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Abstract 

Spinal muscular atrophy (SMA) is a devastating neuromuscular  and the primary  cause of 

infant death. SMA is characterised by the loss of motor neurons in the spinal  resulting in 

progressive muscle atrophy, paralysis and respiratory defects leading to early childhood 

death. SMA is caused by a depletion of the ubiquitously expressed survival motor neuron 

(SMN) protein that performs a key regulatory function in the assembly of the eukaryotic mRNA 

splicing machinery and is thus required for the survival of all tissues. The genetic elements 

responsible for SMA are very well characterised but, after decades of research, it is still 

unknown why depletion of this ubiquitous  specifically affects motor neurons. Numerous 

studies are now emerging that implicate disruption of autophagy, a highly conserved 

lysosomal degradative pathway responsible for the bulk removal of cytosolic cargo too large 

for the proteasome, in the disease pathology of SMA. In the present study, we utilise the 

powerful genetic tools of a Caenorhabditis elegans SMA model to delineate how disruptions 

in the autophagic pathway may contribute to SMA pathogenesis. Using an RNA interference 

genetic screen, we identified three putative modifiers of SMN loss of function neuromuscular 

defects in the C. elegans SMA model – epg-8, sqst-1 and atg-16.1. In line with pre-existing 

studies, our results indicate that autophagy is disrupted in SMA, and that this disruption is 

likely  occur during the initial regulatory stages of the pathway. Although further study will be 

required to identify the precise mechanisms through which this autophagic disruption occurs, 

these findings show that autophagy has promising potential for novel therapeutic targets.        
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1 Introduction 
 

1.1 – Spinal Muscular Atrophy 

Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disorder 

and the leading genetic cause of infant mortality, with an incidence rate of 1 in 6,000-10,000 

live births and a carrier frequency of 1 in 40-50 adults (Verhaart et al., 2017). SMA is 

characterised by progressive muscle atrophy, paralysis and respiratory complications 

ultimately being the primary cause of childhood death (Monani & De Vivo, 2014). This muscle 

wastage occurs due to the gradual loss of α-motor neurons from the anterior horn of the spinal 

cord (D’Amico, Mercuri, Tiziano & Bertini, 2011), leading to a depletion in the levels of the 

ubiquitously expressed Survival Motor Neuron (SMN) protein. SMN is widely expressed in the 

nucleus and cytoplasm (Kolb & Kissel, 2011), where it performs numerous key functions 

including; RNA metabolism, mRNA regulation, endocytic trafficking and development of 

neuromuscular junction (NMJ) (Bowerman et al, 2017), yet it remains unclear why SMA 

pathogenesis is specific towards motor neurons.  

SMA is broadly divided into two categories – proximal SMA and distal SMA. Proximal SMA is 

the most common form, accounting for 95% of all cases, and generally manifests during 

infancy or early childhood with muscle weakness primarily affecting the proximal regions 

(Farrar & Kiernan, 2015). In contrast, distal SMA is less common with symptoms progressing 

slower and muscle weakness affecting the distal regions, manifestation occurs during 

childhood but often progresses into adulthood (Farrar & Kiernan, 2015). Clinically, SMA is 

categorised into five types Ttypes I-IV and a neonatal type 0) based on disease severity, age 

of onset and motor function (Table 1), with type I and type IV being the most severe and least 

severe, respectively (Kolb & Kissel, 2015).   
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Table 1. SMA is clinically divided into four types based on the severity of symptoms, age of 
onset, and maximum motor function attained.  

Type of SMA Clinical 
diagnosis 

Age of 
onset 

Motor function achieved 

0  
(severe 
infantile) 

- Prenatal Decreased foetal movements in 
utero, joint abnormalities, 
hyporeflexia present 

I  
(infantile) 

Werdnig-
Hoffman disease 

0 – 6 
months 

Poor head control, inability to sit 
upright, inability to walk, 
hypotonia present 

II 
(intermediate) 

Dubowitz 
disease 

6 – 18 
months 

Independent head control, able 
to sit upright independently, 
unable to walk independently, 
limited hypotonia 

III 
(juvenile) 

Kugelberg-
Welander 
disease 

12 months 
+ 

Able to walk independently, 
wheelchair assistance required 
later in childhood, no hypotonia 

IV 
(adult-onset) 

Adult-onset Adult Mild muscle weakening during 
adulthood, reduced fine motor 
control, wheelchair assistance 
may be required 

 

 

1.2 – Molecular Genetics of SMA 

The SMN protein is encoded by the Survival Motor Neuron (SMN) locus (5q13) (Lefebvre et 

al, 1995), which resides within an inverted duplication of a 500kb element within this region. 

Humans possess two SMN copies: a telomeric copy (SMN1) and a centromeric copy (SMN2) 

(Lefebvre et al, 1995; Kolb & Kissel, 2011). At the genomic level, the two SMN genes are 

largely identical; sharing a high degree of sequence homology and possessing equivalent 

promoter sequences giving rise to similar mRNA transcripts (Boda et al, 2004; Monani, 2005). 

The two SMN genes differ only by 5 transcriptionally silent nucleotide changes (Monani et al, 

1999).       

The functional difference between the two genes is a C-T substitution within exon 7 of SMN2, 

which decreases the amount of exon 7 incorporated into the SMN2 transcript (Burghes & 

Beattie, 2009; Kolb & Kissel, 2015). The SMN1 gene produces a single transcript exclusively 

encoding the full-length SMN protein (FL-SMN), whereas the SMN2 gene produces two 

different transcripts due to alternative splicing, FL-SMN and a truncated protein transcript 

encodes a truncated protein of diminished function and stability, termed SMNdelta7 (SMNΔ7) 

(Lorson, Hahnen, Androphy & Wirth, 1999; Monani et al, 1999; Burghes & Beattie, 2009). As 

a consequence of alternative splicing, the major SMN2 transcript encodes a truncated protein 

SMNΔ7 whilst the minor transcript continues to produce FL-SMN identical to that of the SMN1 
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gene product (Burghes & Beattie, 2009) (Figure 1). The majority of the SMN2 transcripts, 

accounting for 90% of the total gene product, skip exon 7 during transcription and are thus 

unable to produce a complete complement of the FL-SMN protein (Kolb & Kissel, 2011).  

 

 

Figure 1. The two SMN genes present in humans and their respective gene products. SMN 
protein is produced by two genes – SMN1 and SMN2. SMN1 produces the full length SMN 
protein whereas the SMN2 gene produces two different transcripts as a result of alternative 
splicing. Most of these transcripts contain a premature stop codon and thus encode a 
truncated protein, which is eventually degraded. Consequently, only a small percentage of 
healthy SMN protein is produced from SMN2 (Image taken from Burghes & Beattie, 2009).  

Presence of the C-T substitution in SMN2 results in the introduction of a premature stop codon 

at position +6 of exon 7 which alters a splice consensus site, causing the subsequent exclusion 

of exon 7 from the SMN2 mRNA transcript (Kolb & Kissel, 2015). Unlike FL-SMN, SMNΔ7 

lacks the ability to oligomerise correctly, both with itself and other binding partners, and is 

eventually degraded by the proteasome (Burghes & Beattie, 2009). Introduction of the C-T 

substitution alters splicing regulatory elements in SMN2 (Figure 2). Exonic splicing enhancers 

(ESE) and exonic splicing silencers (ESS) are amongst such elements which enhance and 

supress exon inclusion, respectively (Lodish et al, 2008).  

Initially it was thought that an ESE was present within SMN2 which promoted binding of the 

serine-arginine rich (SR) protein AS/SF2 resulting in mRNA splicing, the C-T substitution 

disrupted this sequence and caused aberrant splicing (Cartegni & Krainer, 2002). It is now 

understood that the C-T substitution modifies the pre-existing ESE and converts it into an ESS 

element. The ESS has a high affinity for the heterogenous ribonucleoprotein hnRNP A1, a 

negative regulator of splicing. Binding of hnRNP A1 results in the exclusion of exon 7 from the 

SMN2 mRNA transcript by repressing normal spliceosome activity (Kashima et al, 2007).   
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Figure 2. Splicing regulatory sequences are affected by the C-T substitution in SMN2. SMN1 
does not possess the C-T substitution and is correctly spliced. Presence of the C-T substitution 
in SMN2 creates an ESS element at the 5’ end of exon 7 which results in its exclusion from 
the mRNA transcript (Image adapted from Kashima et al, 2007).  

SMA arises due to the homozygous disruption of the SMN1 gene (Lefebvre et al, 1995), loss 

of SMN1 results in a global decrease in the level of the SMN protein. However, SMN2 however 

is unaffected and continues to produce a low level of SMN protein. Patients who lack SMN1 

are therefore dependant on the endogenous SMN protein produced by SMN2, and 

consequently, the low amounts produced are inadequate to prevent the onset of SMA 

(Burghes & Beattie, 2009; Kolb & Kissel, 2011; Kolb & Kissel, 2015).  

 

1.3 – The SMN Protein 

The SMN protein is ubiquitously expressed in the nucleus and cytoplasm across all tissues, 

yet despite the widespread expression pattern, it is unknown why SMA disease pathology is 

restricted to motor neurons (Monani, 2005). SMN has a well characterised role in the assembly 

of the eukaryotic spliceosome complex however, it remains elusive as to why SMN depletion 

is specific towards motor neurons. The issue is complicated further by the myriad of secondary 

functions performed by SMN, making it difficult to pinpoint the precise molecular mechanisms 

responsible for the disease onset (Hosseinibarkooie, Schneider, & Wirth, 2017).  

SMN itself is a 32kDa multidomain protein encoded by 8 exons, consisting of 294 amino acid 

residues which generates four structurally distinct domains (Figure 3) (Renvoise et al., 2006). 

The protein domains include an N-terminal lysine (K)-rich domain, consisting of a conserved 

K-rich sequence which facilitates RNA binding; a Tudor domain which binds arginine-glycine 

(RG) motifs present in protein involved in RNA metabolism; a proline (P)-rich domain enabling 

interaction with actin-binding proteins; and a C-terminal tyrosine-glycine (YG)-box domain 

which enables self-oligomerisation.      
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Figure 3. The domain architecture of the SMN protein. From the N to C terminus – a K-rich 
domain (blue) involved in RNA binding; a Tudor domain (green) to facilitate binding with 
proteins involved in RNA metabolism; a P-rich domain (red) that interacts with actin-binding 
proteins and a YG box (purple) which enables self-association (Image taken from Burghes & 
Beattie, 2009).   

The primary role of the SMN is the assembly of the spliceosome machinery in eukaryotic cells, 

where it functions in the biogenesis of small ribonuclear proteins (snRNP’s) which are 

essential for the splicing of pre-mRNA into mature mRNA (Pellizzoni, Yong & Dreyfuss, 2002; 

Gubitz, Feng & Dreyfuss, 2004). In the nucleus, SMN forms a stable multimeric complex 

(termed the SMN complex) through self-oligomerisation and association with Gemins 2-8, unr 

interacting protein (unrip) and ATP (Battle et al., 2006); Kolb, Battle & Dreyfuss, 2007). Each 

snRNP consists of a single small nuclear RNA (snRNA) molecule (Including U1, U2, U4, U5 

and U6) and several Sm proteins arranged in a heptameric ring (Otter et al, 2007). The SMN 

complex functions in the ATP-dependant assembly of the snRNP from these components. 

The Sm proteins are arranged as a heptameric ring around a highly conserved sequence motif 

in the snRNA known as the Sm site, the SMN complex then binds the components together 

forming the active snRNP (Figure 4) (Pellizzoni et al, 2002; Kolb, Battle & Dreyfuss, 2007).   

 

 

Figure 4. The activity of the SMN complex in the assembly of the snRNP spliceosome 
machinery. Each active snRNP contains a single snRNA (U1 in this example) and several Sm 
proteins arranged in a ring around the Sm site of the snRNA. The SMN complex catalyses the 
binding of these two core components to form the snRNP in an ATP-dependant manner 
(Image taken from Pellizzoni et al, 2002).   
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In line with its canonical role in snRNP assembly, SMN has been shown to localise in the 

nucleus as structures known as Gems (Gemini bodies) (Bowerman et al, 2017). SMN has also 

been shown to localise in the cytoplasm, axons and synapses of neuronal cells (Figure 5) 

where several secondary functions have also been documented (Table 2), including: RNA 

regulation and transport, actin cytoskeletal dynamics, endocytic trafficking, axonal growth and 

neuronal development (Hosseinibarkooie et al, 2017).   

