
Component Interfaces with Loosely Synchronous Communication

Raimund Kirner, Simon Maurer, Olga Tveretina
School of Computer Science
University of Hertfordshire
Hatfield, United Kingdom

{r.kirner, s.maurer, o.tveretina}@herts.ac.uk

Abstract

Interface automata have been introduced as a way
to advance from value and domain descriptions of type
systems to temporal interface descriptions. The origi-
nal introduction of interface automata used a notion of
bu�ered communication with infinite bu�er size. This
communication model is suitable to abstract the be-
haviour of many computing aspects with asynchronous
communication between components.

In this paper we present Loosely Synchronous In-
terface Automata (LSIA) to describe interfaces of
components with loosely synchronised communication.
Loosely synchronised communication facilitates a block-
ing semantics of communication for both sender and
receiver. With loosely synchronisation it is possible to
describe systems where a precise order of events is nec-
essary. For example, cyber-physical systems often in-
clude control tasks where the exact order of events is
necessary for a safe operation. With LSIAs it is possi-
ble to check compatibility of interface models including
safety-relevant properties like lifeness. In this paper we
describe the composition of LSIAs and show examples.

1 Introduction

Safety-critical systems require methods to assure
their correct and reliable behaviour. When develop-
ing a system based on multiple components, a method
is needed to ensure that these components can cor-
rectly work together. Type systems have been used
with the first typed programming languages to ensure
their the static compatibility of components in value
and domain. Later, interface automata have been in-
troduced by de Alfaro et al. as a way to reason about

978-1-7281-9690-9/20/$31.00 c•2020 IEEE

the compatibility of system components in the tem-
poral domain [3]. The theory of interface automata
allows to specify the interfaces multiple system com-
ponents and verify their compatibility when combined.
The interface automata as defined by de Alfaro et al.
focuses on asynchronous communication, i.e., the send-
ing of a message never blocks, as there is assumed an
unbounded communication bu�er between sender and
receiver of a message. To achieve size reduction in the
combination of interface automata, de Alfaro et al. also
defined a special compatibility semantics, where two
components are assumed to be compatible as long as
there exists at least one possible environment for them
to correctly operate [3].

Similar to interface automata, multisession types
have been itroduced in 2008 by Yoshida et al. to for-
mally describe the temporal interaction between mul-
tiple components [6]. Similar to the original interface
automata, multisession types also focus on an asyn-
chronous communication semantics [2].

Tripakis et al. introduced interface theories for syn-
chronous communication semantics in 2011 [8]. The
basic concept of synchronous communication seman-
tics is that the communication is aligned with some
form external clock. An example of systems with syn-
chronous communication semantics are time-triggered
communication systems, which have been introduced
to build ultra-dependable control systems [7]. The in-
terface theory of synchronous communication seman-
tics has been also applied to time-triggered systems [5].

In this paper we focus on systems with a loosely
synchronous communication semantics, i.e., communi-
cation semantics where both the send and the receive
of a message are blocking. With loosely synchronous
communication we can have components that progress
independently of each other, but get synchronised at
the time of communication. This way we can specify
control systems where we need a safe logic order of ac-
tivities but not necessarily an alignment to an external

clock base as it would be the case with synchronous
communication.

In this paper we introduce the Loosely Synchronous
Interface Automata (LSIA) to model systems with
loosely synchronous communication. While it would
be possible to use for our LSIA also the optimistic no-
tion of interface compatibility as defined by de Alfaro
et al., we focus in this paper on the interface combi-
nation that de Alfaro et al. call traditional pessimistic
approach, i.e., where two components are assumed to
be compatible only if they operate correctly regardless
of the environment. To make the distinction between
these two possible semantics clear, we use the term in-
terface compatibility in the same optimistic meaning
as introduced by de Alfaro et al. and define interfaces
to be harmonic if there they operate correctly together
regardless of the environment.

C C

(a) (b) (c)
Figure 1: Example 1: Crossing of One-Lane Roads

To give an intuitive example of how LSIA can be
used, we assume a street crossing of two one-lane roads
as shown in Figure 1. To simplify things on both roads
cars drive only straight, no turning at the crossing. One
way to control the flow of cars in such a crossing would
be to use synchronous communication, where the flow
of cars is controlled by an external clock, aka tra�c
light. With LSIA we can model such a street crossing
based on demand, aka a tra�c light system that does
not switch based on a fixed schedule, but rather adapt
itself to the demand on each street. In case that both
streets have demand, as shown in Figure 1(a), one of
them would given priority. With LSIA such a choice is
non-deterministic, while a real implementation of sys-
tems would have to choose some fairness policy. Fig-
ure 1(b) shows the case of a car placed at the crossroad
section, blocking other cars till it leaves the crossroad
as in Figure 1(c).

