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Abstract 
 

Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This 

research study explores and investigates the applications of both conventional computer vision and 

deep learning approaches for the detection of drowsiness and distraction in drivers.  

In the first part of this MPhil research study conventional computer vision approaches was studied 

to develop a robust drowsiness and distraction system based on yawning detection, head pose 

detection and eye blinking detection. These algorithms were implemented by using existing human 

crafted features. Experiments were performed for the detection and classification with small image 

datasets to evaluate and measure the performance of system. It was observed that the use of human 

crafted features together with a robust classifier such as SVM gives better performance in 

comparison to previous approaches. Though, the results were satisfactorily, there are many 

drawbacks and challenges associated with conventional computer vision approaches, such as 

definition and extraction of human crafted features, thus making these conventional algorithms to 

be subjective in nature and less adaptive in practice.  

In contrast, deep learning approaches automates the feature selection process and can be trained to 

learn the most discriminative features without any input from human. In the second half of this 

research study, the use of deep learning approaches for the detection of distracted driving was 

investigated. It was observed that one of the advantages of the applied methodology and technique 

for distraction detection includes and illustrates the contribution of CNN enhancement to a better 

pattern recognition accuracy and its ability to learn features from various regions of a human body 

simultaneously. The comparison of the performance of four convolutional deep net architectures 

(AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and 

explored the impact of combining a support vector classifier (SVC) with a trained deep net. The 

images used in our experiments with the deep nets are from the State Farm Distracted Driver 

Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best 

results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was 

observed that one of the advantages of deep learning approaches are their ability to learn 

discriminative features from various regions of a human body simultaneously. The ability has 

enabled deep learning approaches to reach accuracy at human level. 
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CHAPTER 1  

1. INTRODUCTION 

1.1. Introduction and Background 

The integration of advanced safety systems in modern vehicles has reduced the number of 

road accidents significantly. However, the number of accidents are still not under an 

acceptable range. In their research, Murray and Lopez [1] reported that road accidents 

would be the third main reason for deaths by the year 2020. Fatigue and drowsiness among 

drivers result in fatal driving errors are considered one of the most important causes of road 

accidents [2, 3]. The involvement of the number of factors such as driver attention, 

cognitive skills and physical fitness makes driving a relatively complex task [4]. However, 

it is not uncommon for drivers to involve themselves in activities that distract their attention 

from driving tasks. These distraction-related activities significantly degrade the driving 

performance and, due to the complex nature of driving, result in road accidents. Some 

common distraction-related activities of drivers include conversations with other 

passengers, the use of technological devices (mobile phones, navigation systems, radios, 

etc.), eating and using makeup tools while driving [5]. According to a report published by 

National Highway Traffic Safety Administration (NHTSA), of all the road accidents, 

approximately 25% are due to the inattention of drivers [6], and half of those 25% are due 

to the distraction of drivers [7, 8].  

Fatigue and drowsiness are the hypnosis effects among drivers, and the major causes of 

these effects include lack of sleep, long and continuous drives, illness and the use of drugs 

[9]. Although the introduction of advanced comfort level and autonomy in modern day 

vehicles has improved the safety of drivers, it also contributes to fatigue and drowsiness of 

drivers [10, 11]. In a study, Sagberg et al. [11] reported that drowsy driving increased the 

probability of errors in driving due to drivers’ impaired mental capacity. Fatigue and 

drowsiness-related accidents are considered more fatal and more dangerous compared to 

normal accidents because of their direct effects on the decision-making abilities of drivers. 

Fatigue and drowsiness are technically different. Fatigue is defined as the extreme tiredness 
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because of physical and mental exertions when a person is executing some tasks, whereas 

drowsiness is the state resulted by lack of rest and sleep [3]. However, fatigue and 

drowsiness are often interchangeable. In many existing driver monitoring systems, both 

terms are used for the same meaning as the symptoms of both health conditions are almost 

identical. Hence, in this research, the term of drowsiness will be used to represent the 

mutual effect of fatigue and drowsiness on driving performance.  

In the research carried out by Lal and Craig [12], they pointed out a number of symptoms 

that could facilitate the detection of drivers fatigue, including eye blinking rate, yawning 

frequency, variations in mouth positions, variations in head positions and driving patterns. 

In a report by Federal Motor Carrier Safety Administration [13], the relationship between 

the number of continuous driving hours and fatigue-related accidents has been indicated 

and stated that an increase in continuous driving hours increased the percentage of fatigue-

related accidents (up to 4 percent increase for 10 continuous hours of driving). Kaggle 

challenge defined nine types of distracted driving.  

According to Bayly et al. [14], the number of road accidents can be reduced by about 20% 

if there is a proper mechanism that can monitor in-drive behaviours of drivers. The 

development of efficient driver-attention monitoring systems using the state-of-the-art 

emerging technologies is one possible solution that can reduce the number of accidents and 

improve road safety. Dinges and Mallis [15] listed four types of drowsiness detection 

approaches: the mathematical model-based approach, fitness for duty technologies 

approach, vehicle performance-based approach and in-vehicle operator monitoring-based 

approach. The in-vehicle operator monitoring based approach is widely explored by 

researchers, which uses computer vision-based technologies and studies the physiological 

signals to detect the attention level of drivers. The computer vision-based approach is non-

intrusive and easily applicable in real-time situations. Furthermore, the detection results of 

these approaches are more effective and adaptive than others; hence, they are active areas 

for researchers in this domain. In addition to drowsiness, distraction among drivers is 

equally significant while developing attention-monitoring systems. In one study, 

Thimbleby et al. [16] indicated how in-vehicle objects could distract drivers and affect their 

driving performance.  
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State Farm has taken an initiative to improve road safety by introducing an initiative called 

Kaggle challenge for detection of distracted drivers, where camera images of the entire 

body of the driver are provided for the development of computer vision and machine 

learning-based algorithms.  

This research study aims to improve road safety by applying efficient computer vision and 

machine learning based algorithms that can detect hazardous driving behaviours such as 

drowsiness and distraction. Computer vision approaches have been used for face/eye/mouth 

detection, image normalization, extraction of key features, etc. ML for classification of 

extracted features in conventional approaches and the learning, extraction and classification 

of features in the deep learning approaches. Initially, a comprehensive subject review of 

the most-related literature has been performed. Two different categories of approaches have 

been identified through the subject review and investigated in the practical work, the 

category of conventional approaches and the category of deep-learning approaches. The 

first phase of practical work has involved the use of conventional approaches for the 

drowsiness-related visual information analysis and predictions. The idea of using the 

combination of different drowsiness-related features such as eye blinking, yawning and 

head pose has been adopted to classify drowsy driving effectively.  

For the second phase of the practical work, the focus was shifted towards studying deep 

learning approaches such as Convolutional Neural Networks (CNNs) for detecting 

distracted driving. In the literature, it has been identified that deep-learning approaches, for 

instance, CNN are type of deep networks explained in detail in Chapter 5, which involve 

the extraction and learning of features automatically from the number of hidden layers in 

the architecture which improves the overall generalization problem. Based on the 

comprehensive findings from the literature review, for the distraction detection, we have 

implemented four different pre-trained deep CNN architectures; AlexNet, ResNet, NasNet 

and MobileNet for detecting distraction among drivers. The proposed models were trained 

over the large dataset provided by Kaggle [17] and the performance was evaluated and 

compared. 
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1.2. Problem Statement 

Research carried out in this thesis is within the scope of detecting hazardous driving 

behaviours such as the distraction and drowsiness using the computer vision and machine 

learning-based approaches. The monitoring of driving behaviours and the detection of 

hazardous driving behaviours can significantly improve road safety. Automobile 

manufacturing companies are investing and interested in developing driving-attention 

monitoring systems to improve road safety. These systems can warn drivers, most 

especially when their attention level (distraction and drowsiness) exceeds a certain 

threshold. Although in the literature there is extensive research in the domain of drowsiness 

and distraction available, it is rare to see these systems in practice. Furthermore, if the 

accuracy of is still not satisfactory and false warning of distracted driving is constantly 

issued, this can be intrusive and thus distract drivers attention unnecessarily and cause 

unnecessary negative impact to road safety. The objectives of this research are as follows:  

• To identify the existing approaches and potential limitations in their practical 

applications. 

• To detect facial regions relevant to drowsiness and distraction detections such as 

eyes, mouth, face and head positions. 

• To extract drowsiness and distraction-related features from the detected facial 

regions such as the yawning rate, blinking rate, head nodding and head pose.  

• To develop an efficient classification algorithm that can classify the extracted facial 

features and decide the level of distraction and drowsiness based on the 

classification results.  

• To provide a detailed study of CNN and deep learning approaches for object 

detections (Deep learning approaches).  

• To implement deep CNNs which can solve the Kaggle challenge for distracted 

drivers. 
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1.3. Research Questions 

Base on the problem statement, the research questions explored in this research are as 

follows: 

• RQ1: What are the potential challenges hindering the practical implementation of 

vision based drowsiness and distraction detection systems? 

• RQ2: What conventional vision approaches can offer in detecting drowsiness and 

distraction in drivers? 

• RQ3: How to measure and compare the performance of the conventional 

approaches? How is the performance of the conventional approaches in terms of 

detection accuracies and generalization? 

• RQ4: What deep learning approaches can offer in the detection of distraction in 

drivers? 

• RQ5: How to measure and compare the performance of the deep learning 

approaches? How is the performance in terms of their training, hyper-parameter 

time, classification accuracies, processing time, and memory consumption? 

1.4. Thesis Layout 

Rest of the chapters in the thesis are organized as follows. Chapter 2 presents the 

comprehensive subject review regarding the conventional and deep learning approaches for 

detection of hazardous behaviors in drivers. Chapter 3 presents the theoretical details of 

conventional vision approaches i.e. face detection, yawning detection, Viola and Jones, 

eyes detection. Chapter 4 presents the details regarding the implementation of conventional 

approaches and their corresponding results. Chapter 5 provides the theoretical background 

of deep learning approaches and different deep architectures used in this thesis. Chapter 6 

presents the implementation of deep learning approaches and corresponding results and 

discussions. Finally, Chapter 7 concludes the thesis and provides potential future directions 

of research presented in this thesis.  
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CHAPTER 2 

2. SUBJECT REVIEW 

This chapter presents a subject review on the detection of hazardous driving behaviours 

(drowsiness and distraction) using the computer vision approaches; both conventional and 

deep learning. This chapter explores the different symptoms of drowsiness and distraction 

and their effects on the driving performance. Furthermore, this chapter reviews the latest 

literature regarding drowsiness and distraction detection in order to compare the performed 

research with the state of the art. Finally, this chapter highlights some potential challenges, 

identified from the literature, which have prevented the practical implementation of real-

time driver monitoring systems. 

2.1. Drowsiness Behaviors and Levels 

Critical symptoms of drowsiness reported in literature include eye-blinking rate variations, 

a decline in driving concentration, a change in driver posture, steering grips, signs of 

depression, head nodding frequency, an increase in yawning frequency, a change in facial 

expressions, steering behaviour variations, confused thinking, reduced reaction responses, 

heart rate variations, skin potential variations, variations in brain signals, shallow breathing 

and frequency of touching face [18, 19]. Eye blinking rate, yawning rate and head position 

are the most significant signs of drowsiness in drivers.    

Behaviours of drivers vary according to the level of drowsiness experienced by them. Based 

on research in [20, 21], Table 2.1 shows five different drowsiness levels and their 

corresponding behaviours, states and indicators. 
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Table 2.1: Drowsiness State Levels and Corresponding Behaviors, States and Indicators  

Drowsiness	
Level	 Behavior	 State	 Indicator	

1	
Reduced	eye	movement	
frequency	and	little	
opening	of	lips	

Very	Awake	 Eyes	widely	open.	very	steady,	thermal	
facial	tone	

2	 Frequent	movement	of	the	
eyes,	motion	is	activated	 Awake	

Normal	fast	eye	blinks;	active	eyeball	
movement;	apparent	focus	on	driving	
with	occasional	fast	sideways	glances;	

normal	facial	tone	

3	
Mouth	movements,	

frequently	touching	on	
face	and	reseating	

Drowsy	
Increase	in	eye	blinking	duration,	
abrupt	face	rubbing,	irregular	eyes	
movement,	restlessly	seating	and	

frequent	yawning	

	4	 Shakes	head,	frequent	
yawning,	blinks	are	slow	 Very	Drowsy	

Occasional	disruption	of	eye	focus,	eye	
blinking	duration	increases,	eyes	
openness	decreases,	reduced	body	

movements	and	no	facial	tune	for	some	
periods.	

	5	 Eyes	closed,	dead	fall	
(forward	or	backward)		 Fatigue	

Eyes	completely	closed,	frequent	
yawning,	complete	disappearance	of	

the	facial	tone	

 

2.2. Types of Distraction and Their Causes 

Distraction is a sub-type of in-attention, and the American Automobile Association 

Foundation for Traffic Safety (AAAFTS) as defined distraction as  

 “Slower response of drivers in recognizing the information needed to perform and 

complete successful/safe driving task because of some vehicles or outside vehicle events 

which shift the attention of drivers from driving task” [22] 

According to [22], there are four main types of distraction: visual distraction, 

biomechanical distraction, cognitive distraction and auditory distraction. The definitions of 

each type of distraction is given below.  
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• Visual distraction: It is a type of distraction which involves the shift of drivers’ 

visual field from driving by engaging in events such as observing in-vehicle objects 

or looking outside the vehicle [23].  

• Biomechanical distraction: This involves the diversion of focus from driving 

because of the engagement of manipulating physical objects [24].  

• Cognitive distraction: This type of distraction is directly related to thinking about 

other events while driving, a distraction that diverts the attention of drivers away 

from driving [25].  

• Auditory distraction: It is a type of distraction which involves drivers’ listening 

to audio devices such as radio and mobile phones while driving. Furthermore, this 

type of distraction may be due to drivers conversing with other passengers while 

driving [25].  

Although the distraction is divided into four main categories, it has been observed that 

occurrence of distracted driving does not take place individually, Rather, the driver may 

encounter different types of distraction at the same time. In practical scenarios, all four 

types are inter-linked with each other and occur in combinations collaboratively. A perfect 

example of this interconnection is a driver answering a phone call while driving. In this 

particular case, all the four types of distraction mentioned above will occur. Visual 

distraction occurs when a driver looks at the display information on the cell phone before 

answering the call and locates the button to answer the call. Physical distraction occurs 

when a driver moves his hand from the steering to find the mobile phone in order to receive 

an incoming call. Cognitive distraction occurs when a driver in a call conversation shifts 

his/her thoughts toward the topic of conversation. Finally, auditory distraction occurs when 

a driver involves in conversation with someone on a call. 

In a report published by the NHTSA [7], thirteen different sources of distraction were 

identified. These sources can be further categorized into three main streams: technology-

based sources, non-technology-based sources and miscellaneous sources. Table 2.2 

presents the categorization for the different sources of distraction.  
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Table 2.2: Different Sources of Distraction among Drivers Categorized by NHTSA [7]. 

Type of Distraction Source  

Technology-Based  

Operating Radio and/or Music Devices 
Talking and/or Conversing on Mobile Phone 

Dialling and/or Using Mobile Phone 
Adjusting Climate Controls 

Using devices/objects brought into vehicles 
Using devices/controls integral to vehicles 

Non-Technology-Based  

Eating or Drinking 
Outside Object, Event or Person 

Other Passengers in Vehicles 
Moving Object in Vehicles 

Smoking  

Miscellaneous Other Distraction Sources 
Unknown Distraction Sources 

 

Although the introduction of modern and state-of-the-art technological systems such as 

navigation and entertainment systems has facilitated drivers in many ways, they also 

contribute to distracted driving. This claim is well-supported by Stutts et al. [7] who 

predicted that the more the increase in advanced in-vehicle technologies, the more the 

chances of distraction-related accidents will rise. Stutts et al. [7] and Glaze and Ellis [26] 

investigated the impact of distraction and its contributions to road accidents. Stutts et al. 

explored the data from Crashworthiness Data System and highlighted the contribution of 

different distraction types in road accidents. On the other hand, Glaze and Ellis investigated 

the data from Troopers Crash Record and were focused on highlighting different sources 

of distraction and their involvement in road accidents. Based on these two studies and 

above-mentioned sources of distraction, a comparison has been carried out to study the 

impacts of distraction on road accidents and the involvement of different distraction 

sources. Table 2.3 lists the results. 
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Table 2.3: Contributions of Different Distraction Sources to Vehicle Crashes. 

Distraction Type 

Stutts et al. Study [7] Glaze and Ellis’s Study [26] 

Distraction Sources 
% of 

Crashes 
Distraction Source 

% of 

Crashes 

Technology-Based 

Adjusting radio, cassette, 
CD* 

11.4 Adjusting radio, cassette, 
CD* 

6.5 

Using/dialling mobile 
phone* 

1.5 Using/dialling mobile 
phone* 

3.9 

Adjusting vehicle/climate 
controls* 

2.8 Adjusting vehicle/climate 
controls* 

3.6 

- - Technology device* 0.3 

- - Pager* 0.1 

Total 15.7  14.4 

Non-Technology-
Based 

Smoking related* 0.9 Smoking related* 2.1 

Other occupant in vehicle* 10.9 Passenger/children 
distraction* 

8.7 

Eating or drinking* 1.7 Eating or drinking* 4.2 

Moving object ahead** 4.3 - - 

Person, object or event** 29.4 - - 

- - Grooming* 0.4 

- - Other personal items* 2.9 

- - Unrestrained pet* 0.6 

- - Document* 1.8 

Total 47.2  20.7 

Miscellaneous 

Other distraction 25.6 Other distraction inside 
vehicle* 

26.3 

Unknown distraction 8.6 - - 

Object brought in * 2.9 - - 

Total 37.1  26.3 

* Inside Vehicle Distraction Source 

** Outside Vehicle Distraction Source 

2.3. Stages of Drowsiness and Distraction Detection 

In general, a drowsiness detection system consists of two main stages; first stage of 

extracting drowsiness related features from the facial information captured by sensor and 

second stage of classifying the extracted features to decide on the current state of driver 

(Drowsy or Active). Face, mouth, eyes and head pose are considered the most relevant 

facial features to detect the drowsiness in drivers. Figure 2.1 presents the basic structure of 



    
                                                                                 School of Engineering and Technology   
  

11 
 

a drowsiness detection system using computer vision technologies reported by Fuletra and 

Bosamiya [27].  

 

Figure 2.1: Basic Structure of Drowsiness Detection System using Computer Vision 
Based Techniques by Fuletra and Bosamiya [27]. 

Towards the distraction detection, eye glance of drivers has been considered one of the 

credible measure by researchers [28]. In eye glance approach, total time for eyes off the 

road is measured for the drivers when involved in performing some secondary task other 

than driving [29]. Head movements and eye glances of driver are captured and monitored 

using the camera sensor. Further, modern computer vision based tools such as FaceLAB 

[6] are used by the researchers in this domain to measure the eye glances based on eye 

tracking and head tracking information.  

Visual occlusion is another commonly practiced approach by researchers towards detecting 

distraction in drivers. In visual occlusion technique, visual distraction of drivers is 

mimicked by temporarily blocking the view of drivers and to measure the road off the eyes. 

This approach considers that driver does not look on the road always but can be involved 

in short interval secondary tasks such as adjusting radio and controlling climate. All the 

secondary tasks which can be performed by driver within two second interval are classified 

as accepted tasks under this approach. For the defined occluded time interval, a driver can 

perform secondary tasks without visually looking at them which give the estimate of drivers 

visual demand to perform a task without getting distracted visually [30]. Visual occlusion 

based distraction detection approach is considered a promising approach by researchers 

[31-33]. 

2.4. Conventional Approaches for Drowsiness and Distraction 

Detection 

This section presents the review of some benchmark existing approaches in the literature 

regarding the detection of drowsiness and distraction state/level among drivers using the 
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computer vision conventional approaches. Conventional approaches involve the extraction 

of features using the traditional vision-based approaches, the mathematical expressions or 

manually crafted approaches. 