 

Figure 5. The localisation of the SMN protein in neuronal cells. SMN primarily localises in the 
nucleus as gems as part of the SMN complex. SMN also localises to the cytoplasm, axons 
and synapses where it performs a range of secondary functions; notably in neuronal 
development, endocytic trafficking and cytoskeletal dynamics (Image taken from Bowerman 
et al, 2017).      
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Table 2. An overview of the different functions performed by the SMN protein and its protein 
interactions. 

Cellular 
pathway 

SMN function Protein 
interactions 

References 

snRNP 
biogenesis 

Assembles snRNP’s  Gemins; 
Stasimon 

Lotti et al. (2012) 

RNA transport 
& regulation 

Binds mRNA & 
localisation; 
Interaction with RNA 
binding proteins 

hnRNPs; 
PTEN; HuD 

Akten et al. (2011),  

Ning et al. (2010) 

Endocytic 
trafficking 

Synaptic vesicle 
recycling; Regulates 
synaptic 
transmission  

PLS3; 
NCALD 

Oprea et al. (2008), 
Ackermann et al. (2013), 
Hosseinibarkooie et al. 
(2016), Riessland et al. 
(2017) 

Cytoskeletal 
dynamics 

Interaction with β-
actin; Interactions 
with actin binding 
proteins   

Profilin; 
PLS3; 
NCALD; 
CORO1C 

Oprea et al. (2008), 
Ackermann et al. (2013), 
Hosseinibarkooie et al. 
(2016), Riessland et al. 
(2017), Giesemann et al. 
(1999) 

Microtubule 
dynamics  

Regulation of 
microfilaments 

Tubulin, 
Strathmin, 
CDK5, Tau 

Fuller et al. (2015),  

Wen et al. (2010),  

Miller et al. (2015) 

Proteostasis SMN depletion 
decreases levels of 
ubiquitination 
proteins 

UBA1 Wishart et al. (2014) 

 

SMN is known to translocate between the nucleus and cytoplasm where it is required for the 

transport of mRNA, this is particularly important in neuronal cells, where it sustains correct 

neuronal development (Fallini et al, 2012). SMN binds RNA via its lysine-rich domain and has 

been implicated in the localisation of β-actin mRNA to the axonal growth cones of motor 

neurons, which is important for correct axonal development and guidance (Rossol et al, 2003). 

SMN is also capable of interacting with other RNA-binding proteins though interactions with 

the Tudor domain. Binding with these proteins, is known to influence the levels of their target 

mRNAs in the axonal compartment. The interaction of SMN with β-actin provided the first 

evidence that SMN is also involved in actin cytoskeletal dynamics (Rossol et al, 2003). 

Through its proline-rich domain SMN is capable of interacting with actin binding proteins 

profilin I and II where they co-localise in the cytoplasm (Bowerman, Shafey, & Kothary, 2007). 

This binding was found to modulate the inhibitory effects of profilin on actin polymerisation, 
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possibly my modulating the ratios of F/G actin microfilaments controlling axon morphology 

(Bowerman, et al., 2009). Proteomic studies have revealed that the levels of Ubiquitin Like 

Modifier Activating Enzyme 1 (UBA1), a ubiquitin activating enzyme, are reduced when SMN 

is depleted. Reduced levels of UBA1 are thought to disrupt proteasome degradation in SMA 

and perturb axon morphology (Hosseinibarkooie et al, 2017).  

Recent studies using a Caenorhabditis elegans and other SMA mammalian models have 

demonstrated that endocytic pathways are perturbed in SMA. The C. elegans SMA model was 

used to demonstrate that SMN-1 depletion resulted in decreased neurotransmitter release and 

abnormal localisation of endocytic proteins (Dimitriadi et al, 2016). This indicates that SMN 

depletion impairs endocytic trafficking and perturbs synaptic vesicle recycling. Furthermore, 

studies in mice and zebrafish have shown that knockdown of neurocalcin delta (NCALD) 

ameliorated disease-associated SMA phenotypes by restoring endocytic function (Riessland 

et al, 2017). Taken together, these results clearly demonstrate that endocytic pathways are 

involved in SMA pathology.      

Due to the vast array of functions carried out by SMN two hypotheses have emerged which 

attempt to explain the pathogenesis of SMA (Burghes & Beattie, 2009). The first hypothesis is 

in line with the canonical role of SMN and suggests the global decrease in SMN prevents the 

formation of the SMN complex. Subsequently, that interferes with splicing of mRNA transcripts 

required for correct motor neuron development. The second hypothesis encompasses the 

other SMN functions, suggesting that one or more of these secondary roles may be disrupted 

due to SMN depletion, ultimately leading to the gradual deterioration of motor neurons 

(Hosseinibarkooie et al, 2017).  

Despite the genetic components underlying SMA being very well characterised, the precise 

role of the SMN protein in the pathology of SMA remains unclear. An increasing body of 

evidence is beginning to demonstrate that the secondary functions of SMN are disrupted in 

SMA, supporting the notion that SMA pathogenesis may not be restricted to any single role of 

SMN. 

 

1.4 – Genetic Modifiers of SMA 

Genetic modifiers are genes that modulate the severity of a disease phenotype by altering the 

expression of downstream genetic targets at different loci. SMN2 was the first identified 

modifier of SMA (Wirth et al, 2006) due to its variable copy number (Lefebrve et al, 1997), as 

patients who possess more SMN2 copies produce a larger amount of SMN and experience 

milder SMA symptoms (Wirth et al, 2006; Kolb & Kissel, 2015). In this manner, SMN2 acts as 

a genetic modifier for SMA by directly increasing the amount of functional SMN produced, thus 

modulating the SMA severity (Wirth et al, 2006; Wirth 2017). In addition, several other SMA 

genetic modifiers have been identified in various SMA model systems (Table 3); with PLS3 

and NCALD being the only ones identified in humans.  
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Table 3. An overview of SMA genetic modifiers.  

Genetic 
Modifier 

Protein  Cellular 
Function 

Effect on SMA 
Phenotype 

Reference 

SMN2 Survival 
Motor 
Neuron 

Assembly 
splicing 
machinery 

Increasing copy 
number directly 
modulates severity 

Wirth et al, 
2006 

PLS3 Plastin 3 Actin bundling  Overexpression 
rescues SMN 
depletion defects 
by restoring axon 
length and NMJ 
functionality 

Oprea et al., 
2008 

NCALD Neurocalcin 
Delta 

Neuronal 
calcium sensor 

Knockdown 
ameliorates SMA 
phenotypes by 
restoring endocytic 
defects  

Riessland et 
al, 2017 

PTEN Phosphatase 
and Tensin 
Homology 

Regulates AKT 
signalling 

Overexpression 
improves lifespan 

Little et al, 
2015 

ATF6 Activating 
Transcription 
Factor 6 

Unfolded protein 
response 

Knockdown 
rescues SMN 
depletion defects 

Wirth et al, 
2017 

ACTN Actinin Actin filament 
attachment 

Knockdown 
rescues SMN 
depletion defects 

Wirth et al, 
2017 

AGRN Agrin Neuromuscular 
junction 
development  

Overexpression 
rescues SMN 
depletion defects 

Boido et al, 
2018 

ZPR1 Zinc Finger 
Protein 1 

Facilitates 
mRNA binding 
of SMN complex 

Overexpression 
rescues SMN 
depletion defects 

Ahmad et al, 
2012 

 

Besides SMN2, Plastin 3 (PLS3) was the first SMA genetic modifier that was discovered in 

humans. It was found that PLS3 expression levels were elevated in asymptomatic females 

harbouring the same SMN1 and SMN2 alleles as their symptomatic siblings (Oprea et al, 

2008). PLS3 encodes a calcium-dependant actin binding protein which has an important role 

in axon growth by controlling actin cytoskeletal dynamics by bundling F-actin filaments and 

thus controls the F/G actin ratio in developing axons. Oprea and colleagues (2008) 

demonstrated that PLS3 overexpression significantly restored the axon length in motor 

neurons using a severe SMA mouse model carrying two human SMN2 copies. Axon length 
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restoration was attributed to the increased levels of F-actin required for axonogensis (Oprea 

et al, 2008). A subsequent genetic screen identified PLS3 as a cross-species invertebrate 

SMN loss of function modifier, where knockdown of the PLS3 ortholog in Caenorhabditis 

elegans and Drosophila SMA models rescued SMN neuromuscular defects (Dimitriadi et al, 

2010). In addition, an independent study demonstrated that PLS3 overexpression also 

restored motor neuron and NMJ functionality, but not lifespan, in a severe SMA mouse model 

(Ackermann et al, 2013). Furthermore, using a viral vector to deliver PLS3, it was shown that 

survival of an intermediate SMA mouse model was significantly extended and, when used in 

conjunction with an SMN increasing ASO, also increased lifespan in a severe SMA mouse 

model. It is of note that PLS3 overexpression alone is not sufficient to completely rescue SMN 

depletion defects (Kaifer et al, 2017).  

Neurocalcin delta (NCALD) encodes a neuronal calcium sensor and has recently been 

identified as another SMA genetic modifier. It was found that knockdown of NCALD, a negative 

regulator of endocytosis, ameliorated disease-associated SMA phenotypes (Riessland et al, 

2017). In the absence of Ca2+ NCALD binds clathrin, a synaptic vesicle coat protein required 

for vesicle recycling thereby preventing coating of synaptic vesicles and acting as a negative 

regulator of endocytosis. SMN depletion reduces voltage-dependant Ca2+ influx, as a result 

the levels of intracellular Ca2+ decrease and NCALD binds clathrin, inhibiting the coating of 

synaptic vesicles and prevents their recycling at the NMJ (Riessland et al, 2017). Using mice 

and zebrafish SMA models, it was shown that knockdown of NCALD ameliorated disease-

associated SMA phenotypes by restoring endocytic function; synaptic vesicle endocytosis was 

restored in mice NMJs, while axonogensis defects were restored in zebrafish (Riessland et al, 

2017). Furthermore, knockout of the Sac6p, the yeast Plastin ortholog, resulted in impaired 

endocytosis (Kübler & Riezman, 1993) and PLS3 overexpression has been shown to rescue 

endocytic impairments in the NMJ of SMA mouse models (Hosseinibarkooie et al, 2016). 

Overall, cross-species genetic modifiers hold promising potential for therapeutic applications 

in SMA, the role of SMN2 is clear however PLS3 and NCALD remain the focal point of current 

research. Impaired endocytic pathways have been implicated in the pathology of SMA and 

altered expression of both PLS3 and NCALD has been shown to restore endocytic defects in 

various mammalian SMA models. Taken together these results clearly demonstrate that 

endocytic pathways are involved in SMA pathology, highlighting the need for further research. 

 

1.5 – SMA Therapeutic Strategies 

To date, there is only a single treatment available for SMA. Nusinersen (Spinraza) became 

the first FDA approved drug for SMA treatment and was released in 2017 (Ottensen 2017), 

despite the causative gene being discovered 10 years earlier. Most SMA therapeutics are 

aimed at increasing the levels of FL-SMN produced either, by exogenously expressing SMN1 

or by increasing the levels of FL-SMN produced from SMN2 (Wood, Talbot, & Bowerman, 

2017).   

Nusinersen, product of these efforts, is an antisence oligonucleotide (ASO) treatment which 

works by increasing the amount of SMN2 transcripts that include exon 7 (Ottensen, 2017). An 

important sequence termed intron splicing silence N1 (ISS-N1), was discovered within intron 

7 of SMN2 which further promotes exclusion of exon 7 from the transcript (Singh et al, 2006). 



Page 16 of 54 
 

Nusinersen binds to, and inhibits, ISS-N1 thereby promoting the inclusion of exon 7 in the 

SMN2 transcripts (Goodkey, Aslesh, Maruyama & Yokota, 2017; (Son & Yokota, 2018) 

 

Figure 6. Nusinersen promotes exon 7 inclusion in SMN2 transcripts by inhibiting ISS-N1. 
Healthy individuals possess a full compliment of SMN protein from the SMN1 gene and a 
partial compliment from aberrantly spliced SMN2. SMA patients are reliant on the low levels 
of SMN protein produced from SMN2. Nusinersen inhibits ISS-N1 in SMN2 and promotes 
exon 7 inclusion, thus directly increasing the levels of FL-SMN produced (Image taken from 
Goodkey et al, 2017).    