To show more interesting system properties, we take
four instances of the example shown in Figure 1 and
merge them into one crossing with two dual-line roads,
as shown in Figure 2(a). In this merged example, we
have now four di�erent crossraod sections (NW, NE,
SW, SE) and a car needs to allocate two of them subse-
quently to eventually pass the crossing. Specifying the

NW

SW SE

NE NW

SW SE

NE

(a) (b)
Figure 2: Example 2: Crossing of Dual-Lane Roads

LSIA of the components one can express the semantics
of the combined system. For example, as shown in Fig-
ure 2(b), an implementation of this example could lead
to a deadlock [1] (a form of permanent blocking), if not
designed carefully. To express possible deadlocks in the
interface combination, the harmonicity of interfaces is
important, rather than the compatibility of interfaces.

The remainder of this paper is structured as follows:
in Section 2 we discuss process networks with loosely
synchronous communication, Loosely Synchronous In-
terface Automaton (LSIA) is introduced in Section 3,
and Section 4 concludes the paper.

2 Process Networks with Loosely Syn-
chronous Communication

The communication model of process networks de-
scribed in this paper is based on loosely synchronous
communication. It referred later as Process Network
with Loosely Synchronous Communication (PNLSC).
A PNLSC � consists of a set of processes PN , where
each process interacts with other processes via its input
and output ports.

Definition 1 (Process). Formally, a process N is de-
fined as a tuple

N = ÈPI
N , PO

N Í,

where

• PI
N is a finite set of input ports of process N ;

• PO
N is a finite set of output ports of process N ;

• PN is the signature of N , and it is defined as
PN = PI

N fl PO
N with PI

N fi PO
N = ÿ, that is the

ports of these two port sets have to be mutually
distinctive.

Since each process has type Multiple-Input
Multiple-Output (MIMO), it holds that |PI

N | Ø 0 and
|PO

N | Ø 0. Note, that a process can have a persistent
state and, thus, is not necessarily functional.

environment provides the corresponding action, while
non-blocking actions can be processed immediately.

Note that LSIAs are input and output deterministic
(hidden actions do not require determinism), that is,
for any a œ (AI fi AO) and any sj , sk œ S,

Èsi, a, sjÍ, Èsi, a, skÍ œ ” =∆ sj = sk

Above condition means that from one interface state
any action a œ (AI fi AO) can be part of at most one
outgoing transition. An action a œ A is called enabled
in a state s œ S if and only if the condition defined by
Equation (4) is satisfied.

÷sÕ œ S : Ès, a, sÕÍ œ ” (4)

It might be desirable for a protocol to reach a cer-
tain state in which it will reside indefinitely. Hence,
we define a set of end states Send of a Synchronous
Interface Automaton (SIA) below in (5).

Send = {s œ S | ’sÕ œ S, ’a œ A : Ès, a, sÕÍ /œ ”} (5)

Informally, an end state is a state where no further
transition, triggered by any action, is possible. Note
that this holds for any action, i.e. no distinction is made
between di�erent action types.

As two processes can share ports, their correspond-
ing LSIAs can share actions. In fact, for two processes
M and N to interact, their corresponding LSIA M
and N must have shared actions. Shared actions are
defined in Equation (6) which is similar to the defini-
tion of shared ports provided by Equation (1).

sharedA(M, N) = (AI
M fl AO

N

"
fi

!
AO

M fl AI
N) (6)

From Equations (1), (11), and (12), it follows that

sharedA(M, N) ™ sharedP(M, N), (7)

which means that not all ports of the process interface
have to be used by its LSIA. The set of actions that is
excluded from the set of shared actions is called ignored
actions and is defined by Equation (8).

ignoredA(M, N) =
sharedP(M, N) \ sharedA(M, N) (8)

All input and output actions of the LSIAs M and
N that do not correspond to the set of shared ports of
the processes M and N are called open actions. Open
actions are defined below by Equation (9).

openA(M, N) =
(AI

M fi AI
N fi AO

M fi AO
N) \ sharedP(M, N) (9)

3.1 Composition of LSIAs

In this section we formally define the composition
of two LSIAs. As described in Section 1, there are
di�erent ways to specify whether interfaces work to-
gether correctly. As introduced by de Alfaro et al.
in [4], compatibility of interfaces requires that there
exists at least one environment where these interfaces
work correctly. We call interfaces to be harmonic if
these interfaces work together correctly in all possible
environments. This harmonicity of interfaces is needed
when one wants to exclude behaviour like permanent
blocking as shown in Figure 2(b).

