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Abstract. The Elliptical Plane has been recently introduced as a modal 

identification method that uses an alternative plot of the receptance. The 

method uses the dissipated energy per cycle of vibration as a starting point. 

For lightly damped systems with conveniently spaced modes, it produces 

quite accurate results, especially when compared to the well-known 

method of the inverse. When represented in the Elliptical Plane, the shape 

of the receptance is elliptical near resonant frequencies. The modal 

damping factor can be determined from the angle of the ellipse’s major 

axis with the horizontal axis, whereas the real and imaginary parts of the 

modal constants can be determined from numerical curve-fitting (as in the 

method of the circle - Nyquist plot).  However, the lack of points that can 

be used near the resonance (due to limitations in the frequency resolution, 

and effects from other modes near each resonance) and the fact that 

measurements are polluted by noise, bring uncertainty to the numerical 

curve-fitting. This paper aims at providing the first steps on the 

improvement of the quality of the modal identification of the receptance in 

the Elliptical Plane. The method and results are discussed with a multiple 

degree-of-freedom numerical example.  

1 Introduction  

The existing to date modal identification procedures cover different levels of sophistication. 

For example, the issue of determining the modal damping factors has recently been 

presented [1] from a different perspective, where the starting point was the dissipated 

energy per cycle of vibration rather than the governing equations of the dynamic motion. 

The proposed methodology was based on a special plot of the receptance, whereby the 

vertical axis is the sine of the phase angle and the horizontal axis is the amplitude. This plot 

has special properties, one of which is that the data points around a resonant frequency 

describe a loop that resembles the half of an ellipse [2]. For this reason, this special plot 

was named as the ‘Elliptical Plane’ of the receptance. It was also shown that the major and 

minor axis of the ellipse are related to the modal constants. 
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The Elliptical Plane method works quite well when in the presence of conveniently 

well-spaced mode shapes [1, 2], a common feature to other modal identification methods 

[3]. However, the determination of the modal properties in the Elliptical Plane is based on 

numerical extrapolation of the ellipse, which means that both the noise and the frequency 

resolution play a key role on the results. If different curve-fitting methods are used, results 

may be slightly different or can even fail by rendering straight lines or hyperbolas. 

Actually, in real scenarios where not many points are available, there can be a wide range 

of equally good solutions for the same problem. 

2 Theoretical development 

2.1 Hysteretic damping in the Elliptical Plane 

It is possible to show that the energy dissipated per cycle of oscillation dissW  for an 

oscillatory force with amplitude ( )F   for an angular frequency   is given by the ellipse 

area of the force-displacement plot during a complete cycle [4, 5], which can be written as:  

 ( ) ( ) ( ) ( ) ( )2 2 sindissW hX kX F X        = = =     (1) 

where k  is the stiffness, h  is the damping coefficient, ( )X   is the amplitude of the 

displacement response,  is the damping factor and ( )   is the phase angle between the 

force and the response. From equation (1), and considering harmonic motion, the following 

relationship can be established: 
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where the ratio ( ) ( )X F   is the amplitude ( )H   of the complex receptance 

( )   (for harmonic motion). If we now drop the dependency on  for a matter of 

convenience, Equation (2) can be re-written as: 

 ( )sin hH =  (3) 

Once the stiffness is known (which can be determined, e.g., from the method of the 

inverse [6]), the hysteretic damping factor can be determined from equation (1), i.e., 

h k= . The determination of the damping factor and the generalisation to Multiple 

Degree-of-Freedom (MDOF) systems is addressed in detail in [1]. 

2.2 Modal constants in the Elliptical Plane 

If the modes are sufficiently spaced in the frequency domain, and at the vicinity of a 

resonance r , the influence from other modes is small when compared to the resonant 

mode [3]. Therefore, the receptance of a MDOF system can be approximated by: 
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where RA  and IA  are the real and imaginary parts of the modal constant, respectively, and 

r  and r  are the hysteretic damping factor and angular natural frequency, respectively, 



for mode r , N  is the number of Degrees-of-Freedom (DOFs) and 1i = − . Equation (4) 

resembles the equation of a Single DOF (SDOF) system with a complex modal constant. 

 

Away from the natural frequency (i.e., 2

2 0r − ), and considering, for better 

convenience, a lightly damped system where 0r  , equation (4) can be simplified to: 
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If the receptance is represented in the Argand plane, then the phase 
r   is related 

to the imaginary 
r

I 
  and real 

r
R 

  parts of the receptance. Thus, in the x H  vs 

( )siny   plane this becomes: 
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When at the natural frequency, i.e., when , equation (4) achieves its maximum 

value and the amplitude of the receptance at the resonance is: 
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which, when solved for RA , becomes: 
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If one solves equation (6) for IA  when having equation (8) in consideration, and after 

some mathematical manipulation, this results in: 
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2.3 Numerical curve-fitting methods 

An ellipse as a particular case of conic can be described [7, 8] by the scalar product 

between the vector of coefficients  , , , , ,a b c d e f=c and the vector  2, , , ,x xy y x y=v by: 

