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1. Introduction

3D printing, also known as additive manufacturing, encompasses
a range of technologies used to fabricate 3D objects based on digital
designs.[1] Originally developed for engineering, this technology is
now being explored for manufacturing medicinal products to
address patient heterogeneity and the health disparities stemming
from the current one-size-fits-all treatment approach.[2] 3D printing
enables the production of small batches of medicines tailored to
individual patients, facilitating the production of personalized

medications, something conventional
technologieswhich were designed for large-
scale manufacturing,struggle to achieve.
Subsequently, recent clinical trials have been
conducted to investigate personalized 3D-
printed dosage forms.[3]

Selective laser sintering (SLS) is a pow-
der bed fusion 3D printing technology that
primarily utilizes carbon dioxide lasers to
fuse powder particles.[4] SLS has proven
highly effective for 3D printing medicines
due to its simplicity, versatility in produc-
ing various drug delivery systems, and its
suitability for large-scale production.[5] Its
success is further attributed to its ability to
create complex 3D objects without the need
for support structures and using powder
feedstock materials without solvents.[5] As
a result, SLS has been successfully applied
in the development of various drug delivery
systems and has recently been trialed in
humans for the first time.[6] Despite its
advantages and ability to outperform conven-
tional drug manufacturing methods,[7] trans-

lating 3D printing technologies into widespread pharmaceutical
use has been slow. This is partly due to the challenges in formu-
lating medicines compatible with 3D printing technologies, which
were not initially designed for this purpose. Consequently, the cur-
rent development of 3D-printable medicines relies on a trial-and-
error approach, dependent on user expertise. This method is itera-
tive, time-consuming, expensive, and wasteful.[8]

Machine learning (ML), which leverages data for learning
rather than relying on explicit programming, has gained signifi-
cant interest in pharmaceutical manufacturing, enabling the
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3D printing offers a promising approach to creating personalized medicines.
However, costly, expertise-dependent trial-and-error methods hinder efficient
drug formulation, posing challenges for tailoring treatments to individual
patients. To address this, a novel pipeline is developed for 3D printing using
selective laser sintering (SLS), replacing laborious steps with advanced
computational methods. A differential evolution-based optimizer generates for-
mulations for the desired drugs, while a deep learning ensemble predicts the
optimal printing parameters along with associated confidence intervals. Manual
handling is only required for the final formulation preparation and printing
processes. The pipeline successfully generates diverse formulations, composed
of a wide variety of materials and with high printability probabilities. This was
validated by successfully printing 80% of the generated drug formulations and
achieving 92% accuracy in predicting printing parameters. Notably, the time
required to develop and print a new drug formulation is decreased to a single day.
This study is the first to demonstrate a semiautomated, 3D printing drug for-
mulation design and printing parameter selection pipeline. Furthermore, the
pipeline is not limited to SLS printing but can also be adapted for the optimization
of other 3D printing technologies or formulation platforms.
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development and optimization of complex drug delivery
systems.[9] In the context of 3D printing, ML has shown
remarkable success, facilitating the prediction of whether drug
formulations can be 3D printed,[10] optimizing printing
parameters,[11] and determining the properties of 3D-printed
medicines.[10b,12] For SLS printing, previous studies have
demonstrated the ability to predict whether formulations can
be successfully SLS printed.[13] Notably, we have developed a
deep learning (DL) ensemble model capable of predicting print-
ability with over 90% accuracy.[13c] However, no studies have
explored the prediction of optimal printing parameters for
SLS printing of medicines. Two key parameters- the printing
temperature and laser scanning speed - must be optimized dur-
ing SLS printing. As a result, even if a formulation is printable,
parameter optimization remains iterative and resource-intensive.
Moreover, designing formulations to predict their printability
relies heavily on scientific expertise. If a formulation is unprint-
able, scientists must use their heuristic knowledge to develop a
new formulation, requiring significant experience to do so accu-
rately and often leading to inefficient experimental loops of
refinement and testing. Currently, no robust methods exist for
generating drug formulations for 3D printing. Due to the com-
plexity of drug formulations and the limitations of available data,
only one study to date has attempted to generate 3D-printed drug
formulations, though with limited exploration and success.[14]

These challenges must be addressed before the full potential
of SLS printing in pharmaceutical applications can be realized.

To address these challenges, building on our previous
work,[13b] we developed a novel DL and differential evolution
(DE)-based pipeline to automate the SLS drug formulation design
and printing parameter selection process. To overcome formula-
tion design and optimization issues, we propose a system that
allows researchers to input a nonprintable formulation or an
unformulated drug into the algorithm, which then generates
an optimal formulation for SLS printing. To address the challenge
of determining printing parameters, we developed DL models
capable of predicting these parameters with associated confidence
intervals. By eliminating human intervention in the initial trial-
and-error loop and automating the iterative process of designing
formulations, while only requiring human input in the final
formulation preparation and printing stage, our pipeline demon-
strates the ability to both generate new formulations and optimize
nonprintable formulations to make them printable. We validated
this approach by successfully printing 80% of the generated for-
mulations and achieving 92% accuracy in predicting printing
parameters. This demonstrates the first optimized and automated
drug formulation process. This technology has broad applicabil-
ity, extending to other 3D printing technologies and other drug
formulation challenges, and presents the first step towards more
efficient drug design and development.

