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Abstract
Cloud computing as a service-driven business approach connects the distributed resources over the globe and allows multiple
service demanders to submit their requests simultaneously to cloud-based application platforms. Cloud manufacturing has
been inspired by the same idea to enable the sharing of manufacturing and production resources over the globe through
an Everything-as-a-Service model. Despite providing enormous benefits to production and manufacturing business models
for globalized models, it faces challenges for efficiently matching the services and demands due to the requirements of
logistics among operation service providers. Moreover, the utility optimization for matching production services should
address environmental factors as increasing demanders look for fulfilling ethical practices. This paper has aimed to develop
a multi-objective mathematical model to reduce operation and logistic costs as well as gas emissions from operation centers
and logistic services. This model has resulted in a sustainable cloud manufacturing system that will lessen environmental
degradation besides the shared operational costs optimization.

Keywords Sustainable supply chain network design · Sustainability · Multi-objective optimization · Cloud manufacturing

Article Highlights

• Cloud manufacturing connects global resources using an
Everything-as-a-Service model.

• Multi-objectivemodel balances cost, fuel use, and carbon
emissions accurately and achieves a better supply fill rate.

• Optimized operations lessen environmental impact and
shared costs.

• NSGA-II provides Pareto-efficient solutions for produc-
tion and logistics routing.
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Introduction

Cloudmanufacturing, as a “Everything-as-a-Service”model,
enables service demanders to access manufacturing and
logistics services dynamically through cloud-based plat-
forms. This paradigm facilities optimized service composi-
tion, task allocation, and cost reduction, which aligns closely
with sustainability objectives (Rezapour Niari et al. 2021).
Sustainable supply chain management (SSCM) integrates
three key dimensions: economic, social, and environmental
sustainability. With the growing emphasis on sustainabil-
ity, the manufacturing function must be strategically aligned
with the company’s sustainability vision and goals (Delaram
et al. 2021). Green supply chain networks not only enhance
customer satisfaction and profitability but also contribute
to environmental conservation and community well-being
(Wang et al. 2022). Several internal and external factors drive
green behavior within supply chains. Internal factors include
corporate environmental awareness, resource capabilities,
technical advancements, employee perceptions of social
responsibility, and green production initiatives (FatahiValilai
and Sodachi 2020). External factors encompass government
regulations, environmental policies, profit expectations, pres-
sures from supply chain partners, and consumer awareness
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(Hariyani et al. 2024). As supply chains increasingly inte-
grate digital technologies, cloud-based manufacturing sys-
tems have emerged as a transformative approach tomanaging
distributed production and logistics. These systems require
efficient strategies to balance economic and environmental
costs while optimizing service sharing and resource utiliza-
tion (Niari et al. 2022).

Despite these advancements, gaps remain in effectively
incorporating shared logistics services and sustainability
goals into cloud manufacturing systems. Many existing
studies emphasize operational cost reduction but fail to ade-
quately address the integration of logistics service sharing
mechanisms or their environmental impact. For instance,
while Golmohammadi et al. (2024) and Ito et al. (2021) pro-
pose optimization models for resource sharing and logistics
networks, gaps persist in addressing real-world dynamics
such as greenhouse gas emissions and multi-product rout-
ing challenges. Moreover, current approaches often overlook
direct cost-sharing models and the synergy between logistics
and production service sharing.

This study contributes to the field by proposing a multi-
objective mathematical model that optimizes production
routing while incorporating logistics sharing to minimize
costs and environmental impact. Unlike existing models, our
approach explicitly accounts for the economic and ecological
trade-offs in cloud manufacturing. The model assigns sub-
tasks to production sources while enabling service sharing,
reducing operating costs, logistics costs, and overall cloud
manufacturing expenses. By sharing logistic costs, the pro-
posed model enhances customer satisfaction and promotes
sustainability. Our research also provides decision-makers
with an analytical framework to balance economic efficiency
with environmental responsibility in cloud manufacturing
networks.

The remainder of this paper is structured as follows:
the “Literature Review” section presents a literature review,
identifying research gaps and our contributions. The “The
Proposed Cloud Service CompositionModel” section details
the problem formulation, including key assumptions and
mathematical modeling. The “Solution Methodology” sec-
tion describes the computational framework to solve the
problem. In the “Results” section, we conduct numerical
experiments and sensitivity analyses to validate the model.
Finally, the “Conclusion” section summarizes our findings,
discusses study limitations, and outlines potential directions
for future research.

Literature Review

Our work investigates matching and production and logis-
tic service allocation while considering sustainability in the
cloud manufacturing platform. In what follows, we position

our work relative to two main streams of literature: service
scheduling in cloud manufacturing, sharing manufacturing,
and sustainability.

Service Scheduling in CloudManufacturing (CMfg)

Cloud manufacturing (CMfg-SCOS) consists of three pri-
mary user groups: service demanders, resource providers,
and cloud platform operators. To address the complexi-
ties of service composition and optimal selection, various
approaches have been developed to improve efficiency and
adaptability in these cloud-based systems. One significant
approach is the three-tier programming service composition
model proposed by Lim et al. (2022), which simultaneously
considers all three user groups to enhance overall efficiency.
This model facilitates better interaction and collaboration
between service demanders, resource providers, andplatform
operators. Similarly, Aghamohammadzadeh et al. (2020)
present a mathematical model for optimally combining man-
ufacturing and logistics services to minimize operational and
logistics costs while introducing the concept of configured
cloud entropy. This concept supports operational and logis-
tics suppliers in improving resource allocation decisions.

Service allocation complexities in multi-composite tasks
have been addressed by Wan et al. (2023), who devel-
oped a hierarchical scheduling model. This model consists
of user-level scheduling, which ensures a functional match
between service demanders and providers, and sublevel
scheduling, which employs an improved firefly genetic algo-
rithm to optimize sub-task allocation. Enhancements in task
scheduling within dynamic cloud-based Software as a Ser-
vice (SaaS) platforms have been achieved through the use
of Adaptive Priority Experience Replay (APER). This task
scheduling algorithm, proposed by Zhu et al. (2022), dynam-
ically adjusts task priorities based on real-time performance
metrics, improving resource utilization and reducing task
completion times. Additionally, dynamic data-driven sim-
ulations introduced by Shahab et al. (2022) further enhance
scheduling efficiency and system robustness by allowing for
real-time adjustments to fluctuating production demands.

Deep reinforcement learning (DRL) has emerged as a
transformative approach in cloud manufacturing. For envi-
ronments characterized by constantly changing production
demands,Wang et al. (2024) proposed aDRL-based schedul-
ing method that enables service providers to learn adap-
tive policies suited to dynamic requirements. Coordination
between manufacturing and logistics services has been inte-
grated into a unified scheduling framework by Liu et al.
(2024), improving efficiency while minimizing operational
costs. This model considers factors such as task arrival times,
setup times, and transportation logistics to optimize task
completion rates and service quality. Furthermore, logistics
decisions oftenmade independently can lead to idle resources
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and excessive costs, as noted byLiu et al. (2024),whereas this
paper works more holistically integrates logistic and produc-
tion cost reduction to avoid such inefficiencies. In systems
enhanced by blockchain technology, unique scheduling chal-
lenges arise that require innovative approaches. For instance,
Zhang et al. (2022) addressed these challenges by introduc-
ing the dynamic selection evolutionary algorithm (DSEA),
which optimizes manufacturing processes in blockchain-
enabled environments. Meanwhile, reinforcement learning
continues to gain traction as a powerful AI-driven tool for
intelligentmanufacturing. Li et al. (2023) emphasized its sig-
nificance in sequential decision-making processes, andWang
et al. (2022) leveraged multi-agent reinforcement learn-
ing combined with advanced neural network architectures
to improve real-time responsiveness and manage complex
scheduling tasks. Expanding further, Moein Fazeli et al.
(2024) developed a customized DRL environment tailored
specifically to cloud manufacturing, introducing a novel
DRL-based algorithm for service composition optimization.
By exploring weight variations and service failure probabil-
ities, their work provides valuable insights into adaptive and
resilient scheduling strategies.

