
Evolving Understandable Cognitive Models
Peter C.R. Lane (p.c.lane@herts.ac.uk)

School of Physics, Engineering and Computer Science, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK

Laura Bartlett (l.bartlett@lse.ac.uk)

Noman Javed (n.javed3@lse.ac.uk)

Angelo Pirrone (a.pirrone@lse.ac.uk)

Fernand Gobet (f.gobet@lse.ac.uk)
Centre for Philosophy of Natural and Social Science, London School of Economics, Houghton Street, London WC2A 2AE, UK

Abstract

Cognitive models for explaining and predicting human perfor-
mance in experimental settings are often challenging to de-
velop and verify. We describe a process to automatically gen-
erate the programs for cognitive models from a user-supplied
specification, using genetic programming (GP). We first con-
struct a suitable fitness function, taking into account observed
error and reaction times. Then we introduce post-processing
techniques to transform the large number of candidate models
produced by GP into a smaller set of models, whose diversity
can be depicted graphically and can be individually studied
through pseudo-code. These techniques are demonstrated on
a typical neuro-scientific task, the Delayed Match to Sample
Task, with the final set of symbolic models separated into two
types, each employing a different attentional strategy.
Keywords: cognitive modelling, genetic programming, model
visualisation

Introduction
Developing and verifying the behaviour of cognitive models
is a non-trivial task. Ideally, a cognitive model will provide
some explanation of how a human performs in a particular
experimental setting, and even provide predictions for new
settings. In many cases cognitive models are based around
computer programs which need to be written. The area of
program synthesis studies ways to generate executable com-
puter programs from user specifications. In this paper we
demonstrate how an evolutionary algorithm can generate pro-
grams representing candidate computational models in a typi-
cal neuro-scientific experiment. We present techniques to im-
prove the understandability of the resulting programs, which
enables their use as the starting point for developing scientific
theories.

We use the evolutionary algorithm Genetic Programming
(GP) (Koza, 1992) to search a space of programs. The fit-
ness function guiding this search is designed to find programs
which effectively simulate the behaviour of human subjects.
Unlike many typical GP applications, this fitness function is
not based directly on an input-output mapping for the pro-
gram. In particular, human subjects do not achieve 100%
success in our example task, and so the ‘best’ model is one
which replicates this less-than-perfect accuracy. Also, as the
responses made by a human take a certain amount of physical
time, a simulated time for the program to convert each input
into an output must be measured and compared with the ob-
served response time. These two performance measures must

be captured in a combined fitness function: how to do this
effectively is the first contribution of this paper.

The GP system often generates a large number of candidate
models: we want to convert these into a small set of represen-
tative, understandable and qualitatively different models. We
achieve this with a series of post-processing steps to remove
unnecessary operators from the programs and remove dupli-
cates. Finally, the programs can be changed to pseudo-code,
for further analysis, and a visualisation made to highlight the
relationships between the final solutions. These techniques
form our second contribution.

Background
Cognitive modelling is a process in which computational
models of a target behaviour are sought in an attempt to
understand human behaviour. These computational mod-
els are typically developed within a given framework, such
as a symbolic (Simon, 1981) or connectionist (Rumelhart &
McClelland, 1986) framework. In this paper, we consider
a framework of symbolic models, typical of cognitive ar-
chitectures such as ACT-R (Anderson & Lebière, 1998) or
CHREST (Gobet & Simon, 2000). However, even within
a single framework, there are still many possible models
which could be developed, each with qualitatively different
behaviour. For example, the manner in which a visual scene
is scanned for information could be systematic and wide-
ranging, or task-oriented and narrow, and either way could
be sufficient for achieving the target performance: scientifi-
cally, it is useful to be aware of both possibilities, but often
time constraints or natural bias (oversights) lead to models
written by human programmers being constrained to particu-
lar groups of solutions.

Using search algorithms to explore a solution space for
one or more candidates is a technique with a long his-
tory (Langley, Simon, Bradshaw, & Zytkow, 1987; Schmidt
& Lipson, 2009). GP approaches to this exploration are also
widely known, although there appear to be few studies in the
area of cognitive science, exceptions being Frias-Martinez
and Gobet (2007); Lane, Sozou, Gobet, and Addis (2016).