To test for harmonicity of interfaces, we can use their
composition that preserves the full behaviour of each
interface. Two LSIAs M and N can be composed into a
combined LSIA MN if their actions are non-conflicting
as it is defined below:

AI
M fl AI

N = ÿ
AO

M fl AO
N = ÿ

AM fl AH
N = ÿ

AH
M fl AN = ÿ

Note that actions can be renamed to solve such con-
flicts.

Definition 4 (LSIA composition operator ¢). The
composition of two LSIAs M and N into a LSIA
MN = M ¢ N is defined as a tuple

MN = M ¢ N = ÈS, s, AI , AO, AH , ”Í

where

S = SM ◊ SN

s = Ès0
M, s0

N Í
AI = (AI

M fi AI
N) \ SI

AO = (AO
M fi AO

N) \ SI
AH = AH

M fi AH
N fi sharedA(M, N)

with SI = sharedA(M, N) fi ignoredA(M, N),
and sharedA(M, N) and ignoredA(M, N) defined by
Equation (6) and Equation (8) respectively.

A transition
+
Èsm, snÍ, a, ÈsÕ

m, sÕ
nÍ

,
œ ” if for a tran-

sition Èsm, a, sÕ
mÍœ”M and a transition Èsn, a, sÕ

nÍœ”N ,
the following holds:

(aœsharedA(M, N))
‚ (a/œsharedA(M, N) · sn = sÕ

n)
‚

!
a/œsharedA(M, N) · sm = sÕ

m) (10)

By composing two LSIAs M and N into the result-
ing LSIA MN , shared actions of M and N become
internal actions of MN . Together with the internal
actions of each LSIA they form the set of internal ac-
tions of MN :

AH
MN = AH

M fi AH
N fi sharedA(M, N)

Note that ignored actions of the LSIAs M and N are
not propagated to the resulting LSIA MN .

The composition of two LSIAs as it is defined in
Definition 4 creates a composed process from the cor-
responding processes as it is defined in Definition 2.

3.2 Relation of a LSIA to its Process

A LSIA describes the protocol behaviour of a pro-
cess, hence there is a direct relation between the set of
ports PN of a process N and the set of actions AN of
its LSIA N .

An output action ai œ AO
N and an input action

aj œ AI
N , each labelling a transition of LSIA N , rep-

resent the ability of the protocol of a process N to
write a message to the environment via an output port
ai œ PO

N or read a message from the environment via
an input port aj œ PI

N , respectively. Note that input
and output actions only represent the ability of the pro-
tocol to perform the action, whether it is possible to
do so depends on the environment. This is due to the
semantics of synchronous communication where both
communication partners need to be ready for a trans-
mission in order to transmit a message. Every input
action ai œ AI

N (output action aj œ AO
N) of the input

alphabet AN of LSIA N has a corresponding input
port ai œ PI

N (output port aj œ PO
N) in the signature

PN of process N . However, not every port is necessar-
ily used by a specific protocol description. Hence,

AI
N ™ PI

N (11)
AO

N ™ PO
N (12)

Internal actions are not related to the ports of a pro-
cess as they happen independently of the environment
the process is placed in.

It follows from the relation given by (7), that even
though two processes M and N might share ports,
their corresponding LSIAs M and N need not neces-
sarily describe this interaction, i.e. the process imple-
mentation does not rely on ignored ports.

Figure 3 depicts a process N1 where the interaction
protocol is described by a LSIA N 1. States are rep-
resented as nodes, transitions as directed edges where
the label of an edge is the name of an action. Input

actions are marked with a question mark ’?’, output
actions are marked with an exclamation mark ’!’, and
internal actions are marked with a semicolon ’;’. Note
that in the example of Figure 3 port a2 œ PN1 has no
corresponding action in LSIA N 1.

s0 s1

s2

s3

s4

a1?

⌧1;

⌧2;

b1!

b2!b3!

N1

b1

b2

b3

a1

a2

Figure 3: An example of a process N1 where LSIA N 1
describes the interaction protocol of N1.

