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Abstract

We study the problem of measuring time given strongly limited
resources using Markov chains interpreted as clocks. More
precisely, we assume the existence of an accurate short-scale
time tick and are interested how to measure larger time scales
with informationally limited memory. We use Information
Theory to uncover novel behaviour of clocks with a small state
space.

Introduction
Most living organisms have a biological clock (Bloch et al.,
2013) called the circadian rhythm. In cyanobacteria, the
circadian clock is only made up of three proteins and is
so simple that it has been reconstituted in vitro (Nakajima
et al., 2005). Inspired by this minimalistic clock, we build
small machines that give an agent information about time.
An obvious mechanism for the agent’s clock would be a
switch that flipped back and forth at each tick. This would
be able to provide one full bit of information about current
time; however, this is a purely local characterization, as it
distinguishes only odd and even times. We are studying to
which extent more global time information can be achieved
with a limited clock. Because of this, our approach uses
probabilistic machines and we study their effectiveness using
Information Theory.

Previous Work
The Information Bottleneck Method (Tishby et al., 1999) is a
method to filter information by relevance. Time measuring
dynamics can emerge as side effect of other information
processing in minimal agents (Klyubin et al., 2007).

Investigations
One of the machines which we study in most of our ex-
periments is inspired by physical decay processes whereby
excited particles have a probability to transition to a ground
state. This machine, which is illustrated in Fig. 1 can be fully
described by its state, either up or down, and by its decay
parameter, α, which is the probability of transitioning from
the up state to the down state.
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Figure 1: Drop machine

Fig. 2 shows I(state; time), the amount of information
that would be gained about time from measuring the state of
the machine, given various α and T (lengths of time that are
of interest).
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Figure 2: I(state; time) for various α and T

Consider a vertical slice in Fig. 2 at T = 20. Surprisingly,
the information curve does not always have a unique maxi-
mum (Fig. 3). Plotting I(state; time) shows an inflection in
the graph.

We can explain this by classifying time into relevancy
variables. In this paper, we use relevancy variables as a
kind of filter; to hide details in the probability distribution
of t by partitioning its state space. One relevancy variable
divides t into two halves, while the other divides the space
into alternating parts. This breakdown is plotted in Fig. 3.
The explanation is that the two maxima belong to different
relevancy variables.

Consider now argmaxα I(state; time), the optimal α
for various T (Fig. 4). This reveals two different regimes
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Figure 3: Mutual information between the Drop machine and
time for a timespan of 20 ticks.

separated by a discontinuity at T ≈ 15: for smaller T ,
argmaxα = 1, while for larger T the optimal parameter fol-
lows the expected monotonically decaying relation. This
discontinuity comes from the different maxima shown in
Fig. 3.
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Figure 4: Optimal Decay Parameter for Drop machines

Finally, we “evolve” a cascade of independent clocks. The
experiment is started without any clocks and the collection is
built up one clock at a time. Before being added to the col-
lection, each clock is optimised to provide the most amount
of information given all clocks already in the collection and
then committed permanently. The machine used in this ex-
periment is the Flip-Flop machine, a generalisation of the
drop machine which is allowed to decay back to the up state
with a probability β. T is set to 5. As the collection grows,
so does I(states; time) (Fig. 5). The first clock is trivially
the oscillator, but all subsequent additions turn out to be pure
drop machines (Fig. 6). The first two add ∼ 1.5 bits, while
every subsequent clock adds significantly less.

Discussion
We investigated the characteristic properties of a minimal
probabilistic automaton used to measure extended time inter-
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Figure 5: Amount of information as the size of the collection
grows
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Figure 6: Parameters for the first 10 machines that are found
for T = 5

vals. We find intricate dynamics already in the case of 2-state
automata.
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