Gao et al. [34] proposed and developed a monitoring system to detect the emotional state 

of drivers in real-time scenario. The system was non-intrusive, and it used facial expression 

analysis to detect the emotional state. Facial expressions of drivers were captured in real-

time by using in-vehicle camera sensors and were classified into two stress-related states: 

anger and disgust. The pose normalization approach was used to reduce the effect of head 

position on the detection and classification results. Figure 2.2 presents the block diagram 

of the system. The system in [34] included two modules: the face acquisition module and 

stress detection module working in sequential settings. In the face acquisition module, a 

Near-Infrared (NIR) was used to capture the real-time images of drivers, and facial 

landmarks were tracked using the face tracking system. In the stress detection module, at 

the first stage, the relevant facial features such as face and head pose were extracted using 

the local descriptors and holistic affine warping from the input captured data of the first 

module. Furthermore, before moving into the classification stage, pose normalization was 

applied. In the second stage, the module also provides a set of facial landmarks for the 

subsequent stress detection module. In the stress detection module, holistic or local texture 

features are extracted from the normalized facial images. They extracted features were 

classified using the Support Vector Machine (SVM) technique which is a space vector 

based machine learning classifier and aims to find the boundary between multiple output 

classes in a hyperplane, to decide the current emotional state of drivers. Based on the 

emotional state, the stress level of drivers was determined. SVM was trained offline over 

the pre-defined data. Two databases were used for this purpose, Radbound [35] and FACES 

[36], containing frontal view, evenly illuminated images from 49 and 179 subjects, 

respectively. In [34] to evaluate their system, two datasets containing images and videos 

were captured using the in-vehicle NIR camera. Dataset1 was recorded in the office 

configuration and included data from 21 different subjects. Dataset2 was recorded in the 

vehicle configuration and included data from 12 different subjects. The algorithm proposed 

by [34] was independently evaluated for both datasets, and an accuracy of 90.5% and 85% 
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was achieved for office and in-vehicle datasets, respectively. Although the algorithm 

exhibited promising performance over both evaluation datasets, it was not tested for 

different lighting conditions. In order to implement this system practically, it is of 

significant importance to validate the system over dataset containing images with different 

illumination conditions because it has been observed that the performance of vision based 

algorithms is sensitive to lighting conditions. Furthermore, the system only used the facial 

expression analysis to decide the stress level which is most probable to fail in situations 

where the face is not visible; thus, other approaches such as head movements and yawning 

can be integrated to further improve the results.  

 

Figure 2.2: Block Diagram of Stress Detection System Proposed by Gao et al. [34]. 

Nakamura et al. [20] developed a system to detect the drowsiness among drivers by 

proposing the use of facial expression variations captured using infrared camera sensor. 

Authors proposed the idea of using variations in facial wrinkles along with the eye blink 

detection to make the system more robust and accurate. Variations in facial wrinkles were 

determined by calculating the local edge intensities of captured faces. Eye blinking was 

detected by calculating the distance between different feature points as demonstrated in 

Figure 2.3 (a). Textural variations were calculated by determining the local edge intensities 

at different facial regions such as mouth, eyebrows and nasolabial fold areas as 

demonstrated in Figure 2.3 (b). Laplacian filters were implemented using facial feature 

points. Extracted feature vectors of facial variations and local edge intensities were 

classified using a k-nearest neighbors algorithm (k-NN) based estimation algorithm to 
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determine the precise drowsiness state of drivers. From the results, the authors reported an 

improvement in detection by using textural features and feature point distances. The 

recommended algorithm was evaluated over the custom collected dataset from ten different 

subjects. An overall accuracy of 82.2% was reported for the proposed algorithms from the 

experimental evaluation. Although the proposed method of using wrinkle based textural 

features is the novel approach in drowsiness detection, it is important to implement it in 

real-time. Besides, more extensive validation of the proposed algorithm over the large 

datasets, including different illuminations, is needed.  

 

Figure 2.3: Distance Parameters and Filtering Area for Eye Blink Detection and Textural 
Changes Proposed by Nakamura et al. [20]. 

Tadesse et al. [37] proposed a drowsiness detection system based on the Hidden Markov 

Model (HMM), a dynamic modelling of facial expressions. [37] uses HMM to perform 

temporal analysis of the dynamics of facial expressions. The detection of facial in each 

video frame was carried out by a system as shown in Figure 2.4. They developed a temporal 

analysis based system which included, change in facial features images caused by the facial 

movements and compared the proposed temporal analysis based drowsiness detection 

system with the frame based drowsiness detection system (see Figure 2.4) to highlight its 

advantages. The dynamic temporal analysis based drowsiness system utilizes the changes 

in the facial expressions of drivers and tries to associate the relation of those variations with 

the current drowsiness state of drivers. The authors used yawning, eye gaze, eyelid position 

and eye blinking as the facial expressions. The inclusion of additional facial features, 

including the eye blinking, improved the overall accuracy of the system. To detect and track 
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the face of drivers, Viola and Jones, and Camshift algorithms were applied to the input 

from the camera sensor. Important facial features from the captured faces were extracted 

using the Gabor Wavelet Descriptors. Extracted features were selected in two stages before 

the final classification stage. In the first stage, a simple threshold-based Adaboost weak 

learning algorithm, which is a popular learning algorithm used for image classification and 

face detection. The main idea of AdaBoost is to construct a succession of weak learners 

through different training sets with different weights. The training sets are derived from 

resampling the original data and the weights of the hard-to-leam instances will increase 

during every resample which show the main feature of the AdaBoost. These weak learners 

are fused through a weighted vote to predict the class label of a new testing instance. They 

are very effective on the initial stages in eliminating unwanted features. Usually the 

performance of a weak learner should be slightly better than random guessing and the weak 

learner is called as base classifier or component classifier. After boosting the final strong 

classifier can achieve high accuracy and good generalization ability. The authors applied 

this algorithm in the first stage. In the second stage, adaptive-boosting-based strong 

classifier was used to. Finally, the selected features from the second stage were classified 

using the SVM and HMM to decide the drowsiness state of drivers. The proposed algorithm 

was evaluated over the custom collected dataset from two driving subjects through 

simulated driving environments for different driving conditions. From the experimental 

evaluation of the system, an overall accuracy of 97% and 90% was achieved for the HMM-

based classifier and SVM-based classifier. Although the HMM-based classifier 

demonstrated a promising detection accuracy, the proposed method was not validated for 

different illumination conditions and diversity of drivers which are important features 

towards real-time implementation of drowsiness detection systems.  

 

Figure 2.4: The Block Diagram of the System Used in [37] to Detect Facial Expression in 

a Single Video Frame.  
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D’Orazio et al. [38] suggested an attention monitoring system for drivers by using eye 

analyses and head movements. The team of authors proposed the monitoring of drivers’ 

eyelids to check if it is opened or closed. Authors used two candidate regions that could 

contain eyes and used neural classifiers to recognize the eyes from input image sequences. 

Based on the openness of eyes, the current attentive state of drivers was decided. The eye 

closure duration and the frequency of eye closure were used as measures for behavioural 

analysis of determining the level of fatigue among drivers. The proposed algorithm was 

tested for its eye detection capability and behavioural analysis on a custom collected 

dataset. Datasets consisted of image sequences of drivers which were captured in the 

laboratory and in driving situations. An evaluation of the behavioural analysis was 

performed over eye closure parameters collected from image sequences of two different 

subjects. From the experimental evaluations, a maximum detection accuracy of 95% and 

70% was achieved for subjects with open eyes and partially open eyes, respectively. The 

proposed algorithm could train itself adaptively during the driving and introduce the novel 

idea of reading driving habits of drivers to respond accordingly. 

Saradadevi and Bajaj [39] developed a fatigue detection system for drivers by analysing 

the yawning information of drivers captured from the camera sensor. The Viola and Jones 

algorithm was used by authors to locate the face and mouth of drivers, and the SVM 

classifier was used to decide the fatigue level of drivers. The suggested algorithm was 

validated for a custom recorded dataset, and a performance of over 80% detection accuracy 

was achieved. Although the proposed system showed promising performance, it is more 

probable to fail when the mouth is not visible in the frame. Hence, the use of other visual 

information such as eyes and head movements will enhance the overall performance of the 

proposed system. Furthermore, the proposed system was not validated against extensive 

dataset; thus, it could not be implemented in real-time unless it was tested for large datasets 

containing images from the diversity of drivers under variable lighting conditions. 

Singh and Papanikolopoulos [40] proposed a system to detect fatigue and distraction among 

drivers using the facial feature analysis. A colour camera was used by the authors to 

meticulously scan the driver face for relevant fatigue and distraction-related features such 

as eyes, mouth and head pose. Prominent skin pixel variations were captured using the skin 
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colour mode. Skin like pixels from the input colour facial images were filtered using the 

skin colour model and were further processed using the blob processing approach to 

determine the connected areas and exact position of the face accordingly. To localize the 

eyes in the facial region, a horizontal gradient technique was implemented; however, the 

grey scale processing approach was used for real-time pupil detection. Information from 

this processing helped the system to capture the eye blinking variations and face directions. 

The proposed system was evaluated over a custom recorded dataset of drivers with different 

skin colours, gender and facial hair. From the experimental results, authors achieved a 

prolonged eye blink detection accuracy of approximately 95%. Although the proposed 

system exhibited promising results for the fatigue detection among drivers, it was not tested 

for different illumination conditions. Furthermore, other fatigue and distraction-related 

facial features such as yawning, expressions, and nostrils can be integrated to enhance the 

performance of the overall system. 

Percentage Eye Closure (PERCLOS) [41] is one of the most commonly used and reliable 

measures for detecting visual distraction reported in the literature. PERCLOS is the 

percentage of eye closure over a given time interval. The feature of detecting slow eye 

closure rather than eye-blinking makes PERCLOS an accurate measure to detect eye-

blinking among drivers [41]. Bergasa et al. [42] proposed an attention monitoring system 

by detecting the level of drowsiness and distraction among drivers. The authors used the 

head position information to determine the level of distraction, and PERCLOS and yawning 

rate to measure the drowsiness level of driver. The combination of all three factors helped 

the system to detect the attention level of drivers efficiently. They also used RANSAC and 

POSIT 3D face tracking models to estimate the head movements. User-and-illumination-

independent model for facial expression was used to detect different facial features. 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were 

applied to reduce the input data dimensions. PERCLOS threshold was used to decide the 

attention level of drivers. The proposed algorithm was evaluated over a custom recorded 

video dataset in simulating the environment and actual driving scenario. Cohn-Kanadae 

dataset [43] was used to train the facial expression classifier mode. Facial expressions were 

efficiently detected by the proposed algorithm for the given dataset and were not 
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significantly affected by illumination conditions: however, the authors did not report any 

numerical results. The face pose estimation algorithm was able to track the face with ±40& 

face rotation accurately. Based on the performance results of two subsystems, the authors 

achieved an accuracy of 92% in detecting the attention state of drivers. 

Dasgupta et al. [44] proposed a driver attention monitoring system based on PERCLOS to 

determine the level of drivers attention. They used Kalman filtering and Haar-like features 

to track and detect the face captured by the camera sensor used in detection of eyes at day 

and night using feature techniques. The authors proposed two different methods for 

different lighting conditions to detect and extract the eyes from detected faces. In order to 

extract more effective features from the static images, Local Binary Patterns (LBP) features 

and the principal component analysis (PCA) approach are used. The PCA is used to reduce 

dimensions of the features which are combined by the gray pixel value and Local Binary 

Patterns (LBP) features is used as an important descriptor for the pattern analysis of image, 

the authors used these feature technique to get the texture information from the images. All 

the features are extracted from the active facial patches. The active facial patches are these 

face regions which undergo a major change during different lighting conditions. PERCLOS 

values were classified to determine the closeness and openness of eyes using the SVM 

classifier, and, accordingly, the attention level of drivers was determined. To compensate 

the face rotations during real-time driving scenarios, affine and perspective transformations 

were applied. Furthermore, the Bi-Histogram Equalization (BHE) approach was used to 

compensate for the different illumination conditions in real-time driving situations. The 

proposed algorithm for attention monitoring of drivers was evaluated for simulated driving 

conditions and actual driving conditions in both daylight and night scenarios. The scholars 

achieved an overall classification accuracy of 98.6% with 9.5 framers per second speed. 

Ji et al. [45] recommended a fatigue monitoring system for drivers in real-time situations 

based on IR illumination device and Charge-Coupled Device (CCD) camera. The idea of 

IR illumination devices was used by the authors to improve the monitoring results in low 

light conditions. Combination of different behavioural measures such as gaze estimation, 

eyelid movement, facial expressions and head pose was used to determine the driver 

alertness. Eyes detection was achieved by using SVM classifier while for eye tracking a 
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combined approach of using Kalman filters and mean shift tracking was used. Talking more 

technically, PERCLOS and Average Eye Closure Speed (AECS) [46] were used as a 

measure to decide the driver alertness. A probabilistic model (Bayesian Networks) was 

established by the authors to mimic human fatigue and visual information was used to 

predict the current fatigue level of drivers. The proposed system was evaluated in two part 

by authors. In the first part, detection accuracies of individual computer vision based facial 

feature detection algorithms was validated while in the second part, fatigue parameters 

validity was evaluated. For eye detection, a huge dataset of 13620 images was used and 

detection accuracy of 95.8% was achieved by the researchers. For head pose, an estimated 

root mean square error of 1.92 degrees and 1.97 degrees was achieved for pan and tilt 

angles, respectively. For fatigue parameters evaluation, data from eight subjects was 

collected and response time was used as metric for performance. However, no numerical 

results were reported by the authors in this regard. 

Sacco et al. [47] developed a driver alertness system in real-time by utilizing facial features 

of drivers. Important visual facial features such as the face, eyes and mouth from the camera 

input were detected using the Viola and Jones algorithm. Real-time tracking of the detected 

facial features was achieved by using the template matching approach. Extracted facial 

features were then classified using the SVM classifier. PERCLOS, average eye closure 

interval and degree of mouth openness were utilised in deciding the level of alertness 

among drivers. Viola and Jones face, eye and mouth detection algorithms were evaluated 

over 6,000 images dataset containing the exact half of negative and positive images. 

FERET dataset was used for the positive images, while negative images were captured from 

an in-vehicle video feed. As for the face detection, an accuracy of 99.9% was achieved, 

whereas as for the eye detection and mouth detection, detection accuracies of 96% and 

91.9% were achieved. The overall accuracy of 93.24% and 95.20% were achieved by 

authors for SVM with linear kernel and SVM with Radial Basis Function (RBF) kernel, 

respectively. 

Bergasa et al. [48] proposed a real-time non-intrusive driver vigilance monitoring system 

using the computer vision approach. The authors used the IR illuminated camera sensor 

hardware to capture the facial information of drivers. Six different vigilance related 
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parameters were calculated in the proposed research: the PERCLOS, eye closure interval 

duration, frequency of eye blinking, frequency of head nodding, position of face and fixed 

gaze directions. Computer parameters were combined into fuzzy-based classifier, and 

decision on the driver attentiveness was made. The suggested algorithm was evaluated over 

the custom collected dataset of real-driving from ten different users in both day and night 

lighting conditions. The authors achieved the detection accuracies of 93.12%, 84.37%, 

80%, 72.5%, 87.5% and 95.2% for PERCLOS, eye closure duration, eye blinking 

frequency, head nosing frequency, face position and fixed gaze direction, respectively. 

Fan et al. [49] suggested a yawning detection system for measuring the fatigue among 

drivers. They used CCD camera sensor to capture the facial and mouth information of 

drivers. Face detection was achieved using the Gravity-Center template approach, while 

mouth corners were detected with the grey projection approach. Furthermore, the authors 

used the Gabor Wavelets approach to extract the texture related features from the mouth. 

Extracted yawning related features were then classified using the LDA classifier, and the 

decision on yawning was made. They also evaluated the proposed algorithm over 400 

image sequences selected from twenty different video sequences. From the experimental 

results, the authors achieved an overall yawning detection accuracy of 95%. 

Vural et al. [50] proposed a drowsiness detection system using machine learning on facial 

movements of drivers. Machine learning approach was used by the authors to determine 

the actual behaviours of drivers during drowsiness episodes. Machine learning classifiers 

were developed using 30 different facial actions from Facial Action Coding. Classifier 

included drowsiness-related facial actions such as eye blinking, yawning and head 

movements. Information of these facial actions was passed to Adaboost and multi-nomial 

ridge regressor to predict the sleep and crash episodes among drivers. Proposed algorithm 

was evaluated using a driving computer game simulation and classification accuracy of 

96% and 90% was achieved by the authors for in-subject and across-subject, respectively. 

Yin et al. [51] proposed a novel approach for fatigue detection among drivers based on the 

multiscale dynamic features of facial images. Multiscale representations from input image 

sequences were achieved by using Gabor filtering technique. At the next stage, from each 
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multiscale image, LBP were extracted. Resulted LBP of image sequences were divided into 

dynamic features and were concatenated with the histogram of each dynamic feature. A 

statistical based learning algorithm was used to select the most distinguished dynamic 

features and at the final stage a strong classifier was used to classify the state the drowsiness 

among drivers based on selected dynamic features. The proposed algorithm was evaluated 

over custom collected data set of 600 images coming from thirty different subjects. From 

the experimental results, the researchers achieved the classification accuracy of 98.33%.  

Flores et al. [52] proposed a computer vision and artificial intelligence based Advanced 

Driver Assistance System (ADAS) to automatically detect the drowsiness among drivers. 

They used the visual information such as face, eyes and head position to decide the 

drowsiness and distraction level of drivers. Viola and Jones algorithm was used to detect 

the face while eyes were located by defining the regions of interest in detected faces. To 

track the eyes and face, fusion of condensation algorithm and neural networks was applied. 

Finally, eye state detection was achieved by using SVM classifier. Important features of 

eye were extracted using the Gabor filters. Drowsiness index was determined based on the 

PERCLOS measurements. The proposed algorithm was evaluated over the custom 

collected dataset under different lighting conditions and from the diversity of drivers. From 

the experimental results, on average accuracy of 90% was achieved.  

Liu et al. [53] proposed a drowsiness detection system based on the eyelid movements of 

drivers. They used the cascade classifiers for the detection of the face from input sequences 

and diamond search algorithm to track the face in real-time. Temporal difference image 

approach was used to detect the eyelid movements. To judge on the performance of the 

proposed system, the authors used eyelid closure duration, group of continuous blinks and 

eye blinking frequency as three measures. The suggested algorithm was evaluated over 

custom collected low resolution dataset of ten different subjects. From the experimental 

results, an accuracy of about 98% was achieved by the scholars.  

Zhang and Zhang [54] proposed a fatigue detection system for drivers based on the non-

linear Kalman filters and eye tracking. Unscented transformations were used by the authors 

to non-linearly track the eyes in real-time. PERCLOS was used as a measure to detect the 
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fatigue level among drivers. Face detection was achieved using the SVM based classifiers. 

The proposed algorithm was validated over 20 qualified drivers with different genders and 

different ages. From the experimental results, eye detection accuracy of over 99% was 

achieved by the authors. 

Park and Trivedi [55] proposed a head posed detection system towards determining the 

attentiveness of drivers using Support Vector Regressor (SVR). They implemented the 

universal motion approach and colour statistical orders to monitor and track facial 

behaviours of drivers. The proposed method was reported to be failed if driver is rotating 

its head in certain direction, conversing with other in-vehicle passengers and if wearing the 

glasses. Proposed algorithm was evaluated over a custom recorded NTSC image dataset of 

subjects performing different driving related tasks. The authors did not report any extensive 

evaluation results in numerical rather presented the results as segmented images. 

Improvements in the proposed system can be made by integrating other sensors such as 

thermal images and steering images. Furthermore, the fusion of this approach with vision 

based attention monitoring approaches will enhance the overall performance.  

Nguyen et al. [56] proposed a computer vision based system to monitor the real-time 

drowsiness among drivers using the facial features of driver. A camera sensor was used to 

capture the RGB visual information of driver. For face detection, Haar features based 

approach was applied while for eyes detection random forest approach was used. From the 

detected eyes, binary images of local eye regions were extracted. From the binary images, 

a decision on drowsiness was taken based on closeness and openness of eyes. A pre-defined 

threshold was used to determine if the driver is drowsy or not. Proposed algorithm was 

evaluated over data collected from four different subjects in normal illumination 

conditions. From the experimental results, the detection accuracy of 97.6% and 94% was 

achieved for eye detection and eye-state prediction, respectively.  

Kholerdi et al. [57] proposed a human visual system-based image processing approach to 

detect the drowsy behaviour among drivers. Images captured by the camera were pre-

processed for illumination conditions, including the noise before getting into the feature 

extraction stage. The luminance variation model was used for illumination variation, while 
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spatio-temporal filters were applied to compensate for the noise. To detect the eyes and 

mouth from pre-processed images, the Viola and Jones algorithm was applied. Motion 

events around the eyes and mouth were captured by using energy of the Mango approach 

in the Region of Interest (RI). Finally, three measures – the head dropping, yawning and 

closed eyes –were used to define thresholds and conditions and decide the drowsiness level 

of drivers. The proposed system was evaluated for the custom defined dataset, and an 

overall classification accuracy of 90% was achieved by the authors.  

Jo et al. [58] defined a term PERLOOK as a measure that detects the distraction level of 

drivers. A similar idea PERCLOS for drowsiness detection was used to define PERLOOK. 