Collectively, these studies highlight the central role of task
decomposition and scheduling in cloud manufacturing envi-
ronments, where complex tasks are systematically divided
and assigned efficiently to available resources. By integrat-
ing hierarchical schedulingmodels, evolutionary algorithms,
data-driven simulations, and reinforcement learning tech-
niques, researchers have greatly advanced the capabilities
of cloud manufacturing. These approaches address key
challenges, such as dynamic task arrival, real-time respon-
siveness, and uncertainty in resource availability, enabling
the creation of flexible, scalable, and intelligent systems.
The integration of manufacturing and logistics processes,
combined with sophisticated scheduling algorithms, ensures
optimal resource utilization and minimizes costs, ultimately
advancing the efficiency and adaptability of cloud manufac-
turing platforms.

SharedManufacturing

Over the past two decades, economic and social crises have
led to a significant shift from traditional, independent man-
ufacturing to shared manufacturing (SharedMfg) (Delaram
et al. 2023). This new paradigm is driven by a combina-
tion of economic, environmental, and social motivations,
as well as the appeal of innovation and financial benefits
(Duran et al. 2024). At its core, shared manufacturing is
based on the principles of value and resource sharing in
production, where stakeholders share both costs and gener-
ated value. These platforms are typically more cost-effective
than traditional business models (Reuschl et al. 2022). The

SharedMfg model requires not only a shift in perspective for
individual companies but also the development of collabora-
tive infrastructure at the regional level. It seeks to promote a
customer-centric approach that emphasizes cost-sharing effi-
ciencywhile supporting sustainablemanufacturing practices.
However, the model comes with inherent challenges, such
as operational complexities, difficulties in resource alloca-
tion, uncertainty in demand forecasts, conflicts over the use
of shared resources, and the need for robust coordination
mechanisms (Ghomi et al. 2019).

Despite its focus on sustainability, the importance of eco-
nomic factors—specifically cost reduction—remains central
to the evolution of the manufacturing sector. For exam-
ple, research has proposed a game-theoretical framework to
address competition among multiple vehicle-sharing com-
panies, optimizing pricing and fleet management decisions
(Liu et al. 2024). Similarly, capacity-planning problems
have been modeled as Markov decision processes, allow-
ing the development of efficient, real-time algorithms to
minimize the need for safety capacity while adhering to
resilience constraints. These models often center on oper-
ational costs, focusing specifically on capacity planning and
resilience strategies (Li and White 2023). Logistics service
sharing also plays a crucial role in supporting collective effi-
ciency in manufacturing. Studies have investigated the use of
logistical service sharing (LSS) between manufacturers and
e-tailers in dual-channel supply chains, determining that such
arrangements yield mutually beneficial outcomes only under
specific conditions, such as when the manufacturer faces
limited logistical disadvantages or when there is a signifi-
cant cost difference in available logistics services (Guo et al.
2024). Additionalmodels, such as those designed to optimize
logistics networks using shared transportation resources,
demonstrate the potential to improve supply chain perfor-
mance byminimizing trucknumbers under uncertain demand
conditions (Ito et al. 2021). Efforts to address sustainability at
a broader level have also led to new optimizationmethods for
supply chains. One notable approach is the integration of the
multi-objective dragonfly algorithm (MDA) into sustainable
supply chain management. This approach optimizes multi-
ple aspects of supply chains, including production, inventory,
location planning, routing, and resource-sharing efficiency
(Golmohammadi et al. 2024).

Our work differs from the studies above in several key
ways. While these papers address broader sustainability
goals such as waste reduction, they do not detail opera-
tional considerations like greenhouse gas emissions as they
relate to distance, load, and service factors. Furthermore,
although existing research explores resource allocation opti-
mization, it lacks explicit focus on logistics-sharing scenarios
and direct cost-sharing models for manufacturers operating
in distributed environments. By addressing these gaps, our
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research provides amore refined perspective on the economic
and environmental efficiency of shared manufacturing sys-
tems.

Sustainability

The concept of sustainability has gained increasing attention
in recent years due to rising socio-environmental chal-
lenges such as climate change and air pollution (Elfarouk
et al. 2022). In response, organizations are incorporating
green practices into their supply chain operations to enhance
environmental and social performance (Khan et al. 2021).
Sustainable supply chain management (SSCM) establishes
sustainability-focused objectives that align with stakeholder
expectations, and its effectiveness is assessed through perfor-
mance evaluations that measure environmental, social, and
economic impacts (Zhao et al. 2022). Energy consumption, a
key aspect of sustainability, significantly influences the envi-
ronmental footprint of industrial activities (Song et al. 2023).
Efficient energy management is essential to mitigate green-
house gas emissions, reduce dependence on fossil fuels, and
promote long-term ecological and economic stability (Rad-
manesh et al. 2023).

To address these concerns, Zhang et al. (2021) devel-
oped a two-layer planning model integrating a carbon
emission trading policy to optimize location decisions in
cold chain logistics. This model enhances operational effi-
ciency while minimizing emissions, supporting sustainable
decision-making in logistics management. In Bai et al.
(2022), the authors examined the vehicle routing problem
(VRP) for cold chain logistics, incorporating real-time traf-
fic conditions to minimize carbon emissions and distribution
costs. It offers guidance for logistics companies on distri-
bution strategies and informs government policy on carbon
taxation. The paper of Wei et al. (2021) evaluated manufac-
turing cloud services with a focus on environmental benefits
within the supply chain. It discusses how cloud manufac-
turing can enhance resource sharing and efficiency, leading
to reduced logistics costs and lower carbon emissions. Xie
et al. (2024) developed a multi-objective optimization model
to manage the green supply chain concerning both eco-
nomic and environmental goals. It couples renewable energy,
inventory, and transportation decisions within a green indus-
trial park for fresh goods requiring low-temperature storage.
The study demonstrates that adopting renewable energy
microgrids and electric vehicles can reduce carbon emis-
sions by 13.6 percent in the supply chain. A multi-objective
optimization approach has been developed by Kumar and
Kumar (2024) for designing a sustainable supply chain
that aims to minimize carbon emissions while balancing
other goals such as cost and operational efficiency. In this
paper, transportation-related carbon emissions include dis-
tance traveled,mode of transportation, andQuantity of goods

transported. Pahlevan et al. (2021) outlined a mathematical
model to design a closed-loop supply chain network that
incorporates economic, social, and environmental goals at
the same time. Aside from deployment, production, distri-
bution, reverse logistics, transportation costs, the emission
rate emitted during manufacturing and assembly, recycling,
and transportation are also considered. The reviewed lit-
erature primarily focused on energy consumption, while a
smaller portion addressed various environmental concerns,
such as reducing water usage and carbon footprints (Yang
et al. 2020).

The reviewed literature primarily focused on energy
consumption, while a smaller portion addressed various
environmental concerns, such as reducing water usage and
carbon footprints. In light of growing concerns about global
warming, many countries have taken action, emphasizing
the urgent need for sustainable and responsible use of the
world’s increasingly limited resources. As a result, compa-
nies are implementing strategies to enhance the sustainability
of their manufacturing operations. In contrast to existing lit-
erature, our work, to the best of our knowledge, is the first to
specifically emphasize the integration of cloud manufactur-
ing systems with sustainability goals through logistic service
sharing. While previous studies have focused on individual
aspects of sustainability in supply chains or manufactur-
ing systems, our research highlights the innovative potential
of cloud manufacturing as a platform to enhance resource
efficiency and reduce environmental impact. By leveraging
shared logistics services within a cloud-based framework,
our approach seeks to optimize both operational performance
and sustainability outcomes. It offers a novel perspective on
how digital technologies can contribute to greener and more
cost-effective supply chain operations. A summary of the lit-
erature, their solutionmethods, strengths, and limitations and
open issues is provided in Table 1.

