uplink and downlink data transmission phases of τu
and τd samples, respectively. Based on the property of channel
reciprocity, being achievable under TDD operation, we assume
identical channels for the two data transmission phases.

III. UPLINK CHANNEL ESTIMATION

The demand for knowledge of CSI at the transmitter requires
an uplink training phase to allow the APs compute the estimates
ĝmk of their local channels. Hence, in each realization of the
network, all K users send simultaneously non-orthogonal pilot
sequences with duration equal to τtr < K samples due to the
limited length of the coherence interval. Note that the subscript
tr expresses the training stage. The N × τtr received channel
vector at the mth AP is given by

ỹtr,m=

K∑
i=1

√
τtrρtrl

1/2
mi gmiψ

H

i +ntr,m, (3)

where ψi ∈ Cτtr×1 is the normalized sequence of the ith user
with ‖ψi‖2 = 1, ntr,m is the N × tr additive noise vector at
the mth AP consisting of i.i.d. CN (0, 1) random elements,
and ρtr is the normalized signal-to-noise ratio (SNR).

Following the standard procedure in [16] and assuming that
the distance rmk is known a priori, the mth AP obtains the
minimum mean-squared error (MMSE) estimate as

ĥmk=E[hH

mkỹtr,mk]
(
E
[
ỹtr,mkỹ

H

tr,mk

])−1
ỹmk

=
lmk∑K

i=1 |ψH
iψk|2lmi + 1

τtrρtr

ỹmk. (4)

while the estimation error vector is given by ẽmk = hmk −
ĥmk. The estimated channel and estimation error vectors
are uncorrelated and Gaussian distributed and written as
ĥmk ∈ CN×1 ∼ CN

(
0, σ2

mkIN
)

and ẽk ∈ CN×1 ∼
CN

(
0, σ̃2

mkIN
)

since hmk ∈ CN×1 ∼ CN (0, lmkIN ),
where σ2

mk =
l2mk
dm

and σ̃2
mk = lmk

(
1− lmk

dm

)
with dm =(∑K

i=1 |ψH
iψk|2lmi + 1

τtrρtr

)
. At this point, it is better for

the sake of following algebraic manipulations to denote
the vectors hk = [hT1k · · ·hTMk]T ∈ CW×1 ∼ CN (0,Lk),
ĥk = [ĥT1k · · · ĥTMk]T ∈ CW×1 ∼ CN (0,Φk) and ẽk ∈
CW×1 ∼ CN (0,Lk −Φk), where the matrices Lk, Φk =
L2
kD
−1, and D are W ×W are block diagonal, i.e., Lk =

diag (l1kIN , . . . , lMkIN ), Φk = diag
(
σ2

1kIN , . . . , σ
2
MkIN

)
,

and D = diag (d1IN . . . , dMIN ), respectively. In addition,
we denote Ck = Φ−1

k with Ck = diag (c1kIN , . . . , cMkIN ),
where cmk = σ−2

mk.

IV. DOWNLINK TRANSMISSION

The received signal by the typical user is given by

yd,k =
√
ρd

∑
i∈ΦAP

h̃H

i si + zd,k, (5)

where ρd is the downlink transmit power, h̃i is the N × 1
channel vector between the associated AP located at xi ∈ R2

and the typical user, si is the transmit signal from the ith AP,



and zd,k ∼ CN (0, 1) is the additive Gaussian noise at the kth
user.

We can rewrite (5) as

yd,k =
√
ρd

M∑
m=1

hH

mksm + zd,k, (6)

since the number of PPP distributed APs in a given realization
is M . Note that hmk is the channel between the mth AP and
user k while sm denotes the transmit signal from the mth
associated AP, which is given by

sm =
√
µ

K∑
k=1

fmkqk (7)

with qk ∈ C being the transmit data symbol for the typical
user satisfying E

[
|qk|2

]
= 1. Also, fmk represents the

(m, k)th element of a linear precoder, which in this work is
selected to be conjugate beamforming due to its computational
efficiency and good performance of in both massive MIMO
and SCs designs [3], [17]. In particular, the expression of
the precoder is fmk = cmkĥmk, where the scaling relies
on a statistical channel inversion power-control policy that
eases the algebraic manipulations henceforth [18]. Moreover,
µ, being a normalization parameter, is given by means of the
constraint of the transmit power E [ρdssH] = ρd, i.e., we have
µ = 1

E[trFmFH
m]

, where Fm = [fm1 · · · fmK ] ∈ CN×K is the
precoding matrix.