Our approach using GP appears unique in developing
cognitive models which focus on symbolic, information-
processing (Simon, 1981) explanations of human cognition.

Cite as: P.C.R. Lane, L. Bartlett, N. Javed, A. Pirrone and F. Gobet, 'Evolving understandable cognitive models', in Proceedings of the 20th International Conference on Cognitive Modelling, 2022.

Cite as: P.C.R. Lane, L. Bartlett, N. Javed, A. Pirrone and F. Gobet, ’Evolving understandable cognitive models’, in Proceedings
of the 20th International Conference on Cognitive Modelling, 2022

Figure 1: Illustration of DMTS task. (Photos by Danny de
Bruyne and Ronaldo Taveira, freeimages.com)

This contrasts with many current approaches in artificial intel-
ligence which rely on connectionist (statistical) explanations
based on large datasets: a recent study in this area is that of
Peterson, Bourgin, Agrawal, Reichman, and Griffiths (2021).

Model Development System
Our proposed system for automatically developing cognitive
models is an example of program synthesis. Such systems
can be conveniently divided into three parts (Gulwani, 2010):
the task definition (user intent), to express what makes a good
program; a search space of candidate programs; and a search
technique, to explore the given search space for good pro-
grams. Here, the developed programs form the control struc-
ture for the cognitive models.

Task definition: DMTS
The task studied in this paper is a typical neuro-scientific ex-
periment, popular for studies of short-term memory, which
tests the accuracy and reaction time for subjects to recog-
nise images: this is the Delayed Match to Sample (DMTS)
task (Chao, Haxby, & Martin, 1999). In this experiment, il-
lustrated in Figure 1, a picture is presented for 1 second in the
center of the screen. Then, after a delay of 0.5 seconds, two
pictures are presented for 2 seconds, one on the left and the
other on the right of the screen. The participant has to select
which of those two pictures is the same as the first picture.

The cognitive model must coordinate the perception of
time-sensitive information with accurate responses within ex-
pected response times. We simplify the task by abstracting
away the recognition of images: we have six ‘images’, repre-
sented by the cardinal numbers from 1 to 6.

Although this task is an example of “programming-by-
example”, where the model must reproduce the example
input-output behaviour, the overall quality of the model is
not judged on the number of correct input-output pairs. As
reported in Chao et al. (1999), across the complete set of pre-

sentations, human subjects only score 95.7% accuracy, with
an average response time of 767ms: the model’s accuracy and
simulated response times are judged against these values.

Search Space: Cognitive Models
Each individual cognitive model is defined by a control pro-
gram to be interpreted within a simple cognitive architecture.
This architecture has some task-specific input/output com-
ponents: a set of inputs and a response. It also has some
task-independent components: a fixed-size short-term mem-
ory (STM), and a working memory current. Finally, each
model has a clock, to record its current in-task time.

The model control program is composed from a set of op-
erators, listed in Table 1. These operators define a simple im-
perative programming language, where operators can be com-
bined in sequence, selected with a conditional statement, and
repeated in fixed-cycle loops. The model’s current working
value, STM and clock values can all be manipulated, inputs
read and a response prepared: the current response is “made”
when the program ends. Operators are arranged in groups,
matching their simulated execution time (based on estimates
from the psychological literature): input operators (100ms),
output operators (140ms), cognitive operators (70ms), STM
operators (50ms) and syntax operators (0ms).

Search Technique: Genetic Programming
Genetic Programming (GP) (Koza, 1992) is an evolutionary
search technique which works by creating a population of
candidate solutions and then gradually evolving this popu-
lation through several iterations until a termination condition,
such as the number of iterations, has been met. The evolu-
tion step is loosely based on biological evolution, with can-
didate solutions selected based on their fitness. New candi-
date solutions are created from existing candidates through
the processes of crossover and mutation, which respectively
combine or modify existing solutions.

Fitness Function The fitness function is used to rank dif-
ferent candidate solutions when choosing which candidates
should be combined or used when the GP process constructs
the next population. The fitness function used here is con-
structed from three components: accuracy, response time and
program size. Accuracy is the overall performance of the
model, based on the proportion of input-output pairs that it
gets correct: accuracy is assessed in the range [0,1]. Re-
sponse time is measured in simulated milliseconds, and pro-
gram size is the number of operators in the control program.