In addition to Nusinersen, other SMA therapeutic strategies have been described, these other 

strategies focus on increasing the levels of FL-SMN by improving SMN2 promoter activation, 

gene replacement of functional SMN1 and neuroprotection mediated by small molecules 

(Bowerman et al, 2017). These strategies primarily focus improving the genetic defects of 

SMA. In line with these therapies novel genetic modifiers hold promising potential for further 

therapeutic treatment options, while modulation of novel pathways disrupted in SMA such as 

autophagy may also provide potential therapeutic targets.     

 

1.6 – The Role of Autophagy in SMA 

Autophagy is a vital process for the maintenance of cellular homeostasis under physiological 

conditions, particularly in motor neurons, where it is frequently disrupted in a range of 

neurodegenerative disorders. Autophagy is now emerging as a popular topic of SMA 

investigation to progress the understanding of disease mechanisms and identify potential 

therapeutic targets.  

Autophagy is a highly conserved lysosomal degradation pathway which is vital for maintaining 

cellular homeostasis by the removal and recycling of damaged cytoplasmic components which 

are otherwise too large to be degraded by the proteasome system (Reggiori & Klionsky, 2002; 

Mizushima & Komatsu, 2011). These components are typically protein aggregates but also 

include aging or dysfunctional organelles and other larger molecules such as lipids and 

infectious particles (Klionsky & Emr, 2000; Levine & Klionsky, 2004; Levine, Mizushima & 

Virgin, 2011; Kuo, Hansen & Troemel, 2017).  

The autophagic pathway is broadly divided into three classifications; macroautophagy, 

microautophagy and chaperone-mediated autophagy (Mizushima, 2007) (Figure 6). Each type 

results in the degradation of cytoplasmic components, mediated by the lysosome, however 
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the mode of delivery differs (Parzych & Klionsky, 2014). Macroautophagy involves the 

formation of an intermediate double membrane vesicle which engulfs bulk cytoplasmic 

material and transports it to the lysosome (Mehrpour, Esclatine, Beau & Codogno, 2010). 

Microautophagy occurs when the lysosome itself directly takes up smaller cytoplasmic 

material, the lysosomal membrane invaginates to take up cytoplasmic cargo via endocytosis 

(Li, Li & Bao, 2012). Chaperone-mediated is distinct from the other types of autophagy as the 

cytoplasmic material being degraded is not transported via vesicle structures. Instead, the 

cytoplasmic cargo is bound to chaperone proteins which are recognised by receptors on the 

lysosome, receptor binding facilitates the lysosomal import of the cargo (Kaushik & Cuervo, 

2012). In contrast to macroautophagy and microautophagy, chaperone cargo binding enables 

degradation of specific types of cytoplasmic material and is thus a form of selective autophagy 

(Wang, Peng, Ren & Wang, 2015). 

 

Figure 7. The different types of autophagic pathways. Macroautophagy is characterised by 
the formation of an intermediate double membrane (autophagosome) which fuses with the 
lysosome (autolysosome), to degrade cellular cargo. Microautophagy occurs when the 
lysosomal membrane itself invaginates to facilitate cargo uptake and degradation. Chaperone-
mediated autophagy is a selective form of autophagy where cargo is bound to chaperone 
proteins ultimately facilitating binding with the lysosome and enabling cargo translocation into 
the lysosome (Image adapted from Parzych & Klionsky, 2014).   

Autophagy is a ubiquitous catabolic process occurring at a constitutive level in the cell where 

it plays an important role in cell survival by maintaining cellular integrity in the form of 

proteostasis (Levine & Kroemer, 2009). Autophagy is a highly regulated process and is 

upregulated in response to a wide variety of cellular stresses including: starvation, 

temperature, oxidative stress, infection and growth and development (Moreau, Luo & 

Rubinsztein, 2010; Levine et al, 2011). When upregulated, autophagy acts as a protective 

process to promote survival however, impaired or excessive autophagy can be detrimental 

resulting in accumulation of protein aggregates – a typical feature of many neurodegenerative 

disorders (Nixon, 2013; Martinez-Vincente, 2015). This pathway is known to be perturbed in 

several other neurodegenerative disorders including: Alzheimer’s disease (AD), Parkinson’s 

disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Huntingdon’s disease (HD) (Cherra & 

Chu, 2008; Nah, Yuan & Jung, 2015; Mis, Brajkovic, Frattini, Di Fonzo & Corti, 2016). 

Chaperone  

complex 

Binding sequence 

Chaperone receptor 
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Functional autophagy is essential for preventing the accumulation of misfolded protein 

aggregates, a hallmark trait of the majority of neurodegenerative diseases. When impaired, 

autophagy fails to clear protein aggregates ultimately leading to neurodegeneration (Yang et 

al, 2015). The genes controlling the autophagy, termed ATG genes, were originally identified 

and characterised through a series of genetic screens in yeast (Takeshige, Baba, Noda & 

Oshumi, 1992; Tsukada & Oshumi, 1993; Thumm et al, 1994) and have provided the basis for 

elucidating the various autophagic pathways. Many of the genes identified through these 

genetic screens possess orthologs in invertebrates and mammals (Table 4), demonstrating 

the significance and conservation of autophagy (Oshumi, 2014).    

Macroautophagy (herein referred to as autophagy) is the main pathway used for the clearance 

of aggregated protein and damaged organelles as it is capable of degrading material in bulk, 

and in a non-selective manner (Parzych & Klionsky, 2014). Autophagy is characterised by the 

formation of a large double membrane vesicle structure known as the autophagosome. The 

cytoplasmic material to be degraded is completely sequestered by a growing nascent 

membrane, termed the phagophore, which fuses with itself to form the autophagosome. Upon 

completion, the autophagosome fuses with a lysosome, forming an autolysosome, where the 

lysosomal enzymes facilitate degradation of the sequestered material (Glick, Barth & Macleod, 

2010). Autophagy is governed by a series of protein complexes (Table 4) and occurs across 

four distinctive stages – (i) autophagy induction, (ii) vesicle nucleation, (iii) vesicle elongation, 

(iv) lysosomal fusion and degradation (Figure 7).  

 

Figure 8. The main cellular events of the autophagy process. The pathway starts with the 
formation of an isolation membrane (phagophore) which eventually sequesters the 
cytoplasmic material to be degraded, forming the autophagosome. The autophagosome 
subsequently fuses with a lysosome, forming an autophagolysosome where the material is 
finally degraded by lysosomal digestive enzymes (Image taken from Meléndez & Levine, 
2009). 

The process begins with the formation of an isolation membrane termed the phagophore. In 

yeast, this membrane is formed at a cytoplasmic structure known as the phagophore assembly 

site (PAS), however there is no evidence to suggest a PAS is present in mammalian cells. 

Instead, the phagophore is thought to originate primarily from the ER membrane at structures 

termed omegasomes (Mizushima & Komatsu, 2011).  

(i) (ii) (iii) (iv) 
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Induction of autophagy is controlled by the first protein complex, ULK1/2-Atg13-FIP200 

(homologous to the yeast Atg1-Atg13-Atg17 complex) (Glick et al, 2010). This induction 

complex is Ser/Thr protein kinase regulated by the mammalian target of rapamycin complex 

1 (mTORC1) kinase which inactivates the complex via phosphorylation of ULK1/2 under 

normal conditions. Upon induction of autophagy, mTORC1 is inhibited and dissociates from 

the induction complex, resulting in its dephosphorylation and enabling it to associate with the 

ER where it recruits the second protein complex (Parzych & Klionsky, 2014).    

Vesicle nucleation is controlled by the second protein complex, a class III phosphatidylinositol 

3-kinase (PI3K) comprising VPS43-P150-BECN1 (homologous to the yeast Vps34-Vps15-

Atg6/Vps30 complex) (Glick et al, 2010). The class III PI3K complex associates with ATG14 

which directs its localisation to site of phagophore assembly, following its localisation to the 

phagophore the PtdIns3K complex produces phosphatidylinositol-3-phosphate (PI3P) which 

begins phagophore elongation (Parzych & Klionsky, 2014; Yin, Pascual & Klionsky, 2016). 

The PI3K complex is regulated by the activity of BECN1 (Atg6/Vps30 in yeast) which interacts 

with ATG14 and enables it to associate with the PI3K complex. BECN1 is normally bound by 

BCL2 (an antiapoptotic protein), preventing its interaction with ATG14 and inhibiting 

autophagy, this binding is reversed upon autophagy induction (Yin et al, 2016).              

Vesicle elongation is controlled by two ubiquitin-like protein conjugation systems – ATG12-

ATG5-ATG16L (homologous to the yeast Atg12-Atg5-Atg16 complex) conjugation system and 

the LC3 (homologous to the yeast Atg8) system (Glick et al, 2010). In the first system, ATG12 

is covalently linked to ATG5 by the activity of ATG7 (E1-like activating enzyme) and ATG10 

(E2-like conjugating enzyme). ATG16L binds to ATG5 and causes dimerization of the 

complex, this complex then associates with the phagophore to promote membrane expansion 

(Yu, Chen & Tooze, 2017). In the second system, LC3 is cleaved by ATG4 (a cysteine 

protease) which exposes a glycine residue at the C terminus (LC3-I). ATG7 activates cleaved 

LC3-I and transfers it to ATG3 (another E2-like conjugating enzyme). Finally, the C-terminal 

glycine is conjugated to the lipid phosphatidylethanolamine (PE) (LC3-II) which is thought to 

be facilitated by the action of the ATG12-ATG5-ATG16L complex acting as a E3-like ligase, 

LC3-II is then incorporated into the phagophore to expand the membrane until the membranes 

fuse forming the autophagosome (Yu et al, 2017).  

Upon maturation, the autophagosome is able to dock with the lysosome through the action of 

P62/SQSTM1 (Glick et al, 2010; Mizushima & Komatsu, 2011). P62 acts as an adaptor protein 

located in the lysosome membrane and recognises the LC3 protein in the autophagosome 

membrane. Binding of these proteins facilitates the docking of the two structures and initiates 

their fusion, thereby enabling the release of the autophagosome cargo into the lysosome 

lumen for degradation and recycling via the action of hydrolytic enzymes (Rusten & Stenmark, 

2010; Liu et al, 2016).   

 

 

 

 



Page 20 of 54 
 

Table 4. An overview of the protein complexes and components involved in the autophagic 
pathway and the genes involved in the complex.  

Protein 
Complex 

Function  Autophagy 
Genes Involved 

Saccharomyces 
cerevisiae 
Ortholog 

Caenorhabditis 
elegans 
Ortholog 

Autophagy 
induction 
complex 

Ser/Thr kinase. 
Induces 
autophagy in 
response to 
cellular signals  

mTORC1 
Ulk-1/Ulk-2 
Atg13 
FIP200 
- 
- 
- 
- 
Atg101 

TOR1 
ATG1 
ATG13 
ATG17 
ATG31 
ATG29 
ATG11 
ATG20 
- 

let-363 
unc-51 
epg-1/atg-13 
- 
- 
- 
- 
- 
- 

Vesicle 
nucleation 
complex 

Class III PI3K. 
Produces PI3P 
which begins 
phagophore 
elongation  

Vps34 
p150 
Becn1 
Atg14 
WIPI1/WIPI2 
- 

Bcl-2 

VPS34 
VPS15 
ATG6/VPS30 
ATG14 
ATG18 
ATG21 

- 

vps-34 
vps-15 
bec-1 
epg-8 
atg-18 
- 

ced-9 

Lipid conjugation 
complex 

Ubiquitin-like 
conjugation 
system. 
Recruits the 
lipidation 
complex to 
expand 
phagophore. 