2. Results and Discussion

2.1. Automating the Formulation Design and Printing
Parameter Selection Processes

Currently, SLS printing follows a two-step process shown in
Figure 1A. A formulation scientist designs a new formulation

for their drug, which is then inputted into a neural network
(NN) to predict printability. If the formulation is unprintable,
the researcher must iteratively design and trial new formulations
until a printable one is identified. Once a formulation is consid-
ered printable, the printing parameters required for successful
printing - the printing temperature (ranging from room
temperature to 300 °C) and laser scanning speed (ranging from
0–500mm s�1)- are still unknown. Therefore, the researcher
must conduct multiple printing trials, varying printing parame-
ters until successful printing is achieved; this process can take
multiple weeks. Both formulation design and parameter optimi-
zation rely heavily on user expertise, making this process
time-consuming, wasteful, and costly. To circumvent this, our
proposed pipeline, shown in Figure 1B, reduces the need for
expertise and the trial-and-error approach. In this streamlined
process, a new formulation, or an unformulated drug, is inputted
into the NN to predict printability. If the formulation is unprint-
able, it is passed to our optimizer, which modifies the formula-
tion to make it printable. Once the formulation is printable, it is
inputted into NNs that predict the optimal printing temperature
and laser scanning speed. The optimized formulation and its
printing parameters can then be used by formulation scientists
to successfully print the pharmaceutical drug product, eliminat-
ing the most time-consuming steps in the 3D printing process.
This entire workflow can be completed within a day, with only
the final formulation preparation and printing requiring manual
input.

2.2. DE is the Best Formulation Optimizer

The formulation optimizer is an integral component of our pipe-
line (Figure 2). Briefly, an unknown formulation or drug to be
formulated is inputted into the optimizer, which proposes a
new formulation. The optimization problem is framed as a con-
strained maximization task to determine the most printable
formulation. The optimizer generates a candidate formulation,
which is then inputted into the printability-predicting NN that
returns a printability probability score between 0 and 1.
Guided by the mean-squared error (MSE) of this score, the opti-
mizer iteratively generates and evaluates new formulations
through the NN, refining the material proportions to minimize
the MSE loss (maximize the printability prediction). This process
is repeated n times, and the formulation with the highest print-
ability score is returned as the optimal formulation. Additionally,
this pipeline supports the personalization of formulations by
allowing constraints on the presence or absence of certain mate-
rials. For instance, specific amounts of materials can be fixed if
desirable, or particular materials can be excluded to account for
factors such as allergies. A similar pipeline was proposed by Erps
et al.,[15] who used Bayesian optimisation (BO) to identify new
photocurable inks for 3D printing. However, their process
required manual printing at each iteration of the optimization
loop, while the pipeline proposed herein is automated by replac-
ing the printing step with an ensemble NN predicting printability
and only requires printing at the final step—when the optimized
formulation is outputted.

Four different optimizers were trialed in the current pipeline.
The first was a random search (RS) algorithm,[16] which
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randomly samples from Gaussian noise to generate material pro-
portions to be added to the existing formulation. The second was
BO,[17] which uses a Gaussian process regressor to model the
relationship between material proportions and MSE of the print-
ability, incorporating uncertainty estimates to explore the search
space and identify the optimal formulation. The third approach
was gradient descent (GD),[18] which computes the gradient of
the printability MSE score for each material proportion and
updates the proportions in the direction that minimizes loss.
Finally, a DE algorithm,[19] a genetic optimization technique,
was used, which generates a population of potential formulations
and produces new candidate configurations through vector dif-
ferences and combinations between distinct members of the
population.

One hundred and twenty-four unprintable formulations,
including one hundred and fifteen materials from our previous
publication,[13c] were inputted into the four optimizers. All four
optimizers led to a significant improvement in printability prob-
ability compared to the unoptimized formulations (p< 0.001,
one-way analysis of variance (ANOVA) with post-hoc Tukey’s

test), as determined by the deep ensemble. Furthermore, BO,
GD, and DE performed significantly better than RS (p< 0.05,
one-way ANOVA with post-hoc Tukey’s test) (Figure 3A).
Although there was no significant difference between BO,
GD, and DE, DE slightly outperformed the others, with the high-
est average printability probability of 89.4%. DE also generated
the most reasonable formulations and the fewest “hallucina-
tions” (implausible formulations), as assessed by 3D printing
experts. This aligns with the findings of Mendes et al.,[20] who
reported that DE outperformed other optimization algorithms
in optimizing fed-batch fermentation in bioreactors. Figure 3B
shows the distribution of printability scores before and after
DE optimization. Before optimization, most predicted probabili-
ties ranged between 0 and 5%. In contrast, after optimization,
most scores were between 95% and 100%, as determined by
our deep ensemble. This improvement was achieved as the opti-
mizer systematically removed materials that negatively impacted
printability and replaced them with polymers possessing desir-
able printing properties. For instance, in one formulation,
triethyl citrate (a nonprintable liquid) was replaced with

Figure 1. A) The current SLS 3D printing pipeline is a two-step process. A formulation scientist designs a drug formulation and inputs it into the NN. If it
is unprintable, they modify it until it is printable. Once printable, they repeat the printing trials with various parameters. B) Our proposed novel pipeline for
SLS 3D printing allows a scientist to input an unknown formulation into the ensemble NN. If unprintable, the optimizer provides a new optimized drug
formulation. The parameters for printable formulations are then predicted for the final printing of the medicine.
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Figure 2. Optimizer pipeline for generating new formulations. The optimizer is initialized with an unknown formulation and any material constraints.
It iteratively modifies this formulation, querying it with the NN predicting printability. After n loops, the formulation with the highest printability probability
is output as the optimal formulation.