They defined PERLOOK as the percentage of time interval which a driver is not looking 

straight i.e. a rotated head or eyes of the road. A certain threshold of PERLOOK was 

defined for active driving. If the detected PERLOOK value of drivers was greater than the 

defined threshold, the driver was classified as visually distracted. They used the yawning 

information to determine PERLOOK, and the eye blinking information to determine 

PERCLOS values of drivers. Then, they decided on the drowsiness and distraction level 

based on these values. PCA and LDA approaches were used to extract the features. Nabo 

[59] used a software toll, SmartEye [60], to determine the value of PERLOOK from camera 

input towards detecting the distraction. Extracted features were then classified using the 

SVM with BF kernel to determine the attention level of drivers. To evaluate the proposed 

system, a dataset of 162,772 images from 22 different subjects was collected. The proposed 

system was evaluated for eye detection, eye state detection and inattention classification. 

The authors achieved the detection accuracy of 98.58%, 98.55% and 97.09% for eye 

detection, open eye state detection and closed eye state detection, respectively. For attention 

level measurements, 0% error was achieved for recognizing inattentive state as the normal 

state, while 2% error was recorded for recognizing normal state as inattentive state. 

Craye and Karray [61] proposed distraction detection and type recognition system for 

drivers using computer vision based approach. Overall, the proposed system includes four 

modules, eye behaviour module, arm position module, head pose module and facial features 

module. Distraction related features such as eye blinking/gaze direction, arm position, head 

position and facial expressions from each module were extracted, respectively. Extracted 
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features were then classified using two different classifiers, AdaBoost and HMM to decide 

the distraction state of driver. The proposed algorithm was evaluated over the custom 

collected video set and manually labelled for different distraction tasks. The authors 

achieved an accuracy of 85% and 84% for AdaBoost and HMM classification, respectively. 

Liao et al. [62] proposed a novel approach for detecting the real-time cognitive distraction 

among drivers using SVM. The proposed system consisted of three main elements: a 

feature calculation module, SVM classification module and a filtering recognizer module. 

The algorithm used the facial information like gaze direction and head position from facial 

images while incorporating the steering angles and speed of vehicles from in-vehicle 

sensors. From the collected information, distraction-related features were calculated and 

extracted. Extracted feature vectors were initially classified by SVM and were stored in the 

buffer. Finally, a filtering recognizer was used to classify the attention level of drivers. To 

validate the final classification, authors implemented a consistency tester. To evaluate the 

proposed algorithm, they collected data from 26 different subjects using a driving simulator 

under both urban area conditions and highway conditions. Froom the experimental results, 

the researchers achieved the classification accuracy of 93% and 98.5% for highway and 

urban areas, respectively. 

Kircher et al. [63] proposed two algorithms, Percentage Road Centre (PRC) and the 3D 

model of vehicles to detect the distraction among drivers. The first algorithm used the gaze 

direction information of drivers, and the authors decided the type and level of distraction 

based on the PRC measured values. PRC greater than 85 was classified as cognitive 

distraction sand less than 58 was decided as visual distractions. In the second algorithm, 

they defined the visual field of drivers by utilizing the internal 3D model of vehicles. A 

driving-related visual field was defined by the authors; if the detected eye glance of drivers 

was within the defined visual field, they were classified as active otherwise distracted. For 

the evaluation purposes, seven subjects (4 males and 3 females) were involved in the study. 

However, the authors did not report any numerical results; rather, they presented only the 

qualitative analysis.  
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Pohl et al. [64] recommended a driver distraction detection system by using gaze direction 

and head pose as measures of detection. They used a decision maker to classify the 

distraction level among drivers accurately. Furthermore, lane keeping modules and lane 

position modules were used by authors to detect distraction. The proposed system was 

evaluated by the authors for true positive, false positive, and true negative interventions. 

Murphy-Chutorian et al. [65] suggested a distraction detection system based on the head 

pose detection. They used the localized gradient orientation histogram approach to extract 

the distraction-related features. The authors also classified those features using SVM 

regression to decide the level of distraction. Head orientation was estimated in two degrees 

of freedom (yaw and pitch). They used an experimental testbed to mimic real driving 

situation, and data were collected to evaluate the proposed algorithm. Data from ten 

different subjects were captured and used to train the head pose estimation classifier. The 

mean absolute error was used as a measure of performance for the proposed head pose 

estimation algorithm. For laboratory experiments, an error of 5.58 and 6.40 degree was 

recorded for yaw and pitch angles. For daylight driving experiments, an error of 3.99 and 

9.28 degree was observed for yaw and pitch angles, respectively. Finally, for nightlight 

driving experiments, an error of 5.18 and 7.74 was achieved for yaw and pitch angles, 

respectively.  

Table 2.4 presents the summary of overall cited literature related to drowsiness and 

distraction detection using conventional approaches. Table 2.5 presents the categorization 

of cited literature in terms of what detection measure being used, what approach was for 

detection used and what classifier implemented to achieve the final decision. 

Comprehensive literature study and critical analysis have been reported regarding the use 

of conventional computer vision approaches in detecting drowsiness and distraction in 

drivers. Mostly, the approaches involve the crafting of facial features related to drowsiness 

and distraction manually and classifying manually crafter features using pre-trained 

machine learning classifiers. However, from the literature it has been identified that 

conventional approaches are poor in handling the generalized situations and hence are not 

implemented in real-world applications. As part of this research, conventional approaches 
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based eye detection, yawning detection and head pose detection systems have been 

implemented to detect the drowsiness in drivers and are critically analysed. Chapter 3 and 

Chapter 4 of this thesis presents the theoretical and implementation details of conventional 

computer vision approaches.  
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Table 2.4A: Comparison of Literature Related to Drowsiness and Distraction Detection using Conventional Computer Vision 

Approaches. 

Authors Database 
Information Features/Measures Facial Elements Methods/Techniques Classifiers Performance 

Gao et al [34] 

FACES and 
Radbound Dataset 

for training. 
Custom Dataset for 

evaluation 

Eye blinking, Yawning 
and Head pose 

Anger and Disgust stress 
related emotional states 

Face, Eyes, Mouth 
and Head 

Holistic affine, wrapping, local 
descriptors, Gabor Wavelets 

SVM, Ratio of eye-
height and eye-width 

Office datateset:90.5%  
In-vehicle dataset: 85% 

Nakamura et al. [20] 
Custom dataset 

collected from 10 
subjects 

Eye blinking, Changes in 
Wrinkles Face and Eyes 

Laplacian filters, edge 
detectors in addition with 

feature methods 
K-NN Neural Classifier 82.2% 

Tadesse, et al. [37] 
Custom dataset 
collected from 2 

subjects 

Eye blinking, eye gaze, 
head pose and yawning 

Eyes, mouth, skin, 
face and lips 

Gabor wavelet 
decomposition 

Adaboost 
SVM and HMM HMM: 97%  

SVM: 90%  

D’Orazio, et al [38] 
Custom dataset 
collected from 2 

subjects 

Eyelid movements and 
head pose 

Eye closure duration and 
eye closure frequency 

Eyes, face and head Hough Transforms and 
Neural Netowrks Normal Behavior Model Open eyes: 95% 

Partially open eyes: 70%  

Saradadevi and Bajaj [39] Custom Dataset Yawning  Face and mouth Viola and Jones algorithm SVM 80% 

Singh and 
Papanikolopoulos [40] Custom Dataset Skin variation, eye 

blinking, face direction Face and Eyes 
Skin Color Model, 

Horizontal Gradient and 
Grayscale Processing 

Eye Closure Duration 
Thresholding 

Eye Blink Accuracy: 
95% 

Bergasa et al. [42] Cohn-Kanadae 
Dataset 

Head pose, eye blinking 
and yawning 
PERCLOS 

Face, eyes, mouth 
and head 

RANSAC, POSIT 3D, 
PCA and LDA PERCLOS Threshold 

Head Pose: ±40$ 
Attention Detection: 

92% 

Dasgupta et al. [44] Custom Dataset Eyelid movements 
PERCLOS Face and eyes 

Kalman Filters, Haar-Like 
Features, PCA, LBP and 

BHE 
SVM 98.6% 

Ji et al. [45] 
Custom collected 
dataset of 13620 

images 

Gaze estimation, eyelid 
movements, facial 

expressions and head 
pose 

PERCLOS and AECS 

Face, eyes and head Kalman Filters and Mean 
Shift Tracking  

SCM and Bayesian 
Networks 

Eye detection: 95.8% 
Mean Square Error 

Pan Angle: 1.92 
Tilt Angle 1.97 

Saccor et al. [47] FERET Dataset 
Eye closures, degree of 

mouth openness 
PERCLOS 

Face, Eyes and 
Mouth 

Viola and Jones, and 
Template Matching  SVM 

Face detection: 99.9% 
Eye Detection: 96% 

Mouth Detection: 91.9% 
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Table 2.4B: Comparison of Literature Related to Drowsiness and Distraction Detection using Conventional Computer Vision 

Approaches. 

Authors Database 
Information Features/Measures Facial Elements Methods/Techniques Classifiers Performance 

Bergasa et al. [48] Custom Dataset 

Eye blinking, head 
nodding, gaze direction 

and face position 
PERCLOS, eye closure 

Face, Eyes and 
Head 

Finite State Machine, Blob 
Detection and Kalman Filters Fuzzy Classifier 

PERCLOS: 93.12% 
Eye Closure Duration: 84.37% 
Eye Blinking Frequency: 80% 

Head Nodding: 72.5% 
Face Position: 87.5% 

Gaze Direction: 95.2% 

Fan et al. [49] 400 images from 20 
videos Yawning Face and Mouth Gravity-Center Templates, Grey 

Projection and Gabor Wavelets LDA 95% 

Vural et al. [50] 
Driving Game 

Simulation collected 
data 

Eye blinking, yawning 
and head movements 

Face, Eyes and 
Head Machine Learning Approach 

Adaboost and 
Multi-Nomial 

Ridge Regressor 

Within Subjects: 96% 
Across Subjects: 90% 

Yin et al. [51] 
Custom collected 

dataset of 600 images 
from 30 subjects 

Multiscale Dynamic 
Facial Features Face LBP and Statistical Learning Cascade Strong 

Classifier 98.33% 

Flores et al. [52] Custom Dataset 
Eye blinking and Head 

Pose 
PERCLOS 

Face and Eyes 

Viola and Jones, 
Condensation Algorithm, 

Neural Networks and Gabor 
Wavelets 

SVM and 
PERCLOS 
Threshold 

90% 

Liu et al. [53] Custom collected 
data from 10 subjects 

Eyelid movements, eye 
closure and eye blinking Face and eyes 

Diamond Search Algorithm 
and Temporal Difference 

Images 

Threshold based 
classification 98% 

Zhang and Zhang [54] 
Custom collected 

data from 20 
qualified drivers 

Eye closure and 
monitoring 
PERCLOS 

Face and Eyes Kalman Filters, Unscented 
Transformations SVM 99% 

Park and Trivedi [55] Custom collected 
NTSC images 

Facial behaviors and head 
pose Face and Head Universal Motion Approach 

and Color Statistical Model SVM Regrtessor No Quantitative Results Reported 

Nguyen et al. [56] 
Custom collected 

dataset from 4 
subjects 

Eye blinking and eye 
closure Face and Eyes Haar Features and Random 

Forest  
Pre-defined 
Thresholds 

Eye Detection: 97.6% 
Eye State Prediction: 94% 

Kholerdi et al. [57] Custom Dataset Head dropping, yawning 
and eye blinking 

Face, Mouth, Eyes 
and Head 

Viola and Jones, Spatio-
Temporal Filers and Energy 

of Mango Approach 

Pre-defined 
Thresholds 90% 
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Table 2.4C: Comparison of Literature Related to Drowsiness and Distraction Detection using Conventional Computer Vision 

Approaches. 

Authors Database 
Information Features/Measures Facial Elements Methods/Techniques Classifiers Performance 

Jo et al. [58]  
Data set of 162,772 

images from 22 
different subjects 

Yawning and eye 
blinking 

PERLOOK and 
PERCLOS 

Face, Mouth and 
Eyes PCA+LDA SVM with BF 

Kernel 

Eye Detection: 98.58% 
Open Eye State: 98.55% 
Close Eye State: 97.09% 

Attention Level: 98% 

Craye and Karray [61] Custom Database 
Eye blinking, gaze 

direction, arm position 
and head pose 

Eyes, Head and 
Arm position 

Marching Squares Algorithm 
and Hough Transform 

AdaBoost and 
HMM 

AdaBoost: 85% 
HMM: 84% 

Liao et al. [62] 

Data collected from 
26 different subjects 

in urban and 
highway driving 

conditions 

Gaze direction, head 
pose, steering angles and 

vehicle speed 
Head SmartEye software tool SVM Highway driving: 93% 

Urban driving: 98.5% 

Kricher et al. [63] 
Data from 7 subjects 

(4 Male and 3 
Female) 

Gaze direction and Visual 
field 

PRC and AttenD 
Head and Eyes Not Reported PRC and visual 

field thresholds No Quantitative Results Reported 

Pohl et al. [64] Custom Dataset Gaze direction and head 
pose 

Eyes and Head Not Reported Decision Maker No Quantitative Results Reported 

Murphy-Choutrian et al. 
[65] 

Date collected from 
different subjects 

using experimental 
testbed 

Head pose and 
orientation Head Local Gradient Orientation 

Histogram SVM Regression 

Mean Absolute Errors 
Lab Experiments 

Yaw Angle: 5.58 degree 
Pitch Angle: 6.49 degree 
Daylight Experiments 
Yaw Angle: 3.99 degree 
Pitch Angle: 9.28 degree 

Night Experiments 
Yaw Angle: 5.18 degree 
Pitch Angle: 7.74 degree 
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Table 2.5: Categorization of Conventional Computer Vision Approaches from Literature for Distraction and Drowsiness 

Detection. 

 Detection Measures Approaches to 
Feature Extraction Classifiers 

 Eye 
blink Yawning  Head 

pose 
Gaze 

direction Other Handcrafted 
Filtering 

Machine 
Learning Threshold Fuzzy 

Logic LDA SVM Other 

D
ro

w
sin

es
s 

[20] [34] 
[37] [38] 
[40] [42] 
[44] [45] 
[47] [48] 
[50] [52] 
[53] [54] 
[56] [57] 
[58] [61] 

[34] [37] 
[39] [42] 
[47] [48] 
[49] [50] 
[57] [58] 

– – 

[20] 
(change in 
wrinkles) 

[34] 
(Emotional 

states) 
 [40] 
(Skin 

variation) 
 [51] 

(Multiscale 
facial 

features) 
 [55] 

(Facial 
behavior) 

[20] [34] 
[37] [38] 
[40] [42] 
[44] [45] 
[48] [49] 
[53] [54] 
[55] [57] 
[58] [61] 

[38] [39] 
[44] [47] 
[50] [51] 
[52] [56] 

[57] 

[34] [40] 
[42] [52] 
[53] [56] 

[57] 

[48] [42] [49] 

[34] [37] 
[39] [44] 
[47] [52] 
[54] [55] 

[58] 

[20]  
(KNN) 

[37] [61] 
(HMM) 

 [38] 
(Normal 
Behavior 
Model) 

 [45] 
(SCM and 
Bayesian) 

 [50] 
(Ridge 

Regressor) 
 [51] 

(Strong 
Cascade) 

D
ist

ra
ct

io
n 

– – 

[34] [37] 
[38] [42] 
[45] [48] 
[50] [52] 
[55] [57] 
[58] [61] 
[62] [64] 

[65] 

[37] [45] 
[48] [61] 
[62] [63] 

[64] 

[61] 
(arm 

position) 
 [62]  
(in-

vehicle) 
[63] 

(visual 
field PRC) 

[34] [37] 
[38] [42] 
[45] [48] 
[55] [57] 
[58] [61] 

[65] 

[38] [50] 
[52] [57] 

[42] [52] 
[57] [63] 

[64] 
[48] [42] 

[34] [37] 
[52] [55] 
[58] [62] 

[65] 

[37] [61] 
(HMM) 

[38]  
(Normal 
Behavior 
Model) 

[45]  
(SCM and 
Bayesian) 

[50]  
(Ridge 

Regressor) 
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2.5. Deep Learning 

Artificial intelligence, machine learning and deep learning are often associated together and 

interlinked. Figure 2.5 presents the relation between artificial intelligence, machine 

learning and deep learning.  

 

Figure 2.5: Relation between Artificial Intelligence, Machine Learning and Deep 
Learning [66]. 

Artificial intelligence is a broad domain of computer science which explores the concept 

of making computing machines to be able to think and solve problems intelligently like 

humans. Artificial intelligence involves various approaches to achieving the defined task, 

and machine learning is one of the fields which can achieve this goal. Machine learning, 

on the other hand, revolves around the concept of teaching a computer to solve a certain 

problem by training it with sample data. This process is also referred to as learning 

representation through data in technical language. It is important to understand how 

learning takes place in this process. The process of learning involves the meaningful 

transformations of input data automatically. These meaningful transformations are also 

referred to as the learned feature representations, which are achieved using different 

functions. Conventional machine learning algorithms involve the role of the engineer to 

define human-crafted features or what type of features needs to be extracted. This makes 

the conventional machine learning algorithms subjective in nature; that is why they differ 

in results significantly when applied to different situations and when they are trained by 
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different human-crafted features. In contrast, deep learning automates the feature selection 

and extraction process [66]. 

Deep learning is a branch of machine learning which uses deep layered network 

architectures to learn the feature representations in a hierarchal way i.e. learning of low-

level features at initial layers of the network while higher level features towards the end of 

the network. Deep learning provides the advantage of learning feature representations 

automatically without any human intervention, an advantage which was the major 

drawback of conventional machine learning algorithms. Deep architectures are basically 

inspired from the animal cortex system which consists of a number of hidden layers unlike 

the shallow architectures which have only a few hidden layers [67]. Each layer in the 

architecture transforms the input data which is characterized by the weights of the layer. 

The goal of deep learning is to train the layer weights so that inputs are mapped to the 

output with minimum possible losses. This objective seems quite simple, but in practice, 

deep architecture consists of a number of layers and involves the learning of a large number 

of parameters. Given that changing the value of one parameter will change the behaviour 

of all the other parameters, learning large number of parameters is a relatively complex 

problem. To measure the performance of predictions made by a deep architecture, a loss 

function also known as the objective function is used to compare the predicted values with 

the ground truth and to generate a loss score. This loss score is then propagated backwards 

using some optimiser to update the weights of layers so that the loss score is minimized. 

The optimiser is basically the central element in the training of a deep architecture, and it 

usually implements efficient backpropagation algorithms such as the gradient descent. 

Figure 2.6 presents the basic functional diagram of how a deep architecture works.  

At the beginning of the training process, the layer weights are initialized with random 

values in most cases. This means that some random transformations are applied to the input, 

thus making the predictions not close to the ground-truth (and hence a high loss score). 

However, as the numbers of iterations are performed, the weights are updated to adopt the 

minimization of the loss score to produce a better output. It is important to mention that the 

initialization of weights in a deep architecture in itself is an active area of research. With 
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the introduction of a Deep Belief Network (DBN) by Hinton et al. [68] in 2006, the training 

process of deep architectures was revolutionized. 

 

Figure 2.6: Functional Working Diagram of Deep Learning [66].  

Deep learning approaches offer a number of advantages over the conventional machine 

learning methods, including better performances for a number of tasks and effective 

computational abilities. However, the most important advantage of deep learning is the 

automation of feature engineering processes for complex real-world tasks in improving 

performances, efforts and generalization. Despite all the advantages, the efficiency of deep 

learning is encumbered with the following limitations.  

(a) Overfitting: Given that deep architectures involve a large number of parameters at 

different layers, the problem of overfitting is likely to be encountered during the 

training process.  

(b) Training Data: Deep architectures require a huge amount of data to train the model 

efficiently and to achieve better performance. However, the availability of such 

amount of data is not always possible. To deal with the problem of data 

insufficiency, researchers now use augmented datasets [69, 70] and transfer the 

learning of pre-trained models [71, 72].  

(c) Computational Resources: To train a deep architecture, huge amount of 

computational power is needed depending upon the complexity of the architecture 
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and the nature of the problem being solved. However, the computational resources 

are only needed at the time of training. Once the model is trained, it can be used in 

real-time applications using the existing hardware commercially. Given the 

availability of Graphical Processing Units (GPUs) in the market and the concept of 

cloud computing, training deep architectures is no longer considered a limitation. 

Nevertheless, such training is time-consuming.  

(d) Parameter Optimization: Although deep architectures can be used to solve 

complex problems successfully, a number of questions remain unanswered, for 

example which model is appropriate for a given problem, why the performance of 

one model is better in one situation than the other, and how to optimise different 

parameters involved in the deep architecture.  

2.6. The Architecture of Convolution Neural Networks 

CNNs also known as ConvNet are a class of deep-learning feed-forward networks widely 

used for processing grid-like topology data i.e. images. CNN models are designed to 

emulate the visual cortex behaviour and are considered the most powerful models that can 

perform computer vision tasks such as image classification. The CNN architecture consists 

of convolution layers, pooling or down-sampling layers, non-linear layers (activation 

functions), fully connected layers, classifiers, loss functions and optimizations [73].  

