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Abstract—Advanced automation is being adopted by manu-
facturing facilities and wireless technologies are set to be a key
component in driving the factories of the future. It is expected
that private cellular networks and WLAN technologies would
be deployed for smart factory operations. Since both wireless
technologies can operate on the same channel in unlicensed
bands, then efficient resource sharing becomes important. When
multiple devices compete for the resource, the estimation of
number of devices contending for the channel resource can help
the design of an efficient resource sharing scheme. This paper
aims to address the challenge of estimating the number of factory
devices contending to transmit over the unlicensed channel. We
adopt three machine learning (ML) techniques and develop a
novel device number estimation system by collating and analysing
the idle-time interval between transmission across the channel.
By using NS-3 simulation, the performance of the proposed
estimation approach is evaluated. The results presented reveal
the significance of the chosen features and performance of each
ML algorithm used.

Index Terms—Machine learning, smart factory, number of
device estimation, unlicensed band.

I. INTRODUCTION

The anticipated industrial revolution 4.0 has begun and
wireless communication technologies are expected to play
a pivotal part in actualising its potential. As part of that
revolution, factory automation is enhanced and one of the
key use cases for 5G networks has been factory automa-
tion via private networks [1]. While factory automation in
the past was limited (e.g. robotic arms tethered to control
units via cables, etc.), that limitation can be taken away
with wireless technologies. 5G private networks could bring
multiple advantages in improved coverage, better control and
enhanced security for factory automation. Furthermore, with
access to unlicensed spectrum, private networks can be more
affordable and widespread. While unlicensed bands are open
to wireless networks coexisting together, Wireless Local Area
Networks (WLANS) such as Wi-Fi have been so far dominant.
However, cellular networks are expected to also operated in the
unlicensed bands. In fact, standards have been ratified by the
3GPP for cellular networks to operate over unlicensed bands.

One of the main challenges that has arisen from the entrant
of cellular technology into unlicensed bands has been the
potential impact it may have on the performance of exist-
ing technologies operating in unlicensed bands (e.g. Wi-Fi)
[2]. Different feasibility studies were conducted to evaluate

the performance of LTE-LAA (License Assisted Access) in
unlicensed bands but also its potential impact on technolo-
gies such as Wi-Fi [3], [4]. LTE-LAA and 5G NR-U (New
Radio Unlicensed) adopted the fairly similar channel access
procedures to the IEEE 802.11 standard, which Wi-Fi use,
with the aim of achieving fair or harmonious coexistence with
technologies using IEEE 802.11 standards. But one important
aspect to fair, efficient and optimal use of the spectrum is
determining the number of devices operating over the same
channel. This information can be very useful in designing
an effective channel access protocol that considers all users
operating on the same channel from a fairness perspective.
In the private network for the factory automation use case,
estimating the number of factory devices (e.g. robotic arms,
control units, smart cameras) can be crucial for implementing
a solution which meets the requirements of time-sensitive
applications.

Node number estimation has been studied in the literature
widely [5]-[8]. The authors in [5] proposed a listen-before-
talk (LBT) mechanism allowing estimation of the number of
WLANS nodes by determining the collision probability. The
estimation of number of nodes by calculating the collision
probability has been the foundation for numerous estimation
methods. One problem using the collision probability is the
impact of the contention window (CW) size at which the
collisions are measured, i.e. measuring the collision probability
within a different CW size will give a different estimate of
node numbers. Another problem is the different estimation
accuracy level for the different node numbers. According to
[6], as the node number increases, the estimation becomes less
accurate. The authors in [6] proposed the extended Kalman
filter based estimation coupled with a change detection mech-
anism, which can estimate the number of Wi-Fi nodes with
high accuracy. However, the high accuracy reported was for
large number of nodes without considering smaller number of
nodes. In [7], the authors approached the estimation problem
using batch and sequential bayesian techniques to reduce the
computational burden. They proposed maximum a posteriori
algorithm, but it traded-off accuracy to reduce computational
complexity. The authors in [8] proposed an estimation tech-
nique by using the average idle slot interval. Three thresholds
are determined to track the variation in the node numbers on
the network. Based on empirical data, the average idle slots



are obtained and a formula is provided. The node number
estimation is performed based on the measured average idle
slot and the threshold it falls under. The estimate of node
numbers in [8] comes with a large variance in the number
of nodes and remains insensitive to smaller increases in node
numbers on the network.