Atg12 
Atg5 
Atg7 
Atg10 
Atg16L1/Atg16L2 

ATG12 
ATG5 
ATG7 
ATG10 
ATG16 

lgg-3 
atg-5 
atg-7 
atg-10 
atg-16.1/atg-
16.2 

Lipidation 
complex 

Ubiquitin-like 
conjugation 
system. 
Promotes 
phagophore 
expansion 

LC3 
Atg4 
Atg7 
Atg3 
Atg9 
- 
- 

ATG8 
ATG4 
ATG7 
ATG3 
ATG9 
ATG23 
ATG27 

lgg-1/lgg-2 
atg-4.1/atg-4.2 
atg-7 
atg-3 
atg-9 
- 
- 

Autophagosome-
lysosome fusion 
components 

Binds LGG-1 in 
the 
autophagosome 
membrane and 
promotes 
docking and 
fusion with the 
lysosome 

p62/SQSTM1 - sqst-1 
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An increasing body of evidence suggesting that autophagy, a classical endosomal pathway is 

disrupted in SMA (Table 5) (Garcera, et al, 2013; Custer & Androphy, 2014; Periyakaruppiah 

et al, 2016; Piras et al, 2017). These findings were obtained using a variety of in vivo and in 

vitro SMA models, providing new insights into the possible mechanisms of SMA disease 

pathogenesis and could represent new therapeutic targets.    

The first evidence showing autophagy was dysregulated in SMA came from Smn-reduced 

mice motor neurons. Using the LC3 and Beclin-1 autophagy markers, proteins associated with 

the autophagosome, it was shown that Smn depletion caused autophagosomes to accumulate 

in these cells (Garcera et al, 2013). The increase in autophagosomes may be a result of 

excessive autophagy induction or impaired autophagic flux. The same study used Bafilomycin 

A1 (BafA1), a known autophagy inhibitor that blocks autophagosome and lysosomal fusion, to 

demonstrate that flux was unaffected in these cells (Garcera et al, 2013).   

An independent study obtained similar results using a cultured SMN-depleted motor neuron 

cell line (NCS-34) and cultured fibroblasts from SMA patients. Using an LC3 marker, it was 

demonstrated that autophagosomes accumulated in both cell culture systems. In addition, an 

LC3 tandem fluorescent marker was used in conjunction with p62, a protein degraded by the 

fusion autophagosomes ad lysosomes, to show that flux was also unaffected in these SMA 

cell culture models (Custer & Androphy, 2014).    

Furthermore, an additional study demonstrated that the number of autophagosomes were 

increased in spinal cord motor neurons from a postnatal severe SMA mouse model, building 

on the observation that these structures were observed to be increased in SMN-reduced motor 

neurons (Periyakruppiah et al, 2016). The same study also used a p62 monitoring assay to 

show that autophagic flux is indeed reduced in cultured SMA mice motor neurons. Modulators 

of the autophagic pathway were also shown to affect the Smn levels in Smn reduced mice 

motor neurons; autophagy flux inhibitors (BafA1) and autophagy activators (Rapamycin) 

reduced and increased these levels, respectively, suggesting the possibility of therapeutic 

targets (Periyakruppiah et al, 2016).  

Finally, a recent study has shown that inhibition of autophagy increases lifespan and delays 

motor neuron degeneration in an intermediate (SMA type II) SMA mouse model (Piras et al, 

2017). This study reports that the autophagic markers Beclin 1 and LC3 are increased in the 

lumbar spinal cords of this model, however the p62 levels were unaffected. These results 

suggest that autophagy was indeed upregulated due to the increased number of 

autophagosomes but autophagic flux was unaffected, indicating that autophagy may be 

destructive in the context of SMA (Piras et al, 2017). In addition, the same study reported that 

treatment with another autophagy inhibitor (3-methyladenine) decreased the levels of 

autophagic vesicles and increased the p62 levels. Furthermore, treating the intermediate SMA 

mice with this inhibitor significantly increased lifespan in this model (Piras et al, 2017; (Piras 

& Boido, 2018).   
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Table 5. The current evidence demonstrating autophagic disruptions in SMA disease 
pathology.  

SMA Model 
System 

Autophagic 
Markers 
Assessed   

Main Findings Reference 

Cultured Smn 
reduced mice 
motor 
neurons 

LC3 
Beclin-1 

Autophagosomes accumulate 
following Smn depletion; BafA1 
treatment increased LC3 levels – 
indicating flux was unaffected  

Garcera et al, 
2003 

SMN 
depleted 
motor neuron 
cells (NCS-
34); 
Cultured SMA 
patient 
fibroblasts 

LC3 (tandem 
fluorescence) 
p62 

Autophagic vesicles accumulate 
in both cell culture models; 
autophagic flux was reduced 

Custer & 
Androphy, 
2014 

Severe SMA 
mouse 
model; 
Cultured Smn 
reduced mice 
motor 
neurons 

LC3 
p62 

Autophagic vesicle levels are 
increased throughout 
development; autophagic flux 
was reduced; BafA1 (autophagy 
inhibitor) treatment reduced Smn 
protein levels; Rapamycin 
treatment (autophagy activator) 
increased Smn protein levels 

Periyakruppiah 
et al, 2016 

Intermediate 
(SMA type II) 
mouse model 

LC3 
Beclin-1 
p62 

Autophagosomes accumulate 
due to Smn decrease; autophagy 
upregulated but autophagic flux 
unaffected; following 3-
methyladenine (autophagy 
inhibitor) treatment, 
autophagosomes were reduced 
and lifespan improved 

Piras et al, 
2017 

 

In summary, these findings clearly illustrate that autophagy is dysregulated in SMA. However, 

the exact nature of this disruption and its role in SMA pathogenesis remain unclear. Evidence 

gained from in vivo and in vitro SMA models shows that autophagosome formation is 

upregulated, whilst autophagic flux remains unaffected, suggesting that autophagy inhibition 

may be an attractive source of novel SMA therapeutics.    

 

 



Page 23 of 54 
 

1.7 – Caenorhabditis elegans as a Model to Study SMA  

The free-living soil nematode Caenorhabditis elegans is an invertebrate model organism 

which possesses a range of traits that make it an ideal model to study cellular processes at 

the whole organism level. C. elegans are a hermaphrodite species and are thus easily 

cultivated and maintained; the animals are transparent, allowing the visualisation of specific 

cells and sub-cellular structures, and they have a short life cycle of 2.5 days at 25°C (Brenner, 

1974). The animals are amenable to genetic analysis, boasting a fully sequenced genome 

with efficient forward and reverse genetics approaches enabling the genetic characterisation 

of molecular mechanisms (Riddle, Blumenthal, Meyer & Priess, 1997). Finally, the nematode 

possess an invariant cell lineage and the developmental fate of all 959 somatic cells have 

been characterised (Sulston & Horvitz, 1977; Sulston, Schierenberg, White & Thomson, 

1983), including the nervous system which comprises 302 neurons. The anatomy of the 

nervous system and the neuronal circuitry have been completely mapped (White, Southgate, 

Thomson & Brenner, 1988), thus making C. elegans a particularly advantageous model to 

study neurodegenerative disorders such as SMA.    

C. elegans possess a single ortholog of the human SMN1 gene, termed smn-1, which encodes 

a highly conserved protein to SMN, also termed SMN-1 (Miguel-Aliaga et al, 1999). Depletion 

of SMN-1 leads to growth defects, sterility and larval lethality (Figure 9). Reminiscent of human 

disease, diminished SMN-1 also impairs neuromuscular function in locomotion (Briese et al, 

2009), making C. elegans an attractive model to study SMA disease pathogenesis.  

 

Figure 9. The C. elegans loss-of-function SMA model. The C. elegans SMA model harbours 
a 975bp deletion which effectively eliminating smn-1 gene function. Loss of smn-1 is 
accompanied by severe phenotypic defects; smn-1 loss of function animals (bottom) display 
slow growth and die during late larval stages compared to wild type age-matched controls 
(top). 

The previously described C. elegans SMA model is a loss-of-function model (Figure 9) 

featuring a 975bp deletion allele (ok355) which effectively eliminates most of the gene, causing 

a complete loss of the smn-1 function, termed smn-1(lf). Deletion of smn-1 leads to growth 

defects, sterility and embryonic lethality, however smn-1(lf) animals can survive through early 

larval stages due to maternal loading of SMN-1. In addition to the aforementioned defects the 

smn-1(lf) animals also possess severe neuromuscular defects which manifest as locomotion 

and pharyngeal pumping defects (Briese et al, 2009). 
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Furthermore, many of the yeast ATG genes have equivalent orthologs present in C. elegans 

(Table 4), making it an ideal model organism to further study the mechanisms of autophagy in 

relation to SMA pathogenesis (Zhang et al, 2015). Since the animals are amenable to genetic 

analysis, powerful reverse genetics approaches can be employed to dissect the mechanism(s) 

through which autophagic perturbations control SMN function.  

 

1.8 – Project Aims & Objectives 

In light of the increasing body of evidence that suggests autophagy is disrupted in SMA (Table 

5), we hypothesise that key autophagy regulators may act as putative modifier genes of SMN 

loss of function defects. Using the powerful genetic tools of C. elegans we sought to elucidate 

the precise cellular and molecular mechanisms underlying SMA disease pathogenesis, with 

the ultimate goal to identify novel therapeutic avenues for SMA treatment options. 

In the present study, we sought to utilise the nematode C. elegans, a powerful invertebrate 

model organism to delineate how autophagic perturbations contribute to SMA pathogenesis. 

To determine whether autophagic perturbations control SMN neuromuscular function, a 

reverse genetics approach was used in conjunction with the C. elegans SMA model in order 

to identify novel modulators of SMN function. An RNAi-based genetic screen was conducted 

to knockdown 22 autophagy orthologs (Table 4) in the C. elegans SMA model, a 

neuromuscular behavioural assay was then employed to determine if knockdown of these 

genes resulted in the amelioration of the SMN loss of function neuromuscular defects 

observed in these animals.  

 

 

Figure 10. The experimental procedures used in this study to identify putative genetic 

modifiers of SMN loss of function neuromuscular defects. All known C. elegans autophagy 

orthologs were screened using an RNAi feeding protocol. Knockdown was assessed using a 

pharyngeal pumping behavioural assay to determine if gene knockdown could modify the 

defects observed in smn-1(ok355) animals.    
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2   Materials and Methods  

 

2.1 – Caenorhabditis elegans strains and maintenance 

All C. elegans strains were cultivated and maintained at 20°C on nematode growth medium 

(NGM) plates seeded with OP50 Escherichia coli bacteria as previously described (Brenner, 

1974). The following strains were used in this work: Bristol N2, LM99 smn-1(ok355) I/hT2 [bli-

4(e937) qIs48 [myo-2p::GFP; pes-10p::GFP; ges-1p::GFP]] (I;III), HA1981 (+)/hT2 [bli-

4(e937) qIs42 [myo-2p::GFP; pes-10p::GFP; ges-1p::GFP]] (I;III), HA2599 (+)/ht2 [bli-4(e937) 

qIs48 [myo-2p::GFP; pes-10p::GFP; ges-1p::GFP]] (I;III); uIs72 [pCFJ90(myo-2p::mCherry) + 

unc-119p::sid-1 + mec-18p::mec-18::GFP], HA2623 smn-1/ht2 [bli-4(e937) qIs48 [myo-

2p::GFP; pes-10p::GFP; ges-1p::GFP]] (I;III); uIs72 [pCFJ90(myo-2p::mCherry) + unc-

119p::sid-1 + mec-18p::mec-18::GFP], CB1467 him-5(e1467) V. HA2599 was constructed by 

crossing young adult him-5 males with L4 smn-1/hT2; uIs72 hermaphrodites, two generations 

of progeny were validated with PCR genotyping.      

C. elegans smn-1(ok355) animals cannot be maintained as homozygotes due to infertility. 

Therefore, smn-1(ok355) animals were maintained as heterozygotes with the hT2 

chromosome balancer which is a translocation of segments from chromosomes I and III (strain 

LM99) (Briese et al, 2009). The strains HA2599 and HA2623 are specialised neuronal RNA 

interference (RNAi) sensitive strains. RNAi is systemic in C. elegans and targets most tissues 

with the exception of neurons, vulval tissue, sperm and the pharynx (Conte Jr., MacNeil, 

Walhout & Mello, 2017). HA2599 and HA2623 possess chromosomally integrated transgenes 

which express SID-1 in neurons, allowing the uptake of dsRNA and thus enhancing RNAi in 

neuronal tissues (Calixto, Chelur, Topalidou, Chen & Chalfie, 2010). 