2.6.1. Convolution Layer 

A convolution layer is the principal operation in these networks whose task is to transform 

the input data to extract features without losing the spatial dimensions/information of the 

input data. Equation 2.1 presents the mathematical expression for the convolution 

operation.  

																																																																	"# =%&' ∗ )
' + +

,

'-.

																																																(2.1) 

where ) is the input image of convolution layer with the dimension 4 × 4 × 6, & is the 

filer of size 7 × 7 with 8 kernel size and "# is the convolved output with 7 × 7 × 8 size. 
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At different convolutional layers, different filters are used. Each filter extracts different 

feature representations. In practice, it is common to use multiple filters at each 

convolutional layer. The output of the convolutional layer is usually referred to as the 

activation maps which are then fed to an non-linear activation function. The size of 

convolutional layers is dependent on three factors: the size of stride or filter translational 

jump, the size of padding to the input image, and the number of filters used at the layer 

(depth).  

2.6.2. Pooling Layer	
A pooling layer is also referred to as the down-sampling layer and usually follows the 

convolutional layer periodically. The primary objective of a pooling layer is to reduce the 

spatial size of activation maps, the computations and the size of the number of parameters 

to avoid overfitting problems. The most commonly used pooling approach is max pooling 

in which input maps are divided into clusters, commonly a 2 by 2 rectangle with a stride of 

2, and a maximum value of each cluster is taken. It is important to note that the depth of 

the data remains unchanged in pooling even though the spatial dimensions are reduced. 

Other pooling approaches available include average pooling and L2-norm pooling; 

however, in practice mostly max-pooling is used. 

2.6.3. Fully Connected Layer 

A fully connected layer is the final layer before classification. In this layer, all the learned 

classification maps are represented as vectors and are connected to all the neurons of the 

previous layer. These learned feature representations are then classified or predicted as one 

of the multiple output classes in classification tasks.  

Deep learning has been effectively implemented by researchers in computer vision for 

visual-computation and face-recognition tasks. Some CNN-based deep learning 

architectures with validated performances on large datasets in computer vision include 

AlexNet architecture [74], ResNet50 architecture [75], NASNet architecture [76], and 

MobileNet architecture [77]. Some applications of deep learning include SLAM, natural 

language processing, deep reinforcement learning and semantic segmentation. Figure 2.7 

presents a typical CNN architecture.  
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Figure 2.7: A Typical CNN Architecture. 

2.7. Activation Functions 

An activation function is the non-linearity which determines the output of a neuron in terms 

of the local field. A number of activation functions are available to be used depending on 

the type of problems being solved.  

2.7.1. Simple Threshold Function 

A threshold function is usually a piecewise function which assigns a specific value (usually 

1) if the input is greater than or equal to 0, and it assigns zero if the value of the input is 

less than zero [78]. Mathematically, it can be represented as shown below (see Equation 

2.2). 

																																																																		9(:) = ;
1, : ≥ 0
0, : < 0

																																																							(2.2) 

2.7.2. Sigmoid Function 

A Sigmoid function is the “S” shape function and is the most commonly used activation 

function in neural-network constructions. Mathematically, a sigmoid function can be 

represented as shown in Equation 2.3.  

																																																																		9(:) =
1

(1 + @A)
																																																								(2.3) 

Two main limitations of a sigmoid function are that it is not zero-centred and that it offers 

saturation in the most positive and negative region. Furthermore, because it involves the 

exponential term, it requires a high computational power.  
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2.7.3. Hyperbolic Function 

A hyperbolic activation function is similar to a sigmoid function, and it addresses one of 

the limitations of a sigmoid function, which is the inability to be zero-centred. However, 

due to the saturation, there are chances of getting dead neurons. Mathematically, hyperbolic 

activation function is represented as shown in Equation 2.4.  

																																																															9(:) = tanh(:)																																																												(2.4) 

2.7.4. Rectified Linear Unit (ReLU) 

A ReLU is the most commonly used activation function with deep nets given that it offers 

the solution to the problem of computational resources. Mathematically ReLU is expressed 

as shown in Equation 2.5.  

																																																																		9(:) = max(0, :)																																																					(2.5) 

Because it computes the maximum of the input, it is very fast and efficient. Furthermore, it 

solves the saturation problem in the positive domain even though the problem remains the 

same in the negative domain [79]. Networks with ReLU learns many times faster than those 

that involves saturating nonlinearities. Besides, the desired learning error rate are achieved 

several times faster in networks with ReLU.  

2.8. Loss Functions 

A loss function in the CNN are used to measure the performance by comparing the actual 

and predicted values. In general, a loss function guides the training process. Commonly 

used loss functions for classification problem include Mean Squared Error (MSE) and 

Cross Entropy Loss.  

2.8.1. Mean Squared Error (L2 Loss) 

In the conventional machine learning domain, the MSE is the most commonly used loss 

function, and it is considered efficient for beginner machine-learning problems [80]. 

Equation 2.6 presents the mathematical representation of the MSE.  
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																																																													MSE	Loss =
1

Q
%@R

S

T

R-.

																																																				(2.6) 

Where Q denotes the number of output classes, and @ denotes the difference between the 

predicted output and the ground truth. In the Euclidean space, the MSE represents a straight 

line between two points.  

2.8.2. Hinge Loss 

The hinge loss is another loss function used with the SVM classifier in the machine learning 

training process. The hinge loss is used for maximum margin classification [81]. 

Mathematically, the hinge loss can be expressed as shown in Equation 2.7.  

																																																						V(W) =%max(0,1 − Y' ⋅ W')

'

																																												(2.7) 

Where W' is the predicted output score of the classifier and Y' is the intended output score 

of the classifier.  

2.8.3. Cross-Entropy Loss 

Cross-entropy loss is another commonly used loss function for the classification problems 

in machine learning, and it performs better than MSE. Cross-entropy loss is based on the 

maximum likelihood estimation in the statistics [82]. Equation 2.8 presents the 

mathematical expression for the computation of cross-entropy loss.  

																																																											8\](W) = −%W'
^ log(W')

R

																																														(2.8) 

Where W'′ denotes the ground truth label of the ith training instance and W' denotes the 

predicted label of the ith training instance. Cross-entropy loss is the most commonly used 

loss function in deep learning. However, its application is different compared to other loss 

functions.  
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2.9. Optimisation Methods 

2.9.1. Backpropagation 

Backpropagation in machine learning is the algorithm of updating the weights of neural 

networks by propagating the error or loss as feedback. Usually, backpropagation involves 

the calculation of gradient descent which aims to minimize the loss function and update the 

weight accordingly. Backpropagation is also referred to as the delta rule for the perceptron 

for multiplayer feed forward neural networks [83]. Talking about the overall process of 

training the models and the role of backpropagation, the usual flow of training involves 

multiple iterations over the input data. For each iteration, the loss function is calculated and 

the error is back-propagated to update the weights and improve its performance. Hence, the 

learning or training process involves the loss function to generate errors which are then 

minimized using the optimization functions and updated based on those optimization 

network weights or parameters.  

Usually, backpropagation achieves this goal by applying the chain rule recursively over the 

layers and by calculating gradient descent loss with respect to the parameters. This is most 

commonly optimization approach in backpropagation, an approach known as gradient 

descent. This approach is discussed in detail in the following sections. Optimized weights 

of the network are considered as the solution of the learning process. The term “back” in 

the name refers to the fact that gradient descent is calculated in reverses flow (from output 

towards input) i.e. the gradient of the final layer is calculated before the gradient of the first 

layer is calculated. Given the number of computations, training deep networks involves 

significant computations. However, with the availability of advanced hardware such as 

GPU, backpropagation computations are no longer a difficult task.  

2.9.2. Gradient Descent 

Gradient descent is one of the conventional and basic optimization functions used in the 

backpropagation process, and it involves the optimization of network weights to achieve 

the local minima of loss functions. This is achieved by moving gradually towards the 

negative gradient direction of the loss function to achieve the local minima [84]. The aim 
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of gradient descent is to find the weights (cd) and biases (+e) which minimize the cost 

function given in Equation 2.9.  

																																																					Cost	Function = klm: )('), o(')p																																											(2.9) 

where m denotes the optimized parameter which is to be optimized, )(') denotes the input 

vector for the ith training sample and o(') represents the class label for the ith training 

sample. To minimize this cost function, gradient vectors (∇k) with respect to cd s
tu

tvw
x and 

+e s
tu

tyz
x are computed, respectively. Based on the gradient calculations, Equation 2.10 and 

Equation 2.11 present the update rules for weights and biases, respectively.  

																																																														cd → cd
^ = cd − |

}k

}cd
																																											(2.10) 

																																																																+e → +e
^ = +e − |

}k

}+e
																																																(2.11) 

Where | denotes the learning rate. By applying above-mentioned update rules repeatedly, 

all parameters in the trainable networks are optimized to achieve the convergence to a local 

minima. In practice, gradients for each input sample are computed separately and then 

averaged as shown in Equation 2.12. 

																																																																					∇k =
1

Q
%∇k)
)

																																																							(2.12) 

From the expression, it can be deduced that the calculation of gradients for deep networks 

involving large numbers of parameters will require a huge computation power and hence 

will cause the learning process to slow down.  

2.9.3. Stochastic Gradient Descent 

SGD is basically the extension of the conventional gradient descent algorithm to improve 

the speed of learning by estimating the gradients ∇k and by computing ∇k) for randomly 

selected small training input samples. This idea of taking the average over small sample 

leads to better ∇k estimation and helps in speeding the gradient descent computation process 
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and ultimately the overall learning process [81]. Mathematically, SGD can be expressed as 

given in Equation 2.13.  

																																																																	
∑ ∇k)�
Ä
Å

Ç
≈
∑ ∇k))

Q
= ∇k																																											(2.13) 

Where Ç denotes the number of randomly selected input samples, also referred to as mini-

batch, and Q denotes the total training dataset. The expression in Equation 2.13 can be re-

written as follows (see Equation 2.14): 

																																																																∇k) =
1

Ç
%Ç∇k)�
Å-.

																																																			(2.14) 

These calculated gradients from the randomly selected mini-batch are then used to update 

the weights cd and biases +e using the updated rules given in Equation 2.15 and Equation 

2.16, respectively.  

																																																								cd → cd
^ = cd −

|

Ç
%

}k)�

}cd
Å

																																									(2.15) 

																																																							+e → +e
^ = +e −

|

Ç
%

}k)�

}+e
Å

																																															(2.16) 

The total of the above equations are computed over the training examples )Å within the 

mini-batch. Once one batch is computed, the next mini-batch is selected for training, and 

this process continues until the whole training data is covered. An epoch is often referred 

to as a whole iteration of training using randomly selected mini-batches covering the entire 

training data. Models are trained over multiple epochs to minimize the loss function 

towards local minima. In the implementation of SGD, three hyper-parameters which 

significantly influence the training process are as follows:  

• Learning Rate: It is usually a float value, and it determines the speed of training.  

• Momentum: It is usually a float value and it influences the rate of damped 

acceleration in the relevant direction.  

• Decay Rate: It is the decay of the learning rate over each update.  
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2.9.4. Adam Optimiser 

Adaptive Moment Estimation (Adam) [85] is the method in gradient descent which 

involves the computation of individual adaptive learning parameters by first and second 

moments of gradient estimations. Learning rates are adapted based on the average of second 

moments (un-centered variance) of the gradients. Adam computes the exponential moving 

average of the gradient and squared gradient. Parameters Ñ. and ÑS control the decay of 

these moving averages. Based on these parameters, updates of first and second moments 

can be expressed mathematically as given in Equation 2.17 and Equation 2.18, respectively.  

																																																				ÇR = Ñ.ÇRÖ. + (1 − Ñ.)ÜR																																																(2.17) 

																																																				áR = ÑSáRÖ. + (1 − ÑS)ÜR
S																																																		(2.18) 

The parameters ÇR and áR are usually initialized as vectors of zero and biased towards zero 

when the decay rates are small. Equation 2.19 and Equation 2.20 present the biased centered 

first and the second moment estimates of gradients.  

																																																																								ÇàR =
ÇR

1 − Ñ.
R 																																																							(2.19)	

																																																																							áâR =
áR

1 − ÑS
R 																																																									(2.20)	

Based on these moments, parameters of the network are updated using the update rule 

expressed in Equation 2.21.  

																																																																		mRä. = mR −
|

ãáâR + å
																																													(2.21)	

where m denotes the network parameters. For a non-convex optimization problem, the main 

advantages of using the Adam optimizer are as follows:  

• Easy to implement and computationally efficient 

• Requires low memory 

• Suitable for problems involving huge data and large number of parameters 

• Appropriate for problems involving sparse or noisy gradients  
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• Hyper-parameters require very less tuning efforts.  

2.10. Regularisation Methods 

Overfitting occurs when models learn the training data effectively but does not generalise 

them well enough, thus leading to poor performance over the test data set. In simple words, 

model learns the training data satisfactory, however, it performs poorly over the unseen 

testing data. To prevent the problem of overfitting in deep architectures, normalization 

approaches are used in the literature [86] to generalise the model for unseen data even when 

the model is trained using smaller datasets and/or with imperfect optimization procedures. 

This section presents some of the commonly used regularization methods in CNNs.  

2.10.1. Dropout 

Dropout is one of the most commonly used regularization approach in the deep neural 

networks to avoid the overfitting problem by leaving or dropping the number of 

nodes/neuron activations in the network. More specifically, dropout refers to leaving the 

neuron activations in both visible and hidden layers i.e. temporarily removing the neurons 

from the network along with all incoming and outgoing connections [87]. Figure 2.8 

illustrates the concept of the dropout technique.  

 

Figure 2.8: Illustration of Dropout Concept (Taken From [87]). 

By introducing dropout layers in between, the number of neuron activations are left out 

which leads to different numbers of architectures, each one of them is trained in parallel 

and the predictions are averaged. For example, if there are Q neurons attached to a dropout 

layer, there will be 2T ensemble architectures, and predictions will be averaged over all 

ensembles. Given that the selection of neuron activations to be left is a random process, 

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930
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there are no co-adaptations which enable the process to develop meaningful learning 

feature. The size of computations and model is significantly decreased by introducing 

dropout layers in the network.  

2.10.2. Batch Normalisation 

Batch normalization [86] is the approach in which the previous layer activations are 

subtracted by an averaged batch and divided by the standard deviation of the batch to 

achieve the stability in the output of neural networks. Batch normalisation adds two 

trainable parameters in the output activations of layer: standard deviation parameter and 

mean parameter. Rather than updating all the weights after each iteration, in this approach, 

SGD performs the de-normalization by changing only two (batch normalization) added 

parameters for every output activation. Training the model with the pre-trained weights by 

normalization improves the performance of the pertained model [86]. Batch normalization 

layers can be added after the dense layer or convolution layer; however, in [86], it was 

added after the last linear layer.  

2.10.3. L1 and L2 Normalisation	
L1 and L2 normalisations [88] are the methods involving the parameter regularisation, and 

the aim to shrink some network parameters by varying regression coefficient to zero to 

maximise likelihood estimates. Overfitting due to high predictions correlation, which may 

result in false positive results, is prevented by shrinking the number of parameters. L1 

regularization approach helps to achieve feature selection in the sparse feature space by 

providing an optimal solution when the data are biased and the noise ratio in the data is 

high. Whenever two predictors are used with high correlation between them, L1 

regularization selects one of the two predictors. One significant limitation of L1 

regularization is that using it results in the loss of predictive power. On the other hand, L2 

regularization leads to small non-zero regression coefficients distributed through the vector 

space. If two correlated predictors are to be differentiated, L2 regularization keeps both and 

jointly shrink the coefficients to a small extent.  



    
                                                                                 School of Engineering and Technology   
  

45 
 

Regularization methods usually involve an additional term in the loss function. If the loss 

function aims to minimize the Negative Log Likelihood (NLL), it will be expressed 

mathematically as shown below (see Equation 2.22). 

																																		4VVlm; )('); o(')p = −%logélè = o(')ê)('), mp

ë

'-.

																										(2.22) 

where m denotes the parameter for which the loss function is computed, )(') denotes the 

input vector for the ith training sample and o(') represents the class label for the ith training 

sample. Using the above relation, the regularization loss can be expressed as shown in 

Equation 2.23.  

																																								ílm; )('); o(')p = 4VVlm; )('); o(')p + ìî(m)																													(2.23) 

where î(m) is the regularization parameter and ì is the hyper-parameter which controls the 

regularization parameters. î(m) can be expressed mathematically as follows:  

î(m) = ê|m|ê
ñ

ñ 

where  

ê|m|ê
ñ
= ó%êmÅê

ñ

|m|

Å-ò

ô

.
ñ

	

Commonly, in neural network, ö = 1 (L1 norm) is used to shrink the sum of the absolute 

value of weight. For deep neural networks, ö = 2 (L2 norm) is used in which the sum of 

squared of the weights is shrinked. Therefore, regularization is also known as weight decay 

in the literature.  

2.10.4. Early Stopping  

Early stopping is an algorithm that is used to determine the best time required by a neural 

network required to be trained. Early stopping has been proved helpful in preventing the 

overfitting of huge and complex models [89]. Technically, early stopping is used to monitor 

the performance of trained models over the validation dataset. Using the early stopping 
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concept, model training is stopped when the error of model performance increases or shows 

no further improvement as both are the indicators of overfitting. Early stopping provides 

the last best copy of parameters (least validation error) which helps in obtaining a better 

test error for the model [89].  

2.11. Classification Method 

2.11.1. Softmax Classifier  

Inside the CNN, the image has several linear and non-linear operations followed by pooling 

layers and normalization layers. At the end of the process, we have a feature vector 

containing raw real numbers that are hardly understandable. The Softmax layer is used to 

map the feature vector, obtained on the forward pass through the network, into a vector 

containing the probabilities of ) to belong to each class. The Softmax layer is a 

generalization of the logistic function, and it performs a mapping ℝú 	→ 	ℝú where each 

element of the output is within the range (0, 1) and ∑ softmax()')
ë
' = 1. Its formula is 

given by softmax()') =
û)ü

∑ û
)�†

�

 

This layer is the main part of multi-label classification problems as it allows us to compare 

the distribution of probabilities returned by the CNN and the ground-truth labels. 

The last layer of a CNN for image classification tasks is the Softmax layers and is used to 

normalize a real value vector of K dimensions into a vector between 0 and 1. Softmax is 

the generalization of binary logistic regression classifier for the multiple classes. In terms 

of loss function, Softmax loss can be expressed as shown in Equation 2.24.  

																																																										V' = −°\ü + log%@°�	

Å

																																																		(2.24) 

where ° is the vector of class scores which is usually represented as 9()';&) and °Å 

represents the ¢th element of that vector. The output of the Softmax function represents the 

probabilities of an image belonging to certain class ¢. Mathematically, the softmax function 

can be illustrated as shown below (see Equation 2.25).  
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																																																													£(§)Å =
@§�

∑ @§w•
d-.

																																																									(2.25) 

where § is a k dimensional vector of real values and £(§) is the output probability vector. 

Because Softmax guarantees a well-behaved probability distribution function without 

losing generality, we can use the £ distribution provided by the output of the Softmax layer 

as an argument for this expression from above to calculate the cross-entropy loss function 

as shown in Equation 2.26.  

																																V' =
1

4
%8(ö', ¶')

ë

'-.

= −
1

4
%ö()') logl¶()')p

ë

'-.

																													(2.26) 

Where ö()') is the data, ¶()') is the estimated distribution of the variable and 4 denotes 

the dimensions of the feature space. Particularly, this calculation will be performed over 

mini-batch for the feature vectors )' with the ß dimensions. Equation 2.26 can be expressed 

as given in Equation 2.27. 
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2.11.1.1. Categorical Cross-Entropy Loss Function  

In order to measure the performance of the model in multi-label classification problems the 

categorical cross-entropy loss function is used (also named negative log-likelihood, NLL). 

Considering ¨()')  as the output of the model before the Softmax layer, this loss functions 

is defined as 

V≠Æ = −%W'

ë

'

log(softmax(¨()'))) 

where o' is the ground-truth vector for the image )' in one-hot encoding format, 

log(softmax(¨()'))) will give us the log-probabilities of )' to belong to each class of the 

dataset. Since it is multiplied to o', it will only account for the log-probability of the ground-

truth class. Therefore, if softmax(¨()')) tends to zero, then the error V≠Æ  tends to ∞  

(because the model assigned a probability of almost zero to the ground-truth class), while 
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if softmax(¨()')) tends to one, then V≠Æ   tends to zero (because it correctly assigned a 

probability of one to the ground-truth class). 