While aforementioned works are non-ML based problems,
in this paper, we present a machine learning (ML) based
node number estimation approach. The approach exploits the
capability of devices operating over the unlicensed bands
to sense the channel before transmission, the LBT concept.
The periodic but varying idle-time over the channel can be
associated to a statistical distribution. The mean and standard
deviation of this idle-time distribution can be characterised to
the number of nodes actively contending over the channel. The
dataset acquired from observing the idle-time can be used to
train ML models to perform number of device estimations for
contending factory devices operating over unlicensed bands.
By using NS-3 system simulations, we show that the proposed
ML-based number of device estimation approach, can reveal
relationship between the idle-time distribution and the node
number, but more importantly make predictions on the number
of devices actively contending over the channel. The remainder
of the paper is organized as follows. Section II describes
the considered scenario and the number of device estimation
problem. In Section III, the proposed machine-learning based
prediction approach is elaborated. The performance validation
are explained in Section IV to show the effectiveness of our
proposed approach. Finally, we draw important conclusions in
Section V.

II. SCENARIO SETUP AND PROBLEM FORMULATION

In this section, we explain the scenario setup including
network model of the factory automation use case and the
MAC models of Wi-Fi and LTE-LAA.

A. Network Model

We consider the 3GPP indoor scenario consisting of a
private LTE-LAA network coexisting with Wi-Fi, deployed on
the same channel [9]. Fig. 1 illustrates our scenario setting, the
layout of the network and factory devices. Four small cells are
operated on each network, aligned and centred along the longer
dimension of the building. The separation of the Access Points
(APs) and Base Stations (BSs) are uniform across nodes from
the same operator. The Wi-Fi connected devices and LAA
connected devices are randomly dropped within the coverage
area inside the building. User device association is based on
the proximity to the access node. We consider the downlink
transmission but this work could be extended to the uplink.

The transmission power for the access nodes are the same
given as Pr for LTE-LAA and Py for Wi-Fi. For the path
loss model, the ITU Indoor hotspot (InH) model [10] is used.
For the line of sight which is the case in our network model,
the model (1) is applicable for 10 m < d < dgp [11] where
d denotes the distance between the access node and the user
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Fig. 1. The system model for an indoor factory environment

device and dpp is the breaking point distance. fc indicates
the centre frequency of the channel.

PL(d) = 28.0 4+ 221log4(d) + 201logo(fe)- (1)

B. Wi-Fi MAC Model

The Wi-Fi system operates the Distributed Coordination
Function (DCF) mechanism based on the IEEE 802.11 stan-
dard. In order to transmit over the unlicensed channel, the
Wi-Fi device contends for the channel by selecting an integer
randomly within a contention window (CW) which is known
as the backoff (BO) time. The slot time is 9 ws. During
the BO period if transmission is detected over the channel,
the BO counter is paused until the channel is sensed to
be idle again and then continue decreasing the BO counter.
The node senses the channel for a set period known as
the DCF Inter-Frame Space (DIFS) before transmitting, after
which it begins the arbitration process of selecting a new BO
number. The contention begins with the smallest CW size
and increments exponentially whenever a collision is detected
which is represented as CW, = (0—2°-CWy ). CWiyiy is the
minimum contention window size. The maximum contention
window CWix = 2°-CWiyin when s = m where s represents
the exponential backoff stage and m is the maximum backoff
stage. The stationary transmission probability 7,, under sat-
urated traffic conditions for a Wi-Fi device is given in [12]
as

2(1—2p)
(1 —2p)(25CWhin + 1) + p25CWiin(1 — (2p))
where p is the independent collision probability. The channel
idle probability P, influenced by the DCF mechanism is a

function of all nodes and devices not transmitting over the
channel which can be written as

Ny
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where N,, are the number of Wi-Fi nodes.

C. LTE-LAA MAC Model

For the downlink channel access procedures for LTE-LAA
[13], on selection of a carrier for transmission of the physical
downlink shared channel (PDSCH), the BS senses the channel
to be idle for the defer duration 7;. Then a uniformly



distributed random number n,4 is chosen from the CW size.
If the channel is sensed idle the number is decremented by
nrq — 1 after each slot period T5;. The BS may transmit over
the channel when n,4y = 0. The time Ty and T%; are set to
16 ps and 9 s, respectively. The channel access procedures
are governed by priority classes which define the min and
max CW sizes and the channel occupancy time (COT). These
parameters and their corresponding values are given in Table .
The CW adjustment is based on detecting 80% HARQ-ACK
as NACKSs in the reference subframe. The next higher CW size
is chosen within the priority class when a NACK occurs. The
maximum energy detection threshold [, when coexisting
with other systems such as Wi-Fi is governed by the equation

—72+ 101log,o(ZH)
lthmX = max 71max

Tmax — Ta + (Pu 4+ 101log o (2) — PTX()4)
where 1’4 could be 10 dB or 5 dB for transmission of PDSCH
or discovery signal transmission respectively. Py is 23 dBm
and Prx is maximum output power of the BS. BW is the
channel bandwidth of the MHz unit and 7},,x is calculated as
follows.