The Proposed Cloud Service Composition
Model

Manufacturing companies use cloud platforms to provide
their resources and production capacity. Using this platform,
customers of these services can finally request personal needs
and have those needsmet based on their cost and other param-
eters. In a logistics allocation model, tasks are required to be
transferred if they are to be performed at two different sites.
Each applicant who uses the logistics service pays for the
service alone, and there is no way to determine how many
people have used it. In this paper, however, the focus is on cost
sharing among applicants for shared logistics services with
the aim of cost sharing. In addition to logistics costs, opera-
tional costs as well as carbon emissions are also examined.
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The simultaneous reduction of these two costs (economic
and environmental costs) is considered in this study.

Assumptions

• Tasks have direct structure.
• The cost of logistics is independent of the type of tasks
and depends only on the distance between production
resources.

• Transmission is direct and without considering the hub.

Mathematical Model

There arem companies on the cloud platform, each of which
has different capabilities in terms of time and cost for each
operation. Each production source in each city can provide
i number of operations, i ∈ {1, 2, 3, . . . , I }. The number of
tasks k, T K ∈ {T1, T2, . . . , Tk}, has reached the cloud plat-
format one time. Each of these tasks has a set of sub-tasks that
are specified in the task breakdown phase, and each of these
sub-tasks is executable by operations on the cloud genera-
tion platform. In cloudmanufacturing, when two consecutive
operations are different from one task in two manufacturing
companies, to transfer a semi-finished product, a service is

needed for transfer between companies, inwhich case a logis-
tics service will be called. Table 2 introduces the indicators,
parameters, and decision variables of the problem.

The optimizationmodel aims tominimize operations costs
as well as environmental cost , as its objective function in
Eq. 1.

The function F1 optimizes production and logistics costs.
Production costs are based on the cost per hour required
to perform operations, and logistics costs between compa-
nies are based on the distance between production points
(in kilometers). In this model, the logistics cost is divided
between the consumers who use the common logistics ser-
vices between the two sources of production; this number
is in the objective function with T s j (m,m′) as shown. The
function F2 minimizes the carbon emission, which typically
means that it is an objective function in anoptimizationmodel
designed to reduce the total amount of carbon dioxide (CO2)
or other greenhouse gas (GHG) emissions associated with a
particular system or process. The amount of greenhouse gas
production is checked in order to determine the sustainability
of the supply chain froman environmental perspective. Every
logistics service emits greenhouse gases (CO2) with a cer-
tain coefficient. This coefficient is directly proportional to the
distance traveled between cities and inversely proportional to
the average number of products transported. In addition, each

Table 2 Indices, parameters,
and decision variables

Parameters Description

I Number of operations/sub-tasks i

J Number of logistics services j

K Number of tasks k

M Number of cities m

LC j (m,m′) Cost of logistics service j between two cities m and m′

OCikm Cost of performing oik operations in the city m

LC j Cost of the first logistics service (per kilometer)

ocikm Cost of production source operations in the city m (per hour)

dm,m′ Distance between cities m and m′ (in kilometers)

tikm Time of oik operation in the city m (hours)

pm Productivity rate of production source in the city m (%)

oik Operations i for task k

Uik Cost of logistics service j between two cities m and m′, lc j × dm,m′

P Cost of performing oik operations in the city m

T R j (m,m′) Cost of the first logistics service (per kilometer)

EMj The GHG emission factor by using logistic service j-th

EMm The GHG emission factor in production unit m

LDsp The average load of transport product between m and m′

Decision Variables Description

γikm Binary variable, If operation i is performed from task k in city m, 1, otherwise 0

δ j (m,m′)k(i, i ′) If logistic service j is used between city m and m′ to transfer operations i to i ′, 1,
otherwise 0
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Table 3 Sub-tasks and operations related to each task

Task Sub-task1 Sub-task2 Sub-task3 Sub-task4 Sub-task5

Task 1 1 1 1 1 1

Task 2 1 1 0 0 1

Task 3 1 0 1 1 0

production unit (located in different cities) emits greenhouse
gases, the amount of which is determined at the time of pro-
duction for all the products produced in any production unit.

The objective function represents a nonlinear integer clas-
sification problem, which, due to its high computational
complexity, is best solved using innovative or meta-heuristic
algorithms. The first part of constraint Eq. 2 captures the
operational costs of production for each company, while
the second part Eq. 3 contributes to the objective func-
tion by calculating the logistics cost, which is distributed
among the users of logistics services for transferring semi-
finished goods between production resources. Constraint
Eq. 4 ensures that if a task requires operation i , this operation
can only be assigned to a single company. Constraint Eq. 5
expresses an if-then condition in linear form: if two consec-
utive production points differ, a logistics service is required
to transport goods between them. Constraint Eq. 6 defines
the time capacity of each company, ensuring that the total
operations performed within a company do not exceed its
production time capacity. Equation7 determines the number
of shared logistics services between two production sources.
Constraint Eq. 8 prevents the denominator from becoming
zero; if there are no shared logistics services between two
points m and m′, the denominator remains non-zero. Sim-
ilarly, constraint Eq. 9 ensures that the minimum value of
T s j (m,m′) is one and does not reach zero. Finally, constraint
Eq. 10 specifies that the decision variables are binary.

min(F1 + F2) (1)

F1 =
∑

k∈K

∑

i∈I

∑

m∈M

γikm · OCikm · tikm
pm

+
∑

j∈J

∑

m,m′∈M

⎛

⎝
∑

k∈K
∑

i,i ′∈Ik LC j(m,m′) · dm,m′ · δ
k(i,i ′)
j(m,m′)

T Sj(m,m′)

⎞

⎠ (2)

F2 =
∑

k∈K

∑

i∈I

EM j · dm,m′ · δ
k(i,i ′)
j(m,m′)

LDm,m′

+
∑

j

∑

i

EMp,m · tikm · γikm (3)

S.t:

∑
γikm = Uik ∀i ∈ I ,∀k ∈ K ,∀ j ∈ J (4)

γikm ·γ(i+1)km −1 ≤
∑

j∈J

δ
k(i,i ′)
j(m,m′) ∀i, i ′ ∈ I , ∀k ∈ K , ∀ j ∈ J , ∀m,m′ ∈ M

(5)

∑

k

∑

i

tikm · γikm ≤ capm ∀m ∈ M (6)

Tr j(m,m′ =
∑

k∈K

∑

i,i ′∈I
δ
k(i,i ′)
j(m,m′) ∀ j ∈ J ,∀m,m′ ∈ M

(7)

T Sj(m,m′) ≥ Tr j(m,m′) ∀ j ∈ J ,∀m,m′ ∈ M

(8)

T Sj(m,m′) > 1 ∀ j ∈ J ,∀m,m′ ∈ M (9)

δ
k(i,i ′)
j(m,m′)∗γi km = 0, 1 ∀i, i ′ ∈ I ,∀k ∈ K ,∀ j ∈ J ,∀m,m′ ∈ M

(10)

SolutionMethodology

The genetic algorithm has only one optimal value, and the
obtained answers can be sorted. Solutions that have a better
objective function value will havemore chances to reproduce
and create a new generation. However, in the multi-objective
genetic algorithm with non-dominated sorting, ranking the
answers is not possible due to their multi-objective nature.
The first version of the NSGA algorithm was presented in
1995, inspired by the single-objective genetic algorithm, but
it had high computational complexity. If we assume that
the number of objective functions is F and the population
size is K , the complexity of NSGA is O(FK 3). NSGA-II,
a newer version, was introduced with a reduced complex-
ity of O(FK 2) and less execution time. This algorithm is
based on the Pareto set of solutions, which may be optimal
for several solutions at once, none of which is superior to
the others. Thus, selecting the best answer from this set of
optimal solutions is challenging. NSGA-II focuses on two
concepts: better convergence and better solution distribution.
According to this algorithm, the set of optimal solutions is
available as Pareto solutions.