2.11.2. Support Vector Machines as the Classification Layer of CNN	
SVM use a different loss function, called hinge loss. This loss function main goal is to find 

the hyperplane with the biggest support between samples of different class. Using a 2D 

geometrical interpretation, this means, that the hinge loss will find the line that splits 

different semantic label while it has the biggest possible distance between samples of 

different classes. The SVM loss function is 

ℒ±≤ℳ = −%max	(0,¨l)Åp − ¨()') + 1

ë

Å¥'

 

which accumulates the differences on the classification between the ground-truth class 

¨()') and the rest of the classes ¨l)Åp. In the case that the model returns the highest value 

to the ground-truth class ¨()') then the loss will have a value between [0, 1]. if ¨()') is 

not the highest probability then the loss will accumulate the differences between the values 

returned for all the classes against the ground-truth class. Note that the value of ¨()') or 

¨l)Åp is not necessarily a probability. Usually, SVM use a linear function applied to the 

feature vectors before computing the hinge loss. However, there are other possible kernel 

approaches that might give better result. For example, in this project we have used a 

quadratic radial basis function that maps the input into a higher dimensional space which 

is supposed to make easier the classification problem. Therefore, applying this function we 

are capable to get better performance. Moreover, this function has a free parameter that can 

be trained in order to obtain higher accuracy rates. 

Adding non-linearities SVM by themselves do not add any non-linearities to the input 

features. That means that its separability and, therefore, the performance of the model will 

depend only on the quality of those features. In some cases, it can be helpful to add a 

previous step (before classification) that applies a non-linear kernel to the input in order to 

map it into a new feature space. In this project we have explored two different kernels: the 

linear kernel and the radial basis function. Considering x and y as the input and the ground-
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truth, the linear kernel is defined as 7(µ, ∂) = µ∑∂ + ∏  where c is an optional constant. On 

the other hand, the radial basis function kernel is defined as a quadratic mapping of the 

input 7(µ', ∂') 	= 	 @
Ö	
∥µü∫∂ü∥

ª

ªºª 	 where  is a trainable parameter. 

In this project we are going to compare the performance of CNNs using Softmax 

classification on top against using a SVM to classify the feature vectors extracted from a 

CNN model that has been fine-tuned using a triplet loss function. 

2.12.  Deep Learning Approaches for Drowsiness and Distraction 

Detection 

This section presents the details of the existing deep learning approaches based on computer 

vision and machine learning for the distraction and drowsiness detection among drivers. 

Deep learning approaches involve the extraction of features automatically from the entire 

input image to facilitate the detection. This is often achieved through the use of machine 

learning approaches.  

Dwivedi et al. [90] proposed a drowsiness detection algorithm based on the representation 

learning technique. In machine learning, representation learning techniques have been 

proposed and used to automatically discover (through learning) the key discriminative 

features (representation) from raw data to perform detection and/or classification tasks. 

CNN-based deep learning architecture was used to learn and extract drowsiness related 

facial features. Both latent and complex non-linear facial features which include local 

receptive fields, sharing of weights and sometimes spatial or temporal pooling were 

extracted by the deep architecture; all weights are learnt, all the learned weights acts a 

learned feature detectors for driver drowsiness and these feature detectors are convolved 

with input images to produce the final features used for classification in the last layer, 

Softmax was used to classify the features in order to decide the drowsiness state of the 

driver. The proposed algorithm was trained and evaluated over the customized dataset since 

the standard dataset in this regard was not available. Data was collected from 30 different 

subjects, including the diversity of skin tones, eye colors, and eye shapes. Authors achieved 
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the classification accuracy of 92% and 78% for the validation data and real-driving data, 

respectively.  

Park et al. [91] proposed a driver drowsiness detection system that utilised multiple deep 

neural networks. The proposed deep learning architecture was named as Deep Drowsiness 

Detection (DDD). A camera sensor was used to capture RGB videos of the driver. Three 

different deep neural networks were used to learn the facial features, head pose and 

background illumination variations. The outputs from of all three networks was 

concatenated and categorised by a Softmax classifier. Authors evaluated the proposed 

algorithm on the NTHU-drowsy driver detection benchmark dataset which consists of 

640×480 videos collected under Infrared (IR) illumination. 22 different subjects of both 

genders and different ethnicities have been recorded with various facial characteristics. The 

database consists of training and evaluation sets: training set contains 360 video clips of 18 

subjects, while the evaluation set consists of 20 video clips of 4 subjects and achieved the 

overall detection accuracy of 73.06%.  

Zhang [92] suggested and compared two different machine learning classifiers, SVM and 

CNN. In the SVM based distraction detection algorithm, the PCA approach was used to 

reduce the data dimensionality and produce inputs to the SVM. For the CNN based 

algorithm, the VGG architecture was trained using the transfer learning approach rather 

than the scratch approach. Both algorithms were evaluated with the Kaggle distracted 

driving dataset; after that, the results were compared The Kaggle scores of 1.53 and 0.22 

were reported for SVM-based and CNN-based algorithms, respectively. Although CNN-

based algorithm proved more efficient in distraction detection; however, the problem of 

overfitting was observed.  

Mbuvha and Wang [93] also recommended CNN-based distraction detection algorithm in 

solving the Kaggle challenge of distracted driving. The transfer learning of two deep 

architectures, VGG and AlexNet, was performed. Both deep architectures were modified 

according to the requirements of Kaggle challenge and were evaluated based on the dataset 

provided by Kaggle. Authors achieved an accuracy of 98.2% and 99.7% for off-the-shelf 

classifier and fine-tuned CNN classifier, respectively. Furthermore, authors evaluated the 
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performance of classifiers with the split data set where training and testing data was divided 

among different drivers. A significant degradation from 99.7% to 55.9% was observed for 

the fine-tuned CNN algorithm. As a result, the authors concluded that the CNN algorithm 

is not efficient for driver invariances, and overfitting may be observed if the algorithm is 

subjected to more training.  

Venturelli et al. [94] proposed the deep CNN-based head pose estimation algorithm to 

estimate the yaw, pitch and roll angles of head. The group of researchers used the Microsoft 

Kinect camera sensor to accurately capture the depth maps of drivers. Rather than 

extracting facial features, they solved the problem as a regressing problem, which involves 

the estimation of mapping function to map given input variables into continuous output 

variables and extracted the head position (head angles) directly from the depth images. 

Authors used Stochastic Gradient Descent (SGD) optimization algorithm to resolve the 

back-propagation and L2 loss function. The proposed algorithm was evaluated with the 

Biwi Kinect Head Pose dataset, and promising results were achieved. The group of scholars 

achieved estimation angles of 2.8 ± 3.1, 2.3 ± 2.9 and 3.6 ± 4.1 for head pitch, head roll 

and head yaw angles respectively. Furthermore, a processing time of 10 milliseconds per 

frame was achieved by the proposed algorithm. 

Streiffer et al. [95] developed a deep architecture known as DarNet to detect the distracted 

behaviours of drivers autonomously. DarNet is a unified data collection and analysis 

platform which can automatically detect and classify the distracted behaviours. The 

proposed DarNet architecture consisted of two modules: a data collection system and an 

analysis engine. An in-vehicle mounted camera sensor was used to collect the frontal facial 

information of the driver. The analysis engine comprises a CNN-based deep architecture, 

which can classify the distraction state. The proposed system was evaluated with the 

datasets collected from five different drivers. From the experiments, Top-1 classification 

accuracies for normal and down-sampled datasets are 87.02 and 80%, respectively.  

Dellinger et al. [96] proposed a computer vision-based algorithm for the autonomous 

detection of secondary driving tasks. They captured the visual information of face, steering 

wheel and speed pedal to detect if a driver was involved in secondary driving tasks e.g. 
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talking on the phone or texting on the phone. Two different algorithms were proposed in 

this research: the Histograms Oriented Gradient (HOG) with the SVM algorithm and the 

deep learning based CNN architecture. HOG with the SVM algorithm was used to detect 

the presence of passengers and foot over pedal using the information from the cockpit 

camera and pedal camera. A RI was found from the input data sequences and then HOG 

descriptors were computed. At the next stage, the computed HOG descriptors were 

classified by a pre-trained SVM classifier to decide if the passenger was present and if the 

foot of drivers was over the pedal. Deep learning-based algorithm was used to detect if the 

driver was texting or putting the phone close to the ear and if the driver’s hands were on 

the steering wheel. Algorithms were evaluated over a large dataset of 48 videos captured 

by authors under diversity of conditions such as day light condition, night driving condition, 

sunny day condition, rainy day condition and different drivers. From the experimental 

results, the detection accuracy of 95.6% and about 99% was achieved for the presence of 

passengers and foot over pedal using HOG with SVM. Furthermore, the detection 

accuracies of 99.5%, 21% and 18% were achieved by the deep learning approach for hands 

on steering wheel, texting and phone to the ear detections, respectively.  Lower detection 

accuracies for texting and phone to the ear detections were because of unbalanced dataset.  

Masala and Grosso [97] presented a real-time driver-attention monitoring system using 

machine learning robust classifiers. A combination of a binary classifier and neural network 

based data reduction was used to detect the attention level among drivers. The overall 

system consisted of two stages. At the first stage, the head pose is detected for each frame. 

At the second stage, eye blinking is detected. Viola and Jones algorithm was used to detect 

the face and eyes from the input image sequences. Feed Forward Back Propagation (FF-

Bp) neural network was used to classify the attentive behaviours from the inattentive 

behaviours, based on the extracted information of head pose and eye blinking. The 

proposed head pose detection and eye detection algorithm were evaluated over the IDIAP 

Head Pose Database and the FERET dataset, respectively. An accuracy of 92% and 81% 

was achieved for pose detection and eye detection, respectively.  

Abouelnaga et al. [98] developed a public dataset for distracted driver posture estimation. 

Furthermore, they proposed a deep learning-based distraction classification system to 
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detect distracted driving behaviours efficiently. Genetically-weighted ensemble of 

classifiers were used in the proposed system. Two deep architectures, AlexNet (from 

scratch) and Inception V3 (transfer learned from ImageNet), were trained over the dataset. 

Distraction related facial features such as face orientation, hand positions and skin 

segmentation were classified by the deep networks. Proposed algorithms were evaluated 

over the established dataset, which was divided into two groups: 75% for training and 25% 

for testing. classification accuracies of 93.65% and 95.17% were achieved with AlexNet 

and Inception V3 architectures without implementation of genetically weighted at 

classification layer, respectively. Furthermore, the genetically weighted ensemble of CNN 

achieved classification accuracy of 95.98%.  

Hssayeni et al. [99] suggested a distraction detection system for drivers using computer 

vision and machine learning approaches. An in-vehicle dashboard camera was used to 

capture the visual information of the driver. The aim was to classify the distracted 

behaviours into one of seven classes (one of safe and six of distracted driving). Two 

techniques, handcrafted features with SVM classification and deep CNN, were 

implemented and compared. For handcrafted features, a blend of HOG and Scale Invariant 

Feature Transform (SIFT) descriptors were used. On the other hand, for deep learning 

architecture, transfer learning of AlexNet, VGG-16 and ResNet-152 were performed for 

the distraction detection tasks. To evaluate the proposed algorithms, an online dataset of 

over 20,000 images [add reference] was used, including the images of safe and distracted 

driving. The overall dataset was divided into two parts: 80% images were used for training 

and the remaining 20% were used for testing. From the experimental results, very low 

accuracies of 33.2% and 21.5% were achieved by HOG and SIFT handcrafted features with 

SVM classifiers. For deep architectures, classification accuracies of 72.6%, 82.5% and 85% 

were achieved by AlexNet, VGG-16 and ResNet-152, respectively.  

Table 2.6 presents a comparison of the above cited literature regarding distraction and 

drowsiness detection among drivers using deep learning approaches. Furthermore, Table 

2.7 presents the categorization of cited literature at much higher level.  
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Critical analysis of comprehensive literature on drowsiness and distraction detection in 

drivers revealed that use of deep learning approaches has improved the overall detection 

accuracies and generalization problem. Conventional approaches were able to detect 

drowsiness and distraction based on the local hand crafted facial features, however, would 

not be able to detect distracted behaviours such as use of mobile phone. Where deep 

learning approaches provided the solution for the challenge. As a result, various deep 

networks have been implemented for the detection of distraction detection in drivers as a 

part of research presented in this thesis. Chapter 5 and Chapter 6 present the theoretical and 

implementation details of deep learning based distraction detection in drivers.  
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Table 2.6: Comparison of Literature Related to Drowsiness and Distraction Detection using Deep Learning Approaches.  

Authors Database Information Features and Measures Feature Extraction Method Classifiers Performance 

Dwivedi et al [90] Custom collected data 
from 30 subjects Facial Features  Face SoftMax CNN For Training Dataset: 92% 

For Random Dataset: 78% 

Park et al. [91] 
NTHU-drowsy driver 
detection benchmark 

dataset 
Facial Features, and Head pose Face, eyes and head Softmax CNN 73.06% 

Zhang [92] Kaggle Distraction 
Challenge Dataset Distraction related features Deep Learning Approach SVM and VGG CNN 

Architecture 
Kaggle Score 

SVM: 1.53 
VGG CNN: 0.22 

Mbuvha and Wang [93] Kaggle Distraction 
Challenge Dataset Distraction related features Deep Learning Approach VGG and AlexNet Off-the-shelf VGG: 98.2% 

Fine-tuned AlexNet: 99.7% 

Venturelli et al [94] Biwi Kinect Head Pose 
Dataset Head Pose Neural Networks Deep CNN  

Pitch angle: 2.8 ± 3.1 
Roll angle: 2.3 ± 2.9 
Yaw angle: 3.6 ± 4.1 

Streiffer et al.  [95] Dataset Collected from 
5 different subjects 

Frontal Facial Features and 
IMU sensor data Deep Learning Approach  DarNet deep architecture Normal data: 87.02% 

Down-sampled data: 80% 

Hssayeni et al. [99] Online dataset of over 
20,000 images 

Distraction related facial 
features HOG and SIFT SVM, AlexNet, VGG-16 

and ResNet-152 

HOG+SVM: 33.2% 
SIFT+SVM: 21.5% 

AlexNet: 72.6% 
VGG-16: 82.5% 

ResNet-152: 85% 

Dellinger et al.  [96] Custom collected 
dataset 

Facial information, steering 
wheel and speed pedal HOG and Deep Learning SVM and Deep CNN 

HOG+SVM 
Passenger: 95.6% 

Foot over pedal: 99% 
Deep CNN 

Hand on wheel: 99.5% 
Texting: 21% 

Phone with ear: 18% 

Masala and Grosso [97] IDIAP Head Pose 
Database and FERET Head pose and eye blinking Viola and Jones 

Feed Forward Back 
Propagation Neural 

Network 
Pose detection: 92% 
Eye detection: 81% 

Abouelnaga et al. [98] Proposed Custom 
Dataset 

Face orientation, hand position 
and skin segmentation Deep Learning Approach 

AlexNet, Inception V3 
and Genetically weighted 

CNN 

Alexnet: 93.65% 
Inception V3: 95.17% 

Genetically weighted CNN: 
95.98% 
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Table 2.7: Categorization of Deep Learning Based Approaches from Literature for Distraction and Drowsiness Detection.  

 CNN Model Extracted Features Extraction Approach Classifier 

 AlexNet VGG ResNet Inception others Facial 
Head and 

body 
Pose 

In-
Vehcile Handcrafted CNN Softmax SVM 

D
ro

w
sin

es
s  

[91] [91] – – [90] 
[91] 

[90] 
[91]  [91]  – [90]  [91]  [90] 

[91] – 

D
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ct
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n [93] 

[98] 
[99] 

[92] 
[93] 
[99] 

[99] [98] 

[94] 
[95] 
[96] 
[97] 

[95] 
[96] 
[99] 

[92] 
[93] 
[94] 
[97] 
[98] 
[99] 

[95] 
[96] 

[97] [99] 
[92] 

[92] 
[93] 
[94] 
[96] 
[98] 
[99] 

[92] 
[93] 
[94] 
[98] 
[99] 

[99] 
[92] 
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CHAPTER 3 

3. CONVENTIONAL APPROACHES 

3.1. Introduction 

Drowsiness detection using computer vision approaches often involves the combination of 

different detection algorithms for different visual features within multiple local regions of 

the human body such as the face, eyes, mouth, and head pose detections. Features related 

to drowsiness and distraction from each detection algorithm are extracted using 

mathematical measures such as PERCLOS, Degree of Openness (DOO) [100] and HWrate 

[101] and can then be categorized using a SVM classifier. These approaches are referred to 

as conventional vision approaches as their popularity has been overtaken by the deep 

learning approaches mainly due to their better performance. The conventional approaches 

extract and rely on hand-crafted features whereas  the deep learning approaches learns from 

a huge dataset the best features for a given task. This chapter outlines the theoretical and 

mathematical basis of conventional vision approaches used for detecting drowsiness and 

distraction among drivers. Furthermore, this chapter provides the details of SVM 

classifications using conventional vision approaches in the context of drowsiness and 

distraction detection. The first year of my MPhil research, mainly focused on conventional 

vision approaches and methodologies used in detecting drowsiness and distraction among 

drivers. This part of my early research will be discussed more elaborately in this chapter. 

3.2. Face Detection 

Face detection is one of the most significant elements in detecting drowsiness among 

drivers using the visual information because most drowsiness-related features which are 

required for extraction are related to the facial region. Hence, it is of paramount importance 

that at the first stage, the facial region is accurately identified and isolated from the input 

images.  

Evidence from the literature indicates that the following are the most commonly used face-

detection approaches. 
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• Knowledge Base Face Detection: This approach uses previous knowledge of the 

characteristics and locations of different facial features such as eyes, nose and 

mouth. The relationship of these facial features is used to identify a facial region.  

• Template Matching Base Face Detection: This method uses the pre-stored images 

of different types of face in the database and computes the similarity of captured 

images by finding the correlation between the captured images and stored images 

to decide whether the captured image is a face or not. 

• Appearance Base Face Detection: This technique utilises machine learning and 

statistical models trained over large datasets to classify the captured images as facial 

or non-facial images. These algorithms usually use approaches such as SVM, CNN, 

and deep learning.  

In this research, face detection was achieved using the knowledge-based Viola and Jones 

face detection algorithm. The following section presents theoretical details regarding the 

Viola and Jones face algorithm.  

3.2.1. Viola and Jones Face Detection Algorithm 

Viola and Jones algorithm [102] is commonly used in literature for efficient facial-region 

detection in real-time situations. There are mainly three steps or elements involved in the 

Viola and Jones object detection algorithm, and they are as follows:  

• Integral Image Representation 

• Haar-Like Feature Computation 

• Classification  

In the first step, the input image is depicted as an integral representation, and then Haar-

Like features are computed from the integral image representation. Generally, Haar-Like 

features represent the difference of intensity values between different regions of the face. 

Figure 3.1 shows three 2D-Haar-like features for facial features proposed by Viola and 

Jones for face detection.  
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Figure 3.1: Haar-Like Features Proposed by Viola and Jones for Face Detection. 

The simple idea of taking difference of the sum of pixels in the white region and that of 

pixels in the black region is used to compute the Haar-Like features. For example, if !" 

denotes the black region and #$ represents the white region, then the feature vector %& can 

be computed by using the mathematical expression presented in Equation 3.1.  
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where 56 denotes the total number of pixels in the black region, while 57 represents the 

total number of pixels in the white region. The integral image at any point is basically the 

sum of pixels above and to the left of that point. For example, the integral image at point 

(8-, :-) will be denoted as !;<=(8-, :-) and can be computed using the mathematical 

expression presented in Equation 3.2. 
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where !>?"@A6B(8-, :-) denotes the pixel value of the original input image.  

AdaBoost using haar classifier is the single rectangle feature and threshold that best 

separates positive (faces) and negative (non-faces) training examples, in terms of weighted 

error, its used as an input feature for cascade classifier.   

Therefore, in order to select them effectively, it is prudent to weigh, rank and train the weak 

classifiers. Rather than a single classifier, a group of AdaBoost-based classifiers is used in 

the Viola and Jones algorithm. This group of AdaBoost-based classifiers is referred to as 

weak classifiers. Figure 3.2 illustrates the structure and the working principle of cascade 
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classifiers. At the final stage, the features selected through the weak classifiers (reduced 

significantly in numbers) are selected/classified by a strong classifier.  

At final stage of Viola and Jones algorithm [102], a strong cascade classifier has been used 

to select some of the features which are not rejected by initial weak classifiers. Figure 3.2 

presents the generalized structure of the cascade classifier. Equations 3.3 and 3.4 shows the 

mathematical representation of the strong classifier. 

 

Figure 3.2: Cascade Classifier Structure of the Viola and Jones Algorithm. 
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were ℎ$(J) represents the weak classifiers, X represents the total number of classifiers in 

the cascade structure and U$ denotes the weighted error rate of the weak classifier. The use 

of weak classifiers at the initial stage of the algorithm helps in rejecting sub-windows in 

the image that do not contain a face. The strong classifier at the end of algorithm assists in 

selection regions with the possibility of a face [102, 103]. Figure 3.3 presents the block 

diagram of different steps involved in the Viola and Jones face detector algorithm.  