Timax = 101log,((3.16228.107% - BW). (3)
TABLE 1
CHANNEL ACCESS PRIORITY CLASS OF LTE-LAA [11]

Priority Allowed

Class CW(min,p) CW(maw,p) T(mcot,p) CWp sizes

1 3 7 2 ms 3,7

2 7 15 3 ms 7, 15

3 15 63 8 or 10 ms 15, 31, 63
15, 31, 63,

4 15 1023 8 or 10 ms 127, 255,
511, 1023

D. Data Acquisition and Preparation

As aforementioned, LTE-LAA and Wi-Fi perform channel
sensing to execute its opportunistic channel access protocols in
order to operate in unlicensed bands. Since both networks can
sense idle periods and transmission over the channel, makes
analysing the periodic idle-time interval, a suitable parameter
for predicting the number of devices serving in the factory
environment. The randomly selected BO numbers are chosen
using a uniform distribution as a collision avoidance mech-
anism. Each contender for the channel independently selects
a number within a contention window, where differences in
the selected backoff numbers represents a new dependent
variable. Hence, every randomly selected BO number by
each device contending using either the LTE-LAA channel
access procedures or the 802.11 MAC protocol, represents an
independent variable with a uniform distribution. The resulting
numeric difference in the variables creates a new distribution.
This new distribution can be obtained by counting the idle
times between transmissions of all contending nodes. For the

purpose of carrying out the number of device estimation,
the time unit of the idle-time interval will be slots. Each
slot time is 9 us. The intervals for different device numbers
were collected over simulations campaigns conducted with
different node numbers. The number of nodes considered in
the simulations were 4, 8, 10, 16, 20, 24, 30, 36, 40.

Y=X1—Xo——X,. (6)

In (6), X1, ---,X, are independent variables, randomly se-
lecting values within a CW via a uniform distribution. The
difference between all variables gives the new distribution Y.

The collated idle-time data from the simulation are rep-
resented in microseconds. However, these are converted to
number of slots by the equation:

Tidie
b
Tsl

where Ng; represents the number of slots, 754 is the mea-
sured idle-time. Obtaining the number of slots for every idle-
time period provides the basic dataset for our predictive ML
models. An average of about 16,000 idle-time measurements
where collated for each simulation performed for each device
number across the multiple randomised seed. These dataset
were split into multiple samples which formed the features of
the data. The features are the mean and standard deviation of
the samples from the collated data. These features became the
data points in training the ML model. A set of means and their
standard deviations were labelled with the associated number
of devices.

Ng = (M

III. PROPOSED MACHINE LEARNING PREDICTION DESIGN

In this section, we explore three ML algorithms [14] in
performing the number of factory device estimation or pre-
diction. The selection of these algorithms were based on
capability for multiclass classification. In the data prepared
from the measured idle-time intervals, two data variables are
chosen, which are the mean and standard deviations of subsets
(features) of the overall dataset.

A. Data Organization for ML Models

To train the three ML models selected for predicting the
number of factory devices actively contending over the chan-
nel, the data structure adopted was a [m x n] matrix where n
being 3 columns with input data P € [m x n — 1] and output
vector () € m. A consists of the mean and standard deviation
which are the features of the samples from the full dataset. B
comprises the labels for each pair of A entries in the matrix.
The training dataset Py, Q¢ and test dataset Pyegt, Qrest Were
used to train and evaluate the ML models respectively.

B. Multilinear Regression

Multiple linear regression is a prediction model which takes
multiple independent variables and make predictions on a
dependent variable. The mean and standard deviation of the
idle-time intervals constitutes the independent variables to pre-
dict the node numbers. The independent variable are training



dataset P;. and Q. while m; and mo are the estimated
regression coefficients as shown in (8). Qs represents the
dependent variable through which the prediction is made. The
coefficients in the multilinear equation represent the rate of
change of ;. with respect to dependent variables m; and
msy. The challenge with multilinear regression is obtaining
the best fit to the data points. This will consequently affect
the accuracy of the model. Each label (number of devices)
represents a class for which an output prediction is made.