Now, with a model to describe the interaction pro-
tocol of a process in a PNLSC we need to take a closer
lock on how LSIAs interact with each other.

3.3 Interaction of LSIAs

We use LSIAs to describe the interaction protocol of
processes in order to understand how processes inter-
act with each other. The idea is to perform a binary
composition of two LSIAs, each describing the protocol
of a process, perform an analysis on the composition
and then further compose it with another LSIA, de-
scribing another process of the PNLSC. This will be
repeated until all processes of the PNLSC are included
in the composition. In this section we describe how
two LSIAs M and N interact with each other, and, in
particular, how the actions of each particular LSIA are
controlled.

Input and output ports of a process define the inter-
face of the process to its environment. Input and out-
put actions of a LSIA, describing the protocol of this
process, define how the process behaviour is interact-
ing with the environment. Shared actions, as defined
by (6), represent the actual transmissions of messages
from one process to another while shared ports repre-
sent the synchronous channels, spawned between pro-
cesses. Open actions, as defined by(9), represent the
ability of a process to communicate with its environ-
ment via ports where the corresponding communica-
tion partner is not (yet) known.

In order to understand how a LSIA reaches a state
that is permanently blocking we have to understand

how actions are controlled in more detail. To do this
we will first discuss the control of shared input and
output actions. For this purpose let us consider the
example in Figure 4. The two processes M1 and N2
share the ports a and b and their corresponding LSIAs
M1 and N 2 share the action a. The output action b
of LSIA N 2 is ignored.

s0 s1
a!

M1

s3

s4

s5

a?

b!

N2

a

b

Figure 4: A simple example of two processes M1 and
N2 with their corresponding LSIAs M1 and N 2 con-
nected by the channels a and b. However, only action
a is shared.

Initially, both, M1 and N 2, are in their initial states
s0 and s3, respectively. From both of these states ac-
tion a is enabled. Additionally, action b is enabled in
state s3 œ SN 2

. Hence, in state s3 two transitions are
possible. However, as the output action b will never
be able to be served by N2’s environment (LSIA M1
in this case) because no matching input action is avail-
able, the transition Ès3, b, s5Í will never be possible with
the given environment M1. Therefore, from their re-
spective initial state s0 and s3, LSIAs M1 and N 2
transition to state s1 and s4, synchronized by the label
a. The decision in state s3 œ SN 2

is imposed by the
environment M1.

Let us now study the control of open actions. Open
actions are either of direction input or output, hence,
blocking and non-autonomous. However, in contrast
to shared actions, with open actions the environment is
not (yet) known. Hence, an assumption has to be made
whether the environment will eventually provide the
corresponding counter parts of the open actions. The
goal of describing the protocol behaviour of processes
with the help of LSIA is to check all possible interac-
tion behaviour in order to guarantee liveness. Hence,
we will assume a helpful environment that is always
providing open actions. This guarantees that poten-
tial permanent blocking states, that are only reachable
through open actions, will still be considered. Dur-
ing the incremental composition of LSIAs, open ac-
tions will eventually become shared actions and will
then be considered where the environment is known.
Therefore, potential permanent blocking states caused

s0 s1
a!

M1

s3

s4

s5

s6

s7

e!

d?

a?

b!

N3

a

b

d

e

Figure 5: An example of a PNLSC where the LSIA N 3
of process N3 has the open actions d and e.

by such actions will be detected at this later stage.
Note that open actions are, like shared actions,

blocking and non-autonomous but because a helpful
environment is assumed they will never block and will
always be served. Hence, open actions will always trig-
ger the corresponding transitions in a LSIA. Such an
example is illustrated in Figure 5 where two processes
M1 and N3 are connected by the shared ports a and
b. The interaction protocol of process M1 is described
by LSIA M1. Process N3 has additional ports d and e
which are not connected and its interaction protocol is
described by LSIA N 3. LSIAs M1 and N 3 share the
action a.

While LSIA M1 resides in its initial state s0, LSIA
N 3 starts in state s3 and can transition to either state
s4 or s5 triggered by the open action e or d, respec-
tively. As open actions are assumed to always be served
by the environment, N 3 can reach either of the states
s4 and s5 while LSIA M1 is blocked in state s0. With
LSIA N 3 in state s4, M1 and N 3 synchronise on the
shared action a and transition to their respective state
s1 and s6. Because the action b œ AN 3

is ignored, N 3
cannot perform any further transition from state s5 to
state s7. Note that the decision at state s3 œ SN 3
depends on a currently unknown environment. At a
later stage, a new process, interaction with its environ-
ment via ports d and e, might be added to the PNLSC.
By this the system will gain knowledge of the environ-
ment, with respect to ports d and e and consequently,
the corresponding actions of the respective LSIA will
be turned into shared actions.