 
( ) 2

c 0F ax bxy cy dx ey f=  = + + + + + =v c v  (10) 

subject to acb 42  . The function ( ) ( )x,yFF =vc  represents the algebraic distance from a 

point ( )x,y  to the conic. The fitting problem [9] can be approached by the use of a least 

square fitting (LSF) method based on the minimisation of the sum of the squared algebraic 

distances of the points ),( ii yx  to the conic: 
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with either 1=+ ca  [10], 1
2

1 22 =++ cba  [7], or acxcx 221 =−+−  [11] 

where 1c and 2c are the two foci of the ellipse and the norm in this case is calculated using a 

Mahalanobis distance. An iterative approximation method [7] through a better estimated 

geometric distance can be expressed by either one of the following two: 

 

( )
( )

( )

2

2 2
1

x

n

k

F
D

F=


=

 


i

i

c v
c

c v
[12] or ( )

( )

( )

2

1

3
2

x

1

n

i

n

k

F

D

F

=

=





 





i

i

c v

c

c v

[13] (12) 

 The approach in [8, 14] replaces the constraint acb 42   by the equality acb 412 =+  

and reformulate the fitting problem as: 
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where the matrices H and Dare expressed as in [14] by: 
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3 Numerical example 

A 2-DOF numerical model (a case from [2] with the theoretical properties shown in table 1) 

was used to test how the improved numerical curve-fitting method perform. The Elliptical 

Plane modal identification method [2] procedure assumes that the mode shapes are 

conveniently spaced, so that the influence from mode shapes at the vicinity of the mode 

shape being identified is as little as possible to be neglected. 

Table 1. Numerical model’s theoretical properties. 

Mode 

number RA  IA  (%)r  Amplitude 

1 (20.4Hz) 1000 -500 1 6.805 

2 (50.25 Hz) 2000 -1200 5 0.4679 

 

When represented in the Elliptical Plane with x H  vs ( )siny   axes, the 

receptance takes an elliptical form near the resonant frequencies (figure 1) [2]. Since 

different methods may result in distinct best-fitting ellipses or even hyperbolas when 

“bad/noisy” data is used, the uncertainty in the modal identification can be only addressed 

by using the most adequate method. Restricting the best fit to the horizontal limits -1 and 1 

(due to the properties of the Elliptical Plane described in [2]), this can be seen in figure 2 

where distinct best-fitting ellipses have been obtained for the two sets of data from two 



different fitting methods, namely: the least squares method without any weights [9] 

presented in equation (11); and, the computationally efficient (and robust to noise) direct 

approach [14] shown in equation (13). 

 

   
 (a) (b) 

Figure 1. Amplitude and phase of the 2-DOF receptance case in table 1: (a) frequency domain; (b) 

Elliptical Plane 
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Figure 2. Best-fitting ellipses using the LSF method in equation (11) and the iterative method in 

equation (13): (a) data set 1, and (b) data set 2. 

 

 As a general rule, different methods such as conic residual or proximity methods render 

different ellipses. Independent of the methods used, almost elliptical distribution of the data 

points generate good and similar fits [8, 15], while a more noisy distribution may render  

different sets of ellipses or can even fail by rendering straight lines or hyperbolas [8]. In this 

case, since data is simulated and has no added noise, both methods produced very similar 

results. The results obtained from both methods were averaged and are shown in table 2. 

 

Table 2. Averaged numerical results from the modal identification in the 15–25 Hz and 45–55 Hz 

ranges (values between brackets are the percent error committed). 

Mode 

number RA  IA  (%)r  Amplitude 

1 (20.4Hz) 
994.6 

(e=0.5%) 

-468.2 

(e=6.4%) 

0.9769 

(e=2.3%) 

6.849 

(e=0.6%) 

2 (50.25 Hz) 
2322 

(e=16.1%) 

-1424 

(e=18.7%) 

6.484 

(e=29.7%) 

0.4215 

(e=9.9%) 



 Comparison of table 2 with results obtained in [2] for the same data points, show that, 

in general, the combination of the two methods introduced in this paper generally 

contributed to the improvement of the results, with a reduction on the average error from 

19.1% to 10.5%. It is important to that only one modal identification iteration was 

conducted. 

4 Conclusions 

The Elliptical plane method recently proposed for modal identification from the receptance, 

presented questions with regards with the quality of the numerical curve-fitting being used. 

In this paper, a combination of a least squares fitting (LSF) using a Mahalanobis distance 

and an iterative approximation method was explored. It is shown that there may be multiple 

solutions for the same problem, especially when the data points are sparse. However, the 

approach allows determining a range of values, which means that we can take the ‘answer 

in the middle’ as the solution to our problem. For future work, besides incorporating the 

possibility of the modal identification approach to be iterative (as in  [2]), noisy data and 

experimental results will be used. Since different curve-fitting methods may yield different 

results, it will become appropriate to quantify confidence intervals rather than single point 

solutions. Also, since the elliptical shape of the receptance (in the vicinity of a resonant 

frequency) when represented in the ‘Elliptical Plane’ depends on both local and global 

modal properties, then it is reasonable to assume that this representation of the FRF can be 

used in other fields, such as in Structural Health Monitoring. 
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