Fig. 1 Chromosome
representation of a simple
example
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Fig. 2 Two-point crossover operator

Multi-objective optimization is an important class of tech-
niques that has direct applications to solvingmany real-world
problems. We use the epsilon constraint method to find dif-
ferent Pareto-optimal solutions on a small scale. Yet, for
NP-hard problems in a manufacturing environment, we use
a hybrid approach that combines genetic and NSGA-II algo-
rithms. It has been found that a genetic algorithm can provide
the optimal solution to objective 1, and another GA can pro-
vide the optimal solution to the second objective function.
These two solutions are then introduced into the NSGA-II
algorithm.

Chromosome Representation

Thedefinition andutilization of chromosomes are crucial ele-
ments in the implementation of meta-heuristic algorithms.
Properly coding the chromosome is essential to ensure
the algorithm functions as intended and yields meaning-
ful results. The correct representation of the solution vector
enables the efficient application of crossover and muta-
tion operators, allowing the solution space to be thoroughly
explored and providing the potential to discover the opti-
mal solution. Conversely, if the chromosome is inaccurately
defined at the outset, the algorithm is likely to fail in produc-
ing acceptable results.

In this framework, a feasible solution vector is represented
as a structure consisting of two rows. The first row specifies
the city assigned to each operation, while the second row
identifies the logistics service responsible for transporting
goods between the selected cities.

To illustrate this concept, consider a scenario with three
primary tasks and five sub-tasks in total. Based on the config-
uration in Table 3, the first task requires all five sub-tasks to
be completed. The second task relies on sub-tasks one, two,
and five, while the third task depends on sub-tasks one, three,

Algorithm 1 Pseudo-code for Solution Calculation.
Require: i, j, k,m, u, p,CapM, c, OC, t, EM, lc, d, LD, EMP
Ensure: Solution (Eq-1)
1: for each p ∈ P do � Number/set of solutions in population P
2: Sp ← ∅ � A set of solutions dominated by p
3: Np ← 0 � Number of solutions dominating p
4: for each q ∈ P do
5: if p < q then � If p dominates q
6: Sp ← Sp ∪ {q}
7: else if p > q then
8: Np ← Np + 1
9: end if
10: end for
11: if Np = 0 then
12: p.rank ← 1
13: F1 ← F1 ∪ {p} � p belongs to the first front
14: end if
15: end for
16: i ← 1 � Initialize front counter
17: while Fi �= ∅ do
18: Q ← ∅ � Store members of the next front
19: for each p ∈ Fi do
20: for each q ∈ Sp do
21: Nq ← Nq − 1
22: if Nq = 0 then
23: q.rank ← i + 1
24: Q ← Q ∪ {q}
25: end if
26: end for
27: end for
28: i ← i + 1
29: Fi ← Q
30: end while

and four. This setup highlights how chromosomes encode not
only task assignments but also logistical details, ensuring the
optimization algorithm can efficiently process and solve the
scheduling problem.

Now, let us assume the problem involves three cities and
two logistics services. In this scenario, the chromosome is

Fig. 3 The two-point mutation operator
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Table 4 Parameters for genetic algorithm

Parameters Value

Crossover probability (CP) 0.8

Mutation probability (MP) 0.2

Population size 200

designed to contain 11 columns, representing the total num-
ber of sub-tasks across all tasks. This encoding aggregates the
sub-tasks into a single structure, enabling the representation
of both city assignments and logistics services for each sub-
task. The detailed breakdown of this chromosome structure
is visually depicted in Fig. 1.

As evident from this solution vector, the first sub-task of
Task 1 is completed in City 1, the second sub-task of Task
1 is completed in City 2, and similarly, the fourth sub-task
of Task 3 is completed in City 1. Notably, since the first and
second sub-tasks of Task 1 are carried out in different cities,
Logistics Service 1 is utilized, as specified in the second
row of the solution vector and indicated in the first column.
This chromosome structure efficiently encodes all necessary
information, enabling straightforward calculation of both the
decision variables and the objective function.

Evaluation Function

In this study, we employed the penalty function technique
to enforce solution limitations. This method ensures that
answers failing to meet one or more categories of constraints
are penalized, thereby encouraging the algorithm to priori-
tize feasible solutions. Specifically, when an answer violates
the upper or lower limits of a constraint, a penalty is added to
the objective function in minimization problems. This mech-
anism helps eliminate such solutions in subsequent iterations
of the algorithm.

The penalty function technique utilizes both fixed and
variable penalties to restrict solutions. Fixed penalties are
applied uniformly, independent of the extent of constraint
violation, while variable penalties are calculated based on
the magnitude of the violation. If a solution vector cannot be
found-irrespective of the degree of violation-both fixed and
variable penalties are added to the objective function. Let PE
represent the penalty for infeasible solutions, which can be

Table 5 Parameters for NSGA-II

Parameters Value

Crossover probability (CP) 0.9

Mutation probability (MP) 0.2

Population size 100

Table 6 Task operation sequence

Operation Task1 Task2 Task3 Task4 Task5 Sub-Task

1 � � � 1

2 � � 2

3 � � 3

4 � � � � 4

5 � � 5

6 � � 6

7 � � 7

8 � � � � 8

9 � � � 9

10 � � � � 10

calculated using Eq.11:

PE = max(0,
∑

m

∑

k

∑

i

tikm · γikm − capm) (11)

For a minimization objective function, the fitness value of
the solution chromosomes is determined using Eq.12:

B j
i =

{
Z j
i if PE = 0

Z j
i + Fix P + PE · Var P if PE > 0

(12)

where B j
i is the fitting value of the i-th chromosome in the

j-th objective function, Z j
i is the objective value, and FixP

and VarP are the fixed and variable penalties.

Selection

Selection is based on two elements:

• Populations are selected in lower ranks.
• Calculation of crowding distance: assuming p and q are
members of the same rank, the member with a greater
crowding distance is selected. It should be mentioned
that the priority of selection is based first on rank and
then on congestion distance. It uses the crowding dis-
tance to obtain a more uniform solution front than other
algorithms and estimate the density of points around the
solutions. It should be mentioned that the crowding dis-
tance is a factor that is used to better choose the answers

Table 7 GHG emission factor and logistic cost for each logistic service

Logistic service GHG emission factor Logistic cost

1 4 0.04

2 3 0.05

3 6 0.06
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Table 8 Distance between cities

Distance Berlin Hamburg Munich Hannover Frankfurt Stuttgart Dusseldorf Dresden Bremen Erfurt

