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Abstract—Mapping is a fundamental requirement for robot
navigation. In this paper, we introduce a novel visual mapping
method that relies solely on a single omnidirectional camera. We
present a metric that allows us to generate a map from the input
image by using a visual sonar approach. The combination of
this metric with the robot’s odometry enables us to determine
a relation equation and subsequently generate a map that is
suitable for robot navigation. Results based on visual map
comparison indicate that our approach is comparable with the
established solutions based on RGB-D cameras or laser-based
sensors. We now embark on evaluating our accuracy against the
established methods.

Index Terms—Visual Sonar, Omnidirectional Vision, Visual
Mapping.

I. INTRODUCTION

Mobile robots require a navigation algorithm to move in
a goal-directed manner. A good understanding of the envi-
ronment is thereby key for a successful navigation. There are
many methods of obtaining this information, such as using
a variety and combination of sensors as input. Most popular
solutions include a laser range finder to generate highly accu-
rate maps for simultaneous localisation and mapping (SLAM),
cf. [1]. However, this method is costly and not always feasible.
There are other affordable solutions that use, for example,
RGB-D cameras to provide the navigation system with input.
However, these are usually limited in their field of view
due to the opening angle. Our approach, by contrast, uses
a single omnidirectional RGB camera capable for gathering
information about the entirety of the robot’s surroundings.
Our research further identifies a metric for generating a map
from the input image using a visual sonar approach to find
obstacles around the robot. Data from visual sonar sensors is
used to determine a metric distance between the robot and
these obstacles. These distances are then used to generate a
map that a robot can use for navigation.

II. PREVIOUS WORK

Our approach builds on top of existing work that uses
monocular vision instead of a laser sensor to find the obstacles
around a robot with the help of edge detection and so-called
visual sonars [2]. This approach has been modified to be used
with an omnidirectional vision system [3]. It has also been
extended to determine a free path by varying the number of
sonar beams to identify their ideal range and shape [4]. This
method is further capable of mobile robot navigation when
using an enhanced model that uses three individual sonars
to the left, right, and front of the omnidirectional image to
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(a) Visual Sonar Beam (b) Sobel Edge detection

Fig. 1: (a) Omnidirectional image with a visual sonar. (b)
Result of the edge detection and thresholding algorithm.

detect obstacles and another one to determine a free path
simultaneously [5].

III. METHOD

One key characteristic of the previous approach is that it
is non-metric. In comparison, we present an omnidirectional
vision system for mobile robot navigation that generates a
metric map. Our method consists of two steps: (A) visual
preprocessing to find edges that represent obstacles and to
calculate the sonar beams and (B) a fitting step to relate the
pixel distance to real-world lengths.

A. Visual processing

First, a sobel operator is used to detect edges in the image.
We further apply a black and white threshold to remove noise
(cf. Fig. 1b). In parallel, we use an algorithm to identify and
mask surface reflections to prevent them from being incor-
rectly identified as obstacles [4]. We then generate visual sonar
beams that measure distances to obstacles in a similar way as
standard sonar technology. Instead of using acoustic signals,
visual sonar works on the preprocessed image and results in
pixel-based distances [6]. That is, the beams originate at the
centre of the image and extend outwards until they reach
an edge. Figure 1a shows an exemplary beam (blue) on an
omnidirectional image.

B. Sonar Fitting

In this section we present a novel method to calculate
the metric distance between robot and obstacles, taking into
account the pixel-based characteristics of visual sonar. Each
sonar beam forms a vector of visual sonar consisting of a
group of pixels. The length of this vector is the number of
pixels. For instance, the sonar between robot and the wall in
Figure 1a has a length of 158 pixels. This distance corresponds
to a metric length, which can be identified using the robot’s
odometry, i.e. by moving the robot around between defined
places. A relationship can be found using a fitting method that
relates changes in the robot’s position to changes in the pixel
distance that originates from the visual sonar. Since all visual
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Fig. 2: Calibration and Mapping Results

sonars start from the centre of the omnidirectional image, a
single sonar sensor can be considered alone to identify this
relationship, which can then be used for the other sensors. A
dense calibration is necessary to find the correlation function
f between the sonar pixels and their real-world distance. We
have designed a routine that begins with the robot placed
sufficiently close to a wall so that the sonar vector’s first pixel
can be detected. The robot is then moved back. Information
is gathered from the odometry to obtain a real-world distance
and from the visual sensor for a change in pixel distance. We
then use the fitting model described above to determine the
metric distance from the visual sensor, obtaining from this
fitting method an equation that takes pixel input and outputs
the metric distance.

IV. EVALUATION

We replaced the standard RGB-D sensor with an om-
nidirectional camera on top of a TurtleBot2e1 to evaluate
our approach under realistic circumstances, cf. [4]. We also
mounted a DS-01 360 laser distance sensor to map the
environment for ground truth data. Our experiments, all of
which were performed at University of Hertfordshire’s Robot
House, consisted of two parts: calibration and mapping.

A. Calibration

A successful calibration is the prerequisite for applying
our approach to a robot’s navigation system. We, therefore,
performed a series of tests moving the robot backwards at
different speeds. Each of these tests have been repeated 10
times to gather odometry data and sonar pixel lengths. Results
indicate that the most reliable data is obtained from calibration
tests in which the robot moved slowly (velocity: 0.0 angular,
−.05 linear) and the front was free from obstacles. Moreover,
a straight robot movement with minimal deviation from its
intended path led to the most optimal results. Figure 2a shows
the result of fitting of a polynomial using one of the most
reliable calibration routines. The following function d = f(x)
describes the relation between the distance d in cm and the
visual sonar length x in pixels:

f(x) = (0.0125 ∗ x7) + (0.0552 ∗ x6) + (0.0533 ∗ x5)

−(0.0910 ∗ x4)− (0.1683 ∗ x3) + (0.0784 ∗ x2)

+(0.4732 ∗ x) + 0.5147

1A platform specification can be found at turtlebot.com/turtlebot2

B. Mapping

With the function f(x) and the visual sonar, we can
calculate metric distances that can be used in mapping. Figure
2b shows an exemplary map that has been recorded using
SLAM2 on a modified TurtleBot2e to use our visual sonar
approach. As a comparison, Figure 2c shows the same area
recorded with the high precision DS-01 360 laser. The visual
sonar method has generated a map that is not as precise as the
one generated with a laser and contains some artifacts but it is
suitable for navigation tasks as we were able to successfully
use it for driving the robot.

V. CONCLUSION

We have presented a novel method for calculating the metric
distance between a robot and obstacles based on a visual
sonars. It correlates pixels from an omnidirectional image and
the robot’s odometry by fitting a function that determines
the relationship between the sonar’s length in pixels and a
real-world distance. We have demonstrated that this method
produces comparable results visually. For future work, we aim
to revise the edge detection algorithm and plan to integrate
regression learning to further improve results. Moreover, we
plan a study to compare the approach’s performance to other
methods and technologies, such as RGB-D cameras and laser
sensors and to calculate their precision and computation time.
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2We used the standard ROS gmapping suite from wiki.ros.org/gmapping
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