Figure 3. A) Average printability probability scores before optimization compared to the four optimization algorithms, presented as mean and 95%
confidence interval. Statistical significance was assessed using a one-way ANOVA with post-hoc Tukey’s test (*p< 0.05, **p< 0.01, ***p< 0.001).
Statistical significance is shown only in comparison to RS. B) Distribution of printability scores (histogram with overlayed kernel density estimate plot)
for unoptimized formulations and formulations optimized through DE. C) t-SNE visualization of printable and unprintable formulations alongside for-
mulations optimized by each algorithm.
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Eudragit RS PO, a highly printable polymer, while the rest of
the formulation remained unchanged. Figure 3C presents a
t-distributed stochastic neighbor embedding (t-SNE) plot of real
printable formulations, nonprintable formulations, and formula-
tions generated by the different algorithms. DE-generated formu-
lations clustered around both the printable and nonprintable
formulations, highlighting that the new formulations were
diverse but minimally modified from the original nonprintable
formulations. This is desirable, as the goal was to minimize
changes to the initial formulation and prioritize materials already
included. DE spanned the entire plot, demonstrating its ability to
generate diverse formulations, but clustered most closely with
real formulations, likely explaining why it had the most realistic
formulations and generated the fewest hallucinations. In con-
trast, the greatest diversity was observed in GD, likely explaining
why it had the most hallucinations among all models. Another
advantage of this approach is that DE can handle multiobjective
optimization problems.[21] This adaptability means that our
approach can be further extended to optimize additional
properties, such as thermal stability, drug release profiles, or
costs, making it a more versatile tool for pharmaceutical
applications.

2.3. The Deep Ensemble is the Best-Performing SLS Parameter
Predictor

Having established the optimal formulation for the drug, the
next step is identifying the optimal parameters for SLS printing
this formulation. To achieve this, we used the printing
parameters from the printable formulations in our previous pub-
lication.[13c] Five different ML models were trained to predict
printing temperature and laser scanning speed: eXtreme gradi-
ent boosting (XGBoost), random forest (RF), support vector
machine regressor (SVM), and the deep ensemble developed
by us previously.[13c] We tested two featurization methods: a
one-hot-encoded vector of the drug formulation composition
and the Morgan fingerprint (MFP) of the materials in the formu-
lation, scaled by their material proportions. The latter was previ-
ously established as the best featurization method for predicting
SLS printability.[13c] Model performance was evaluated using
5-fold cross-validation (Table 1) with the mean absolute error
(MAE) as the primary metric. An acceptable MAE threshold
was set at below 10% of the prediction range, which corresponds
to 50mm s�1 for laser scanning speed and 30 °C for surface tem-
perature. The root mean squared error (RMSE) was also utilized;
however, MAE provides a more balanced measure of overall
performance, as it is not disproportionately influenced by out-
liers. Therefore, MAE was considered the primary error metric.
Overall, all models performed within the acceptable range, and
no significant differences were observed between models
(p> 0.05, one-way ANOVA) or between the two featurization
methods (p> 0.05, paired t-test). Since the MFP featurization
added an extra processing step without providing a performance
advantage, and the formulation vector is already used by the opti-
mizer, we opted to use the formulation composition vector to
simplify and streamline the process further. Furthermore, for-
mulation composition has been previously identified as the best

feature set for predicting 3D printing parameters in other phar-
maceutical printing technologies.[10,11,22]

To further evaluate model performance, the trained models
were tested on an external validation set of 22 formulations.
The deep ensemble model performed the best, with percentage
MAEs of approximately 8% and 6% for the laser scanning speed
and printing temperature, respectively (Figure 4). This aligns
with the literature, which shows that NNs outperform traditional
ML models for predicting printing parameters.[13c,22] While the
error in this study is slightly higher than reported in similar
research, for example, Elbadawi et al.[11] achieved a 4% error
for predicting printing temperatures, those studies utilized dif-
ferent printing technologies. Notably, there is no existing
research predicting SLS printing parameters, likely due to the
complexity of the process, where multiple combinations of print-
ing temperatures and laser scanning speeds can lead to success-
ful SLS printing, depending on the desired medicine properties.
This complexity makes the deep ensemble model particularly
valuable due to its ability to quantify uncertainty, as described
previously.[23] The model generates predictions by averaging
the outputs of multiple NNs, yielding a mean value and a stan-
dard deviation. This standard deviation not only reflects model
uncertainty but also defines a range of temperatures or laser
scanning speeds that users can trial. An analysis of the marginal
coverage (representing the proportion of actual values falling
within the model’s 98% confidence interval) showed coverage
rates of 73% for laser scanning speed and 78% for temperature.
The uncertainty interval is crucial for SLS printing, as it high-
lights a range of temperatures and laser scanning speeds under
which printing is likely to succeed. Users can select the optimal
values within this range to match their formulation needs. For
example, higher laser scanning speeds may be selected to achieve
a faster drug release profile.[24] For these reasons, the NN ensem-
ble was chosen as the optimal model for the current pipeline.

Table 1. Cross validation scores for models trained to predict laser
scanning speed or temperature, using the one-hot encoded formulation
composition or MFP, presented as mean (standard deviation).

Formulation MFPa)

MAE RMSE MAE RMSE

Laser scanning speed [mm s�1]

XGBoost 44.1 (7.9) 64.5 (15.5) 42.1 (12.0) 61.7 (18.2)

RF 42.4 (5.4) 60.4 (9.9) 39.2 (6.0) 59.3 (14.3)

KNN 51.4 (6.3) 67.4 (7.8) 41.2 (8.9) 57.2 (14.8)

SVM 41.7 (9. 3) 65.2 (18.4) 41.7 (10.1) 65.2 (18.4)

Ensemble 45.6 (15.1) 70.2 (25.9) 43.0 (17.6) 67.9 (28.5)

Temperature [°C]

XGBoost 19.9 (4.7) 26.1 (5.1) 15.8 (5.1) 23.4 (8.0)

RF 21.4 (3.2) 27.6 (4.6) 18.4 (3.7) 25.3 (4.0)

KNN 15.7 (4.3) 23.1 (5.8) 14.7 (2.9) 21.7 (3.9)

SVM 22.5 (4.0) 27.4 (5.0) 22.2 (3.6) 27.0 (4.4)