 

2.2 – RNA interference by bacterial feeding  

The Ahringer RNAi library is a bacterial feeding library comprising 16,757 clones representing 

86% of the C. elegans genome (Kamath & Ahringer, 2003; Kamath et al, 2003). Each gene 

has been cloned into an L4440 feeding vector between two inverted T7 promoters and 

subsequently transformed into HT115(DE3) E. coli bacteria resistant to tetracycline. The 

L4440 plasmid has isopropyl β-D-1-thiogalactopyranoside (IPTG) inducible T7 promoter 

system and ampicillin resistance marker. Bacteria expressing double stranded RNA were 

taken from the Ahringer RNAi library (SourceBiosceince) and used to inoculate LB media 

supplemented with 100µg/mL ampicillin (Sigma-Aldrich) and 12.5µg/mL tetracycline (Sigma-

Aldrich) and grown at 37°C and 150 RPM overnight. Following incubation, the culture was 

supplemented with 50% glycerol (ThermoFisher) and stored at -80°C.  

Tetracycline is known to inhibit RNAi in C. elegans (Kamath et al, 2001) and thus glycerol 

stocks were used to inoculate LB media supplemented with 100µg/mL ampicillin and grown 

at 37°C and 150 RPM overnight. Following incubation, 600µL bacterial culture was seeded 

onto NGM plates supplemented with 100µg/mL ampicillin and 6mM IPTG (ThermoFisher) and 

left open under a laminar flow hood to dry for 4 hours followed by 24 hours at room 

temperature. For each gene under analysis, 10-20 animals were passaged to RNAi plates, 

the animals were placed at 25°C for 5 hours to lay eggs before being removed from the plates.  
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Prior to experimentation, each clone was verified by sanger sequencing. Bacteria were taken 

from glycerol stocks and cultured in LB media supplemented with 100µg/mL ampicillin and 

12.5µg/mL tetracycline and grown at 37°C and 150 RPM overnight. Bacterial cells were 

harvested at 6800xg for 3 minutes, a QIAprep Spin Miniprep Kit (Qiagen) was used to extract 

plasmid and the L4440 plasmid primers (Table 6) were used for sequencing.  

RNAi was facilitated in C. elegans according to a bacterial feeding protocol (Timmons & Fire, 

1998) where animals ingest HT115 E. coli expressing double stranded RNA which spreads 

throughout the animal and potently silences the corresponding gene (Timmons, Court & Fire, 

2001). The effects of RNAi-mediated gene knockdown were assessed in second generation 

animals using a pharyngeal pumping neuromuscular behavioural assay after 3 days post-

hatching (2 days at 25°C followed by 1 day at 20°C) on RNAi plates.   

 

2.3 – Construction of RNA interference feeding clones for atg-3 and atg-4.2 

The C. elegans atg-3 and atg-4.2 autophagy orthologs were not present in the Ahringer RNAi 

library and thus RNAi feeding constructs were created via PCR and cloning. Genomic 

fragments of these genes, encompassing the largest available exons, were derived from an 

N2 animal lysate using PCR amplification with atg-3 and atg-4.2 primers (Table 6) The 

amplified genomic fragments were purified using a QIAquick PCR Purification Kit (Qiagen) 

before being subjected to a restriction digest using XhoI and HindIII restriction endonucleases. 

The XhoIHindIII restriction products were purified via 0.8% agarose gel electrophoresis and 

extracted using a QIAquick Gel Extraction Kit (Qiagen) before being subcloned into pL4440 

(addgene plasmid #1654), also digested with XhoI and HindIII, between two inverted T7 

promoters in the multiple cloning site. The resulting construct was verified via agarose gel 

electrophoresis before being used to transform TOP10 E. coli via heat shock, the 

transformants were spread on LB agar with 100µg/mL ampicillin and grown at 37°C overnight. 

The resulting colonies were verified with colony PCR using the aforementioned primers. Single 

colonies were used to inoculate LB media with supplemented with 100µg/mL ampicillin and 

12.5µg/mL tetracycline and grown at 37°C and 150 RPM overnight. Bacterial cells were 

harvested at 6800xg for 3 minutes, a QIAprep Spin Miniprep Kit (Qiagen) was used to extract 

plasmids which were verified via sanger sequencing with L4440 plasmid primers (Table 6) 

Sequence analysis and alignment was conducted to ensure no mutations were present in the 

constructs. The RNAi feeding constructs were then transformed into HT115 E. coli via heat 

shock and the transformants were spread on LB agar with 100µg/mL ampicillin and 12.5µg/mL 

tetracycline and grown at 37°C overnight. Single colonies were used to inoculate LB media 

supplemented with 100µg/mL ampicillin and 12.5µg/mL tetracycline and grown at 37°C and 

150 RPM overnight. Following incubation, the culture was supplemented with 50% glycerol 

and stored at -80°C. 

 

 

 

 

 



Page 27 of 54 
 

Table 6. A list of the primer sequences used throughout this study. 

Amplification 

target 

Forward primer sequence 

5’ – 3’  

Reverse primer sequence 

5’ – 3’ 

L4440 plasmid ACGACTCACTATAGGGA

GAC 

GTTGTAAAACGACGGCCAGT 

atg-3 TGATCTCGAGTTGTAGTT

GAGAAGAAGCCG 

TGATAAGCTTCAAGTTGGTGAGC

GAATAGA 

atg-4.2 TGATCTCGAGAGAAAGT

GGTCTTCGCTCG 

TGATAAGCTTGCGCACTTGGATG

GAGCCTAAAC 

 

2.4 – RNA interference based genetic screen of C. elegans autophagy orthologs 

10 gravid (+)/hT2; uIs72 and 20 smn-1/hT2; uIs72 animals were transferred to RNAi plates 

seeded with a candidate RNAi bacterial feeding clone corresponding to a C. elegans 

autophagy ortholog, or an empty vector control (L4440). The animals were placed at 25°C for 

5 hours to lay eggs before being removed from the plates in order to achieve an age matched 

population. Eggs were allowed to hatch, and animals were maintained on the RNAi bacterial 

feeding strains for 3 days (2 days at 25°C followed by 1 day at 20°C) before the procedure 

was repeated with second generation animals. Second generation animals were assessed for 

neuromuscular defects (pharyngeal pumping) after 3 days post-hatching (2 days at 25°C 

followed by 1 day at 20°C) on RNAi plates.  

2.5 – Pharyngeal pumping neuromuscular behavioural assay  

Pharyngeal pumping assays were used to assess the neuromuscular defects in wild type 

animals derived from the (+)/hT2; uIs72 strain, and smn-1(ok355) animals derived from the 

smn-1/hT2; uIs72 strain following knockdown of autophagy genes. The average number of 

pharyngeal pumps per minute was determined after 3 days (2 days at 25°C, 1 day at 20°C) 

post-hatching on empty vector control and RNAi candidate feeding strains. Animals were 

recorded using an AxioCam ICc5 mounted on a Zeiss Discovery.V8 stereomicroscope at 126x 

magnification. Animals were recorded for 10 seconds at a resolution of 1260x930 with an 

exposure time of 30ms and recordings were slowed before counting pharyngeal pumps. 

Pharyngeal pumps were scored as a single complete revolution of the pharynx. For each RNAi 

candidate gene and control, the average number of pharyngeal pumps (± S.E.M.) was 

determined for both genotypes from at least three independent trials (n ≥ 30 animals in total).     

2.6 – Data analysis  

All recorded videos from pharyngeal pumping experiments were analysed using Zeiss Zen 2 

image processing software equipped with time lapse functionality. Subsequent data analysis 

was performed using Microsoft Excel and GraphPad Prism 8. SnapGene was used to create 

plasmid maps for newly generated constructs and for assessing sequence alignments. 

Pharyngeal pumping statistical analysis was performed using a two-tailed Mann-Whitney U 

test.  
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3   Results  

3.1 – Neuromuscular Behavioural Assay 

3.1.1 – smn-1(ok355) mutants exhibit pharyngeal pumping defects 

The previously described C. elegans SMA model has been used to demonstrate that the smn-

1(ok355) deletion allele results in progressive neuromuscular defects, including drastically 

decreased rates of pharyngeal pumping (Briese et al, 2009). This model was used herein to 

verify the pharyngeal pumping characteristics of the smn-1(ok355) animals compared to wild 

type animals. C. elegans feed on bacteria via the rhythmic contraction and relaxation of its 

pharynx, a neuromuscular pump composed of a small discrete subset of muscles and neurons 

(Trojanowski, Raizen & Fang-Yen, 2016) (Figure 11A). The pharynx pumps continuously as 

bacteria are ingested and broken down by the grinder; in wild type animals the rate of 

pharyngeal pumping ranges from 200-250 pumps per minute. In smn-1(ok355) animals the 

rate of pharyngeal pumping significantly declines to 30-50 times per minute, reflecting the 

progressive neuromuscular defects (Briese et al, 2009; Dimitriadi et al, 2010). 

 

Figure 11. The rate of pharyngeal pumping is significantly decreased in smn-1(ok355) animals 
compared to controls. (A) C. elegans feed on bacteria through the pharynx, a neuromuscular 
pump that continuously contracts and relaxes as the animal captures and grinds bacteria. 
Pharyngeal pumps were determined by counting complete revolutions of the grinder (indicated 
by the arrow); scale bar indicates 1000µm. (B) The rates of pharyngeal pumping in smn-
1(ok355) and smn-1(+) control animals were determined at day 3 post hatching on RNAi plates 
with a bacterial feeding strain expressing L4440 (empty RNAi vector). Fifty animals were 
scored across 5 independent trials. Error bars display ± SEM; Asterisks indicate significant 
difference determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 
0.0001.          
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To determine whether these values could be recapitulated, smn-1(ok355) and smn-1(+) 

control animals (progeny of +/hT2 animals) were allowed to hatch on RNAi plates containing 

a bacterial feeding strain expressing L4440, an empty RNAi vector control. Pharyngeal 

pumping was determined at day 3 post hatching (Figure 11B). In agreement with previous 

findings (Dimitriadi et al, 2010), smn-1(ok355) animals display a significantly reduction in 

pharyngeal pumping (44 ± 6) compared to smn-1(+) controls (217 ± 6) (p = < 0.0001). These 

findings illustrate that loss SMN-1 in C. elegans results in a 79.7% decrease in pharyngeal 

pumps. This established neuromuscular phenotype provides an ideal baseline to assess RNAi 

mediated knockdown of candidate autophagy modifier genes.  

 

3.2 – Generation of RNAi Feeding Clones  

3.2.1 – Construction of atg-3 and atg-4.2 RNAi feeding constructs  

The Ahringer RNAi library covers 86% of the C. elegans genome (Kamath & Ahringer, 2003), 

excluded by this coverage are the autophagy genes atg-3 and atg-4.2. To generate RNAi 

feeding clones for these genes, PCR was used (primer sequences shown in Table 6) to 

amplify genomic fragments incorporating the largest exon of each gene. The amplified 

fragments were sub-cloned into the L4440 feeding vector between two inverted T7 promoters 

(Kamath et al, 2003). The resulting plasmid constructs were transformed into the bacterial 

strain HT115(DE3). Restriction digests were used to confirm the constructs contained the 

correct sized genomic fragments (Figures 14-15), followed by verification via Sanger 

sequencing.     

 

As expected, double digest of the L4440 atg-3 construct (Figure 14) with XhoI and HindIII 

restriction endonucleases liberates the atg-3 genomic fragment from the digested L4440 

vector and displays two bands upon agarose gel electrophoresis – 522bp and 2790bp, 

respectively. Undigested L4440 atg-3 does not display these bands and instead shows a 

strong band at approximately 2000bp corresponding to the supercoiled plasmid.   
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Figure 14. Restriction digest of the constructed L4440 atg-3 plasmid liberates the atg-3 
genomic fragment from the L4440 plasmid. The XhoIHindIII restriction digest was analysed 
with a 1% agarose gel electrophoresis. Double digestion of the L4440 atg-3 plasmid construct 
produces a 522bp band corresponding to the atg-3 genomic fragment and a digested plasmid 
band at 2790bp, compared to the undigested samples in which neither bands are present.   
 