Berlin 0 28.9 58.4 28.6 54.5 63.2 57.2 19.3 39.4 30.1

Hamburg 28.9 0 79.1 15.9 49.2 65.4 40.1 47.6 12.6 39.2

Munich 58.4 79.1 0 65.9 39.2 23.2 61.2 46.1 76.7 39.6

Hannover 28.6 15.9 65.9 0 35.0 51.2 29.2 36.6 12.7 25.0

Frankfurt 54.5 49.2 39.2 35.0 0 21.0 23.2 46.6 47.4 26.2

Stuttgart 63.2 65.4 23.2 51.2 21.0 0 40.7 50.9 63.2 33.9

Dusseldorf 57.2 40.1 61.2 29.2 23.2 40.7 0 58.3 29.2 41.3

Dresden 19.3 47.6 46.1 36.6 46.6 50.9 58.3 0 47.3 21.5

Bremen 39.4 12.6 76.7 12.7 47.4 63.2 29.2 47.3 0 36.3

Erfurt 30.1 39.2 39.6 25.0 26.2 33.9 41.3 21.5 36.3 0

Table 9 Operation time in each city

Time Berlin Hamburg Munich Hannover Frankfurt Stuttgart Dusseldorf Dresden Bremen Erfurt

Operation 1 7.3 6.3 5.5 3.4 INF 6.2 INF 6.7 6.3 5.4

Operation 2 INF 5.6 6.9 5.6 5.3 7.8 7.5 3.2 INF 3.7

Operation 3 6.6 6.0 INF 5.9 5.3 6.4 6.0 3.7 6.8 7.2

Operation 4 7.9 INF 5.9 6.2 3.2 INF 7.6 7.8 8.0 5.6

Operation 5 7.1 3.4 5.5 INF 6.2 5.2 7.4 5.5 6.8 INF

Operation 6 2.9 INF 5.8 INF 6.8 6.2 7.3 5.4 6.1 7.1

Operation 7 5.0 7.6 INF 3.6 5.5 5.7 INF 6.7 INF 7.1

Operation 8 INF 7.7 3.3 5.9 INF 6.0 7.6 6.6 6.5 6.2

Operation 9 INF 7.1 6.0 INF 5.8 3.1 3.2 INF 6.8 5.7

Operation 10 5.1 INF 6.7 7.7 6.8 7.2 INF 7.9 2.9 5.3

Table 10 Operation cost in each city (per hour)

Cost Berlin Hamburg Munich Hannover Frankfurt Stuttgart Dusseldorf Dresden Bremen Erfurt

Operation 1 0.42 0.58 0.33 0.49 INF 0.69 INF 0.73 0.86 0.42

Operation 2 INF 0.39 0.80 0.52 0.72 0.54 0.37 0.30 INF 0.35

Operation 3 0.47 0.46 INF 0.55 0.64 0.82 0.88 0.32 0.45 0.48

Operation 4 0.53 INF 0.71 0.62 0.33 INF 0.73 0.66 0.32 0.80

Operation 5 0.39 0.33 0.58 INF 0.87 0.70 0.58 0.40 0.60 INF

Operation 6 0.31 INF 0.43 INF 0.59 0.65 0.75 0.69 0.61 0.32

Operation 7 0.53 0.39 INF 0.29 0.61 0.87 INF 0.65 INF 0.78

Operation 8 INF 0.40 0.28 0.69 INF 0.82 0.90 0.70 0.81 0.30

Operation 9 INF 0.45 0.37 INF 0.41 0.27 0.30 INF 0.44 0.32

Operation 10 0.69 INF 0.77 0.64 0.52 0.57 INF 0.60 0.33 0.75
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in terms of spreading on one front and is defined as fol-
lows: For the beginning and end points of a front, its
value is assumed to be infinite. For other points of the
front, from 2 to 1-k is defined as the following relation-
ship: CD[i] = f mi+1 − f mi−1/ f

m
max − f mmin where CD[i]

is the distance from the solution i on the front F, and the
value of the objective function of this solution in the front
F is the minimum value and the maximum value of the
objective function m in the front F, respectively. A better
answer is the one that has a greater crowding distance.

NSGA-II Operators

Crossover

In NSGA-II, the crossover operator is themost critical search
mechanism. To generate offspring, we employ a two-point
crossover technique, wherein the middle section of two par-
ent chromosomes is exchanged. The detailed process is
illustrated in Fig. 2.

Mutation

The mutation operator is the second key operator utilized in
the NSGA-II algorithm. Its primary role is to explore unex-
plored regions of the solution space and enhance the diversity
of solutions. In this operator, a subset of parent chromosomes
is randomly selectedwith equal probability, and some of their
genes are modified. It is important to note that the mutation
operator can sometimes improve the quality of a solution
and, at other times, deteriorate it. Various methods for imple-
menting mutation exist in the literature, each tailored to the
specific problem at hand.

In this study, one or more elements of the chromosome
are randomly chosen, and the values of the selected genes are
replaced with new values from the allowed range. Figure3

Table 11 Carbon emission parameter in each production unit

Production units GHG emis-
sion factor

Productivity
rate

Production
capacity

Berlin 4 1 100

Homburg 3 1 100

Munich 6 1 100

Hannover 3 1 100

Frankfurt 2 1 100

Stuttgart 6 1 100

Dusseldorf 2 1 100

Dresden 1 1 100

Bremen 5 1 100

Erfurt 9 1 100

Table 12 Pareto front solutions for simple example

Solution ID Total operation
cost

Total carbon emission (in
Kg)

1 75.46 1631.50

2 80.05 1484.77

3 82.24 1413.28

4 85.20 1296.82

5 86.59 1224.32

6 88.54 1202.16

7 88.85 1169.07

8 90.49 1121.22

9 91.13 1059.24

10 94.58 1032.94

11 97.15 953.743

12 99.71 912.058

13 105.1 830.480

14 116.8 601.062

15 122.0 554.476

illustrates an example of how a mutation is applied to a chro-
mosome.

It is widely recognized that the selection of algorithm
parameters plays a critical role in determining its perfor-
mance. The choice of these parameters directly influences
the balance between exploration and exploitation within
the algorithm, making it essential to select them empiri-
cally. The optimal parameters for the genetic algorithm and
NSGA-II, as determined in this research, are presented in
Tables 4 and 5.

Fig. 4 True Pareto front for simple example after 52 optimization trials
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Table 13 Logistics services
used in Solution ID 1

k 1 2 3 4 5

i 2, 4, 5, 6, 8, 9 1, 4, 6, 7, 9 1, 4, 5, 6, 7, 8 1, 3, 4, 8, 9 1, 2, 4, 5, 6, 7, 8, 9

i ′ 4, 5, 6, 8, 9, 10 3, 6, 7, 9, 10 4, 5, 6, 7, 8, 10 2, 4, 8, 9, 10 2, 3, 5, 6, 7, 8, 9, 10

j 3, 2, 1, 2, 2, 3 1, 2, 2, 2, 1 1, 1, 1, 1, 1, 1 3, 2, 1, 2, 3 1, 1, 1, 1, 2, 1, 2, 3

m 10, 5, 2, 1, 10, 7 4, 9, 1, 4, 10 4, 9, 2, 1, 4, 10 10, 8, 5, 10, 7 4, 10, 9, 2, 1, 4, 10, 7

m′ 5, 2, 1, 10, 7, 9 9, 1, 4, 10, 9 9, 2, 1, 4, 10, 9 8, 5, 10, 7, 9 10, 9, 2, 1, 4, 10, 7, 9

Results

Simple Example

In this section, the problem is solved using the model devel-
oped in the previous chapter, incorporating Eqs. 1 through 9
and the hybrid NSGA-II algorithm. The solution process is
implemented in MATLAB on a machine equipped with an
AMD A4-3300 CPU (1.9 GHz), Windows 10 64-bit operat-
ing system, integrated 1.9 GHz graphics, and 4 GB of RAM.

In the example provided, the cloud production system is
hosted in Germany, with each production company situated
in a different city within the country. Completing the tasks
submitted to the cloud production system involves various
activities that need to be carefully planned and scheduled by
the firms. The details of five jobs submitted to the system,
along with the sequence of operations required to complete
them, are outlined in Table 6.