Ensemble 16.7 (2.4) 21.9 (4.3) 20.8 (2.8) 27.3 (4.3)

a)Best scores are in bold.
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2.4. Successful Printing of Generated SLS Formulations

Having validated the optimizer’s and parameter predictors’ suc-
cess, their utility was tested in practical applications. Fifteen orig-
inally nonprintable formulations were inputted into the pipeline,
and the DE algorithm modified their compositions to enhance
their predicted printability as determined by the ensemble
NN. Ensemble NNs then predicted the optimal laser scanning
speed and printing temperatures. The newly optimized formu-
lations, along with their predicted parameters (Table 2), were tri-
aled using the SLS printer to assess printability. The pipeline
demonstrated significant success, with 80% of the formulations
printing successfully, exceeding the performance reported in a
previous study exploring the generation of 3D-printed drug for-
mulations,[14] in which conditional generative adversarial net-
works (cGANs) were used to generate drug formulations for
fused deposition modeling (FDM) 3D printing. This approach
successfully printed 2 of 4 generated formulations out of 9
cGANs. Our superior performance likely results from the diffi-
culty of training cGANs, particularly with small datasets.[25]

Notably, it only took us approximately one day to generate and
print each formulation.

A closer analysis of the generated formulations revealed that
the optimizer successfully produced heterogeneous formulations
encompassing a variety of materials in different combinations.

This highlights the model’s ability to generate meaningful and
diverse formulations. However, the three nonprintable formula-
tions were still identified as printable by the NN, indicating that
the discrepancy arose from the NN rather than the DE optimi-
zer.[13c] Since the optimizer relies on the NN’s predictions, the
NN acts as a bottleneck in the pipeline, with the quality of the
outputted formulations directly dependent on the NN’s scoring
accuracy. To address such discrepancies in the future, additional
data is likely required to train a more robust NN ensemble.

Table 2 presents the suggested parameters and the range of
trialed parameters for the nonprintable formulations, none of
which led to successful printing. All three nonprintable formu-
lations exhibited a common property not accounted for by the NN
- poor powder flow. Good flow is essential for SLS formulations,
as the powder bed must be uniformly distributed during prin-
ting.[13a] In the first nonprintable formulation, the poor flow
was likely due to the high proportion of the excipient mannitol,
which also caused the burning of the medicine during printing
due to repeated sintering of the same layer. The second formu-
lation contained a large proportion of Opadry AMB II, a tablet
coating material typically not used in high concentrations.
This formulation exhibited burning at higher temperatures
and crumbling at lower temperatures. Notably, only two formu-
lations in the training set contained Opadry AMB II, which likely
contributed to the model’s inability to correctly classify it as

Figure 4. External validation scores for models trained on the one-hot encoded formulations. A) MAE for models that predict laser scanning speed.
B) RMSE for models that predict laser scanning speed. C) MAE for models that predict temperature. D) RMSE for models that predict temperature.
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Table 2. Formulations generated through our DE optimizer, with corresponding predictions for printing parameters presented as mean (standard
deviation).

Formulationa) Temperature [°C] Laser scanning speed [mm s�1]

Predicted Real Predicted Real

Printable

5% Paracetamol, 9% Kollidon SR, 83% Plasdone S-630 77 (8) 80 117 (19) 120

78.5% Ethyl cellulose CP 10, 18.5% PVA 87%–90% hydrolyzed 105 (8) 100 83 (22) 80

97% Kollicoat Protect 83 (7) 120 100 (16) 100

2% Magnesium stearate, 95% Ethyl cellulose (Aqualon N7) 95 (3) 100 57 (15) 100

5% Paracetamol, 92% Soluplus 82 (13) 60 60 (14) 50

32.07% Eudragit RL PO, 64.93% Ethyl cellulose CP 10 83 (11) 100 82 (22) 80

5% Paracetamol, 3% PEO 7M, 89% PEO 1M 36 (7) 50 142 (20) 150

20% Paracetamol, 77% Ethyl cellulose CP 10 96 (12) 120 84 (20) 80

5% Riboflavin, 6% Xylitol, 10% PVP 40000, 76% Mannitol 96 (15) 130 147 (15) 500

3% Chitosan, 28% Eudragit L100-55, 66% Hypromellose acetate succinate Aqoat AS-HG 92 (10) 100 81 (17) 100

40% Stearamide, 57% Ethyl cellulose (Aqualon N50) 78 (20) 100 91 (38) 70

23% Magnesium stearate, 74% PEO 7M 48 (7) 60 44 (15) 40

Nonprintableb)

5% Paracetamol, 92% Mannitol 144 (19) 100–140 263 (20) 80–300

42% Opadry AMB II: High Performance Moisture Barrier Film Coating Yellow, 55% HPC Klucel EF 101(23) 50–100 75 (8) 80–100

10% Magnesium stearate, 87% Kollidon CL-M 96 (20) 90–150 77 (20) 80–100

a)All formulations contained 3% Candurin. b)For nonprintable formulations, the range of temperatures and laser scanning speeds trialed are shown. “Predicted” refers to
values predicted by the NNs. “Real” refers to the optimum parameter values which was determined through experimental validation.

Figure 5. A) KDE plots of the training data’s distributions of printing temperatures and laser scanning speeds. B) KDE plots of the predicted and actual
temperature distribution and laser scanning speeds for the DE-optimized formulations.
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nonprintable. In the third formulation, the poor powder flow pre-
vented the formation of a new powder layer with each iteration.
As a result, the same layer was repeatedly sintered, preventing
proper printlet formation.