Qtr = b+my(Py € [mxnj_a])+ma(Pi € [mxnj_1]) (8)
where j is the number of columns in the matrix.

C. k-Nearest Neighbour (k-NN)

k-NN is a type of supervised learning ML technique. Our k-
NN model is trained on labelled data representing the number
of devices. The concept is to provide predictions on unlabelled
data based on the proximity of the unlabelled input data to
the labelled training data provided to the model. k-NN is
known to give good accuracy because no assumptions are
made. In the case of the number of device estimation proposed
in this paper, the k-NN algorithm performs classification by
calculating the distance between the input mean and standard
deviation features to the ones used to train. The distance
calculation depends on the type of data being trained. Eu-
clidean and Manhattan distance are used for continuous data
while Hamming distance are used for categorical data. In this
work, euclidean distance was used for distance calculations
as the data processed was continuous data. The prediction is
made based on the class with the highest proximity to the
input data when compared to the distance calculated. The &
represents the 'number of neighbours’ from the trained data
to the input data to be considered in making the classification.
Selecting the optimal ‘k’ number is crucial to the accuracy of
the model. A very low k value could cause overfitting to the
model and negatively influence the prediction, while too high
k value can lead to underfitting and higher computational cost
in calculating the distance for all the points. The Euclidean
distance for the model is determined by the equation below

n

Z(ptw - qtest)2 (9)

=1

d(Ptr7 Qtr) =

D. Random Forest (RF)

RF, also a supervised learning algorithm, works by building
an ensemble of decision trees, with the aim to improve
prediction accuracy. Decision trees make up the component
parts in the RF. The decision trees in the model we trained es-
sentially contains branches which provides a possible decision
or occurrence based on the distinctions in the data features
presented to the model. Our dataset exhibits higher entropy
(level of randomness) based on the number of classes trained
for prediction. Hence, the decision tress splits the data into
smaller samples to reduce the entropy. This enables better
decision making by the decision nodes and root nodes. The
efficiency of the split dataset is influenced by the conditions

TABLE II
NETWORK PARAMETERS USED IN THE SIMULATION

Parameter LTE-LAA | Wi-Fi (802.11)
Slot time 9 us 9 us

SIFS N/A 16 ps

Defer Time/DIFS 43 us 34 pus

Tx Power BSs/APs | 18 dBm 18 dBm
Bandwidth 20 MHz 20 MHz

Total Data SB 1200 56

Min & Max CW 15 & 1023 | 15 & 1023

in making the split. The goal will be to reduce the entropy to
zero as much as possible. In the model we trained, the classifier
had a minimum sample of two with no limit to the maximum
samples. The classifier in the RF combines these decision trees
defined by the specific class conditions built into the branches
to produce a class prediction. RF has a lesser training time
when compared to other ML models and the risk of overfitting
is significantly reduced due to the use of multiple trees. The
low correlation between each decision trees actually produces
more accurate predictions.

IV. RESULT DISCUSSION

In this section, we present our findings based on the analysis
performed on the channel idle-time interval dataset acquired
for LTE-LAA and Wi-Fi from the simulation campaign on
ns3. Some network parameters used in the simulation is given
in Table II. As aforementioned, three multiclass classification
methods, Multilinear Regression, k-NN, and Random Forest,
are evaluated. The models where trained, tested and evaluated
using python libraries Pandas, Numpy and Sklearn. The dataset
is split with a 70% and 30% for model training and testing
respectively. We evaluate the performance of the models for
different level of granularity of device numbers. The first
models was trained on a lower granularity (LG) dataset of
10, 20, 30, 40 devices. The second models was trained with
higher granularity (HG) of 4, 8, 10, 16, 20, 24, 30, 36, and 40
devices. We compare the performance of both models based
on granularity and obtain the result shown in Table III.

We first embark on gaining insight to the level of association
between the features of the dataset and thereby appreciate their
relevance to the intended task of estimating the number of
devices. In Table 111, the correlation coefficients shown, reveal
a high negative correlation with the number of devices. This is
important to understand the relevance of the chosen parameters
to estimating the number of devices. As expected, the dataset
with LG show a higher linear correlation between the mean,
standard deviation and the number of devices, when compared

TABLE III
CORRELATION OUTPUT FOR DATASET FEATURES
Number of Device Mean Standard Number of
Category Deviation Device
10-20-30-40 (LG) -0.92765 -0.95028 1.0000
4-8-10-16-20-24-30-
36-40 (HG) -0.70462 -0.74271 1.0000
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Fig. 2. The operational procedures of proposed ML-based node number estimation

to the ones with HG. However, the dataset with HG similarly
shows good linear correlation to perform number of device
estimations.