As established in the previous section, internal ac-
tions are controlled only by the process itself and not
by the environment.

As established in the previous section, internal ac-
tions are controlled only by the process itself and not
by the environment. Hence, internal actions are inde-
pendent of interactions and do trigger transitions au-
tonomously. The PNLSC illustrated in Figure 6 shows
the two interacting processes M1 and N4. The inter-

action protocol of process N 4 includes transitions that
are triggered by the internal actions ·1 and ·2.

s0 s1
a!

M1

s3

s4

s5

s6

s7

⌧1;

⌧2;

a?

b!

N4

a

b

Figure 6: An example of a PNLSC where the LSIA N 4
of process N4 has the internal actions ·1 and ·2.

While LSIA M1 temporarily blocks in its initial
state s0, LSIA N 4 starts in state s3 and can transition
to either state s4 or s5. The transitions are triggered
by the internal actions ·1 and ·2, respectively. In con-
trast to the example of Figure 5 where open actions
are triggering the transitions, here the transitions are
independent of the environment. The choice at state
s3 œ SN 4

is unknown to the system because internal
actions are hidden.

In Figure 6, the states s5 œ SN 4
and s0 œ SM1

are
permanent blocking states: With both LSIAs M1 and
N 4 starting in their respective initial state s0 and s3,
an autonomous choice of process N4 may lead to an
internal transition of N 4 to state s5. Because action
b œ AO

N 4
is ignored, a further transition from state s5

will never be possible. Hence, LSIA N 4 is blocking
indefinitely in state s5. At the same time LSIA M1
is still blocking in state s0 and waits for LSIA N 4 to
reach state s4 in order to synchronize on shared action
a. In the current situation, this can never happen be-
cause LSIA N 4 is indefinitely blocking in state s5 and
therefore LSIA M1 is indefinitely blocking in state s0.

In contrast to the example with internal action (as
depicted in Figure 6), the example with open actions
(as depicted in Figure 5) has no permanent blocking
states. This is because in Figure 5 the environment
with respect to actions d and e might become known at
a later stage and action d might be ignored, the tran-
sition Ès3, d, s5Í would not be possible and hence the
permanent blocking state s5 would never be reachable.
Consequently, LSIA M1 might never be permanently
blocked in state s0.

As an example of a composition, let us consider the
PNLSC depicted in Figure 7 where two processes M2
and N4 share the ports a and b and process M2 has
an unconnected port c. By folding their corresponding
LSIAs M2 and N 4 into the resulting LSIA MN 1, a

s0

s1

s2

a!

c?

M2

s3

s4

s5

s6

s7

⌧1;

⌧2;

a?

b!

N4

c

a

b

Figure 7: An example of a PNLSC with LSIAs contain-
ing open actions, shared actions, ignored actions and
internal actions.

new composed process, we call it MN 1 in this exam-
ple, is created. The composed process MN 1 with its
corresponding LSIA MN 1 is depicted in Figure 8. All
unreachable states of LSIA MN 1 have been removed
for the sake of readability.

s03 s04

s05

s23 s24

s25s16

⌧1;

⌧2;

⌧1;

⌧2;

c? c?

c?

a;

MN 1

c

Figure 8: The composed process MN 1 with its com-
posed LSIA MN 1 as a result of the composition of the
system depicted in Figure 7.

The only remaining port of MN 1 is the unconnected
port c which relates to the open action c œ AI

MN 1
,

triggering the transitions Ès03, c, s23Í, Ès04, c, s24Í, and
Ès05, c, s25Í. Note that all transitions triggered by ac-
tion c œ AI

MN 1
change only the part of the state cor-

responding to the LSIA M2. The reason for this is
that it is not possible to reach s06 because M2 must
transition to state s1 in order to synchronize on action
a. State s07 cannot be reached because action b œ AO

N 4
is ignored. With similar reasoning, we identify the in-
ternal actions ·1 and ·2 that originate from LSIA N 4.
The shared actions a of the LSIAs M2 and N 4 are
turned into the internal action a œ AH

MN 1
, triggering

the transition Ès04, a, s16Í.