For the regression tasks, the MAE remained at approximately
5.6% for temperature and 7.9% for laser scanning speed,
highlighting the model’s generalizability. In addition, only a sin-
gle formulation fell outside the 98% confidence interval of the
predicted values for both models, emphasizing that they are
well-calibrated and demonstrating approximately 92% prediction
accuracy. Model performance was slightly better for temperature
predictions than laser scanning speed (Figure 5). This is antici-
pated due to the smaller range and lower temperature variability.
Predictions were least accurate at the highest values for both
parameters, reflecting limited data availability in these extremes.
Additional data from these underrepresented regions is neces-
sary to improve model performance further. The most challeng-
ing case for the model was the formulation containing riboflavin,
with which we previously experienced significant difficulty print-
ing. Although this formulation showed the poorest model perfor-
mance, it represents a notable achievement for the optimizer by
successfully predicting the composition of a formulation contain-
ing riboflavin, emphasizing its potential in addressing complex
cases.

This work presents a novel approach establishing a robust
pipeline for pharmaceutical formulation generation using AI.
However, while the printability of medicines was assessed using
a simple binary classification, pharmaceutical manufacturing
processes are often more complex. Factors such as drug release,
tablet hardness, friability, weight uniformity, and stability are
essential pharmacopeial requirements. Therefore, future work
should focus on generating new formulations and evaluating
them based on their compliance with British Pharmacopoeial
requirements. Furthermore, models can be trained to predict
these factors and be integrated into the DE optimizer to ensure
they are also accounted for in the formulation design process.

3. Conclusion

This work represents a significant step towards the optimization
of 3D-printed medicines. We developed a novel pipeline for auto-
mating the design and selection of printing parameters of drug
formulations for SLS 3D printing, addressing the iterative and
wasteful nature of traditional drug formulation design.
Amongst the various optimization algorithms and ML models
tested, a DE optimizer and DL ensembles proved the most effec-
tive, forming the foundation of our pipeline. Through an in silico
optimization loop, directed by a DE optimizer, the pipeline auto-
matically generates formulations suitable for 3D printing, reduc-
ing the necessity for experimental trials. The DL ensemble
predicts printability and optimal printing parameters for formu-
lations, providing confidence intervals for these predictions. The
effectiveness of this pipeline was demonstrated by successfully
printing 80% of the generated formulations, with printing
parameters being accurate for 92% of the formulations, and
the entire process requiring approximately 1 day to generate
and print a new drug formulation. This advancement signifi-
cantly reduces time, waste generation, and resource demands,

as formulation scientists are only required for the final formula-
tion preparation and printing step, rather than being involved in
the entire formulation design and parameter selection processes.
This allows experts to focus on specialized tasks rather than
repetitive processes, increasing efficiency in pharmaceutical
development. Importantly, the pipeline is not limited to SLS
printing and could potentially be adapted for other 3D printing
and formulation platforms, bringing us closer to a streamlined
drug formulation process.

4. Experimental Section

Materials: The materials used as part of this study to make the drug
formulations were AQOAT AS-HG (Shin-Etsu, Tokyo, Japan); Aqualon
EC-N50, Aqualon EC-N7, Klucel hydroxypropyl cellulose EF, and
Plasdone S-630 (Ashland, Schaffhausen, Switzerland); Candurin gold
sheen and polyvinyl alcohol (PVA) 87%–90% hydrolyzed (Merck Life
Science Limited, Dorset, UK); chitosan medium molecular weight, mag-
nesium stearate, mannitol, paracetamol, polyethylene oxide (PEO) 1M,
polyvinylpyrrolidone (PVP) 40000, stearamide (N,N-ethylenbis), and xylitol
(Sigma Aldrich, Gillingham, UK); ethyl cellulose CP 10 (Fisher Scientific
Ltd., Loughborough, UK); Eudragit L100-55 and Eudragit RL PO
(Evonik, Darmstadt, Germany); Kollicoat Protect, Kollidon CL-M,
Kollidon SR, and Soluplus (BASF, Ludwigshafen, Germany); Opadry
AMB II: high-performance moisture barrier film coating yellow
(Colorcon, Dartford, UK); and PEO) 7M (The Dow Chemical Company,
Midland, USA).

3D Printing: Drug Formulation Preparation Process: Formulations gener-
ated by our model (Table 3) were prepared by formulation scientists fol-
lowing the procedure outlined by Abdalla et al.[13c] Briefly, materials were
sieved using a 180mm sieve and weighed to produce 20 g of the final
product. They were mixed with a pestle and mortar until a uniform color
was achieved. Before printing, the materials were sieved again using a
180mm sieve.

SLS 3D Printing: SLS printing, done by formulation scientists, followed
the procedure outlined by Abdalla et al.[13c] Cylindrical discs (10mm diam-
eter� 3.6 mm height) were designed using Onshape (Version 1.160,
Boston, MA, USA) and exported into the Sintratec Central program
(Version 1.1, Sintratec Kit, AG, Brugg, Switzerland). The drug formulations
were then loaded into the SLS printer (Sintratec Kit, AG, Brugg,
Switzerland) to produce the discs, following the standard procedure
described in the literature.[26] Printing parameters were set as those pre-
dicted by our DL models. The surface temperature and laser scanning
speed were set as determined by our DL model, and the chamber temper-
ature was set at 20 °C below the surface temperature, as is the standard
procedure. To ensure the stability of the final drug product, all drugs we
used in this study - whether for printing, model training, or made available
to optimizers - were selected based on their stability at the temperatures
used for printing. Only drugs that had been previously successfully SLS
printed and demonstrated to be thermally stable were included.
Additionally, no printing was carried out at temperatures exceeding any
drug’s degradation temperature or melting/glass transition temperature.

Formulation printability was assessed as per the criteria established by
Abdalla et al.[13c] Formulations were considered printable if the resulting
discs showed no deformations, visible material degradation, burning, or
charring, exhibited good structural integrity and shape, and maintained
integrity during post-printing processing. Each new formulation
(Table 3) was allocated a single day for generation and printing, with
the entire process of printing 15 formulations completed in 15 days.