As described above, accuracy is compared with the perfor-
mance of human subjects: the closer the value of accuracy
is to 0.957, the better it is. Similarly, the closer the value of
the response time is to the target average of 767ms, the better.
For response time, because the values can become large, we
use a half-sigmoid function to rescale the numbers into the

Table 1: Overview of operators used in DMTS models.
Name Function Type

input-X sets model ‘current’ to value of left/right/target input, if it is visible input
respond-X sets model ‘response’ to “R”/“L”, if inputs are visible output
access-N sets model ‘current’ to STM item N (N ∈ {1,2,3}) stm

compare-M-N compares value of STM items M and N (M̸=N ∈ {1,2,3}) cognitive
and sets ‘current’ to 1 if equal, or 0 if not

nil sets model ‘current’ to 0 cognitive
put-stm pushes value in model ‘current’ to top of STM stm

dotimes-N repeats a given expression (N ∈ {2,3,5}) syntax
if executes condition, executes one of two expressions syntax

based on value in model ‘current’
prog-N sequence of expressions (N ∈ {2,3,4}) syntax
wait-N advances model clock (N ∈ {25,50,100,200,1000,1500}) syntax

range [0,1]. Program size is treated like response time, with
an arbitrary target of 10 operators. All three components are
evaluated so that values closer to 0 indicate a ‘better’ fitness.

Formally, the three components of the fitness function are:

1. fa = |accuracy−0.957|/0.957: this is the difference of the
model’s and target accuracy, scaled to the range [0,1].

2. ft = half-sigmoid(|response-time−767|/RT): this is the
difference of the model’s and target response time, with a
variable scale factor RT .

3. fs = half-sigmoid(|program-size−10|/PS): this is the dif-
ference of the model’s and an arbitrary target program size
of 10, with a variable scale factor PS.

where half-sigmoid(x) = 2× (1/(1+ e−x)−0.5) is the usual
sigmoid function which we rescale from [0.5,1] to [0,1], be-
cause all our values of x are positive. The variable scale fac-
tors in ft and fs control the steepness of the sigmoid slope.

The overall fitness is computed as a combination of these
three, with multipliers a+b+ c = 1 ensuring that the overall
fitness is in the range [0,1]:

f = a× fa +b× ft + c× fs

Phased Evolution In earlier experiments, GP struggled to
find solutions using this overall fitness function. The diffi-
culty appeared to be that the requirement to minimise pro-
gram size or meet a target response time would override the
need to observe and predict a correct response. Hence, the
idea of what we call phased evolution was created, to break
this multi-component problem into stages. The evolutionary
process is separated into three phases based on which of the
three components are used in the fitness function: phase 1
uses one component (fa), phase 2 uses two components (fa
and ft), and phase 3 uses all three. The system starts in
phase 1. It moves to the next phase when the best model’s
fitness is less than a threshold value (0.1 here).

More precisely, in:

Phase 1 fitness f = fa

Phase 2 fitness f = (a× fa +b× ft)/(a+b)

Phase 3 fitness f = a× fa +b× ft + c× fs

The intention of this phased introduction of fitness com-
ponents is that the GP system should first evolve models to
perform accurately on the task, when compared to the tar-
get behaviour. Once models have been created which meet
the required threshold (f < 0.1), then they must additionally
match the required reaction time. When the final component
is added in, the GP system should already have a population
of models able to achieve good accuracy and response times,
and can now concentrate on reducing the size of the models.

Post-Processing
Genetic programming (GP) is highly effective at locating can-
didate programs which fit target behaviour in complex appli-
cations. However, the range of interesting solutions is ob-
scured by the large number of evolved candidates, formed
from a combination of dead code (bloat), functionally similar
program segments with varying contents, and genuine differ-
ences in possible solutions. In order to make the candidate
programs more understandable, we introduce a series of post-
processing steps to generate fewer, high-quality solutions.

Dead code removal
A standard problem with GP systems is that of
“bloat” (Langdon & Poli, 1998): an example of bloat
is where programs contain operators which are not executed
when the task is run. This dead code can occupy the majority
of a program, frequently over 90%. One way to remove dead
code is to add the program size as one of the components in
the fitness function. However, as we find in our experiments,
this is not completely effective.