It is also assumed that three logistics services are avail-
able for the transfer of semi-finished products between cities.
Table 7 displays their carbon emission factor and transporta-
tion cost per kilometer.

The transportation cost between cities is calculated by
multiplying the cost per kilometer for each logistical ser-
vice unit by the distance between the cities. Table 8 provides
detailed information on the distances between the cities.

The production cost is determined bymultiplying the time
required to complete an operation by the cost per unit of time.
Tables 9 and 10 respectively present the time required for
each procedure and the cost associated with performing each
operation in each city.

The greenhouse gas (GHG) emission rate for each pro-
duction unit per load is assumed to correspond to the values
provided in Table 11.

Table 14 Logistics services used in Solution ID 15

k 1 2 3 4 5

i 1, 4, 8, 9 1, 4, 6, 8 8, 9, 6, 8 1, 4, 6 8, 9

i ′ 2, 5, 9, 10 3, 5, 7, 10 9, 10, 7, 9 3, 5, 7 9, 10

j 2, 2, 2, 2 1, 2, 1, 2 2, 3, 2, 2 1, 1, 1, 1 2, 2, 3, 1

m 4, 5, 8, 7 4, 4, 9, 4 8, 7, 8, 4 9, 4, 10, 7 9, 7, 4, 8

m′ 5, 8, 7, 5 5, 9, 4, 9 7, 9, 7, 5 4, 10, 9, 7 5, 9, 10, 4

Table 12 presents a trade-off analysis between the two
objectives for a small-scale problem instance consisting of
five tasks, ten sub-tasks, and ten cities. Each solution reflects
unique vehicle routing configurations, leading to varying
total operational costs and total fuel consumption, which in
turn result in different levels of total emissions.

Figure4 shows the true Pareto front for this simple exam-
ple after 52 optimization trials.

Table 13 details the logistics services used in Solution ID
1, providing insight into the timetable of vehicle routes across
the periods. In this scenario, economic cost is prioritized, and
tasks are distributed to production centers in a manner that
minimizes production and logistics costs. Since the logistics
costs of the first service are lower than those of the other
two services, fifteen tasks utilize the first service, ten use the
second service, and five rely on the third logistics service.

Logistics Services in Solution ID 15: In Solution ID 15,
the focus shifts to minimizing environmental costs, reflect-
ing the decision-maker’s priority in this scenario. To reduce
carbon emissions, fewer logistics services are utilized across
the supply chain network. Specifically, the second logistics
service is used nine times, the first service is employed to
transport semi-finished products to two destinations, and the
third service is only used once. The optimal allocation of
operations to production resources and their corresponding
logistics services for Solution ID 15 is presented in Table 14.

Simple Example: Sensitivity Analysis

To evaluate the efficacy of the proposed NSGA-II algorithm,
the results of the first example are compared with those of a
second example. In the second example, the production rate,
production capacity (Table 15), and carbon emission factors
for each logistics service (Table 16) are varied. This compar-

Table 15 GHG emission factor and logistic cost for each logistic ser-
vice

Logistic service GHG emission factor Logistic cost

1 4 0.04

2 6 0.05

3 2 0.06
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ison highlights the algorithm’s effectiveness in adapting to
different problem scenarios and constraints.

Each manufacturing center’s productivity rate and out-
put capacity are determined using random numbers within
specified ranges: productivity rates are randomly generated
between 0 and 1, while output capacities are randomly gen-
erated between 70 and 100.

To generate the Pareto front, a total of 63 test trials were
conducted for each scenario. The results of these trials are
summarized in Table 17 and visually represented in Fig. 5,
demonstrating the trade-offs between the objectives under
different parameter configurations.

Figure5 shows the true Pareto front after 63 optimization
trials.

In each example, the number of logistical services can be
analyzed and compared. In Solution ID 1 (Table 18), where
production and logistic costs are prioritized over environ-
mental concerns, sub-tasks are assigned to the production
centers and logistics services that are the most cost-effective
and efficient. Conversely, in Solution ID 12 (Table 19), tasks
are allocated to minimize environmental impact. As a result,
the third logistics service, which produces the least pollution,
is utilized more frequently.

In Solution ID 1, the focus is onminimizing operation and
logistics costs. Tasks are allocated in a way that prioritizes
economic efficiency, with no restrictions on the number of
logistical services used. In contrast, Solution ID 12 empha-
sizes reducing carbon emissions. To achieve this, the third
logistics service, which has the lowest greenhouse gas emis-
sion rate, is utilized more frequently than the others.

More Complex Example

In this implementation, the data used for the problem is con-
sistent with the previous dataset presented in the “Simple
Example” section. However, the primary distinction is that
the number of tasks and sub-tasks has been significantly

Table 16 Carbon emission parameter in each production unit

Production units GHG emission
factor

Productivity
rate

Production
capacity

Berlin 4 0.67 88

Homburg 3 0.81 67

Munich 6 0.71 55

Hannover 3 0.49 83

Frankfurt 2 0.41 69

Stuttgart 6 0.79 65

Dusseldorf 2 0.60 54

Dresden 1 0.55 72

Bremen 5 0.43 72

Erfurt 9 0.91 62

Table 17 Part of Pareto front solutions for simple example with differ-
ent parameters

Solution ID Total operation cost Total carbon emission (in
Kg)

1 178.3 965.603

2 188.0 902.903

3 205.1 865.155

4 213.1 808.090

5 220.1 766.805

6 230.3 720.380

7 235.1 690.995

8 238.4 681.962

9 244.1 670.375

10 247.4 600.595

11 256.9 594.473

12 265.3 588.650

increased to provide a more complex and realistic prob-
lem instance. This adjustment allows for a deeper analysis
of sequencing operations and the corresponding impact on
overall efficiency.

Table 20 presents the structure of each task in this updated
problem instance. Each row in the table represents a sub-task,
while the columns indicate whether a particular sub-task is
included in a specific task. The checkmarks in the table sig-
nify the presence of a sub-task within a task, illustrating
the diverse nature of task structures and their dependen-
cies. This expanded configuration leads to a more intricate
decision-making process when optimizing the scheduling
and sequencing of operations.

To evaluate the effectiveness of the proposed solution, a
Pareto front analysis was conducted, considering two con-
flicting objectives: total operation cost and total carbon emis-
sions. The results, summarized in Table 21, highlight a range

Fig. 5 True Pareto front after 63 optimization trials
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Table 18 Logistics services
used in Solution ID 1

k 1 2 3 4 5

i 2, 4, 5, 6, 8, 9 1, 4, 7, 9 4, 5, 6, 8 1, 2, 3, 4, 9 1, 4, 5, 7, 8, 9

i ′ 4, 5, 6, 8, 9, 10 3, 6, 9, 10 5, 6, 7, 10 2, 3, 4, 8, 10 2, 5, 6, 8, 9, 10

j 2, 2, 3 1, 2, 3 3, 3, 3 3, 3, 3 3, 3, 3

m 8, 5, 2, 1, 10, 6 4, 5, 8 7, 8, 2, 1 4, 4, 10, 8 5, 6, 4, 5, 2, 1, 3, 6

m′ 5, 2, 1, 10, 6, 9 5, 8, 7, 9 2, 1, 4, 9 10, 8, 5, 6, 9 5, 2, 1, 3, 6, 5

Table 19 Logistics services
used in Solution ID 12

k 1 2 3 4 5

i 4, 9, 1, 4, 7, 9 4, 5, 6, 8 1, 3, 8 1, 7, 8, 9

i ′ 5, 10, 3, 6, 9, 10 5, 6, 7, 10 2, 4, 9 2, 8, 9, 10

j 3, 3, 3 3, 3, 3 3, 3, 3 3, 3, 3

m 8, 7, 4, 5, 8, 7 8, 2, 1 4, 8, 2 4, 4, 5, 8, 7

m′ 7, 8, 5, 8, 7, 5 2, 1, 4 9, 2, 4, 5 5, 8, 7, 5

Table 20 Sequencing tasks
operations with increasing
number of tasks and sub-tasks

Sub-task Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

1 � � � � � � �
2 � � � � � � � �
3 � � � � � � �
4 � � � � � � � �
5 � � � � � � �
6 � � � � � � � �
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of solutions that balance these two criteria. The first few solu-
tions exhibit lower operational costs but higher emissions,
while the later solutions prioritize environmental sustainabil-
ity at the expense of increased costs. These trade-offs provide
insights into potential strategies for decision-makers based
on their preferences and constraints.