Data Curation: Data was utilized from Abdalla et al.,[13c] which com-
prised information on 278 pharma-inks made up of 115 materials with
varying material compositions and whether they could be printed using
a desktop SLS 3D printer (Sintratec Kit, AG, Brugg, Switzerland) into cylin-
drical discs (10mm diameter� 3.6mm height). This data was one-hot-
encoded for further ML. Alternatively, the simplified molecular-input
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line-entry system (SMILES) notation for each material was obtained from
PubChem, and the MFP (2048 bits, radius 2) was computed using Rdkit
(Version 2022.9.5).

MLModels: All ML models were run on a Windows desktop (Operating
System: Windows 11; Processor: AMD Ryzen Threadripper 7960X 24-core
4.2 GHz; RAM Memory: 128 GB, GPU: RTX 4090 24 GB). Python (Version
3.10.4) was used to run the ML models, using the Scikit-learn (Version
1.1.1) package except for XGBoost, which was run through its library
(Xgboost Version 1.6.1). The deep ensemble was built and run using
PyTorch Lightning (Version 2.0.4). All code is available at: https://github.-
com/y-babdalla/sls_optimisation.

Deep Ensemble: The ensemble NNmodel proposed by Abdalla et al.[13c]

was utilized for the printability classification and modified for the regres-
sion tasks. Each NN in the ensemble was a residual feed-forward network
with N layers, 1D batch normalization after each layer, a hidden size of H,
and a rectified linear unit (ReLU) activation function. The networks were
trained for the classification tasks using a binary cross entropy loss func-
tion, while a MSE loss function was applied for regression tasks. Each NN
was trained independently on the entire dataset, using the Adam optimizer
with early stopping to prevent overfitting. The networks were initialized
with different random weights to ensure diversity among the ensemble
members. The final predictions were obtained by averaging the outputs
of the individual ensemble members.

The ensemble NN took the formulation F as a one-hot-encoded vector
of material proportions, where the proportions sum to 1. The model was
trained on experimental data with known printability labels, learning to
map material proportions to printability predictions through a set of
learnable parameters θ. By representing a single formulation as
F ¼ P ði ¼ 1ÞSf i ¼ 1, where f i represents the proportion of the i-th mate-
rial out of S materials, the model can systematically learn how different
material compositions affect printability and printing parameters.

For the classification task, the ensemble NN model was designed to
predict the printability of a given formulation MθðFÞ.[13c] This predictive
model took the formulation F and generated a sigmoid probability
between 0 and 1 indicating the likelihood of printability. The output prob-
ability pðprintablejMθðFÞÞ provided a quantitative assessment of the for-
mulation’s potential success in printing processes. For the regression
task, the model was designed to predict key printing parameters of a given

formulation. Instead of returning a probability, the model generated con-
tinuous outputs corresponding to the printing temperature T θðFÞ or laser
scanning speed LθðFÞ along with their associated standard deviation
errors, representing the prediction’s uncertainty.

Model Performance: To evaluate model performance, the dataset was
split into a training set and a test set. The training set’s hyperparameters
(Table 4) were optimized using Bayesian optimization, and model perfor-
mance was assessed through fivefold cross validation. The optimal set of
hyperparameters was then used to train the model on the entire training
dataset, and its performance was tested on the external test set.

Model performance was evaluated using the MAE and RMSE

MAE ¼ 1
N

XN

i¼1

jyi � ŷij (1)

Equation (1): MAE equation. Where N is the number of samples, yi is
the actual values and ŷi is the predicted value.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

ðyi � ŷiÞ2
v
u
u
t (2)

Equation (2): RMSE Equation. Where N is the number of samples, yi is
the actual values and ŷi is the predicted value.

Model Calibration: The marginal coverage of the ensemble models
(defined as the proportion of samples whose true values fall within the
98% confidence interval of the predictions) was calculated to evaluate
the model’s calibration. Assuming a normal distribution of predictions,
the 98% confidence interval for predictions, ĈðXÞ is

ĈðXÞ ¼ ½μðXÞ � zf0.99g � σðXÞ, μðXÞ þ zf0.99g � σðXÞ� (3)

Equation (3): Confidence interval equation, where μðXÞ is the prediction
mean, σðXÞ is the prediction standard deviation, and zf0.99g is the z-score
for 98% confidence, The marginal coverage over a dataset with n samples
is calculated as

Table 3. Unoptimized formulations inputted into the DE optimizer and the corresponding optimized formulations outputted.

Input formulation Output formulation

3% Candurin, 5% Paracetamol, 47% Kollicoat IR, 20% Kollidon SR, 25% Methyl paraben 3% Candurin, 5% Paracetamol, 9% Kollidon SR, 83% Plasdone S-630

3% Candurin, 82% PVA 87%–90% hydrolyzed, 15% Citric acid monohydrate 3% Candurin, 78.5% Ethyl cellulose CP 10, 18.5% PVA 87%–90% hydrolyzed

3% Candurin, 48.5% Benecel K4M CR, 48.5% Kollicoat Protect 3% Candurin, 97% Kollicoat Protect

3% Candurin, 85% Ethyl cellulose (Aqualon N7), 12% Triethyl citrate 3% Candurin, 2% Magnesium stearate, 95% Ethyl cellulose (Aqualon N7)

3% Candurin, 5% Paracetamol, 92% Benecel A15LV PH 3% Candurin, 5% Paracetamol, 92% Soluplus

3% Candurin, 17% Tween 80, 80% Ethylcellulose CP10 3% Candurin, 32.07% Eudragit RL PO, 64.93% Ethyl cellulose CP 10