A more effective way to remove dead code starts by trac-
ing the operation of each evolved program on our task and
recording those parts of the program which are not executed:
it is important that our task is deterministic so this can be done
reliably. All non-executed code is then replaced with the spe-
cial node “UNUSED”. Conveniently, all non-executed code

must be on one branch of an IF-statement: the code is not
run because the condition on the IF-statement always returns
a value which uses just one branch of the IF-statement. For
example, if some CONDITION always returns a true value,
its else branch will never be executed:

(IF (CONDITION) (SOME-CODE) (UNUSED))

The programs can be simplified by replacing all such code
to remove the UNUSED branch:

(PROG2 (CONDITION) (SOME-CODE))

The condition must still be executed as it could contain
side-effects and takes up some execution time, which is criti-
cal for the timing performance of the model.

This step helps in two ways:

1. The population of candidate models is reduced dramati-
cally, by removing those which differ only in the contents
of the dead code.

2. Each individual model is simplified, with only important
parts of its control program remaining.

Time-only code removal

There is a further aspect of the candidate models which can
be simplified. As the model is optimised to perform against
time, some of the operators within the control programs can
be important only for their timing – they do not affect the
performance. For example:

(PROG2 (INPUT-LEFT) (INPUT-RIGHT))

In this program, the model first looks at the left input, and
then looks at the right input. The second operation will al-
ways override the behaviour of the first operation, and hence
the first operation only affects the model’s clock and not its
accuracy. Other operators could be used in place of INPUT-
LEFT to take up a similar amount of time, e.g. INPUT-
RIGHT, but these would, superficially, look like different
models. However, by replacing each operator with a specific
WAIT operator we get the same timing and performance be-
haviour but with a clearer model. i.e. the previous example is
replaced with:

(PROG2 (WAIT-INPUT) (INPUT-RIGHT))

This step has two advantages:

1. The programs of the candidate models are made clearer,
with all time-only operations written as WAIT- operators.
This improves the comprehensibility of the final model.

2. Behaviourally similar models have syntactically similar
control programs. This means more redundant models can
be removed from the candidate models.

Pair-wise similarity
Clustering and visualisation can be helpful to understand the
models’ programs as a group. We introduce a pair-wise simi-
larity measure between programs to make this possible. Each
program is separated into a set of node+child-labels seg-
ments. For example, the following program is converted into
eight segments of two parts and six individual node names:

(if (access-1)
(prog2 (input-right) (input-left))
(input-target))

parts: (if access-1 prog2 input-target)
(prog2 input-right input-left)

names: if access-1 prog2 input-target
input-right input-left

The pair-wise similarity (Jaccard Index) divides the num-
ber of common segments in the two programs (the set inter-
section) by the total number of segments (the set union).

Pseudo-code
As shown in the preceding examples, individual models are
represented internally as abstract-syntax trees: we can rewrite
each model in a more readable pseudo-code. Although not
fully automated, this step also combines consecutive WAIT
operators, further simplifying the models. An example is
shown in Figure 4.

Simulation Experiments
Table 2 shows a typical set of results, where we have var-
ied the hyperparameters a, b, c and RT , with each run us-
ing a population of 500 individuals and 2000 generations.
Recorded are the generation and performance measures for
the best models found in each run. Most of the runs produced
“good” models, with excellent fits to both accuracy and re-
sponse time. However, due to the stochastic nature of the
search algorithm, the last two runs failed to converge: over
5 repeats of the 6 shown sets of parameters, 5 runs failed to
converge to a model with good accuracy, and a further 9 runs
failed to converge to a good model of response time.

Phases in evolution
Table 3 gives summary statistics on which generation each
phase was reached. In some cases phases 2 and 3 were
reached very quickly, in less than 100 generations.

By analysing results against generation, we can investigate
how the phases affect or reflect changes in the fitness func-
tion. Figure 2 shows overall fitness, fa, ft and fs against gen-
eration number for the best model in each generation, for the
first 100 generations.

Phase 1 of evolution lasts only up to generation 10, where
the accuracy is optimised (the red line). As the accuracy im-
proves, it improves the overall fitness (the green line) beyond
the threshold of 0.1, and phase 2 begins.