 

Figure 3.3: Block Diagram of Steps Involved in the Viola and Jones Object Detection 
Algorithm [102]. 

Classifier 1 Classifier 2 Classifier 3Input Image 
Windows

True True True

FalseFalseFalse

Reject Non-
Face Windows

Reject Non-
Face Windows

Reject Non-
Face Windows

Input  
Image

Integral 
Representation of 

Image

Computation of 
Haar-Like Features 

in the Image

Adaboost Weak 
Classifiers to 

Select the Features

Cascade Classifiers 
to Select the Face 

Regions



    
                                                                                 School of Engineering and Technology   
  

61 
 

The Viola and Jones object detection algorithm is considered one of the most efficient and 

effective algorithms for detecting objects in real-time and is often used by the researchers 

in the field of computer vision for this purpose. The idea of using the integral image 

representation significantly improves the feature computation process. Furthermore, from 

a large number of computed features, cascade classifiers can reject a significant number of 

negative sub-windows or sub-windows in the image that do not contain a face, thus making 

the final classification process faster. The purpose of cascade classifiers is to focus only on 

regions in an image where the possibility of a face is maximum. However, real-time face 

detection is a relatively complex task, and its performance significantly depends on the 

number of factors such as illumination conditions, face pose variations, the person’s skin, 

the presence of the eyeglasses and occlusion.  

3.3. Eye Detection 

The eyes are considered one of the most significant facial features in detecting drowsy 

driving. Also, eye blinking and gaze direction are prominent measures used in ascertaining 

whether a driver is susceptive to drowsy driving. Based on the illumination, two approaches 

are used in the literature for eyes detection. One is the IR-based detection, and the other is 

natural light-based detection. In the IR approach, the eyes are exposed to near-infrared light 

and synchronous approximation, and pupil reflection properties are studied to effectively 

track the eyes. Furthermore, IR lighting conditions help in estimating the eye gaze [104]. 

In the natural light-based eye detection method, only active natural light is used to track the 

eyes. However, eye detection in natural light is relatively complex because of multiple 

reflections and shadows.  

In this literature, localization of the eyes on the detected facial region is achieved by using 

the face anthropometric properties derived from a face database analysis [105]. From the 

facial RI, two rectangles containing the eyes are obtained. RI[ is used to denote the left eye 

rectangle and RI\ the right eye rectangle. Figure 3.4 presents the visual illustration of the 

implemented concept for eye detection using Viola and Jones.  
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Figure 3.4: Demonstration of the eye Detection with Region Parameters. 

Once the eyes region are identified as rectangles, the exact eye location is computed using 

the set of equations presented in Equation 3.5 [106] and isolated by small rectangles within 

large rectangles. (8], :]) is taken as the top left point of the large rectangle, while (8-, :-) 

is taken as the right bottom point of large rectangle.  
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Where c = 8- − 8] and ℎ = :- − :] denote the width and height of the respective region 

of the rectangle for eye detection. (^]_, `]_), (^-_, `-_), (^]f, `]f) and (^-f, `-f) represent 

the top left and bottom right corner points for the left eye rectangle and right eye rectangle, 

respectively. Head movements, illuminations changes do not usually allow for complete 

incorporation of information from grey level pixels, so we use pixel information from a 

( )1 1,x y

( )1 1,L Lu v( )1 1,R Ru v

LRIRRI

( )0 0,x y

( )0 0,R Ru v ( )0 0,L Lu v



    
                                                                                 School of Engineering and Technology   
  

63 
 

random sample, grey-level pixel values are incorporated by obtaining a random sample and 

then adjusting it to the defined parametric model. In this way, the exact eye position is 

obtained [106].  

It has been reported in the symptoms of drowsiness section presented in Section 2.3 of this 

thesis that the eye-blinking rate of a driver varies differ between active and drowsy 

conditions. Therefore, eye blinking is used as a criterion for deciding the level of 

drowsiness among drivers. In the literature, the term used to represent the eye blinking rate 

is called the PERCLOS [48, 54] and considered one of the most valid ocular parameters for 

drowsiness detection. Basically, the PERCLOS defines the amount of time needed to 

completely open or close the eyes (speed of blink), and it can effectively be used as 

drowsiness monitoring measure. In this research, the idea that the eyes close when the pupil 

is occluded by the eyelids has been used for the calculation of PERCLOS. Figure 3.5 

presents the principle used in this research to determine the PERCLOS. 

 

Figure 3.5: Principle of PERCLOS Computation Proposed by the Weijie et al. [107]. 

In Figure 3.5, time h- − hi denotes the time of the eye closing from 80% to 20%, time 

interval hi − hj denotes the time duration for which the eyelid remains at 20% opened or 

closed, while time interval hj − hk denotes the time of the eye opening from 20% to 80%. 

Based on these time intervals, the PERCLOS is computed using the expression presented 

in Equation 3.6.  

 
occluded by the eyelids and their shapes get more elliptical. So, we can use the ratio of pupil ellipse axes to characterize 
the degree of eye opening. The cumulative eye closure duration excluding the time spent on normal eye blinks is used to 
compute PERCLOS. To obtain a more robust measurement for these two parameters, we compute their running average 
(time tracking). To obtain running average of PERCLOS measurement, for example, the program continuously tracks the 
person's pupil shape and monitors eye closure at each time instance. We compute these two parameters in 30 seconds 
window and output them onto the computer screen in real time, so we can easily analyze the alert state of the driver. 
Figure 5 illustrates the measurement principle of the PERCLOS: 1t  to 4t  are used to measure the value of PERCLOS. 

The formula is:  
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TheK is the value of PERCLOS, 1t , 2t  are the time that eyes closed from the largest to 80 percent, from 80 % to 
20 %; 3t is the time from 20% closed to 20% open, 4t  is the amount of time spent that that eyes open from 20% to 0%. 

When used this method to measure state of eyes we use camera to get the image of driver's face, then we position eyes 
through image processing methods, at last we analysis and identify the image to confirm that the eyes are open or closed. 
Define that eyes pupil level with greater than 20% is open state. 
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Figure 5. PERCLOS principle 
3.4. Mouth texture detection using edge detection and yawning analysis  

Yawning is also an important feature that can provide a visual clue in order to detect driver fatigue. When yawning, 
mouths open widely and the geometric features of the mouth change obviously. In this system, we propose a Gabor 
wavelet feature based texture detection approach for mouth feature selection [16]. 

There are three states of mouth: close, open normally and yawning. Basically, driver's mouth is in close state during 
the normal driving processing. Driver's mouth opens normally when driver talks. And driver's mouth opens widely when 
the driver is yawning. Therefore, we can detect yawning according to the openness of mouth. If the ratio of mouth height 
and width is above 0.5, we think the driver is yawning. And if the ratio is above 0.5 in more than 6 frames, we think the 
driver is fatigued. 

In order to verify the effect of driver fatigue detection, we simulate the driver fatigue in the laboratory. There are 10 
peoples are in different light conditions (morning, afternoon, evening) and on the different states (awake, fatigue), which 
are detected 10 times. The PERCLOS results are quite good. It has been found to be a robust ocular parameter for 
characterizing driver fatigue.  

  Because of its utility in easily characterizing the texture differences in the images using its frequency and 
orientation representations, Gabor wavelets filters [17] have been found to be particularly appropriate for texture 
representation and discrimination. The Gabor filters-based features, directly extracted from gray-level images, have been 
successfully and widely applied to texture segmentation, handwritten numerals recognition and fingerprint recognition. 
Use of Gabor filter in solving edge detection problem was experimented based on the assumption that an edge map should 
have both intensity and texture edges. As we know, texture edge is defined as image locations with a sudden change in the 
textural properties. In order to get information of yawning, we apply a 2-D Gabor filter for mouth texture detection, which 
has been a popular tool in medical image classification, texture analysis and discrimination. In using Gabor filter the 
challenge is to optimally capture texture information in the intermediate responses and eventually compute the significant 
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																																																				PERCLOS =
hj − hi
hk − h-

× 100																																																			(3.6) 

Furthermore, along with the PERCLOS, this research incorporates the idea of calculating 

the height and width of the eye for each frame as proposed by the Weijie et al. [107]. Figure 

3.6 indicates the visual illustration for the idea of using the eye height and width as a 

measure for eye openness. A term known as the EyeHWRate (t) has been used and 

calculated using the expression as presented in Equation 3.7. If the t < 27%, the eye is 

considered a closed state and if the t ≥ 40%, the eye is regarded as an open state [107].  

																																																																					t =
y
z
× 100																																																											(3.7) 

where y denotes the height of the eye and z denotes the width of the eye.  

 

Figure 3.6: The Ratio of the eye-Height and Eye-Width Proposed by Weijie et al. [107]. 

3.4. Yawning Detection 

Yawning detection and the level of mouth openness are considered critical features in 

estimating the drowsiness level of drivers. Yawning detection at its first stage involves the 

detection and localization of the mouth. A number of approaches are available in the 

literature for yawning detection. In a study carried out by Abtahi et al. [108] yawning is 
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detected in two steps independent of the mouth location in the facial region. At the first 

stage, a hole is detected within the facial region due to a wide opening of the yawning 

mouth; at the second stage, the detected hole is verified if it is within the region where the 

mouth is localized in a facial image. Hariri et al. [109] detected the yawning by utilizing 

features such the rate of change in mouth contour during yawning and mouth area aspect 

ratio. In this literature, following are the methods which have been used to detect the mouth 

and yawning among drivers. Three main steps are involved. The first is the detection of the 

mouth region. The second is the detection of mouth related features, and the last is the 

determination of the degree of mouth openness.  

Detecting the mouth: Before determining the angle of mouth openness, a system must be 

able to detect the mouth in the facial images correctly. To estimate the position of the mouth 

on the face, previous knowledge can be used such as knowing that the mouth is always 

present in the lower region of the face and being knowledgeable about the distance between 

the lips corner and the lips from chin [100].  

Detecting the features of the mouth: The next step after the detection of the mouth region 

is to detect the important features of the mouth for which in this literature a projection-

based approach is used. Given that the mouth variations are much dominant in the vertical 

direction, the lips corners are detected using the vertical differences. Applying the 

thresholding technique will result into two columns of the mouth having lips corner points. 

These points define the mouth and can be used to determine the orientation of the mouth 

[100]. 

Degree of mouth opening: It is defined by the reaction of the driver’s mouth during the 

yawning state and is used to calculate the exact mouth angle. It is represented with {||=. 

Using the mouth model presented in Figure 3.7, {||= can be represented mathematically 

as given in Equation 3.8. 

																																												{||= =
ℎ
c
=
ℎ} × cos �

c
																																																	(3.8) 



    
                                                                                 School of Engineering and Technology   
  

66 
 

where c represents the width of the mouth (the distance between lips corners), ℎ represents 

the mouth height (the distance between the upper and the lower boundary) and � represents 

the orientation angle of the detected mouth. The basic block diagram of the mouth detection 

and respective results are shown in Figure 3.8. 

 

Figure 3.7: Mathematical Model of Mouth Proposed by Wang et al. [100]. 

 

 

Figure 3.8: General Block Diagram and Respective Output for Mouth Detection [100]. 

In the next step after detecting the mouth and determining the degree of mouth openness, 

the model is to estimate the yawning state of the driver by measuring the height of the 

mouth (mouth opening). It has been reported by Zainal et al. [101] that during yawning, the 
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height of an individual’s mouth is increased by a specific value. Hence, based on the 

respective threshold value for a normal mouth height, yawning can be determined in terms 

of yes or no by a simple comparison. Zainal et al [101] note that every individual has 

different facial features. They also commented that a common threshold cannot be used; 

rather, by taking the average of 50 frames, an efficient threshold value can be calculated 

which will result in a more accurate classification of yawning. Expressions for threshold 

and yawning estimations are presented in Equation 3.9 and Equation 3.10, respectively. 

					ThresholdÜáàâä = MouthHeightêëí	áì	î]	ìïñóòô +
MouthHeightêëí	áì	î]	ìïñóòô

3
				(3.9) 

																																			õ
Yawning, current	height > ThresholdÜáàâä

Not	Yawning, Otherwise
																(3.10) 

3.5. Head Pose Detection 

The head pose is another important feature which is commonly used in drowsiness and 

distraction systems for determining the attention level of drivers. Mainly, the decision on 

the alertness is made based on whether the driver is looking straight or not - a factor that is 

determined by measuring the head tilt angle. If the head tilt angle of drivers is greater than 

a certain value, the driver is classified as the in-attentive. The gaze direction is an important 

feature for connecting with the head pose, and it is used to determine the attention level. 

Head pose detection is integrated usually because it is helpful in situations where the facial 

features are not visible, such as the driver looking sideways or looking down. In such case, 

head pose detection is used to alert the driver about its attentiveness. Kang et al. [110] 

present a comprehensive review of different head pose detection techniques. Furthermore, 

Chapter 2 includes a complete section of the literature review about head-pose detection 

techniques.  

For the purpose of this research, a simple idea has been implemented based on the position 

of the head whether it is downward or straight. If it is downward, it is classified as 

distracted; otherwise, it is regarded as attentive. For this purpose, a trained SVM classifier 

has been used with the distraction dataset. Also available in the literature there are many 
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comprehensive approaches, which can effectively be used for head pose detection. A 

detailed description of the head-pose detection mechanism used in this research is presented 

in Chapter 4.  

3.6. Support Vector Machine (SVM) Classifier 

SVM is a machine learning classifier which is based on the vector space, and it aims to 

determine the boundary between two or multiple output classes. SVM was first introduced 

by the Boser et al. [111] in 1992. In the field of information processing and computer vision, 

SVM gained popularity among researchers and was considered one of the most efficient 

and robust approaches for pattern classifications [50, 52, 60, 112]. Talking about the utility 

of SVM in computer vision based on drowsiness and distraction detection systems, in most 

of the literature presented in Chapter 2, it can be observed that SVM is one of the most 

often used techniques for classification, and it provided good classification results.  

To perform the classification task, SVM required data sample to train itself. Once the SVM 

is trained, it can be applied for test data to solve the classification problem. For any basic 

classification problem, there are certain features based on what target values or classes are 

predicted. The simplest SVM classifier is called the binary classifier in which input features 

are predicted to be one of two output classes. For more complex classification tasks, non-

linear and kernel-based SVM classifiers are available [113]. One of the most important 

properties of SVM is that it involves the optimization of convex function during the 

learning of parameters which results in no false minima. Furthermore, unlike neural 

networks, SVM requires only a few parameters are required for tuning and training 

purposes [114].  

Given the case of the simplest binary classification, (8", :") is a set of input labelled points. 

Where,	8" is the set of feature vectors and :" ∈ {−1,+1} is class labels, assuming that both 

classes are linearly separable. The binary SVM classification function as represented in 

Equation 3.11 will be used to construct a rule in which any input feature vector 8 will be 

assigned to one of the two classes.  

																																																§(8; c, ¶) =< c, 8 > +¶																																															(3.11) 
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Where c and ¶ denotes the decision hyperplane vector and the intercept term, respectively. 

The aim of the function is to predict the output class for the input feature to be one of the 

two separable classes in the space. It is matter of fact that there can possibly be more than 

one solutions available for the decision boundary. However, SVM chooses the decision 

hyperplane with the maximum margin, where a margin is the minimum distance between 

the plane and any of the sample data point. Figure 3.9 shows a feature space for a binary 

classifier, in which (c,−¶) defines the decision hyperplane, and ß describes the margin 

from the decision line [115]. 

 

Figure 3.9: Vector Space Representation of a Linear Binary SVM Classifier [115]. 

The points which determine the location of the plane boundary are referred to as support 

vectors. Mathematically, the maximum margin solution can be formulated as the 

optimization problem as illustrated in Equation 3.12 and Equation 3.13. 

																																																														minimize	
1
2
™|c|™

i
																																																						(3.12) 

																																															subject	to	:"(cÆ8" + ¶) ≥ 1, ∀∞																																											(3.13) 

SVM are based on the statistical learning theory which proves that the bounds for the 

generalization error can be obtained. Bounds are the function of complexity and are used 

for training data misclassification errors. Maximizing separation margins reduces the 
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overall function complexity and minimizes the bounds for generalization errors, a function 

that is desired in the classification problem. In simple words, maximizing separation margin 

results in better generalization and probability. In other words, it can be said that models 

with high capacity usually results in the overfitting of training data and thus in poor 

generalization [116].  

If two classes are not linearly separable, a technique called soft margins is used to handle 

such problems. The idea behind soft margins is to minimize the influence of individual 

sample data points and allow some training points to be misclassified. To achieve this, slack 

variables are defined ±" ≥ 0. Where ±" ∈ {±- … ±A} is the slack variable for each data point. 

Hence, in this case, the mathematical formulation of the optimization problem changes as 

shown in Equation 3.14 and Equation 3.15 

																																																			minimize	
1
2
™|c|™

i
+ ≥)±"

A

",-

																																													(3.14) 

																																				subject	to	:"(cÆ8" + ¶) ≥ 1 − ±", ±" ≥ 0, ∀∞																																(3.15) 

where ≥ controls the trade-off between the minimization of error and the maximisation of 

plane margins.  

Summary 

This chapter presented a review of the conventional approaches used for detecting 

drowsiness and/or distraction of drivers. These conventional approaches tend to focus on a 

particular local region of the human body, for example the eye, the mouth and the head. 

Experiments has been conducted in this research to evaluate some of the commonly used 

conventional approaches, which is detailed in the next chapter. 
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CHAPTER 4 

4. EXPERIMENTS WITH CONVENTIONAL 
APPROACHES 

In this research study, conventional computer vision approaches that are commonly used 

for drowsiness and distraction detection have been experimentally tested on images to 

evaluate their working performance. In particular, experiments have been conducted on 

algorithms for detecting eye blinking, yawning and head pose, respectively. This chapter 

outlines the functional block diagrams of the proposed algorithms, information about image 

datasets, and results of conducted experiments. All the experiments were implemented 

using MATLAB as a software tool.  

4.1. The Detection Algorithms 

The implementation of each individual detection algorithm i.e. eye blinking, yawning and 

head pose detection is presented in the form of block diagram in Figure 4.1. All the three 

detection units follow the same approach and consist of two phases: training phase and 

testing phase. First, the SVM classifier for blinking, yawning and head pose detection is 

trained using a diverse set of features that are generated through the steps of detecting the 

facial regions, localising the facial regions of interest, and extracting the relevant features 

from each facial region and finally training the SVM based on those features. Once an SVM 

classifier is trained, the same steps can be followed for unseen test images which include 

detecting the facial regions, extracting the relevant features using the defined formulations 

and predicting the outcome based on the trained SVM classifier model. Eye blinking and 

yawning each has been used to assist drowsiness detection. Head pose has been used in this 

work to determine whether a driver is looking straight ahead (as in safe driving) or looking 

away/down (as in distracted or drowsy driving) 
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Figure 4.1: Block Diagram for the Proposed Eye Closure, Yawning and Head Pose 

Detection Mechanisms. 

4.2. Image Datasets 

The proposed conventional computer vision approaches have been trained and evaluated 

over three different datasets for the detection of yawning, head pose and eye blinking, 

respectively.  

The Pointing’04 database [117] has been used for head pose training and testing purposes. 

The pointing’04 database consists of 2970 images captured from 15 subjects of various 

skin tones. The images in the dataset were captured under constant illumination conditions 

with white background from the constant distance of one meter to achieve face-focused 

image. All images in the dataset were captured in room settings, and the maximum allowed 

head angle was 45 degrees. From this big dataset of head pose images, in total, 200 images 

were randomly taken and used in our experiment to train and test the proposed head pose 

detection algorithm. Small set of images were used since the dataset referred to was not 

specifically designed for this purpose and relevant images were manually taken from the 

dataset and were manually labelled to be used for this experiment. Before they were 
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subjected to training, all the coloured images were converted to grayscale. Figure 4.2 

presents some sample images from the dataset used for the head pose detection. 

The training and testing of yawning detection algorithm have been performed using the 

Birmingham University 3D Facial Expression (BU-3DFE) dataset [118] which consists of 

data from 100 different subjects with 2500 different facial expressions. The dataset is 

diverse in terms of age ranges (18 – 70 years), skin tone and nationality. All images in this 

dataset include images of the face captured using front view, black background and constant 

illumination conditions. Furthermore, it is important to mention that all the images are 

captured in room settings but not in real in-vehicle settings. Figure 4.3 presents some 

example images from the BU-3DFE dataset. 
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Figure 4.2: Examples from Head Pose Dataset. 
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Figure 4.8: Test Database for Head Pose Detection. 
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Figure 4.3: Examples from Yawning Dataset. 
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Figure 4.9: Training Database for Yawning Detection. 
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Figure 4.10: Test Database for Yawning Detection. 

	

Figure 4.11: Train and Test Database for the Eye Blink Detection. 