3% Candurin, 5% Paracetamol, 44% PEO 1M, 48% PVA Nippon Goshei 3% Candurin, 5% Paracetamol, 3% PEO 7M, 89% PEO 1M

20% Paracetamol only 3% Candurin, 20% Paracetamol, 77% Ethyl cellulose CP 10

5% Riboflavin only 3% Candurin, 5% Riboflavin, 6% Xylitol, 10% PVP 40000, 76% Mannitol

3% Candurin, 97% Chitosan 3% Candurin, 3% Chitosan, 28% Eudragit L100-55, 66% Hypromellose acetate
succinate Aqoat AS-HG

3% Candurin, 97% Stearamide 3% Candurin, 40% Stearamide, 57% Ethyl cellulose (Aqualon N50)

3% Candurin, 20% Magnesium stearate, 77% PPG 7M 3% Candurin, 23% Magnesium stearate, 74% PEO 7M

3% Candurin, 5% Paracetmaol, 5% Talc, 38% Benecel K4M, 24% Mannitol, 5%
Magnesium stearate, 20% Methyl paraben

3% Candurin, 5% Paracetamol, 92% Mannitol

3% Candurin, 97% Opadry AMB II: High Performance Moisture Barrier Film Coating
Yellow

3% Candurin, 42% Opadry AMB II: High Performance Moisture Barrier Film
Coating Yellow, 55% HPC Klucel EF

3% Candurin, 10% Tween 80, 87% Kollidon CL-M 3% Candurin, 10% Magnesium stearate, 87% Kollidon CL-M
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Ĉmarginal ¼
1
N

XN

i¼1

IfYi ∈ ĈðXiÞg (4)

Equation (4): Marginal coverage equation, where Yiis the true value for
input Xi and If⋅g is the indicator function (1 if true, 0 if false).

Optimization Algorithms: Our methodology consists of two intercon-
nected components aimed at predicting and optimizing the printability
of formulations.

The first component is the aforementioned ensemble NN model
designed to predict the printability of a given formulation Mθ(F ).

[13c]

The output probability pðprintablejMθðFÞÞ is used to compute the MSE
loss ð1� pðprintablejMθðF�ÞÞÞ2, which serves as the optimization objec-
tive for the optimizer.

The second component is an optimization algorithm designed to min-
imize the MSE of the printability probability of formulations. The optimi-
zation problem is structured as a constrainedmaximization task that seeks
to find the optimal material proportions that maximize the printability pre-
diction. The optimization is subject to six primary constraints: first, the
total material proportions must sum to 1; second, each material propor-
tion must be between 0 and 1; third, the drug proportion is kept constant
to ensure personalization for the individual; fourth, the proportion of
Candurin was fixed at 3%, as this is essential for successful printing; fifth,
the deviation of any material proportion from its original formulation per
iteration is limited by a predefined epsilon value; and sixth, the optimizer
was limited to modifying up to n materials per iteration, prioritizing mate-
rials already present in the formulation. Mathematically, this can be
expressed as a constrained optimization problem that aims to minimize
the MSE loss of the printability score (and hence maximize printability)
while maintaining these strict constraints. The user provides the initial

formulation F, which could also only contain the desired drug proportion.
To address this optimization challenge, we propose four distinct
approaches that offer different strategies for exploring and refining the
solution space.

RS: The RS algorithm provides a straightforward approach to exploring
potential formulation configurations. Given a number of iterations, the
algorithm randomly samples Gaussian noise within the defined con-
straints to generate new material proportions. These proportions are
added to the original formulation and renormalized to ensure the total
sum remains 1. The best-performing formulation is retained, and the pro-
cess is repeated for the specified number of iterations. The algorithm is
outlined in Algorithm 1.

Table 4. Model hyperparameter search space.

Model Hyperparameter Search space

XGBoost max_depth 1–10

learning_rate 0.01–1.0, log-uniform

n_estimators 10–1000

min_child_weight 1–10

subsample 0.2–1.0

colsample_bytree 0.2–1.0

RF n_estimators 10–1000

max_depth 1–20

min_samples_split 2–20

min_samples_leaf 1–20

KNN n_neighbors 1–20

weights Uniform, distance

p 1,2

SVM C 0.1–100, log-uniform

kernel Linear, RBF, poly

gamma 0.0001–1.0, log-uniform

epsilon 0.01–1.0, log-uniform

Deep ensemble ensemble_members 5–10

learning_rate 0.0001–0.1

depth/width 32, 64, 128

hidden_size 1, 2, 3

weight_decay 0.01–0.00001

Algorithm 1: RS optimization.

Input: Initial formulation F, number of iterations N, allowed noise bounds ε

Output: Optimized formulation F*

F*← F

best_score← ð1� pðprintablejMθðF�ÞÞÞ2

For i← 1 to N:

a. noise�Gaussian(�ε, ε)

b. Fcandidate← F*þ noise

c. Fcandidate← Fcandidate/
P

Fcandidate

d. Fcandidate← ensure_constraints(F, Fcandidate)

e. candidate_score← ð1� pðprintablejMθðFcandidateÞÞÞ2

f. If candidate_score< best_score:

i. F*← Fcandidate

ii. best_score← candidate_score

end

end

Return F*

Algorithm 2: GD optimization.