As it is clear fromTable 22,with the increase in the number
of operations, the policy of sharing logistics services as well
as selecting the greener logistic service has been maintained.

Furthermore, Table 22 compares the number of logistic
services used in two extreme solutions-Solution ID 1 (low-
cost oriented) and Solution ID 14 (environmentally friendly).
As observed, Solution ID 14 employs a smaller number of
logistics services, reflecting an emphasis on sustainability
through the consolidation of operations and the selection
of greener transportation options. This comparison demon-
strates that even as the complexity of the problem increases,
the policy of optimizing logistics services remains crucial
in achieving a balanced trade-off between cost and environ-
mental impact.

By incorporating a larger set of tasks and sub-tasks, this
implementation provides a more comprehensive scenario for
analyzing sequencing operations and logistics optimization,
contributing to more effective and sustainable decision-
making strategies in real-world applications.

Conclusion

Cloud manufacturing connects distant resources and enables
multiple service seekers to submit requests to a cloud
platform simultaneously via the Internet. Its customers, sup-
pliers, manufacturers, distributors, and retailers benefit from

Table 21 Pareto front solutions for complex example

Solution ID Total operation cost Total carbon emission (in
Kg)

1 378.5 4731.26

2 409.3 4115.61

3 437.6 3908.11

4 449.9 3839.67

5 462.5 3734.12

6 481.5 3704.00

7 494.7 3497.50

8 522.6 3356.34

9 22836 3196.85

10 45622 3103.65

11 69319 2930.00

12 13858 2845.29

13 28974 2782.54

14 41641 2755.35

Table 22 Comparison of the number of logistic services in two solu-
tions

Solution ID 1 Solution ID 14

Total number of j1 28 19

Total number of j2 21 11

Total number of j3 24 24

Total number of logistic services 73 55

enhanced collaboration and resource sharing; however, effec-
tive service composition remains a challenge. Increasing
ethical awareness has also led consumers to favor compa-
nies that actively regulate their supply chain’s environmental
and social impacts.

This paper integrates two critical problems in manufac-
turing: production routing and pollution routing. A multi-
objective approach has been developed to balance conflicting
goals—minimizing overall operational costs (including pro-
duction and logistics) and minimizing fuel consumption,
which directly impacts total carbon emissions. Due to the
combinatorial complexity of the problem, the NSGA-II algo-
rithm has been employed to generate a set of Pareto-efficient
solutions.

Extensive numerical experiments were conducted on
instances of varying sizes, ranging from five tasks with
ten sub-tasks to ten tasks with fifteen sub-tasks, each fol-
lowing distinct sequencing orders and distributed across
multiple locations in Germany. The results demonstrate
that the proposed approach effectively identifies trade-offs
between operational costs and carbon emissions, enabling
decision-makers to adopt solutions that alignwith their strate-
gic priorities. The Pareto front obtained from the NSGA-II
method highlights the diverse range of feasible solutions,
providing valuable insights for decision-making in cloud
manufacturing.

An interesting direction for future research is the vali-
dation of the proposed model using real-world data from
industrial applications. While the current study relies on
synthetic data to analyze trade-offs between cost and emis-
sions, future studies could leverage actual production and
logistics data to assess the model’s practicality. Further-
more, integrating dynamic demand patterns, uncertainty
factors, or real-time optimization techniques could enhance
the adaptability of the model. The incorporation of machine
learning techniques for predictive decision-making and adap-
tive strategies in cloud manufacturing environments also
presents a promising avenue for further exploration.

Author Contribution Masoumeh Akhavan Hariri: investigation, data
curation, writing—original draft, editing, visualization.
ShokranehKhashkhashimoghadam: review and editing, methodology,
formal analysis, supervision.
Omid Fatahi Valilai: review and editing, methodology, formal analy-
sis, conceptualization, supervision, project administration.

123



Process Integration and Optimization for Sustainability

Availability of Data and Material The data that support the findings of
this study are available from the corresponding author upon reasonable
request.

Declarations

Conflict of Interest The authors declare no competing interests.

Declaration of Generative AI and AI-Assisted Technologies in the Writ-
ing Process The authors confirm that they have not used generative AI
or AI-assisted technology.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aghamohammadzadeh E, Malek M, OFV (2020) A novel model for
optimisation of logistics and manufacturing operation service
composition in cloud manufacturing system focusing on cloud-
entropy. Int J Product Res 58(7):1987–2015. https://doi.org/10.
1080/00207543.2019.1640406

Bai Q, Yin X, Lim MK, Dong C (2022) Low-carbon VRP for cold
chain logistics considering real-time traffic conditions in the road
network. Indust Manage Data Syst 122(2):521–543

Delaram J, Mahmoud H, Farid A, Fatahi Valilai O (2023) Devel-
opment of public cloud manufacturing markets: a mecha-
nism design approach. Int J Syst Sci: Operations & Logistics
10(1):2079751. https://doi.org/10.1080/23302674.2022.2079751
. Accessed 2025-04-02

Delaram J, Fatahi Valilai O, Houshamand M, Ashtiani F (2021) A
matching mechanism for public cloud manufacturing platforms
using intuitionistic Fuzzy VIKOR and deferred acceptance algo-
rithm. Int J Manage Sci Eng Manage 16(2):107–122. https://doi.
org/10.1080/17509653.2021.1892549

DuranE,OzturkC,O’SullivanB (2024)Planning and scheduling shared
manufacturing systems: key characteristics, current developments
and future trends. Int J Product Res, 1–33

Elfarouk O, Wong KY, Wong WP (2022) Multi-objective optimization
for multi-echelon, multi-product, stochastic sustainable closed-
loop supply chain. J Indust Product Eng 39(2):109–127

Fatahi Valilai O, Sodachi M (2020) Inspiration of Industry 4.0 to enable
a proactive sustainability assessment model through the supply
chain. Procedia Manufact 52:356–362. https://doi.org/10.1016/j.
promfg.2020.11.059. Accessed 2022-07-14

Golmohammadi A-M, Abedsoltan H, Goli A, Ali I (2024) Multi-
objective dragonfly algorithm for optimizing a sustainable supply
chain under resource sharing conditions. Comput Indust Eng
187:109837

Guo X, Gao K, Wang S (2024) Share or not share: the optimal logis-
tics service strategy in a dual-channel e-commerce supply chain.
Electron Commerce Res 24(4):2755–2801

Ghomi EJ, Rahmani AM,QaderNN (2019) Cloudmanufacturing: chal-
lenges, recent advances, open research issues, and future trends.
The Int J Adv Manufact Technol 102:3613–3639

Hariyani D, Hariyani P, Mishra S, Sharma MK (2024) A literature
review on green supply chain management for sustainable sourc-
ing and distribution.WasteManageBulletin 2(4):231–248. https://
doi.org/10.1016/j.wmb.2024.11.009

Ito A, Kaihara T, Kokuryo D, Fujii N (2021) A study on sharing
logistics network design considering demand uncertainty. In: IFIP
International Conference onAdvances in ProductionManagement
Systems, Springer pp 655–662