Overall, the received signal by the typical user can be further
written as

yd,k =
√
µρd

M∑
m=1

K∑
i=1

cmih
H

mkĥmiqi + zd,k (8)

=
√
µρdE

[
hH

kCkĥk

]
qk +

√
µρdhH

kCkĥkqk

−√µρdE
[
hH

kCkĥk

]
qk +

√
µρd

K∑
i6=k

hH

kCiĥiqi + zd,k, (9)

where we have used a similar technique to [19] to transform (8)
into (9) because user k has knowledge of only E

[
hH

kCkĥk

]
and not of the instantaneous CSI. Assuming that (9) represents a
single-input single-output (SISO) system, the effective SINR of
the downlink transmission from all the APs to the typical user,
conditioned on the distances of APs lmk for m = 1, . . . ,M ,
is given by

γk =

∣∣∣E [hH

kCkĥk

] ∣∣∣2
var
[
hH

kCkĥk

]
+
∑K
i 6=k E

[∣∣∣hH

kCiĥi

∣∣∣2]+ 1
µρd

, (10)

where the unknown terms have been treated as uncorrelated ad-
ditive noise. Next, based on the theory of DEs, being a common
mathematical tool in the massive MIMO literature [20]–[22], we
derive the asymptotic SINR conditioned on the distances of APs
as K, W →∞, while the finite ratio K/W is kept constant
such that γk − γ̄k

a.s.−−−−→
M→∞

0, where γ̄k is the deterministic

SINR and a.s.−−−−→
n→∞

0 denotes almost sure convergence.

Proposition 1: Given a realization of ΦAP and conditioned
on the APs distances, the deterministic SINR of the downlink
transmission from the PPP distributed APs to the typical user in
a CF massive MIMO system, accounting for pilot contamination
and conjugate beamforming, is given by

γ̄k �
W

1
W
∑K
i=1 tr DL−2

i

(
Lk + W

ρd

)
− 1

. (11)

Proof: Herein, we shall omit the proof of Proposition 1,
which is provided in [23] due to limited space.

Remark 1: This SINR includes the randomness regarding
the AP locations by means of the path-losses between the APs
and the users.

Remark 2: The SINR γ̄k in 11 saturates in the high SNR
regime and with increasing the number of antennas per AP
N while it decreases with K and with the severity of pilot
contamination.

V. COVERAGE PROBABILITY

A typical user is in coverage in a CF massive MIMO system
if the downlink SINR from the randomly located APs in the
network is higher than the target SINR T .

Theorem 1: The downlink CP of a pilot contaminated CF
massive MIMO network, where the APs are PPP distributed
and undergo a single-slope path loss model while employing
conjugate beamforming, is lower bounded by (12), or equiva-
lently (13) shown at the top of next page, where W̃ = E [W]

and η = W̃
(
W̃!
)− 1
W̃ .

Proof: See Appendix A.
Remark 3: According to (13), we observe the decrease of

P cf
c with the number of users K and the severity of the pilot

contamination. Also, when T → ∞, the CP becomes zero
while if the path-loss exponent α > 2 increases, P cf

c decreases.
Moreover, the CP saturates in the high SNR regime. Concerning
the dependence from the AP density and the number of antennas
per AP, it is given indirectly by means of W̃ as a complicated
function. Hence, this dependence can be shown only by means
of numerical results. In fact, in Sec. VI, it is shown that
P cf

c increases with λAP and results in a ceiling at large AP
density similarly to the case of single-slope path loss models
in SCs [24]. The same trend is followed with increasing the
number of antennas per AP.