The same double digest of the L4440 atg-4.2 construct (Figure 15) liberates the PCR fragment 

of the atg-4.2 gene from the digested vector and displays two bands upon agarose gel 

electrophoresis – 596bp and 2790bp, respectively. The undigested samples to do not display 

these bands, instead showing a single strong band at approximately 2000bp corresponding to 

plasmid supercoiling.   
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Figure 15. Restriction digest of the constructed L4440 atg-4.2 plasmid liberates the atg-4.2 
genomic fragment from the L4440 plasmid. The XhoIHindIII restriction digest was analysed 
with a 1% agarose gel electrophoresis. Double digestion of the L4440 atg-4.2 plasmid 
construct produces a 596bp band corresponding to the atg-4.2 genomic fragment and a 
digested plasmid band at 2790bp, compared to the undigested samples in which neither bands 
are present.  

 

3.3 – Genetic Screen of Autophagy Orthologs in the C. elegans SMA Model  

3.3.1 – RNAi mediated knockdown of several autophagy genes likely have no effect on 

SMN loss of function neuromuscular defects 

To identify putative genes that modify SMN loss of function defects, a genetic screen of 22 C. 

elegans autophagy orthologs was undertaken to identify enhancers and suppressors of smn-

1(ok355) neuromuscular defects. RNAi by feeding in C. elegans is known to be ineffective at 

targeting genes in certain tissues, including neurons, the vulva, sperm and the pharynx (Conte 

Jr., MacNeil, Walhout & Mello, 2017).  
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The transgene uIs72 express SID-1, a dsRNA channel protein, in motor neurons enabling the 

passive uptake of dsRNA and making RNAi by feeding more effective (Shih & Hunter, 2011). 

This transgene was crossed into the +/hT2 and smn-1/hT2 animals in order to facilitate 

effective neuronal RNAi (Calixto, Chelur, Topalidou, Chen & Chalfie, 2010). The animals used 

herein were derived from a +/hT2; uIs72 or smn-1/hT2; uIs72 genetic background.  

Animals were allowed to hatch on RNAi plates with bacterial feeding strains expressing 

candidate gene dsRNA or control L4440 (empty RNAi vector). Pharyngeal pumping was used 

to assess animals at day 3 post-hatching and screen for genetic knockdowns that either 

suppress or enhance SMN loss of function defects in smn-1(ok355) animals. Assessment was 

made in second generation animals to ensure the RNAi effect was penetrant.  

RNAi mediated knockdown of 19 out of 22 C. elegans autophagy orthologs had no significant 

effect on pharyngeal pumping in the smn-1(ok355) animals (Figures 16-21), these results are 

summarised below in Table 7. Interestingly, some gene knockdowns (lgg-1, let-363, vps-34, 

unc-51 and lgg-3) significantly altered pharyngeal pumping in the smn-1(+) control animals. 

This is likely due to an SMN independent function of these genes or a non-specific effect of 

SID-1 expression. 
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Table 7. Nineteen autophagy genes had no significant effect on the SMN loss of function 

neuromuscular defects. Pharyngeal pumping rates of smn-1(ok355) and smn-1(+) control 

animals were determined by counting complete pharyngeal revolutions at 3 days post-

hatching on bacterial feeding strains expressing dsRNA corresponding to candidate gene or 

L4440 (empty RNAi vector). Pharyngeal pumping rates are reported as the mean (± SEM) of 

all animals across all trials; percentage change was calculated as the percentage increase or 

decrease compared to control animals on L4440; Asterisks indicate significant difference 

determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001.      

 smn-1(+)  

L4440 

smn-1(+)  

RNAi 

smn-1(ok355) 

L4440 

smn-1(ok355)  

RNAi 

C. elegans 

gene 

Pumps 

/min 

Pumps 

/min 

% change Pumps 

/min 

Pumps 

/min 

% change 

lgg-1 179 ± 9 131 ± 13 ** - 26.40% 48 ± 7 41 ± 6 - 14.58% 

bec-1 164 ± 10 145 ± 14 - 11.59% 47 ± 9 41 ± 8 - 12.77% 

let-363 180 ± 12 138 ± 16 * - 23.33% 27 ± 6 29 ± 7 + 7.41% 

vps-34 180 ± 12 124 ± 13 ** - 31.11% 27 ± 6 30 ± 6 + 11.11% 

unc-51 167 ± 12 106 ± 15 ** - 36.53% 41 ± 8 36 ± 8 - 12.20% 

epg-1 152 ± 17 146 ± 15 - 3.95% 37 ± 7 27 ± 6 - 27.03% 

vps-15 152 ± 17 140 ± 14 - 7.89% 37 ± 7 38 ± 7 + 2.70% 

atg-7 145 ± 12 143 ± 12 - 1.38% 34 ± 7 33 ± 8 - 2.94% 

lgg-2 171 ± 9 130 ± 12 * - 23.98% 27 ± 5 26 ± 5 + 3.85% 

atg-10 171 ± 9 166 ± 10 - 2.92% 27 ± 5 21 ± 5 - 19.23% 

lgg-3 171 ± 15 208 ± 12 * + 21.64% 38 ± 10 42 ± 9 + 10.53% 

atg-5 171 ± 15 198 ± 13 + 15.79% 38 ± 10 20 ± 5 - 47.37% 

atg-4.1 189 ± 9 177 ± 12 - 6.35% 43 ± 6 31 ± 7 - 27.91% 

atg-16.2 180 ± 9 171 ± 13 - 5.00% 33 ± 8 43 ± 11 + 30.30% 

ced-9 180 ± 9 150 ± 16 - 16.67% 33 ± 8 21 ± 6 - 36.36% 

atg-9 166 ± 12 174 ± 9 + 4.82% 40 ± 8 50 ± 10 + 25.00% 

atg-18 166 ± 12 142 ± 16 - 14.46% 40 ± 8 48 ± 8 + 20.00% 

atg-3 158 ± 12 172 ± 12 + 8.90% 40 ± 8 24 ± 6 - 35.00% 

atg-4.2 158 ± 12 160 ± 12 + 1.24% 40 ± 8 33 ± 7 - 17.50%  
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RNAi mediated knockdown of lgg-1 (Figure 16A), bec-1 (Figure 16B) and atg-4.1 (Figure 16C) 

had no significant effect on SMN loss of function neuromuscular defects. Compared to smn-

1(ok355) animals on L4440 (empty RNAi vector) control; knockdown of lgg-1 reduced pumping 

by 14.58% (41 ± 6), bec-1 reduced pumping by 12.77% (41 ± 8) and atg-4.1 reduced pumping 

by 27.91% (31 ± 7).    

Figure 16. C. elegans autophagy orthologs lgg-1, bec-1 and atg-4.1 had no effect on the SMN 

loss of function neuromuscular defects. Pharyngeal pumping was determined in second 

generation smn-1(ok355) and smn-1(+) control animals at 3 days post-hatching on RNAi 

plates with bacterial feeding strains expressing dsRNA corresponding to lgg-1, bec-1, atg-4.1 

or L4440 (empty RNAi vector). (A) Knockdown of lgg-1 had no significant effect on the 

pharyngeal pumping rates in smn-1(ok355) animals; (B) Knockdown of bec-1 had no effect on 

the pharyngeal pumping rates in smn-1(ok355) animals; (C) Knockdown of atg-4.1 had no 

significant effect on the pharyngeal pumping rates in smn-1(ok355) animals. Thirty animals 

were scored in total for each genotype across 3 independent trials. Error bars display ± SEM; 

Asterisks indicate significant difference determined using a Mann-Whitney U test, two tailed: 

*p < 0.05, **p < 0.001, ***p < 0.0001, ns - not significant.      

 

RNAi mediated knockdown of let-363 (Figure 17A) and vps-34 (Figure 17B) had no significant 

effect on SMN loss of function neuromuscular defects. Compared to smn-1(ok355) animals 

on L4440 (empty RNAi vector); knockdown of let-363 increased pumping by 7.41% (29 ± 7) 

and vps-34 increased pumping by 11.11% (30 ± 6).   

A 

C 
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Figure 17. C. elegans autophagy orthologs let-363 and vps-34 had no effect on the SMN loss 

of function neuromuscular defects. Pharyngeal pumping was determined in second generation 

smn-1(ok355) and smn-1(+) control animals at 3 days post-hatching on RNAi plates with 

bacterial feeding strains expressing dsRNA corresponding to let-363, vps-34 or L4440 (empty 

RNAi vector). (A) Knockdown of let-363 had no significant effect on the pharyngeal pumping 

defects in smn-1(ok355) animals. (B) Knockdown of vps-34 had no significant effect on the 

pharyngeal pumping defects in smn-1(ok355) animals. Thirty animals were scored for each 

gene knockdown or control across 3 independent trials. Error bars display ± SEM; Asterisks 

indicate significant difference determined using a Mann-Whitney U test, two tailed: *p < 0.05, 

**p < 0.001, ***p < 0.0001, ns - not significant.      

 

RNAi mediated knockdown of unc-51 (Figure 18A) and atg-7 (Figure 18B) had no significant 

effect on SMN loss of function neuromuscular defects. Compared to smn-1(ok355) animals 

on L4440 (empty RNAi vector); knockdown of unc-51 decreased pumping by 12.20% (36 ± 8) 

and atg-7 reduced pumping by 2.94% (33 ± 8).   
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Figure 18. C. elegans autophagy orthologs unc-51 and atg-7 had no effect on the SMN loss 
of function neuromuscular defects. Pharyngeal pumping was determined in second generation 
smn-1(ok355) and smn-1(+) control animals at 3 days post-hatching on RNAi plates with 
bacterial feeding strains expressing dsRNA corresponding to unc-51, atg-7 or L4440 (empty 
RNAi vector). (A) Knockdown of unc-51 had no significant effect on the pharyngeal pumping 
defects in smn-1(ok355) animals. (B) Knockdown of atg-7 had no significant effect on the 
pharyngeal pumping defects in smn-1(ok355) animals. Thirty animals were scored for each 
gene knockdown or control across 3 independent trials. Error bars display ± SEM; Asterisks 
indicate significant difference determined using a Mann-Whitney U test, two tailed: *p < 0.05, 
**p < 0.001, ***p < 0.0001, ns - not significant.       

 

RNAi mediated knockdown of epg-1 and vps-15 (Figure 19A) had no significant effect on SMN 

loss of function neuromuscular defects. Compared to smn-1(ok355) animals on L4440 (empty 

RNAi vector); knockdown of epg-1 decreased pumping by 27.03% (27 ± 6) whilst vps-15 also 

increased pumping by 2.70% (38 ± 7). RNAi mediated knockdown of lgg-2 and atg-10 (Figure 

19B) had no significant effect on SMN loss of function neuromuscular defects. Compared to 

smn-1(ok355) animals on L4440 (empty RNAi vector); knockdown of lgg-2 increased pumping 

by 3.85% (26 ± 5) whereas atg-10 reduced pumping by 19.23% (21 ± 5).     
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Figure 19. C. elegans autophagy orthologs epg-1, vps-15, lgg-2 and atg-10 had no effect on 
the SMN loss of function neuromuscular defects. Pharyngeal pumping was determined in 
second generation smn-1(ok355) and smn-1(+) control animals at 3 days post-hatching on 
RNAi plates with bacterial feeding strains expressing dsRNA corresponding to epg-1, vps-15, 
lgg-2, atg-10 or L4440 (empty RNAi vector). (A) Knockdown of epg-1 and vps-15 had no 
significant effect on the pharyngeal pumping defects in smn-1(ok355) animals. (B) Knockdown 
of lgg-2 and atg-10 had no significant effect on the pharyngeal pumping defects in smn-
1(ok355) animals. Fifty animals were scored for each gene knockdown or control across 3 
independent trials. Error bars display ± SEM; Asterisks indicate significant difference 
determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001, ns 
- not significant.           
 