Kumar A, Kumar K (2024) A multi-objective optimization approach
for designing a sustainable supply chain considering carbon emis-
sions. Int J Syst Ass Eng Manage 15(5):1777–1793

Khan SAR,YuZ,GolpiraH, Sharif A,MardaniA (2021)A state-of-the-
art review and meta-analysis on sustainable supply chain manage-
ment: future research directions. J Cleaner Product 278:123357.
https://doi.org/10.1016/j.jclepro.2020.123357

Liu S, Deng Q, Liu X, Luo Q, Li F, Jiang C (2024) Dual-service inte-
grated scheduling ofmanufacturing and logistics formultiple tasks
in cloud manufacturing. Exp Syst Appl 235:121129

Liu W, Tian Z, Liu Y, Zhao R, Tian L, Wang DZ (2024) A two-stage
game-theoretical framework for pricing & management problem
of shared mobility in a competitive market. Transportmetrica A:
Transport Science, 2372462

Li J, White CC (2023) Capacity planning in a decentralized autolo-
gous cell therapy manufacturing network for low-cost resilience.
Flexible Serv Manufact J 35(2):295–319

Lim MK, Xiong W, Wang Y (2022) A three-tier programming model
for service composition and optimal selection in cloud manufac-
turing. Comput Indust Eng 167:108006. https://doi.org/10.1016/j.
cie.2022.108006

Li C, Zheng P, Yin Y, Wang B, Wang L (2023) Deep reinforcement
learning in smart manufacturing: a review and prospects. CIRP J
Manufact Sci Technol 40:75–101

Moein Fazeli M, Farjami Y, Jalaly Bidgoly A (2024) An efficient cloud
manufacturing service composition approachusingdeep reinforce-
ment learning. Comput Indust Eng 195:110446. https://doi.org/10.
1016/j.cie.2024.110446

Niari MR, Eshghi K, Valilai OF (2022) Adaptive capacity manage-
ment in cloud manufacturing hyper-network platform: case of
COVID-19 equipment production. Int J Manage Sci Eng Manage
17(4):239–258. Publisher: Taylor & Francis

Pahlevan SM, Hosseini SMS, Goli A (2021) Sustainable supply chain
network design using products’ life cycle in the aluminum industry.
Environment Sci Pollution Res, 1–25

Radmanesh S-A, Haji A, Fatahi Valilai O (2023) Blockchain-based
architecture for a sustainable supply chain in cloud architecture.
Sustain 15(11):9072. https://doi.org/10.3390/su15119072. Num-
ber: 11 Publisher: Multidisciplinary Digital Publishing Institute.
Accessed 2023-06-04

Rezapour Niari M, Eshgi K, Fatahi Valilai O (2021) Topology anal-
ysis of manufacturing service supply–demand hyper-network
considering QoS properties in the cloud manufacturing sys-
tem. Robot Comput-Integ Manufact 72:102205. https://doi.org/
10.1016/j.rcim.2021.102205

Reuschl A, Tiberius V, Filser M, Qiu Y (2022) Value configurations in
sharing economy business models. Rev Manage Sci 16(1):89–112

Shahab E, Kazemisaboor A, Khaleghparast S, Fatahi Valilai O (2022)
A production bounce-back approach in the cloud manufacturing
network: case study of COVID-19 pandemic. Int JManage Sci Eng
Manage 18(4):305–317. https://doi.org/10.1080/17509653.2022.
2112781

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/00207543.2019.1640406
https://doi.org/10.1080/00207543.2019.1640406
https://doi.org/10.1080/23302674.2022.2079751
https://doi.org/10.1080/17509653.2021.1892549
https://doi.org/10.1080/17509653.2021.1892549
https://doi.org/10.1016/j.promfg.2020.11.059
https://doi.org/10.1016/j.promfg.2020.11.059
https://doi.org/10.1016/j.wmb.2024.11.009
https://doi.org/10.1016/j.wmb.2024.11.009
https://doi.org/10.1016/j.jclepro.2020.123357
https://doi.org/10.1016/j.cie.2022.108006
https://doi.org/10.1016/j.cie.2022.108006
https://doi.org/10.1016/j.cie.2024.110446
https://doi.org/10.1016/j.cie.2024.110446
https://doi.org/10.3390/su15119072
https://doi.org/10.1016/j.rcim.2021.102205
https://doi.org/10.1016/j.rcim.2021.102205
https://doi.org/10.1080/17509653.2022.2112781
https://doi.org/10.1080/17509653.2022.2112781


Process Integration and Optimization for Sustainability

Song H, Lu X, Zhang X, Tang X, Zhang Q (2023) Collaborative
optimization for energy saving and service composition in multi-
granularity heavy-duty equipment cloud manufacturing environ-
ment. J Indust Manage Optimiz 19(4):2742–2771

Wei J, LiuY,WangL, SunX (2021) Research on evaluation ofmanufac-
turing cloud service oriented to environmental benefits of supply
chain. Environment Sci Pollution Res, 1–13

Wang Y, Wang S, Yang B, Gao B, Wang S (2022) An effective adaptive
adjustment method for service composition exception handling in
cloud manufacturing. J Intell Manufact, 1–17

Wan C, Zheng H, Guo L, Liu Y (2023) Hierarchical scheduling for
multi-composite tasks in cloud manufacturing. Int J Product Res
61(4):1039–1057

Wang X, Zhang L, Liu Y, Li F, Chen Z, Zhao C, Bai T (2022) Dynamic
scheduling of tasks in cloud manufacturing with multi-agent rein-
forcement learning. J Manufact Syst 65:130–145

Wang X, Zhang L, Liu Y, Laili Y (2024) An improved deep rein-
forcement learning-based scheduling approach for dynamic task
scheduling in cloudmanufacturing. Int J ProductRes 62(11):4014–
4030

Xie D, Qiu Y, Huang J (2024) Multi-objective optimization for green
logistics planning and operations management: from economic to
environmental perspective. Comput Indust Eng 189:109988

Yang D, Liu Q, Li J, Jia Y (2020) Multi-objective optimization of ser-
vice selection and scheduling in cloud manufacturing considering
environmental sustainability. Sustain 12(18):7733

Yang Z, Zhen L (2025) How to optimize service-oriented cloud manu-
facturing. J Operation Res Soc 76(4):693–707

Zhang S, Chen N, She N, Li K (2021) Location optimization of a com-
petitive distribution center for urban cold chain logistics in terms
of low-carbon emissions. Comput Indust Eng 154:107120

Zhang Y, Liang Y, Jia B, Wang P (2022) Scheduling and process
optimization for blockchain-enabled cloud manufacturing using
dynamic selection evolutionary algorithm. IEEE Trans Indust Inf
19(2):1903–1911

Zhu J,LiQ,YingS (2022)SAASparallel task schedulingbasedon cloud
service flow load algorithm. Comput Commun 182:170–183

Zhao T, Xie J, Chen Y, Liang L (2022) Coordination efficiency in
two-stage network DEA: application to a supplier-manufacturer
sustainable supply chain. Int J Logistic Res Appl 25(4–5):656–
677

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	A Multi-product Sustainable Scheduling Model Focusing on Logistic Service Sharing in Cloud Manufacturing Systems
	Abstract
	Article Highlights
	Introduction
	Literature Review
	Service Scheduling in Cloud Manufacturing (CMfg)
	Shared Manufacturing
	Sustainability

	The Proposed Cloud Service Composition Model
	Assumptions
	Mathematical Model

	Solution Methodology
	Chromosome Representation
	Evaluation Function
	Selection
	NSGA-II Operators
	Crossover
	Mutation


	Results
	Simple Example
	Simple Example: Sensitivity Analysis
	More Complex Example

	Conclusion
	References