3.4 Modelling the Crossroad Example

In this section we will apply the LSIA model on
the crossroad example described in Figure 2(a). We
model the four crossroad sections by four processes

PNW , PNE , PSE , and PSW together with their LSIAs
PNW , PNE , PSE , and PSW , respectively, as depicted
in Figure 9. The cars themselves are modelled as mes-
sages that arrive at one side of the crossroad and are
transferred through the crossroad by subsequent mes-
sages.

s0

s1

s2

mwi?

mw!
ms?

mso!

PNW

s3

s4

s5

mni?

mn!
mw?

mwo!

PNE

s9

s10

s11

msi?

ms!
me?

meo!

PSW

s6

s7

s8

mei?

me!
mn?

mno!

PSE

mwi mw mwo

meimemeo

mni

mn

mnomsi

ms

mso

Figure 9: A PNLSC model of Figure 2(a) extended by
the corresponding LSIAs of each process.

For example, a car arriving from the West going to
the East is modelled by the messages sequence (mwi,
mw, mwo). Each LSIA in this example is modelled the
same way, by non-deterministically accepting either a
message of a car entering the crossroad section (e.g.,
mwi) or a message of a car trying to transfer from inside
the crossroad (e.g., ms). What is important to mention
here is that this model is a naive implementation with
each crossroad section modelled symmetrically, which
exhibits the deadlock as shown in Figure 2(b). To fix
this deadlock, one would have to reverse the order of
crossroad section allocations for one lane.

4 Conclusion and Future Work

In this paper we introduced Loosely Synchronous In-
terface Automata to model the interaction protocol of
processes with their environment, based on loosely syn-
chronous communication. Loosely synchronous com-
munication is helpful for describing systems where a
precise order of events is necessary. It includes cyber-
physical systems that often contain control tasks where

the exact order of events is necessary for a safe opera-
tion.

Our work is inspired by Interface Automata [3] and
Synchronous Interface Theories [5], but it is funda-
mentally di�erent in terms of the blocking semantics
of the underlying models: PNLSCs with LSIAs can
model loosely synchronous communication while the
other models cannot.

As future work we plan to study how the model pro-
posed in this paper can be used to verify harmonicity
of interfaces.

References

[1] E. G. Co�man, M. Elphick, and A. Shoshani. System
Deadlocks. ACM Comput. Surv., 3(2):67–78, June 1971.

[2] M. Coppo, M. Dezani-Ciancaglini, L. Padovani, and
N. Yoshida. A gentle introduction to multiparty asyn-
chronous session types. In M. Bernardo and E. B.
Johnsen, editors, Formal Methods for Multicore Pro-
gramming - 15th International School on Formal Meth-
ods for the Design of Computer, Communication, and
Software Systems, Advanced Lectures, volume 9104 of
Lecture Notes in Computer Science, pages 146–178.
Springer, 2015.

[3] L. de Alfaro and T. A. Henzinger. Interface Automata.
In Proceedings of the 8th European Software Engineer-
ing Conference Held Jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, ESEC/FSE-9, pages 109–120, New York,
NY, USA, 2001. ACM.

[4] L. de Alfaro and T. A. Henzinger. Interface Theories
for Component-Based Design. In T. A. Henzinger and
C. M. Kirsch, editors, Embedded Software, number 2211
in Lecture Notes in Computer Science, pages 148–165.
Springer Berlin Heidelberg, Oct. 2001.

[5] B. Delahaye, U. Fahrenberg, T. A. Henzinger, A. Legay,
and D. Nickovic. Synchronous Interface Theories and
Time Triggered Scheduling. In H. Giese and G. Rosu,
editors, Formal Techniques for Distributed Systems, In-
ternational Conference, Proceedings, volume 7273 of
Lecture Notes in Computer Science, pages 203–218.
Springer, 2012.

[6] K. Honda, N. Yoshida, and M. Carbone. Multi-
party asynchronous session types. In G. C. Necula
and P. Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL, pages 273–284. ACM,
2008.

[7] H. Kopetz. Real-Time Systems - Design Principles for
Distributed Embedded Applications. Springer, 2nd edi-
tion, 2011. ISBN: 978-1-4419-8236-0.

[8] S. Tripakis, B. Lickly, T. A. Henzinger, and E. A. Lee.
A Theory of Synchronous Relational Interfaces. ACM
Transactions on Programming Languages and Systems,
33(4):14:1–14:41, 2011.