RNAi mediated knockdown of lgg-3 and atg-5 (Figure 20A) had no significant effect on SMN 
loss of function neuromuscular defects. Compared to smn-1(ok355) animals on L4440 (empty 
RNAi vector); knockdown of lgg-3 increased pumping by 10.53% (42 ± 9) whilst atg-5 
decreased pumping by 47.37% (20 ± 5). RNAi mediated knockdown of atg-16.2 and ced-9 
(Figure 20B) had no significant effect on SMN loss of function neuromuscular defects. 
Compared to smn-1(ok355) animals on L4440 (empty RNAi vector); knockdown of atg-16.2 
increased pumping by 30.30% (43 ± 11) whereas ced-9 reduced pumping by 36.36% (21 ± 
6).      
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Figure 20. C. elegans autophagy orthologs lgg-3, atg-5, atg-16.2 and ced-9 had no effect on 
the SMN loss of function neuromuscular defects. Pharyngeal pumping was determined in 
second generation smn-1(ok355) and smn-1(+) control animals at 3 days post-hatching on 
RNAi plates with bacterial feeding strains expressing dsRNA corresponding to lgg-3, atg-5, 
atg-16.2, ced-9 or L4440 (empty RNAi vector). (A) Knockdown of lgg-3 and atg-5 had no 
significant effect on the pharyngeal pumping defects in smn-1(ok355) animals. (B) Knockdown 
of atg-16.2 and ced-9 had no significant effect on the pharyngeal pumping defects in smn-
1(ok355) animals. Thirty animals were scored for each gene knockdown or control across 3 
independent trials. Error bars display ± SEM; Asterisks indicate significant difference 
determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001, ns 
- not significant.           
 
 
RNAi mediated knockdown of atg-9 and atg-18 (Figure 21) had no significant effect on SMN 
loss of function neuromuscular defects. Compared to smn-1(ok355) animals on L4440 (empty 
RNAi vector); knockdown of atg-9 increased pumping by 25.00% (50 ± 10) and atg-18 also 
increased pumping by 20.00% (48 ± 8).  
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Figure 21. C. elegans autophagy orthologs atg-9, atg-18, atg-3 and atg-4.2 had no effect on 
the SMN loss of function neuromuscular defects. Pharyngeal pumping was determined in 
second generation smn-1(ok355) and smn-1(+) control animals at 3 days post-hatching on 
RNAi plates with bacterial feeding strains expressing dsRNA corresponding to atg-9, atg-18 
or L4440 (empty RNAi vector). (A) Knockdown of atg-9 and atg-18 had no significant effect on 
the pharyngeal pumping defects in smn-1(ok355) animals. (B) Knockdown of atg-3 and atg-
4.2 had no significant effect on the pharyngeal pumping defects in smn-1(ok355) animals. 
Thirty animals were scored for each gene knockdown or control across 3 independent trials. 
Thirty animals were scored for each gene knockdown or control across 3 independent trials. 
Error bars display ± SEM; Asterisks indicate significant difference determined using a Mann-
Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001, ns - not significant.               

 

3.3.2 – Genetic screen identifies epg-8, sqst-1 and atg16.1 as putative modifiers of SMN 

loss of function neuromuscular defects 

RNAi mediated knockdown of the C. elegans autophagy orthologs yielded three genes that 

act as putative modifiers of smn-1(ok355) neuromuscular defects. Of these three genes, epg-

8 was identified as a suppressor of SMN loss of function defects, whilst sqst-1 and atg-16.1 

were identified as enhancers of SMN loss of function defects. Interestingly, we note that 

knockdown of these genes only affects pharyngeal pumping in smn-1(ok355) animals, 

indicating that these genes have an SMN specific function. These results are summarised 

below in Table 8.   
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Table 8. Three autophagy genes were identified as putative modifiers of SMN loss of function 
neuromuscular defects through an RNAi gene screen: epg-8, sqst-1 and atg-16.1. Pharyngeal 
pumping rates of smn-1(ok355) and smn-1(+) control animals were determined by counting 
complete pharyngeal revolutions at 3 days post-hatching on bacterial feeding strains 
expressing dsRNA corresponding to candidate gene or L4440 (empty RNAi vector). 
Pharyngeal pumping rates are reported as the mean (± SEM) of all animals across all trials; 
percentage change was calculated as the percentage increase or decrease compared to 
control animals on L4440; Asterisks indicate significant difference determined using a Mann-
Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001.     

 smn-1(+)  

L4440 

smn-1(+)  

RNAi 

smn-1(ok355) 

L4440 

smn-1(ok355)  

RNAi 

C. elegans 

gene 

Pumps 

/min 

Pumps 

/min 

% change Pumps 

/min 

Pumps 

/min 

% change 

epg-8 160 ± 9 168 ± 10 + 5.00% 32 ± 5 52 ± 7 * + 62.50% 

sqst-1 167 ± 12 179 ± 12 + 7.20% 41 ± 8 13 ± 4 ** - 68.30% 

atg-16.1 189 ± 9 181 ± 11 - 4.20% 43 ± 6 27 ± 7 * - 37.20% 

 

 

The first gene identified as a putative modifier of SMN loss of function defects was epg-8, 

RNAi mediated knockdown of epg-8 improved the smn-1 loss of function neuromuscular 

defects in the C. elegans SMA model (Figure 22). Knockdown of epg-8 significantly increased 

the number of pharyngeal pumps in smn-1(ok355) animals (52 ± 7), compared to L4440 

(empty RNAi vector) (32 ± 5) by 62.5% (p = 0.0215). These results suggest that epg-8 is likely 

acting as a suppressor of the SMN loss of function defects.  

 

 

 

 



Page 41 of 54 
 

0 50 100 150 200

epg-8 RNAi

Control (L4440)

epg-8 RNAi

Control (L4440)

Pharyngeal pumps /min

smn-1(ok355)

smn-1(+)ns

✱

 

Figure 22. Knockdown of C. elegans epg-8 suppresses pharyngeal pumping defects in smn-
1(ok355) animals. Pharyngeal pumping rates of smn-1(+) and smn-1(ok355) animals were 
determined at 3 days post-hatching on bacterial feeding strains expressing dsRNA 
corresponding to epg-8 or L4440 (empty RNAi vector). epg-8 RNAi significantly increased 
pharyngeal pumping rates in smn-1(ok355) animals but had no significant effect in +/smn-
1(ok355) animals. 50 animals were scored for each gene knockdown or control across 5 
independent trials. Error bars display ± SEM; Asterisks indicate significant difference 
determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001, ns 
- not significant.                   

 
The next gene identified as a putative modifier of SMN loss of function defects was sqst-1. In 
contrast to epg-8, knockdown of sqst-1 enhanced the smn-1 loss of function defects in the C. 
elegans SMA model (Figure 23). In smn-1(ok355) animals, knockdown of sqst-1 significantly 
decreased the number of pharyngeal pumps (13 ± 4) compared to animals on L4440 (empty 
RNAi vector) (41 ± 8), representing a 68.3% (p = 0.0010) decrease. These results suggest 
that sqst-1 is acting as a enhancer of the SMN loss of function defects. 
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Figure 23. Knockdown of C. elegans sqst-1 enhances pharyngeal pumping defects in smn-
1(ok355) animals. Pharyngeal pumping rates of smn-1(+) and smn-1(ok355) animals were 
determined at 3 days post-hatching on bacterial feeding strains expressing dsRNA 
corresponding to sqst-1 or L4440 (empty RNAi vector). sqst-1 RNAi significantly decreased 
pharyngeal pumping rates in smn-1(ok355) animals but had no significant effect in +/smn-
1(ok355) animals. Thirty animals were scored for each gene knockdown or control across 3 
independent trials. Error bars display ± SEM; Asterisks indicate significant difference 
determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001, ns 
- not significant.                     

 
The last gene identified as a putative modifier of SMN loss of function defects was atg-16.1. 
Like sqst-1, knockdown of atg-16.1 also exacerbated the smn-1 loss of function defects in the 
C. elegans SMA model (Figure 24). Knockdown of atg-16.1 through RNAi significantly 
decreased the pharyngeal pumps (27 ± 7) of smn-1(ok355) animals compared to the same 
animals on L4440 (empty RNAi vector) (43 ± 6), representing a 37.2% (p = 0.0446) decrease. 
These results suggest that atg-16.1 is also acting as an enhancer of the SMN loss of function 
defects. 
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Figure 24. Knockdown of C. elegans atg-16.1 enhances pharyngeal pumping defects in smn-
1(ok355) animals. Pharyngeal pumping rates of smn-1(+) and smn-1(ok355) animals were 
determined at 3 days post-hatching on bacterial feeding strains expressing dsRNA 
corresponding to atg-16.1 or L4440 (empty RNAi vector). atg-16.1 RNAi significantly 
decreased pharyngeal pumping rates in smn-1(ok355) animals but had no significant effect in 
+/smn-1(ok355) animals. Thirty animals were scored for each gene knockdown or control 
across 3 independent trials. Error bars display ± SEM; Asterisks indicate significant difference 
determined using a Mann-Whitney U test, two tailed: *p < 0.05, **p < 0.001, ***p < 0.0001, ns 
- not significant.                      

 

4   Discussion  

4.1 – Main Findings 

Despite SMN1 being discovered as the causative gene over a decade ago, it still remains 

unclear why depletion of the ubiquitously expressed SMN protein results in disease pathology 

specific toward motor neurons (Monani, 2005). Though the genetic components of SMA are 

very well characterised, the cellular and molecular pathways preceding disease pathogenesis 

remain elusive. It is well known that SMN depletion causes SMA but, due to a myriad of 

secondary functions (Table 2) it is still unknown which of these are pertinent to disease 

pathology. In the present study, we utilised the previously characterised invertebrate C. 

elegans SMA model (Briese et al, 2009), to perform an RNAi based genetic screen of 22 

autophagy orthologs in order to identify putative genetic modifiers of SMN loss of function 

neuromuscular defects.  

Using a pharyngeal pumping neuromuscular behavioural assay, we identified 3 autophagy 

genes that modified the pharyngeal pumping defects observed in the C. elegans SMA model. 

Identification of autophagy genes as putative modifiers of SMN loss of function neuromuscular 

defects indicates that autophagy may be perturbed in SMA, not only providing vital clues to 

the molecular mechanisms behind disease pathogenesis, but also identifying potential novel 

therapeutic targets.        
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4.2 – Autophagy is Disrupted in SMA 

Several studies have shown that autophagy is disrupted in SMA using various in vitro and in 

vivo SMA models (Table 5). Garcera and colleagues (2013) first demonstrated that autophagy 

vesicles, namely autophagosomes, accumulated in mice motor neurons following Smn 

knockdown. In addition, Custer & Androphy (2014) demonstrated that autophagosomes 

accumulate in SMA motor neuron cell culture and SMA patient fibroblasts. Furthermore, 

Periyakruppiah and colleagues (2016) extended the initial findings by showing autophagic 

vesicles are elevated throughout development in a severe SMA mouse model and cultured 

Smn reduced mice motor neurons. Finally, an intermediate SMA mouse model was used to 

demonstrate that autophagosomes accumulated due to Smn decrease (Piras et al, 2017). The 

aforementioned studies note that the observed accumulation of autophagosomes could be the 

result of either increased autophagic activity, or a defect in the lysosomal fusion step which 

would prevent digestion of autophagosomes.  

In order to determine whether autophagy was being upregulated or if flux was impaired, the 

studies utilised a variety of monitoring assays or pharmacological treatments with 

contradictory results (Table 5). Custer & Androphy (2014) and Periyakruppiah and colleagues 

(2016) made use of a p62/SQSTM1 monitoring assay to show that the levels of p62, a protein 

degraded by the action of autophagosome digestion (Larsen et al, 2010), are increased in 

SMN-depleted cells and an in vitro model of SMA suggested decreased autophagic flux. On 

the contrary, Garcera et al (2013) used Bafilomycin A1, a lysosomal inhibitor, to show the 

levels of autophagic markers were increased, indicating flux was unaffected in Smn reduced 

mice motor neurons. In addition, Piras et al (2017) used the p62/SQSTM1 monitoring assay 

to show that p62 levels were unchanged in the intermediate SMA mouse model. The same 

study used 3-methyladenine treatment, an autophagy inhibitor, demonstrating that autophagic 

markers were decreased and p62 levels were increased whilst motor neuron degeneration 

was delayed, and lifespan was increased. These results are consistent with the hypothesis 

that autophagy is upregulated in SMA, but autophagic flux is unaffected resulting in the 

accumulation of autophagic vesicles, however the topic remains a point of debate (Piras & 

Boido, 2018).  