Table 2: Table of results from ‘phased’ evolution simulation (PS = program size parameter).
a b c PS Generation Fitness (f) Accuracy Response Time Program Size

0.80 0.1 0.10 100 202 0.040 1.00 775.0 17
0.85 0.1 0.05 100 376 0.040 1.00 770.0 26
0.89 0.1 0.01 100 491 0.040 1.00 830.0 18
0.80 0.1 0.10 500 176 0.040 1.00 760.0 17
0.85 0.1 0.05 500 78 0.140 0.92 8695.0 53
0.89 0.1 0.01 500 56 0.140 1.00 8595.0 72

Table 3: Generation when phase reached (out of 30 runs).
Phase Frequency Minimum Maximum Average

2 25 6 271 79.28
3 16 55 1529 294.56

Figure 2: Progress of fitness against generation for the best
model. Only the first 100 generations out of 2000 are shown.

Phase 2 lasts from generation 10 to 60, and optimises both
accuracy and response time (the blue line). Around genera-
tion 50 the response-time accuracy starts to improve, as does
the overall fitness. As the threshold of 0.1 is crossed by the
best model, phase 3 begins. Notice how the program size ap-
pears to grow from generations 20 to 50 before the response
time can begin to improve. Due to the phased introduction of
the components, this increase in program size does not affect
the fitness.

Phase 3 lasts from generation 60 to the end. As is evi-
dent in Figure 2, there are still some gains to be made in the
response-time, which falls to an almost negligible error by
generation 90, and, en passant, halves the overall fitness. The
main change from this point is a steady reduction in program
size: when phase 3 starts, at generation 60, the best model has
46 nodes, whereas by generation 2000 the best model only
has 24 nodes, almost halving its complexity.

Effects of post-processing
Combining the candidate models from each of the six runs
means the GP system produces 1164 distinct models with a

Figure 3: Visualisation of model diversity: Model distance is
inverse of similarity.

good fitness value (less than 0.1). This set of models is too
large to analyse and understand. In particular, the programs
are obscured with bloat (only 40% of the population has less
than 10% dead code) and the intention of different parts of the
solution (to solve the accuracy or the reaction-time) is hidden.

Our two post-processing techniques reduce this number
dramatically: removing the dead-code leaves 248 distinct
models, and further removing the time-only operators reduces
these to 11 distinct models.

Visualisation of models
Figure 3 depicts model diversity in a graphical form, using
multi-dimensional scaling to convert pair-wise similarity into
cartesian coordinates. What is most striking about this image
is that the models have split into three distinct groups. The
top model is an outlier, there are three models in the left-hand
group, and the remaining seven models are in the right-hand
group. Figure 4 shows an example from the left-hand group.

Analysing the pseudo-code of these models helps to under-
stand the two types of solution. One (shown in Figure 4) uses
a fixed delay between reading the target and the input: ini-
tially the model reads the target, then places this into STM.
The model then uses a loop to wait the required time before it
can see the input, followed by some processing to set up the
appropriate response. The second type uses a more general
perceptual loop, which tries to first read the target and then
the input stimulus in turn. Because of how the environment

if target is visible:
set model ’current’ to target

wait for 140ms
push model ’current’ onto top of STM
loop 3 times:
loop 5 times:

if stimuli are visible:
set model ’current’ to left input

if stimuli are visible:
set model ’response’ to "R"

push model ’current’ onto top of STM
if first item in STM equals second item:
set model ’current’ to 1

else:
set model ’current’ to 0

if model ’current’ is 1:
if stimuli are visible:

set model ’response’ to "L"
else:

wait for 70ms
wait for 70ms

Figure 4: Example Program: Pseudo-Code

timings work, the input stimuli will only be available in a later
loop of the program and so the model will arrange the target
and input in its STM as required to complete the task.

The remaining models fit these patterns, mostly with neg-
ligible differences in the ordering of operations and whether
the model looks at the left or right stimulus. The outlier model
is a variation on those of the second kind, but uses one outer
loop repeated multiple times, rather than having a long delay
within the outer loop, as in the second kind of model.