VI. NUMERICAL RESULTS

Herein, we illustrate the behavior of PPP located APs in
a CF architecture by means of the analytical expression of
the CP provided by Theorem 1. This graphical representation
takes place for the first time in the corresponding literature
since prior works have not taken into account for a realistic
and well-accepted model for the randomness of APs positions
in the analysis.

For the sake of comparison, we consider the system model
in [12], denoted as “small cells” or “SCs”, where the base
stations have the same number of antennas and serve a single
user while the imperfect CSI model in that scenario is replaced



P cf
c ≥

W̃∑
n=1

(
W̃
n

)
(−1)

n+1
e
−nηT

(
K

απρd

(∑K
j=1 |ψ

H
jψk|

2(αρd+W̃(α−2))+
(α−2)ρd+W̃(α−1)

τtrρtr

)
−1
)

(12)

= 1−
(

1− e−ηT
(

K
απρd

(∑K
j=1 |ψ

H
jψk|

2(αρd+W̃(α−2))+
(α−2)ρd+W̃(α−1)

τtrρtr

)
−1
))W̃

. (13)

by the current one and we assume no hardware impairments
and channel aging. Therein, independent users are associated
with their nearest multi-antenna AP, and the remaining APs
play the role of interference. In particular, we consider [12,
Th. 1] providing the CP for SCs. Among the differences
between CF massive MIMO and SCs, we observe that: i)
in SCs, the effective channel power does not harden. As a
result, SCs require both uplink and downlink training phases
but CF massive MIMO systems rely only on uplink training.
ii) CF massive MIMO can achieve optimal performance with
simple linear processing by enjoying favorable propagation.
iii) SCs suffer from inter-cell interference while CF massive
MIMO systems exploit the co-processing among the APs
to suppress inter-cell interference by eliminating any cell
boundaries. In addition, a fair comparison between CF massive
MIMO systems and SCs requires equal total radiated power
in both architectures. Hence, we have that ρ̄sc

tr = ρ̄tr and
p̄sc

d = M
K p̄d, where ρ̄sc

tr and p̄d
sc are the normalized uplink

training and downlink transmit powers [3].
The analytical expressions are verified by means of Monte

Carlo simulations represented by black bullets. The simulated
results are generated by means of the statistical SINR given
by (10) after averaging over 104 random instances of the
channels while the CP is obtained as an average of 104

realizations of different random AP topologies. Moreover, the
results corresponding to CF massive MIMO systems and SCs
are depicted by means of “solid” blue and “dot” red lines,
respectively. Notably, this is the first work verifying the DE
analysis for CF massive MIMO systems.

A. Setup

A finite window of area of 1 km × 1 km is chosen with
PPP distributed APs having density λAP = 40 APs/km2 and
N = 5 antennas per AP unless otherwise stated. The area is
wrapped around at the edges to prevent any boundary effects.
Also, we assume K = 10 randomly distributed users while the
path-loss exponent is α = 3.5. Actually, similar to [3], we have
that the coherence bandwidth and time are Bc = 200 KHz
and Tc = 1 ms, respectively. The normalized uplink training
transmit power per pilot symbol ρtr and downlink transmit
power pd result by dividing ρ̄tr and p̄d by the noise power
NP given in W by NP = Wc × κB × T0 × NF, where
Wc = 20 MHz, κB = 1.381× 10−23 J/K, T0 = 290 K, and
NF = 9 dB. Note that ρtr = 100 mW and pd = 200 mW as
well as τtr = τd = 10 samples.

In Fig. 1, we evaluate the performance of the proposed bound
by varying the target SINR. The tightness of the proposed
bound is very good, but it is relaxed with increasing λAP

Fig. 1. CP for varying AP density λAP versus the target SINR T for both
CF massive MIMO systems and SCs.

due to the Alzer’s inequality. Moreover, Fig. 1 shows the
decrease of the CP with T in both cases of CF massive MIMO
and SCs because of the inter-user and inter-cell interferences,
respectively. Note that when the target SINR tends to zero,
the CP becomes one while when T → ∞, P sc

c approaches
zero. However, for typical values of T , i.e., around 15 dB,
the CP is finite and decreases. Notably, CF massive MIMO
systems, unlike SCs, systematically provide higher coverage for
all values of the target SINR T because they take benefit from
favorable propagation, channel hardening, and suppression of
the inter-cell interference. In particular, by increasing the AP
density λAP, these effects have a higher contribution to the
outperformance of CF massive MIMO systems against SCs.