In addition, an independent study demonstrated that SMN protein levels are regulated by 

autophagy, and that lysosomal inhibition was sufficient to increase the levels of SMN 

(Rodriguez-Muela et al, 2017). The study first used coimmunoprecipitation assays to show 

that p62, an autophagy receptor and mediator of selective autophagy, interacts with SMN and 

that p62 levels are raised in SMA fibroblasts. These findings suggest that autophagic flux is 

disrupted, contradicting the previous studies. Furthermore, this study demonstrated that 

reduction of p62 increases the level of SMN, promoting motor neuron survival and increasing 

the lifespan of Drosophila and mouse SMA models. Rodriguez-Muela and colleagues (2017) 

suggest that p62 is upregulated in SMA resulting in degradation of SMN via selective 

autophagy.  

Several studies published thus far have produced contradictory results regarding the precise 

nature of autophagic disruptions in SMA. Some of these studies show that autophagic flux is 

unaffected and autophagy disruptions are the result of overactive autophagy, whereas other 

studies show that autophagic flux is disrupted, although the role of this disruption is still heavily 

debated. Despite there are differences with these studies, there is strong consistent evidence 

that autophagic disruptions play a critical role in the disease pathology of SMA.  
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4.3 – Genes Identified as Modifiers of SMN Loss of Function Defects 

The study presented here utilises the C. elegans SMA model and, through an RNAi based 

genetic screen identified three putative SMA modifier genes from the autophagy pathway 

(Figures 22-24). Using the pharyngeal pumping neuromuscular assay, epg-8 (Figure 22) was 

identified as a suppressor of SMN loss of function neuromuscular defects whereas sqst-1 and 

atg-16.1 (Figures 23 and 24, respectively) were identified as enhancers of these defects.  

The first of these putative modifiers, epg-8, suppressed the pharyngeal pumping defect in 

smn-1(ok355) animals when targeted by RNAi (Figure 22). This result suggests, for the first 

time to our knowledge, that epg-8 may be involved in the pathology of SMA. C. elegans EPG-

8 is orthologous to mammalian Atg14, a vital component of the vesicle nucleation that 

associates with the class III PI3K complex and enables initiation of the phagophore (Glick et 

al, 2010. Our results show that RNAi mediated knockdown of epg-8 significantly increases 

pharyngeal pumping in smn-1(ok355) animals and thus suppresses SMN loss of function 

neuromuscular defects. This finding is consistent with the current hypothesis that autophagy 

is upregulated in SMA, since epg-8 is required to direct proper autophagosome formation it is 

unsurprising that knockdown of this gene improved neuromuscular defects in the C. elegans 

SMA model.  

We next identified sqst-1, the C. elegans ortholog of p62/SQSTM1, as a putative modifier of 

SMN loss of function defects. We found that sqst-1 enhanced the pharyngeal pumping defect 

in smn-1(ok355) animals when silenced via RNAi (Figure 23). Like in mammalian systems, 

SQST-1 is an autophagosome receptor functions in binding the autophagosome and 

facilitating its fusion with the lysosome, SQST-1 thus has a pivotal and selective autophagy. 

Our results show that sqst-1 knockdown exacerbates neuromuscular defects in the C. elegans 

SMA model, this contradicts the findings published by Rodriguez-Muela et al (2017) who 

demonstrate that reduction of p62 suppresses disease-associated SMA phenotypes.  

This difference in findings may be due the nature of our RNAi experiments, SID-1 expression 

is known to decrease RNAi efficacy in non-neuronal tissues (Calixto et al, 2010), limiting RNAi 

effectiveness in these tissues which may explain our seemingly opposite results. Not only 

does the study conducted by Rodriguez-Muela and colleagues (2017) systemically target p62, 

using short hairpin RNA (shRNA) lentiviral transfection, but it was also conducted in 

Drosophila which may have other non-homologous interactions to consider. These findings 

highlight the need for further investigation into the precise role p62 plays in SMA disease 

pathology  

Finally, we identified atg-16.1 as another putative modifier of SMN loss of function defects in 

the C. elegans model. Like sqst-1, we found that knockdown of atg-16.1 enhanced the 

pharyngeal pumping defects in smn-1(ok355) animals (Figure 24). ATG-16.1 is orthologous 

to mammalian Atg-16 and performs an equivalent function in phagophore expansion forming 

the mature autophagosome. As with epg-8, our results suggest for the first time that this 

protein may be involved in SMA disease pathology. Building on the hypothesis that autophagy 

disruption in SMA is due to autophagy upregulation; knockdown of atg-16.1 would impair 

phagophore and inhibit autophagosome production, we would therefore expect that 
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knockdown of these gene should suppress SMA associated disease phenotypes rather than 

enhance them. In light of this, it is appealing to speculate that autophagy disruption in SMA 

occurs during the initial regulation steps rather than the downstream autophagosome 

maturation.  

Taken together, these results indicate that the autophagic pathway holds promising potential 

for the discovery of novel therapeutic targets and treatment options although further studies 

are required to solidify our understanding of how autophagic disruptions are involved in SMA 

disease pathology. The main therapeutic approaches for SMA treatment currently revolve 

around increasing the levels of FL-SMN at the transcriptional level either by modifying SMN2 

splicing or using viral gene therapy to replace mutated SMN1. The possible therapeutic targets 

of the autophagic pathway would likely be non-SMN therapies but, to date only a handful of 

potential treatments do not target SMN directly and, therapeutics of this avenue have been 

explored in the clinical arena but have only enjoyed a modicum of success (Faravelli et al, 

2015; Bowerman et al, 2017).    

 

4.4 – Future Work 

The preliminary data presented here suggests that the autophagic pathway genes epg-8, sqst-

1 and atg-16.1 may have a potential role as modifiers of SMN loss of function neuromuscular 

defects in the C. elegans SMA model. Further study is required to determine the specificity of 

the putative genetic modifiers identified here and to characterise the full extent of autophagic 

disruptions in this model.  

 

Firstly, to address the specificity of the putative genetic modifiers identified here, mutant alleles 

should be used to construct genetic double mutants. These double mutants will be assessed 

with the same pharyngeal pumping in order to confirm the initial RNAi data presented here. 

RNAi knockdown of genes in C. elegans via the feeding method is known to be effective in all 

tissues; with the exception of neurons, vulval tissue, sperm and the pharynx (Conte Jr., 

MacNeil, Walhout & Mello, 2017) where RNAi can be ineffective and result in only partial gene 

loss (Dimitriadi et al, 2010).    

To assess the role autophagy plays in the C. elegans SMA model, the autophagic defects will 

require characterisation in smn-1(ok355) animals. To characterise these defects at a 

molecular level, a monitoring assay will first need to be established, several autophagy 

markers are available as reporter constructs in C. elegans (Papandreou & Tavernarakis, 

2017). Among these reporters is the widely used GFP::LGG-1 fluorescent marker (orthologues 

to mammalian LC3) (Zhang et al, 2015), LGG-1 is a vital membrane coating protein present 

in every autophagosome. LGG-1 is normally present in the cytoplasm where it shows a diffuse 

expression pattern, when LGG-1 incorporated into the growing autophagosome structure, this 

expression pattern forms distinctive fluorescent puncta which can be monitored via fluorescent 

microscopy (Palmisiano & Melendez, 2016). In addition to the LGG-1 reporter, several other 

C. elegans autophagy orthologs can be expressed as fluorescent reporters; including BEC-1, 

ATG-4.1, ATG-9 and ATG-18 (Chen, Scarcelli & Legouis, 2017) which provide a wide range 

of methods to characterise autophagosome localisation in the C. elegans SMA model 

compared to control animals. Whilst several markers are available to monitor the localisation 

of autophagic bodies in C. elegans, they are not sufficient to discriminate between an 

upregulation in autophagy or impaired autophagic flux. Whilst fluorescent markers for p62 are 
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available, it is difficult to monitor them via fluorescent microscopy due to the rate of basal flux 

resulting in their degradation (Papandreou & Tavernarakis, 2017). As a result, a monitoring 

assay for p62 has not yet been described, instead autophagic flux can be determined in C. 

elegans using a combination of tandem fluorescent markers and lysosomal inhibitors (Kumsta, 

Chang, Schmalz & Hansen, 2017). The tandem GFP::mCherry::LGG-1 fluorescent construct 

is able to differentiate between autophagosomes and autolysosomes due to the different 

sensitivities of GFP and mCherry to acidic environments. Autophagosomes display GFP and 

mCherry puncta, however when the autophagosome fuses with the lysosome the GFP signal 

is quenched and only the mCherry puncta can be detected (Chen, Scarcelli & Legouis, 2017). 

This marker can be used to assess the number of autolysosomes present after treatment with 

inhibitors such as bafilomycin A1 to determine autophagic flux (Chang, Kumsta, Hellman, 

Adams & Hansen, 2017; Kumsta et al, 2017).  

Using the aforementioned markers in the C. elegans SMA model will enable a characterisation 

of autophagy at a molecular level in the smn-1(ok355) animals compared to wild type animals. 

Once a characterisation of autophagy defects has been established, mutant alleles for epg-8, 

sqst-1 and atg-16.1 can be used to create genetic double mutants with smn-1(ok355) animals 

expressing reporter constructs. These double mutants can be used to assess whether putative 

genetic modifiers identified in this study ameliorate the autophagy defects we characterise.      

Finally, the putative genetic modifiers identified in this study can be used to pinpoint specific 

protein complexes that are dysregulated in the C. elegans SMA model. Pharmacological 

challenges would be utilised to assess the effects of a series of autophagy activators or 

inhibitors on the smn-1 neuromuscular defects. Animals would be treated with autophagy 

activators (e.g. spermidine, fluphenazine, resveratrol) or inhibitors (e.g. 3-methyladenine, 

wortmannin, bafilomycin) to determine their effects on pharyngeal pumping and the 

localisation of autophagic bodies (Galluzi, Pedro, Levine, Green & Kroemer, 2017). Each of 

the aforementioned compounds has a distinct biochemical target on autophagy and thus, any 

compound that impacts smn-1 loss of function defects would indicate the disturbed autophagy 

networks (Galluzi et al, 2017). 

 

4.5 – Conclusions 

Considerable progress has been made into understanding how perturbations of the 

autophagic pathways may contribute to SMA pathology (Piras & Boido, 2018). During the last 

5 years, a variety of in vivo and in vitro SMA models have been used to demonstrate that 

autophagosomes accumulate while flux remains unaffected, suggesting that accumulation of 

autophagic bodies is likely due to an upregulation of the pathway rather than a failure in their 

clearance (Garcera, et al, 2013; Custer & Androphy, 2014; Periyakaruppiah et al, 2016; Piras 

et al, 2017). Furthermore, an independent study by Dimitriadi and colleagues (2016) identified 

that SMN depletion results in impaired endocytic trafficking, providing the first evidence 

endocytic pathways are disrupted in SMA. Building on this evidence, a subsequent study from 

the Wirth lab demonstrated that knockdown of NCALD ameliorated SMA disruptions by 

restoring endocytic function (Riessland et al, 2017).    

The genetic screen presented in this study demonstrates that autophagy orthologs can act as 

putative modifier genes in the C. elegans SMA model by suppressing and enhancing the well 

characterised neuromuscular defects that arise due to deletion of the orthologous SMN-1 



Page 48 of 54 
 

protein. We identified epg-8 as a putative suppressor of SMN loss of function neuromuscular 

defects, epg-8 is a vital positive regulator of the vesicle nucleation complex which serves to 

promote phagophore elongation upon autophagy induction. In line with the hypothesis that 

autophagy disruptions in SMA are due to upregulation, it is tempting to postulate that inhibition 

of epg-8 may be an attractive therapeutic avenue for SMA although further study is required 

to determine its precise role in disease pathology.  

In conclusion, the precise molecular mechanisms underlying SMA pathogenesis have yet to 

be elucidated however, impairment of the autophagic pathway is becoming an increasingly 

interesting avenue of SMA research and holds promise in identifying the molecular 

components of the disease pathology. Autophagy represents an exciting aspect of research, 

not only for its potential in revealing potential SMA treatment strategies, but also because 

impaired autophagy has been linked with other neurodegenerative disorders due to its role in 

clearing misfolded protein aggregates. Therefore, a deeper understanding of the roles 

autophagic pathways play in the pathology of SMA has potential in elucidating the pathologies 

behind other neurodegenerative disorders. The findings presented here in combination with 

results from other studies clearly demonstrate that autophagy is disrupted in several SMA 

models however, the exact role autophagy plays in the pathology of SMA remains under 

debate. Further research is required to determine the exact nature of this disruption before it 

can be translated toward patient benefits.  
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