A concern when confronted with these multiple
automatically-generated models is whether they are ex-
plainable or qualitatively match human behaviour. This is
a topic we intend to address with improved heuristics and
constraints in the GP system. However, we do not see the
system as standing in isolation, but as a tool to aid the cog-
nitive scientist. The system generates a range of candidate
models, and the cognitive scientist using the system has the
responsibility to select from or modify the generated models
to create a final model and/or theory.

Discussion
A weakness of our approach is that the empirical data are
the result of averaging across several individuals (e.g. Gobet,
2017; Gobet & Ritter, 2000; Siegler, 1987): one model rep-
resents that average individual. One way to simulate group
behaviour is to modify GP to manage several programs in-
stead of just one; each program would represent a single per-
son, and the average performance of these programs would
be compared to the given average.

However, more recently, psychologists have begun to pub-
lish more of their empirical data, including the performance

of individual subjects. The analysis process developed in this
study can use runs capturing not just one but multiple sub-
jects, and combine the candidate solutions to see how similar
or different the behaviour of different individuals is. In par-
ticular, as of now, the ‘preferred’ type of data are choice and
reaction times, which are extremely popular outputs in fields
such as decision making or psychophysics, and will be areas
where the approach in this paper should be beneficial.

Further areas for future work include a co-evolution
approach, to optimise the operator time parameters, and
domain-specific heuristics for the GP algorithm.

Acknowledgements
This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant agreement
No. ERC-ADG-835002).

References
Anderson, J. R., & Lebière, C. (Eds.). (1998). The atomic

components of thought. Mahwah, NJ: Lawrence Erlbaum.
Chao, L., Haxby, J., & Martin, A. (1999). Attribute-based

neural substrates in temporal cortex for perceiving and
knowing about objects. Nature Neuroscience, 2, 913–20.

Frias-Martinez, E., & Gobet, F. (2007). Automatic generation
of cognitive theories using genetic programming. Minds
and Machines, 17, 287–309.

Gobet, F. (2017). Allen Newell’s program of research: The
video game test. Topics in Cognitive Science, 9, 522–532.

Gobet, F., & Ritter, F. E. (2000). Individual data analy-
sis and Unified Theories of Cognition: A methodological
proposal. In N. Taatgen & J. Aasman (Eds.), Proceedings
of the Third International Conference on Cognitive Mod-
elling (pp. 150–57). Veenendaal, The Netherlands: Uni-
versal Press.

Gobet, F., & Simon, H. A. (2000). Five seconds or sixty?
Presentation time in expert memory. Cognitive Science,
24, 651–82.

Gulwani, S. (2010). Dimensions in program synthesis. In
Proceedings of the 12th international ACM SIGPLAN sym-
posium on principles and practice of declarative program-
ming (p. 13-24).

Koza, J. R. (1992). Genetic programming: On the program-
ming of computers by means of natural selection. Cam-
bridge, MA: MIT Press.

Lane, P. C. R., Sozou, P. D., Gobet, F., & Addis, M.
(2016). Analysing psychological data by evolving compu-
tational models. In A. Wilhelm & H. Kestler (Eds.), Anal-
ysis of large and complex data. Studies in classification,
data analysis, and knowledge organization (pp. 587–97).
Springer, Cham. doi: 10.1007/978-3-319-25226-1 50

Langdon, W. B., & Poli, R. (1998). Genetic program-
ming bloat with dynamic fitness. In W. Banzhaf, R. Poli,
M. Schoenauer, & T. C. Fogarty (Eds.), European confer-
ence on genetic programming: Eurogp (pp. 97–112).

Langley, P., Simon, H. A., Bradshaw, G., & Zytkow, J.
(1987). Scientific discovery: Computational explorations
of the creative processes. Cambridge, MA: MIT Press.

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman,
D., & Griffiths, T. L. (2021). Using large-scale experi-
ments and machine learning to discover theories of human
decision-making. Science, 372, 1209 - 1214.

Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986). Paral-
lel distributed processing (Vol. 1 and 2). Cambridge, MA:
MIT Press.

Schmidt, M., & Lipson, H. (2009). Distilling free-form nat-
ural laws from experimental data. Science, 324.

Siegler, R. S. (1987). The perils of averaging data over strate-
gies: An example from children’s addition. Journal of Ex-
perimental Psychology: General, 250–264.

Simon, H. A. (1981). Information-processing models of cog-
nition. Annual Review of Psychology, 30, 363-96.