In Fig. 2, we examine the impact of AP density on the
CP for varying the threshold T . This figure illustrates the
comparison between CF massive MIMO systems and SCs with
respect to their density, which is the fundamental characteristic
between the two architectures. Specifically, it is depicted that
by increasing λAP in CF massive MIMO systems and SCs,
P sc

c increases and saturates at high AP density. Although this
behavior is already known for SCs in the case of single-slope
path loss models [24], this figure also depicts the performance
of CF massive MIMO systems independently and allows the
comparison between the two network designs. As can be
seen, the coverage by CF massive MIMO systems is higher
than SCs as λAP increases due to favorable propagation
and channel hardening met in the former architecture. In



Fig. 2. CP for varying target SINR T versus the AP density λAP for both
CF massive MIMO systems and SCs.

addition, a higher threshold reduces the CP since it is less
possible to achieve certain coverage at higher values. Moreover,
when λAP increases, the performance gap between the two
architectures increases because CF massive MIMO systems
are more enhanced by the cooperation among the APs and the
massive MIMO property in terms of channel hardening and
favorable propagation. Furthermore, the ceiling at high λAP

is equivalent to the independence from λAP which is known
as the SINR invariance described in [24] and Sec. IV of this
work for SCs and CF massive MIMO systems, respectively.

VII. CONCLUSION

In this paper, we proposed a novel framework to model
the spatial randomness of APs which has not been accounted
adequately before despite the irregularity of their locations in
practice. Specifically, this is the unique work exploiting PPP
modeling to describe the locations of the APs and has derived
a tractable closed-form expression for the CP of CF mMIMO
systems. Notably, numerical results illustrated that CF mMIMO
systems outperform SCs due to the combined benefits from
network MIMO and mMIMO systems. Furthermore, the CP
increases with the AP density but up to a certain point where
it has a ceiling while it decreases with the target SINR.

APPENDIX A
PROOF OF THEOREM 1

After writing (11) in element-wise form, the DE SINR,
conditioned on the distances rmi for i = 1, . . . ,K, is given by

γ̄k �
MN

1
M

∑K
i=1

∑M
m=1 dml

−2
mi

(
lmk + MN

ρd

)
− 1

. (14)

Substitution of (14) inside the expression of the CP results
after several algebraic manipulations in

P(γ̄k>T |rm1, . . . , rmK)= P

(
W> T

(
1

M

K∑
i=1

M∑
m=1

Imk − 1

))

≈ P̃

(
g̃> T

(
1

M

K∑
i=1

M∑
m=1

Imk − 1

))
(15)

≈ 1−

(
1− exp

(
− ηT

(
1

M

K∑
i=1

M∑
m=1

Imk − 1

)))W̃
(16)

where we have set Imk = dml
−2
mi

(
lmk + MN

ρd

)
. By approx-

imating the constant number W in terms of the dummy
gamma variable g̃, having mean W = MN and shape
parameter W̃ = E [W ] = M̃N , we obtain (15). Note that
this approximation becomes tighter as W̃ goes to infinity [25],
i.e., this approximation, used in [26], becomes more accurate
in our system model involving a large number of APs. In (16),
we have used Alzer’s inequality (see [25, Lemma 1]) with

η = W̃
(
W̃!
)− 1
W̃ . In the next step, we evaluate the expectation

with respect to AP locations given that the distances between
the APs and the users are uniformly distributed after having
applied applied the Binomial theorem. Hence, we have

P cf
c =

W̃∑
n=1

(
W̃
n

)
(−1)

n+1 E

[
exp

(
− nηT

(
I − 1

))]
(17)