Input: Initial formulation F, learning rate α, number of iterations N, constraint
parameters ε

Output: Optimized formulation F*

F*← F

best_score← ð1� pðprintablejMθðF�ÞÞÞ2

For i← 1 to N:

a. ∇←∇F pðprintablejMθðFÞÞ þnoise

b. Fcandidate← F*þ α∇

c. Fcandidate← Fcandidate/
P

Fcandidate

d. Fcandidate← ensure_constraints(F, Fcandidate)

e. candidate_score← ð1� pðprintablejMθðFcandidateÞÞÞ2

f. If candidate_score< best_score:

i. F*← Fcandidate

ii. best_score← candidate_score

end

end

Return F*
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GD: The GD[18] approach offers a more targeted optimization strategy.
This method iteratively refines the formulation by computing the gradient
of the printability score with respect to material proportions and adding
Gaussian noise (to promote exploration). The algorithm updates material
proportions in the direction that minimizes MSE loss (maximizes print-
ability) while carefully projecting the solutions to ensure they remain within
the defined constraints. This approach utilizes first-order optimization
techniques to progressively improve the formulation’s predicted printabil-
ity. The algorithm is outlined in Algorithm 2.

Bayesian Optimization: Bayesian optimization provides a probabilistic
and adaptive approach to formulation optimization by leveraging
Gaussian process regression with a Matérn kernel to model the relation-
ship between material proportions and MSE of printability. Unlike deter-
ministic methods, this technique constructs a surrogate probabilistic

model that captures both the MSE of the predicted printability and the
uncertainty associated with each candidate formulation. The primary com-
ponents of this approach include a Gaussian process prior, a likelihood
function based on theMSE obtained from the printability-predicting model
Mθ, and an acquisition function, the expected improvement (EI), which
manages the exploration-exploitation trade-off. At each iteration, the
acquisition function α(F) determines the next candidate formulation.
The algorithm is outlined in Algorithm 3.

DE: DE represents a genetic optimization technique that provides a
nuanced approach to formulation optimization. This method maintains
a population of potential solutions, dynamically generating new candidate
configurations through vector differences between distinct members of
the population. The algorithm selects solutions based on their fitness,
which in this case is determined by the MSE of the predicted printability.
By balancing exploration of new solution regions with exploitation of
promising areas, DE can effectively navigate complex, nonlinear optimiza-
tion landscapes. The exploration-exploitation trade-off is managed
through a set of hyperparameters that control the algorithm’s behavior,
allowing users to fine-tune the optimization process to suit their specific
requirements, consisting of the population size, mutation factor, and
crossover rate. The algorithm is outlined in Algorithm 4.

Optimizer Hyperparameters: The hyperparameters used for the different
optimizers are listed in Table 5.
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Model Hyperparameter Search space

RS Number of iterations 3000

Noise scale factor 0.03
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Number of iterations 4000

Noise scale factor 0.001

Number of materials 6

Bayesian optimization Number of iterations 300

Number of materials 6

DE Population size 100

Mutation Factor 0.4

Crossover rate 0.8

Number of iterations 50

Number of materials 6

Algorithm 4: DE optimization.

Input: Initial formulation F, population size P, mutation factor MU, crossover rate
CR, number of iterations N

Output: Optimized formulation F*

population← {randomly generate P formulations near F}

fitness← {ð1� pðprintablejMθðFcandidateÞÞÞ2 |Fi ∈ population}

For i← 1 to N:

For j← 1 to P:

i. Fa, Fb, Fc ← random distinct vectors from j from population

ii. Fdonor ← Fa þMU · (Fb–Fc)

iii. Ftrial ← crossover between Fj and Fdonorwith rate CR

iv. Ftrial ← Ftrial/
P

Ftrial

v. Ftrial ← ensure_constraints(F, Ftrial)

vi. trial_fitness← ð1� pðprintablejMθðFtrialÞÞÞ2

vii. If trial_fitness< fitness[j]:

A. population[j]← Ftrial

B. fitness[j]← trial_fitness

end

end

F*← argminFi ∈ populationfitness[Fi]

Return F*

Algorithm 3: Bayesian optimization.

Input: Initial formulation F, number of iterations N, acquisition function α(F)

Output: Optimized formulation F*
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For i← 1 to N:

a. Fnext ← argmaxF α(F, GP) // Optimize acquisition function

b. score← ð1� pðprintablejMθðFnextÞÞÞ2

c. D←D ∪{(Fnext, score)}

d. GP←Update Gaussian Process with D

end

F*← argminðF,scoreÞ∈Dscore

Return F*

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2025, 2401112 2401112 (11 of 12) © 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


methodology (lead); project administration (lead); resources (lead); soft-
ware (lead); validation (lead); visualization (lead); writing—original draft
(lead); writing—review & editing (lead).Martin Ferianc: conceptualization
(supporting); formal analysis (supporting); investigation (supporting);
methodology (supporting); software (supporting); writing—review & edit-
ing (supporting). Haya Alfassam: data curation (supporting); writing—
review & editing (supporting). Atheer Awad: supervision (supporting);
writing—review & editing (supporting). Ruochen Qiao: investigation (sup-
porting). Miguel Rodrigues: supervision (supporting). Mine Orlu: super-
vision (equal); writing—review & editing (supporting). Abdul W. Basit:
supervision (equal); writing—review & editing (equal). David
Shorthouse: supervision (equal); writing—review & editing (equal).

Data Availability Statement
The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.

Keywords
automation, autonomous labs, machine learning and artificial intelligence,
Pharma 4.0, powder bed fusion 3D printing, precision medications,
uncertainty estimations

Received: December 18, 2024
Revised: April 14, 2025

Published online:

[1] L. Krueger, A. Awad, A. W. Basit, A. Goyanes, J. A. Miles, A. Popat,
Nat. Rev. Bioeng. 2024, 2, 801.

[2] a) K. Englezos, L. Wang, E. C. K. Tan, L. Kang, Int. J. Pharm. 2023, 635,
122785; b) Lancet 2018, 391. https://www.thelancet.com/journals/
lancet/article/PIIS0140-6736(17)33261-0/fulltext.

[3] a) A. Goyanes, C. M. Madla, A. Umerji, G. Duran Piñeiro,
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