4.2. Viola and Jones Face Detector Results 

Viola and Jones algorithm has been used for the detection of facial objects such as mouth, 

eyes and face from the given image. Figure 4.12 shows the results of Viola-Jones object 

detection algorithm for two random images. Detected facial regions for mouth and eyes are 

enclosed in boxes.  
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In general, there are a number of eye datasets and databases available publicly [119]. 

However, most of these benchmark and major datasets are designed for eye localization, 

position of eyes and coordinates of pupils. Although, many of these datasets contain a good 

number of eye images from a diversity of subjects, but, all the images in these datasets 

contain open eyes and therefore cannot be used to train and test the eye blinking classifier. 

For the research performed in this thesis, the dataset [120] used for the eye blinking include 

in total 200 images, 100 for open eyes and 100 for closed eyes. Images are colored and 

each contains only the cropped region of a pair of eyes. Ground truth includes the labels of 

open and closed eyes. The dataset containing both close and open eye images has been used 

to train and test the eye blinking classifier. The dataset used for our eye blinking detection 

experiment contains cropped colored (RGB) eye images from a diversity of subjects. 

Images were converted to grayscale before being subjected to the training and testing. 

Figure 4.4 shows few sample images used for eye blink detection algorithm. 

 

Figure 4.4: Examples from Eye Blinking Dataset. 

4.3. ¥-Fold Cross Validation 

In order to assess the performance of proposed head pose, yawning and eye blinking 

algorithms for a generalized and independent dataset, µ-fold cross validation approach has 

been implemented. In this approach, all the data in a dataset is randomly divided into k 

batches or bins of images. During each run of µ-fold cross validation, one batch is used for 

testing and the rest for training. This process keeps on iterating for all the batches. In all 
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our experiments the value of µ is selected as 10. In the end, results of each batch were then 

averaged to get generalized precision of the correct and false detection of the proposed 

algorithm. 

4.4. Head Pose Detection Results 

The head pose detection classifier was trained with the images in the Pointing’04 database. 

Labels used by the SVM classifier for prediction are binary in the sense that the face in the 

image is either straight or tilted. It is important to mention that the dataset was manually 

labelled in this study. Figure 4.5 (a) and Figure 4.5 (b) present examples of correct and wrong 

pose detection cases with the face enclosed in a rectangular region along with SVM 

predicted labels, respectively.  

Head Straight Head Straight Head Down Head Stright 

    

Head Straight Head Down Head Straight Head Straight 

    

(a) Correct Detections 

Head Straight Head Down Head Straight 

   

(b) Wrong Detections 

Figure 4.5: (a) Examples of Correct Head Pose Detection (b) Examples of Wrong Head Pose 
Detection. 
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4.4. Head Pose Detection Results 

This section presents the results of head pose detection algorithm. Results from each 

subject has been presented along with the detection images. Detected faces are enclosed 

with the red box in the results and decision on pose has been taken using the SVM 

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected 

faces. Detailed statistics of the experiments on the pose detection are presented in Table 

4.2. Table presents the results for each subject with the correct detection, false detection 

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112 

images has been recorded as 85.5%. From the sample of 112 images, 92 images were 

correctly detected and 20 were false detected.   
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4.4. Head Pose Detection Results 

This section presents the results of head pose detection algorithm. Results from each 

subject has been presented along with the detection images. Detected faces are enclosed 

with the red box in the results and decision on pose has been taken using the SVM 

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected 

faces. Detailed statistics of the experiments on the pose detection are presented in Table 

4.2. Table presents the results for each subject with the correct detection, false detection 

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112 

images has been recorded as 85.5%. From the sample of 112 images, 92 images were 

correctly detected and 20 were false detected.   
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Table 4.1 presents the detailed results of the 10-fold cross validation experiments. In total, 

10 iterations were performed and in the end detection accuracies were averaged. Overall, 

the head pose detection algorithm showed a correct detection accuracy of 98.50% and false 

detection of 1.5%. High classification accuracies of SVM are because a controlled and 

relatively small dataset with not much of diversity has been used. The few wrong 

classifications may be due to the small training set used in the experiments. 

Table 4.1: µ-Fold Cross Validation Results of Head Pose Detection Algorithm. 

Number of Iteration (¥) Accuracy detection(%) False detection(%) 

1 100.0 0.0 

2 100.0 0.0 

3 100.0 0.0 

4 90.0 10.0 

5 100.0 0.0 

6 95.0 5.0 

7 100.0 0.0 

8 100.0 0.0 

9 100.0 0.0 

10 100.0 0.0 

Average 98.50 1.5 

 

In Figure 4.6 as shown below, the first two diagonal cells show the number and percentage 

of correct classifications by the trained network. As shown, 98 images from the class 

belonging to ‘Head Straight’ are correctly classified. This corresponds to 98.0% of all 

the100 images in the class belonging to ‘Head Straight’. Similarly, 99 images are correctly 

classified from the class belonging to ‘Head Down’. This corresponds to 99.0% of all 

the100 images in the class belonging to ‘Head Down’. Two (2) images belonging to the 

class of ‘Head Straight’ are incorrectly classified and this corresponds to 2.0% of all 100 

images in the class belonging to ‘Head Straight’.  Similarly, 1 image belonging to the class 
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of ‘Head Down’ is incorrectly classified and this corresponds to 1.0% of all 100 images in 

the class belonging to ‘Head Down’. After applying the µ-fold cross validation, Overall, 

98.5% of the predictions are correct and 1.5% are wrong 

 

Figure 4.6: Confusion Matrices For µ-Fold Cross Validation Results Head Pose Detection 

4.5. Yawning Detection Results 

Yawning detection using the DOO features defined in equation 3.8 has exhibited promising 

results despite the relatively small dataset used. It is important to mention that the ground 

truth labelling was not available within the dataset and the dataset was therefore manually 

labelled. As a result, the labelling was subjective in nature. Figure 4.7 (a) and Figure 4.7 

(b) present the instances of correct and wrong detections of yawning detection, including 

the predicted labels of mouth opened and mouth closed. Furthermore, detected mouths are 

enclosed in a rectangle region.  
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Mouth Open Moth Close Mouth Close Mouth Open Mouth Open Mouth Open 

      

Mouth Open Mouth Open Mouth Close Moth Close Mouth Open Mouth Open 

      

(a) Correct Detections 

Mouth Close Mouth Close 

  

(b) Wrong Detection 

Figure 4.7: (a) Examples of Correct Yawning Detection (b) Examples of Wrong Yawning 

Detection. 

Table 4.2 presents the details of µ-fold cross validation applied to assess the performance 

of yawning detection algorithm. Overall, on average, 99.0% correct classification accuracy 

and 1.0% false classification accuracy was achieved from the cross validation. 

In Figure 4.8, as shown below, the first two diagonal cells show the number and percentage 

of correct classifications by the trained network. As shown, 100 images from the class 

belonging to ‘Mouth Open’ are correctly classified. This corresponds to 100.0% of all 

the100 images in the class belonging to ‘Mouth Open’. Similarly, 98 images are correctly 

classified from the class belonging to ‘Mouth Close’. This corresponds to 98.0% of all the 

100 images in the class belonging to ‘Mouth Close’ There is no incorrect classification of 

image in the class belonging to ‘Mouth Open’. Similarly, Two(2) images belonging to the 

class of ‘Mouth Close’ are incorrectly classified and this corresponds to 2.0% of all 100 

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images
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Figure 4.12: Result of Viola and Jones Object Detection for Face, Eyes and Mouth. 

4.3. Yawning Detection Results 

This section presents the results of yawning detection algorithm. Results from each of 16 

subjects have been presented along with the original images. Detected mouths are enclosed 

with the red box in the results and decision on yawning has been taken using the SVM 

prediction. Figure 4.13 shows the output of the yawning detection algorithm with detected 

mouths.  

         Mouth Open      Mouth Close     Mouth Close     Mouth Open      Mouth Close    Mouth Open 

 
    Mouth Open      Mouth Close      Mouth Open    Mouth Open       Mouth Open   Mouth Open 

 
                              Mouth Open      Mouth Open     Mouth Open      Mouth Close 

 

Figure 4.13: Results of Yawning Detection Algorithm. 

mouth Detection

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images
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images in the class belonging to ‘Mouth close’. After applying the µ-fold cross validation, 

Overall, 99.0% of the predictions are correct and 1.0% are wrong 

Table 4.2: µ-Fold Cross Validation Results of Yawning Detection Algorithm. 

Number of Iteration (¥) Accuracy detection(%) False detection(%) 

1 100.0 0.0 

2 100.0 0.0 

3 100.0 0.0 

4 100.0 0.0 

5 100.0 0.0 

6 95.0 5.0 

7 100.0 0.0 

8 100.0 0.0 

9 95.0 5.0 

10 100.0 0.0 

Average 99.0 1.0 

  

 

Figure 4.8: Confusion Matrices For k-Fold Cross Validation Results Yawning Detection. 
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4.6. Eye Blink Detection Results 

For eye blinking detection, Viola and Jones algorithm and Haar-like features have been 

used in our experiments. Manually labelled groundtruth was provided with the dataset. 

Figure 4.9 (a) and Figure 4.9 (b) present examples of some correct and false cases of eye 

blink detection along with SVM predicted labels, respectively.  

Eyes Closed Eyes Open Eyes Open Eyes Closed 

    

Eyes Open Eyes Closed Eyes Open Eyes Closed 

    

 (a) Correct Detection 

Eyes Open Eyes Closed 

  

(b) Wrong Detections 

Figure 4.9: (a) Examples of Correct Eye Blink Detection (b) Examples of Wrong Eye 
Blink Detection. 

Table 4.3 presents the 10-fold cross validation results for the eye blinking classifier. 

Overall, an accuracy of 99.0% has been achieved. High detection accuracies of SVM are 

because of similar samples of data in the testing and training datasets.  

In Figure 4.10, as shown below, the first two diagonal cells show the number and 

percentage of correct classifications by the trained network. As shown, 99 images from the 

class belonging to ‘open eye’ are correctly classified. This corresponds to 99.0% of all 

the100 images in the class belonging to ‘open eyes’. Similarly, 99 images are correctly 

classified from the class belonging to ‘closed eye’. This corresponds to 99.0% of all the 

100 images in the class belonging to ‘closed eyes’ 1 image belonging to the class of open 

eye is incorrectly classified and this corresponds to 1.0% of all 100 images in the class 

belonging to ‘open eyes’. Similarly, 1 image belonging to the class of ‘closed eye’ is 
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incorrectly classified and this corresponds to 1.0% of all 100 images in the class belonging 

to ‘close eyes’. After applying the µ-fold cross validation, Overall, 99.0% of the predictions 

are correct and 1% are wrong 

Table 4.3: µ-Fold Cross Validation Results of Eye Blink Detection Algorithm. 

Number of Iteration (K) Accuracy detection(%) False detection(%) 

1 100.0 0.0 

2 100.0 0.0 

3 100.0 0.0 

4 100.0 0.0 

5 100.0 0.0 

6 90.0 10.0 

7 100.0 0.0 

8 100.0 0.0 

9 100.0 0.0 

10 100.0 0.0 

Average 99.0 1.0 

 

 

Figure 4.10: Confusion Matrices For µ-Fold Cross Validation Results Eye Blinking 
Detection. 
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Table 4.4 presents the overall statistics of SVM classification for drowsiness and distraction 

related features i.e. yawing, head pose and eye blinking. In terms of number of images, 

from total of 200 images in each case, head pose detection and eye blinking detection 

algorithms were able to correctly classify 198 images while 2 images were incorrectly 

classified. On the other hand, for the head pose detection, out of 200, 197 were correctly 

classifier where 3 were incorrectly classified. Overall, accuracy of 98.83% has been 

achieved using SVM classifier. Few incorrect instances were because of reasons presented 

in head pose results section.   

Table 4.4: Statistics of SVM Classification for Drowsiness Detection. 

 Number of 
Images 

Correct 
Classification 

False 
Classification 

Classification 
Accuracy 

Yawning 200 198 2 99% 
Head Pose 200 197 3 98.5% 

Eye Blinking 200 198 2 99% 
Overall 600 593 7 98.83% 

 

The proposed drowsiness and distraction system based on the conventional computer vision 

approaches has performed satisfactorily in terms of classifying the drowsiness-related 

behaviours. In this research, the main purpose of performing these experiments was to 

investigate the effectiveness of the conventional computer vision approaches in terms of 

drowsiness detection. Nevertheless, in order to make the proposed algorithms robust and 

practically functional, certain limitations still need to be addressed. The algorithms were 

not trained and tested with comprehensive datasets such as the Kaggle dataset that will be 

used in Chapter 6 of this thesis; rather, relatively small datasets were used to train an SVM 

as well as evaluate its performance. This means that the reported performance figures might 

not be the same when the trained classifier is applied to images of other unseen subjects. 

Furthermore, the datasets used for the experiments were captured in room-settings rather 

than in vehicle real-time settings. Thus, it cannot be proven that the tested algorithms will 

work with similar accuracies with images such as those in the Kaggle dataset. To work with 

the Kaggle dataset and perform classification of various driving behaviors, Chapter 5 
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investigates the feasibility of deep learning architectures and Chapter 6 shows their 

experimental results on the Kaggle dataset. 
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Chapter 5 

5. DEEP LEARNING APPROACHES 

5.1. Introduction 

To overcome the drawbacks of conventional vision approaches in terms of accuracy and 

generalization identified from the experiments reported in previous chapters, deep learning 

approach-based techniques have been proposed and implemented. Deep learning 

approaches such as CNN have proved to improve the classification accuracies and 

generalization issues. The second half of this MPhil study attempted to implement different 

configurations of deep CNN architectures and compared their performance for a Kaggle 

challenge of detecting distracted drivers. A number of deep architectures such as AlexNet, 

ResNet, MobileNet and NASNet have been implemented to compare the performance 

using Softmax and SVM classifiers with cross-entropy loss and hinge-loss respectively. 

Experimental design and results are presented in the next chapter. This chapter explains the 

CNN architectures, which are one of the deep architectures commonly used for computer 

vision tasks. Theoretical details about different CNN architectures (such as AlexNet, 

ResNet, MobileNet and NASNet) which are used in this research have been included. 

Finally, this chapter provides the information about the triplet loss and batch triplet-loss 

functions.  

5.2. Deep CNN Architectures 

This section provides the details about four different deep architectures AlexNet, ResNet, 

MobileNet and NASNet, all of which are implemented in this research to classify the 

distracted driving behaviours. This section provides the theoretical basis to each of these 

deep networks.  

5.2.1. AlexNet 

Krizhevesky et al. [74] proposed a deep CNN architecture named AlexNet as shown in 

Figure 5.1. AlexNet was the winner of one of the most advanced and challenging object 

recognition competitions called ImageNet [121], which involves the classification of the 



    
                                                                                 School of Engineering and Technology   
  

87 
 

real-life images into one of 1000 prediction classes. AlexNet was trained over 1.3 million 

images from the ImageNet challenge database and achieved the test error rate of 15.3% 

[74]. First five layers of the model are convolution layers. Also used are max pooling layers 

with Local Response Normalization (LRN) and 96 different filters of 11 × 11 size. For the 

max pooling operation, a filter size of 3 × 3 with the stride of 2 is used. The same operations 

are performed in the second layer with 5 × 5 filters. A filter size 3 × 3 is used in the third, 

fourth, and fifth convolutional layers with 384, 384, and 296 feature maps respectively. 

Two fully connected (FC) layers are used with dropout followed by a Softmax layer at the 

end.  

 

Figure 5.1: Structure of the Adopted AlexNet Deep Architecture used in this Research. 

Networks with similar structure and the same number of feature maps are trained in parallel 

for this model. Two new concepts, LRN and dropout, are introduced in this network. LRN 

can be applied in two different ways: first, it can be applied on a single channel or feature 

maps, where an 5 × 5 patch is selected from the same feature map and normalized based 

one the neighbourhood values. Second, LRN can be applied across the channels or feature 

maps (neighbourhood along the third dimension but a single pixel or location).  

AlexNet network has been chosen for this research because this deep architecture has 

already demonstrated its ability to classify objects in ImageNet challenge over large 

number of images. Besides, features that are already learnt by this network are also useful 

in detecting driver distraction. Hence, rather than training the architecture from scratch, 

preserving the features learnt from ImageNet challenge will fasten the training process and 

reduce the risk of overfitting. From the previously learn features, AlexNet will be able to 
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classify objects such as phones, pets, hand, cups, and coke cans, all of which are valuable 

measures in classifying distracted driving.  

AlexNet has 5 convolution layers and 2 fully connected layers. When processing the 

ImageNet dataset, the total number of parameters for AlexNet can be calculated as follows 

for the first layer: input samples are 224	 × 	224	 × 	3, filters (kernels or masks) or 

receptive field have a size of 11, the stride is 4, and the output of the first convolution layer 

is 55	 × 	55	 × 	96. We can calculate that this first layer has 290400 (55 × 55 × 96) 

neurons and 364 (11 × 11 × 3 = 363 + 1 bias) weights. The parameters for the first 

convolution layer are 290400 × 364 = 105,705,600. The total number of weights and 

Multiply and Accumulated (MACs) for the whole network are 61M and 724M, 

respectively.  

The modified architecture of the AlexNet deep network for Kaggle challenge is explained 

as follows. Each input is of the size defined by Kaggle challenge i.e. 227 × 227 × 3. The 

first five layers in the architecture are local layers, and they provide the representation of 

local features, while last layers are responsible for learning and classification of features 

and are fully connected layers. At the layer fc7, a total of 4096 features are extracted and 

saved in a matrix ∂. The dimension of feature matrix ∂ is ∑ × 4096, where ∑ is the number 

of training images in each batch. In this case, ∑ equals 50. At the next stage, the Softmax 

classifier is given with this feature matrix, which then classifies those features in one of the 

10 Kaggle classes. The output probability values from the Softmax classifier are compared 

with the ground truth labels to calculate classification loss. 

5.2.2. ResNet 

Proposed by Kaiming He, ResNet [75] was named after the residual connection which is a 

connection between convolution layers as shown in Figure 5.2. ResNet was proposed with 

the aim of developing an ultra-deep network towards the solution of gradient problem in 

the conventional deep CNN architectures.  

ResNet was proposed to have different number of layers i.e. 34, 50, 101 and 152 depending 

on the type of application used. The most popular of them was ResNet50 with 50 layers 

deep, 49 convolutional layers and 1 fully connected layer at the end of the network. The 
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total number of weights and MACs for the whole network are 25.5M and 3.9G, 

respectively. Figure 5.3 presents the architecture of the ResNet proposed by author of [75] 

for ImageNet challenge.  

ResNet is a traditional feed forward network with a residual connection. The output of a 

residual layer can be defined based on the outputs of (∏ − 1)π& which comes from the 

previous layer defined as 8B∫-. ª(8B∫-) is the output after performing various operations, 

e.g., convolution with different sizes of filters, Batch Normalization (BN), and an activation 

function such as ReLU on 8B∫-. The final output of residual unit is 8B which can be defined 

with Equation 5.1. 

																																																																					8B = ª(8B∫-) + 8B∫-																																												(5.1) 

 

Figure 5.2: Residual Learning, Building Block of ResNet (Taken From [75]). 

 

Figure 5.3: Architecture of ResNet Proposed for the ImageNet Challenge (Taken From 
[75]). 

identity

weight layer

weight layer

relu

relu

F(x)�+�x
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F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-
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1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

 

 

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

 

 

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer
3We have experimented with more training iterations (3⇥) and still ob-

served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5
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The residual network consists of several basic residual blocks. However, the operations in 

the residual block can be varied depending on the different architectures of residual 

networks. The wider version of the residual network was proposed by Zagoruvko et al. 

[122]. Another improved residual network approach known as aggregated residual 

transformation was proposed in 2016 [123]. Recently, some other variants of residual 

models have been proposed based on the residual network architecture [124-126]. 

5.2.3. MobileNet 

In the deep learning domain, trends are shifted to develop more deeper and complex 

architectures and to improve the performance of the tasks [127-129]. However, making 

more deeper architectures was not always efficient in terms of size and time. In most real-

world applications, the task is to perform the classification quickly using the limited 

computational resources (on board processing units); therefore, complex and deeper 

networks were proving not to be the real-world architectures.  

In an effort to achieve the improved performance by not using deeper layered architecture, 

Howard et al. [130] proposed MobileNet, a fast, precise and most importantly a low size 

network. The concept behind the MobileNet was the use of depthwise convolutions which 

are a form of factorized convolutions. In simple words, standard convolution operation was 

factorized into 1 × 1 pointwise convolutions. Factorizing the standard convolutions into 

pointwise depth convolutions significantly reduced the size of the model and increase the 

processing speed [130]. Figure 5.4 presents the illustration of standard convolution, 

depthwise convolution and pointwise depth convolution.  