≥
W̃∑
n=1

(
W̃
n

)
(−1)

n+1
enηTλAP exp

(
− nηT E [I]

)
, (18)

where we have set I = 1
M

∑K
i=1

∑M
m=1 Imk and have applied

Jensen’s inequality since exp (·) is a convex function. The
expectation in (18) is written as

lim
R→∞

E

[
1

M

K∑
i=1

M∑
m=1

Imk

]

= lim
R→∞

EM

E|M
 1

M

K∑
i=1

M∑
m∈ΦAP∩B(o,R)

Imk|M = Φ(B (o,R))


(19)

=

K∑
i=1

E

 K∑
j=1

|ψH

jψk|2lmj+
1

τtrρtr

(lmk+
E[M ]N

ρd

)
l−2
mi

,
(20)

where in (19), we have assumed a ball of radius R centered at
the origin that contains M = Φ (B(o,R)) points with S(A) =
|B(o,R)|. By conditioning on this area of radius R and on the
number of points in this area, M in the denominator cancels
out with the number of points inside the ball. In (20), we have
substituted Imk and dm. Then, we result in

I1 =E

 K∑
i=1

 K∑
j=1

|ψH

jψk|2lmj +
1

τtrρtr

 l−2
mi lmk

 (21)



and

I2 =
λAPN

ρd
E

 K∑
i=1

 K∑
j=1

|ψH

jψk|2lmj +
1

τtrρtr

l−2
mi

. (22)

Regarding the first part of (21), we have

E

 K∑
i=1

K∑
j=1

|ψH

jψk|2lmj l−2
mi lmk


=


∑K
i=1 |ψH

iψk|2E
[
l−1
mi lmk

]
if j = i∑K

i=1 E
[
l−2
mi l

2
mk

]
if j = k∑K

j 6=i,k |ψH
jψk|2E

[
lmj l

−2
mi lmk

]
otherwise

. (23)

The expectation in the first branch of (23) for i 6= k gives

E
[
l−1
mi lmk

]
≥ 1

E [lmi]
E [lmk] (24)

= 1, (25)

where (24) takes advantage of Jensen’s inequality, and then, (25)
is obtained since the two variables have the same marginal
distribution. Similar steps can be followed for the second branch
while the last branch becomes

E
[
lmj l

−2
mi lmk

]
=

{
E
[
lmj l

−1
mk

]
if i = k

E
[
lmj l

−2
mi lmk

]
if i 6= k

. (26)

If i = k, the expression in the first branch is identical to (24).
The remaining term in (26) is written as

E
[
lmj l

−2
mi lmk

]
= E

[
lmj
]
E
[
l−2
mi

]
E [lmk] (27)

≥ E
[
lmj
]
E
[
l−1
mi

]2 E [lmk] (28)

≥ 1, (29)

where (27) considers the independence among the variables,
while (28) exploits the inequality E

[
x2
]
≥ E [x]

2. Last, (29)
follows basically the same steps as those taken in (25). The
second part of (21) becomes

E

[
K∑
i=1

l−2
mi lmk

]
=

{
E
[
l−1
mi

]
if i = k∑K

i6=k E
[
l−2
mi lmk

]
if i 6= k

. (30)

The first branch i.e., E
[
l−vmi
]

for v = 1 results in

E
[
l−vmi
]
≥ 1

E [lvmi]
, (31)

where Jensen’s inequality has been applied in (31). The final
expression is obtained by computing E [lvmi] as

E [lvmi] = 2π

(∫ 1

0

ydy +

∫ ∞
1

y−va+1dy

)
(32)

=
vαπ

vα− 2
. (33)

The second expectation in (30) is computed as

E
[
l−2
mi lmk

]
=
α− 2

απ
, (34)

where we have used similar techniques as before. By substitut-
ing all these expressions in (21), we obtain I1. Similarly, I2 is
obtained. Substitution of their expressions in (20) completes the
proof. Note that (17) results after using the binomial theorem.
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