Different evaluation metrics are applied to ML models.
However, for multiclass classification problems the F1 score
is mostly used, particularly in £-NN and RF models. The F1
score is mainly good because it offers a result based on the
harmonic mean of the precision and recall metrics. The F1
score are presented per class, i.e. per number of devices for
both LG and HG. However, we adopt the Mean Absolute
Error (MAE) and the Root Mean Square Error (RMSE) for
Multilinear Regression. The MAE and RMSE are more widely
used for evaluating linear regression predictions.

A. Multilinear Regression Results

Table IV shows the MAE and RMSE evaluation results for
the Multilinear regression model. The results for LG shows
a good prediction performance with a low MAE and RMSE.
This is expected as the separation between the features for each
number of devices is sufficient to provide accurate predictions.
The results for HG also reveals relatively good performance
with respect to an increase in specificity of number of actively
contending devices over the channel. Considering the HG
classifies more than twice the size of number of devices, when
compared to the LG; the MAE and RMSE for HG category,
reveals comparable performance to the LG. Also, these results
reveal with multiple random placement of devices, good num-
ber of device estimation can be attained using the Multilinear
regression algorithm.

TABLE IV
PERFORMANCE RESULTS FOR MULTILINEAR REGRESSION
[ Device Number Category [ MAE [ RMSE |
10-20-30-40 (LG) 2.9275 3.5658
4-8-10-16-20-24-30-36-40 (HG) 6.4999 7.8399

B. k-Nearest Neighbour Results

Its already mentioned above the k-NN model performs
classification based on the proximity of the input data to the
trained data. The ‘k’ parameter is crucial to the performance
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Fig. 3. k-NN performance based on different k values

of the model because it determines how many data points
to consider in the proximity of the input data to make a
classification output. The error rate for the value of k is a good
way of finding the optimal & value. The & value with the lowest
error becomes the optimal k. In Fig. 3, the F1 score of the
different number of devices are plotted for both LG and HG
category with respect to their k value. The classification score
for LG shows the highest classification performance. This is
largely due to the dataset features being sufficiently spaced to
allow such high accuracy classifications. In the HG category,
it is observed the curve of F1 score varies across the different
k values and number of devices. The lower performance in
classification with higher £ values are due to higher error
rates. It is therefore clear that best performance is achieved
when k=1. This show good classification is achievable using
the £-NN models.

C. Random Forest Results

In the case of the RF model, the decision tree ensemble
plays the critical role in the final classification output. The
RF model shows best performance based on the F1 score
for different number of devices in Fig. 4. The number of
estimators is a hyperparameter for RF models in making
classification outputs. Again, the RF model gives excellent
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Fig. 4. Random Forest performance for different n estimators

performance with the LG category with a consistent F1 score
for all classes and all chosen estimators used in training the
model. We evaluate the performance for 3, 5, 10 and 20
estimators. The minimum F1 score measured from all classes
with 3 estimators came at 0.83. It can be observed that from
5 estimators, a consistent F1 score is measured. It will then
be adequate to use 5 estimators for the classification problem
because using any higher will increase the computational
cost in performing the classification tasks. From these results
for HG category, we clearly see the superiority of the RF
algorithm in making accurate classifications above k-NN and
Multilinear regression.

V. CONCLUSIONS

In this paper, we embarked on developing ML algorithms
to predict and classify the number of devices operating in
unlicensed bands. We used a novel approach, where the
statistical distribution of idle-time periods over a channel is
collated and analysed to enable the model training and testing.
In performance evaluation of the three ML models which are
multilinear regression, k-NN, and RF, the RF based algorithm
outperforms the other two algorithms. It could be analysed
that RF provides best predictions in complicated scenarios
while k-NN and Multilinear regression provide benefits in
computational cost. As a preliminary work for efficient re-
source sharing, this work focused on the performance analysis
of different ML mechanisms to estimate the number of devices
operating in unlicensed bands. The findings could be utilized
in our future work, the design of the contention-based MAC
protocol operating in unlicensed bands.
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