A standard convolution layer takes a {º × {º ×X feature map Ω as the input to the layer 

and produces a {æ × {æ × 5 feature map ø. {º denotes the spatial height and width of the 

squared input while X represents the number of input channels. Similarly, {æ  denotes the 

spatial height and width of the output feature map and 5 represents the number of output 

channels. Mathematically, the output of a standard convolution can be expressed as shown 

in Equation 5.2. 

																																																					ø¿,B,A = ) ¡",$,=,A ⋅ Ω¿√"∫-,B√$∫-,=
",$,=

																															(5.2) 
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where Ω denotes the input feature map, ¡ represents the kernel size and ø denotes the output 

feature map. 

 

Figure 5.4: Concept of Depthwise Convolution Proposed by Howard et al. [130]. 

Unlike the standard convolution, depthwise separable convolution operation involves two 

layers: a depthwise convolution and a pointwise convolution. MobileNet uses depthwise 

convolution operations by first applying a single filter to each input depth and then applying 

1 × 1 pointwise convolution to produce linear combination of depthwise outputs. Both 

ReLU and BatchNorm non-linearites are used in MobileNet. This combination of 

depthwise convolution and pointwise convolution is referred to as the depthwise separable 

convolution with the computational cost as expressed in Equation 5.3.  

																																																		{ƒ ⋅ {ƒ ⋅ X ⋅ {º ⋅ {º + X ⋅ 5 ⋅ {º ⋅ {º																														(5.3)	

Expressing convolution operation as a two-step filtering process can be reduced as 
expressed in Equation 5.4.  

separable convolutions for substantial reduction in compu-
tational cost.

Depthwise separable convolution are made up of two
layers: depthwise convolutions and pointwise convolutions.
We use depthwise convolutions to apply a single filter per
each input channel (input depth). Pointwise convolution, a
simple 1⇥1 convolution, is then used to create a linear com-
bination of the output of the depthwise layer. MobileNets
use both batchnorm and ReLU nonlinearities for both lay-
ers.

Depthwise convolution with one filter per input channel
(input depth) can be written as:

Ĝk,l,m =
X

i,j

K̂i,j,m · Fk+i�1,l+j�1,m (3)

where K̂ is the depthwise convolutional kernel of size
DK ⇥ DK ⇥ M where the mth filter in K̂ is applied to
the mth channel in F to produce the mth channel of the
filtered output feature map Ĝ.

Depthwise convolution has a computational cost of:

DK ·DK ·M ·DF ·DF (4)

Depthwise convolution is extremely efficient relative to
standard convolution. However it only filters input chan-
nels, it does not combine them to create new features. So
an additional layer that computes a linear combination of
the output of depthwise convolution via 1 ⇥ 1 convolution
is needed in order to generate these new features.

The combination of depthwise convolution and 1 ⇥ 1
(pointwise) convolution is called depthwise separable con-
volution which was originally introduced in [26].

Depthwise separable convolutions cost:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF (5)

which is the sum of the depthwise and 1⇥ 1 pointwise con-
volutions.

By expressing convolution as a two step process of filter-
ing and combining we get a reduction in computation of:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

MobileNet uses 3⇥ 3 depthwise separable convolutions
which uses between 8 to 9 times less computation than stan-
dard convolutions at only a small reduction in accuracy as
seen in Section 4.

Additional factorization in spatial dimension such as in
[16, 31] does not save much additional computation as very
little computation is spent in depthwise convolutions.
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(c) 1⇥1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

Figure 2. The standard convolutional filters in (a) are replaced by
two layers: depthwise convolution in (b) and pointwise convolu-
tion in (c) to build a depthwise separable filter.

3.2. Network Structure and Training
The MobileNet structure is built on depthwise separable

convolutions as mentioned in the previous section except for
the first layer which is a full convolution. By defining the
network in such simple terms we are able to easily explore
network topologies to find a good network. The MobileNet
architecture is defined in Table 1. All layers are followed by
a batchnorm [13] and ReLU nonlinearity with the exception
of the final fully connected layer which has no nonlinearity
and feeds into a softmax layer for classification. Figure 3
contrasts a layer with regular convolutions, batchnorm and
ReLU nonlinearity to the factorized layer with depthwise
convolution, 1 ⇥ 1 pointwise convolution as well as batch-
norm and ReLU after each convolutional layer. Down sam-
pling is handled with strided convolution in the depthwise
convolutions as well as in the first layer. A final average
pooling reduces the spatial resolution to 1 before the fully
connected layer. Counting depthwise and pointwise convo-
lutions as separate layers, MobileNet has 28 layers.

It is not enough to simply define networks in terms of a
small number of Mult-Adds. It is also important to make
sure these operations can be efficiently implementable. For
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{ƒ ⋅ {ƒ ⋅ X ⋅ {º ⋅ {º + X ⋅ 5 ⋅ {º ⋅ {º

{ƒ ⋅ {ƒ ⋅ X ⋅ 5 ⋅ {º ⋅ {º
=
1
5
+

1

{ƒ
i 																				(5.4)	

Figure 5.5 shows the architecture of MobileNet CNN Model as proposed by Howard et al. 
[130]. 

 

Figure 5.5: Architecture of MobileNet CNN Proposed by Howard et al. [130]. 

5.2.4. NASNet 

The development of deep neural networks for the tasks of image classification is based 

mainly on the manual or human architecture engineering. With better architecture, 

improved results have been achieved in the past over a number of classification tasks. 

However, Zoph et al. [131] proposed a new paradigm for deep neural network development 

by introducing the idea of using a scalable method to optimize the deep architecture for the 

dataset where it is intended to be applied. The proposed method for scalable optimization 

is based on the Neural Architecture Search (NAS) which uses reinforcement learning 

approach to optimize the architecture.  

The implementations of the NAS or any other search method for huge image datasets is 

challenging in terms of computational power. Because of this challenge, Zoph et al. [131] 

proposed the idea of optimizing the good architecture over proxy dataset (small) and then 

transferring the learned architecture to the actual dataset (large). This transfer of learning 

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-
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is achieved by using the NASNet search space, and that is why this type of architectures is 

known as NASNets. The NAS search uses the Recurrent Neural Network (RNN) to sample 

the child networks [126]. Sampling is done with a probability ≈. Once the architecture is 

sampled, it gets trained on the specific dataset. When the training phase reaches a local 

minimum and an accuracy ∆, gradients of ≈ gets scaled by ∆, the RNN controller gets 

updated and better architectures are achieved over time. Figure 5.6 shows the function 

block diagram of the RNN controlled based NAS.  

 

Figure 5.6: Overview of Neural Architecture Search (NAS) (Taken From [126]). 

5.3. Theory of Transfer Learning 

Transfer learning is the approach in machine learning where well-trained models for one 

problem are tuned and used for different but similar problems. Because training a deep 

architecture from scratch requires huge dataset, computational resources and time, transfer 

learning concept has gained popularity among researchers and provided reasonable results 

when practiced in real-world problems. In technical terms, when a model is trained over 

comprehensive dataset, it gains the knowledge and stores it in the form of layer weights. In 

transfer learning approach, pre-trained models are used while preserving the weights 

learned for previous problem and then fine-tuned to conform to the requirement of the new 

problem. For example, a deep network learned over huge dataset of ImageNet challenge 

will have features learned, and they are useful for most object-detection and classification 

problems in computer vision. Hence, if these features are used with fine-tuning, they will 

1.2% improvement in top-1 accuracy than the best human-
invented architectures while having 9 billion fewer FLOPS.
On CIFAR-10 itself, NASNet achieves 2.4% error rate,
which is also state-of-the-art.

Additionally, by simply varying the number of the con-
volutional cells and number of filters in the convolutional
cells, we can create different versions of NASNets with dif-
ferent computational demands. Thanks to this property of
the cells, we can generate a family of models that achieve
accuracies superior to all human-invented models at equiv-
alent or smaller computational budgets [60, 29]. Notably,
the smallest version of NASNet achieves 74.0% top-1 ac-
curacy on ImageNet, which is 3.1% better than previously
engineered architectures targeted towards mobile and em-
bedded vision tasks [24, 70].

Finally, we show that the image features learned by
NASNets are generically useful and transfer to other com-
puter vision problems. In our experiments, the features
learned by NASNets from ImageNet classification can be
combined with the Faster-RCNN framework [47] to achieve
state-of-the-art on COCO object detection task for both the
largest as well as mobile-optimized models. Our largest
NASNet model achieves 43.1% mAP, which is 4% better
than previous state-of-the-art.

2. Related Work

The proposed method is related to previous work in hy-
perparameter optimization [44, 4, 5, 54, 55, 6, 40] – es-
pecially recent approaches in designing architectures such
as Neural Fabrics [48], DiffRNN [41], MetaQNN [3] and
DeepArchitect [43]. A more flexible class of methods for
designing architecture is evolutionary algorithms [65, 16,
57, 30, 46, 42, 67], yet they have not had as much success
at large scale. Xie and Yuille [67] also transferred learned
architectures from CIFAR-10 to ImageNet but performance
of these models (top-1 accuracy 72.1%) are notably below
previous state-of-the-art (Table 2).

The concept of having one neural network interact with a
second neural network to aid the learning process, or learn-
ing to learn or meta-learning [23, 49] has attracted much
attention in recent years [1, 62, 14, 19, 35, 45, 15]. Most
of these approaches have not been scaled to large problems
like ImageNet. An exception is the recent work focused
on learning an optimizer for ImageNet classification that
achieved notable improvements [64].

The design of our search space took much inspira-
tion from LSTMs [22], and Neural Architecture Search
Cell [71]. The modular structure of the convolutional cell is
also related to previous methods on ImageNet such as VGG
[53], Inception [59, 60, 58], ResNet/ResNext [20, 68], and
Xception/MobileNet [9, 24].

3. Method
Our work makes use of search methods to find good con-

volutional architectures on a dataset of interest. The main
search method we use in this work is the Neural Architec-
ture Search (NAS) framework proposed by [71]. In NAS,
a controller recurrent neural network (RNN) samples child
networks with different architectures. The child networks
are trained to convergence to obtain some accuracy on a
held-out validation set. The resulting accuracies are used
to update the controller so that the controller will generate
better architectures over time. The controller weights are
updated with policy gradient (see Figure 1).

The controller (RNN)

Train a child network!
with architecture A to !
convergence to get !

validation accuracy R

Sample architecture A!
with probability p

Scale gradient of p by R!
to update the controller

Figure 1. Overview of Neural Architecture Search [71]. A con-
troller RNN predicts architecture A from a search space with prob-
ability p. A child network with architecture A is trained to con-
vergence achieving accuracy R. Scale the gradients of p by R to
update the RNN controller.

The main contribution of this work is the design of a
novel search space, such that the best architecture found
on the CIFAR-10 dataset would scale to larger, higher-
resolution image datasets across a range of computational
settings. We name this search space the NASNet search

space as it gives rise to NASNet, the best architecture found
in our experiments. One inspiration for the NASNet search
space is the realization that architecture engineering with
CNNs often identifies repeated motifs consisting of com-
binations of convolutional filter banks, nonlinearities and a
prudent selection of connections to achieve state-of-the-art
results (such as the repeated modules present in the Incep-
tion and ResNet models [59, 20, 60, 58]). These observa-
tions suggest that it may be possible for the controller RNN
to predict a generic convolutional cell expressed in terms of
these motifs. This cell can then be stacked in series to han-
dle inputs of arbitrary spatial dimensions and filter depth.

In our approach, the overall architectures of the convo-
lutional nets are manually predetermined. They are com-
posed of convolutional cells repeated many times where
each convolutional cell has the same architecture, but dif-
ferent weights. To easily build scalable architectures for
images of any size, we need two types of convolutional cells
to serve two main functions when taking in a feature map
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perform effectively for new problems. There are two commonly used approaches in transfer 

learning. In the first approach, new layers are added over the previously learned layers, and 

the whole architecture is trained including the previously learned weights. However, this 

approach results in breaking of previously learned features if the learning rate is not selected 

carefully. In the second approach, only the newly added layers in the architecture are 

learned while preserving the weights from the pre-learned model. In practice, a 

combination of both approaches is more commonly used and proved effective [132].  

In other words, the usual transfer learning approach is to train a base network and then copy 

its first « layers to the first « layers of a target network. The remaining layers of the target 

network are then randomly initialized and trained for the target task. It is possible to choose 

to back-propagate the errors from the new task into the base features and fine-tune them to 

the new task. Besides, the transferred feature layers can be left frozen, but leaving them 

frozen usually turns out to be the best choice.  

5.4. Distance Metric Learning 

Metric learning is a long-standing problem whose main goal is to find a function §(»", »$	) 

that gives us a distance between items »". The learned distance function is problem 

dependent, symmetric f(»", »$) = f(»", »$) and non-negative §(»", »$	) 	≥ 	0. In particular, 

we will focus on how to learn the distance function § over images using CNN [133-135].  

With the recent computational capabilities and the increase in the data available online, 

CNNs have become a de facto standard model for tasks involving image manipulation due 

to its great performance. The concatenation of linear and non-linear layers squeezes the raw 

information given by image pixels. Together with the back-propagation algorithm [136], 

they build a high-level feature representation of the input that is encoded into a feature 

vector that has shown to have outstanding capabilities [137-140]. These feature vectors are 

usually the last layers of the model, and they encode the high and low-level information in 

the network extracted from the input image. In other words, the CNN can be regarded as a 

feature extractor that maps an input xi into a new Euclidean space X(8") ∈ ℝ 	where d is 

the dimensionality of the resulting feature vector.  
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5.5. Triplet Loss 

Distance metric learning is the approach that improves the classification efficiency for real-

world applications and aims to keep the data points from the same classes close to each 

other and to ensure data points from the different classes are far apart from each other. At 

the fully connected layer in a CNN, the output is in the form of feature representations 

vector which are then classified by Softmax or Support Vector Classifier (SVC). However, 

it has been observed that if the feature vectors are learned in a way that information is 

spatially separated and features are embedded into a new space where the position of 

features is an indication of the similarity with certain class, the classification accuracy of 

the overall network will improve. Furthermore, the reduced dimensionality of the new 

space allows the classifier model to learn good boundaries for classes more quickly.  

Triplet loss is the approach in distance metric learning which is used to train the CNN in a 

way that it maps feature representations to a d-dimensional Euclidean space 

À§(») ∈ ℝ , ™|§(»)|™
i
= 1Ã where the position of the feature representations indicates the 

similarity to certain class [77]. Unlike categorical cross-entropy, optimizing triplet loss 

does not directly involve improving the class-prediction accuracy; rather, it focuses on the 

creation of an encoding in which different classes are separated spatially. Figure 5.7 

presents the three main components involved in triplet loss: positive, anchor and negative. 

Triplet loss function aims to improve the classification accuracy by increasing the distance 

between the anchor and the negative while decreasing the distance between anchor and 

negative during the learning process. The triplet of samples means the anchor and positive 

samples belongs to the same class, while negative sample belongs to a different class. 

Optimizing the loss function causes the CNN to bring the encoding for the anchor and 

positive example closer together and to separate the anchor and negative sample. This is 

done for an entire batch of triplets at a time. In this way, the model learns to map related 

data to a similar position in the encoding space, while separating unrelated data [141, 142]. 
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5.6. Activation Functions with Triplet Loss 

Knowing that CNNs are powerful feature extractors, we can find the function 

§(X(»"),X(»$)) that will give us the distance between two input images »" and »$. In an 

ideal case, we would like both images to be close in the Euclidean space when both images 

belong to the same semantic class §(X(»"),X(»$)) ≃0. We would also like to have a large 

distance between them when they do not belong to the same class §(X(»"),X(»$)) ≫ 0 

[77]. In our case, f will be the Euclidean distance between feature vectors. Thus, the 

equation is as follows 

§(X(»"),X(»$)) = ||X(»") − 	X(»$)||i
i 

Moreover, the feature vectors lie on the d-dimensional hypersphere ||X(»")||i = 	1, thus 

making the distance between feature vectors proportional to the cosine similarity. Using §, 

we can compare the distances between the anchor image (»"6) and the positive sample 

(»"
œ)given by §(X(»"6),X(»"

œ)) ≃0, including the distances between the anchor and the 

negative sample »"A given by §(X(»"6),X(»"
œ)) ≫ 0. Figure 5.7 shows the geometrical 

interpretation of the training performed and compares the distances with a triplet loss using 

a margin. To learn how to place the images of the same semantic class nearby in the 

Euclidean space while separating the images of different class, we use a triplet loss function 

involving the anchor, positive and negative images. 

 

Figure 5.7: Example of Triplet Before and After Training to Illustrate the Advantage of 
Triplet Loss Function. 

Positive

Negative

Positive

NegativeTraining

Anchor Anchor
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There are number of ways in which loss function, sample selection and batching are 

implemented using the triplet loss. Some commonly used triplet loss implementations are 

discussed as follows.  

5.6.1. Margin Triplet Loss 

The margin triplet loss function uses the simple idea that the difference between the anchor-

positive vector distance and anchor-negative vector distance must be separated by a 

minimum margin of O [143]. Mathematically, the standard margin triplet loss function can 

be expressed as shown in Equation 5.5.  

																																													– =)max(0, §“»"
6, »"

œ” − §(»"
6, »"

A) + O)

*

"

																								(5.5) 

Where »"6 denotes the anchor feature vector, »"
œ denotes the positive feature vector, »"A 

denotes the negative feature vector, and O denotes the forced margin between the anchor-

to-positive distance and the anchor-to-negative distance. In Equation 5.32, the function 

§“»"
6, »"

œ” determines the distance between two feature vectors (in this case anchor and 

positive). From this equation, it can be observed that triplet loss function tries to separate 

the positive and negative samples by a margin of O. The only condition at which the triplet 

loss will be greater than zero is this: §“»"6, »"
œ” + O > 	§(»"

6, »"
A). This loss function is 

formulated in a similar way to hinge loss in that a sample only contributes to the loss and 

the gradient of the model if the total loss for a specific sample is positive. Additionally, a 

margin O is used to specify a minimum distance which the Euclidean distance squared 

between the embedding for »6and »œ must reach before the loss becomes zero. 

Triplet loss function can equivalently be expressed as shown in Equation 5.6. 
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5.6.2. Naïve Triplet Loss 

The naïve triplet loss function is similar to the margin triplet loss function. The only 

difference between them is that in the naïve triplet loss function, the mean operation is 

placed around the squared Euclidean distances. In simple words, Euclidean distances 

between anchor-positive and anchor-negative vectors are averaged before the margin O is 

applied. This means that individual samples cannot be set to zero if they are not positive. 

The entire batch must satisfy the margin constraint in order to set the gradient to zero. 

Mathematically, this can be expressed as shown in Equation 5.7.  
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5.6.3. Batch Triplet Loss 

The third formulation of loss implemented and tested as a part of this project is the batch 

triplet loss. 

ÿ6œ = 	 ’§(»"
6) − §“»"

œ”’
i

i 

ÿ6A = 	‖§(»"
6) − §(»"

A)‖i
i 

For batch triplet loss, the distances between embeddings for the anchor and positive anchor 

are calculated using squared Ÿi (Euclidean) distance.  The same is done for the distance 

between the anchor and negative. 

t6œ = 	
1
5
	)ÿ6œ

*

",]

 

t6A = 	
1
5
	)ÿ6A

*

",]

 

As for triplet loss function implementation, the separation of mean value for each 

distribution does not always result in improved performance as there may be overlapping 
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between the distributions which may result in an increased number of false positives and 

false negatives. In this case, for the means of distributions t- and ti, there will be a decision 

threshold which will define how both distributions are well-separated. Parameters ⁄-and 

⁄i are the standard deviations of two distributions, and the decision overlapping can de 

represented mathematically as given in Equation 5.8 [144]. Figure 5.8 presents the 

illustration of overlapping problem graphically.  

																																																decison	threshold =
|t- − ti|

¤⁄-
i + ⁄i

i/2
																																						(5.8) 

 

Figure 5.8: Illustration of Overlapping Issue in Triplet Loss [144]. 

Towards the solution of this overlapping problem, the batch triplet loss function uses the 

variances of the squared Euclidean distance to be minimized along with means. Equation 

5.9 presents the mathematical expression for the batch triplet loss function. 
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The term › in Equation 5.36 balances each term contribution in the loss function. At unity 

value of ›, it can be seen from Equation 5.36 that the first term will be zero. This means 

that only the effect of variances will be effective for loss function. On the other hand, by 

selecting › as zero, the effect of variances can be eliminated from the loss function [145, 

146]. 

5.7. Triplet Mining 

Triplet mining is the process of selecting the efficient triplets from the large number of 

available ones. From the definition of triplet loss, triplets can be categorized into three-fold: 

• Easy Triplets: This is triplets with zero loss i.e. the distance between the anchor and 

the negative (ÿ6A) is greater than the distance between the anchor and the positive 

“ÿ6œ” plus the margin (O). Mathematically, it can be expresses as ÿ6œ + O < ÿ6A. 

• Hard Triplets: This is triplets in which the distance between the negative and the 

anchor is less than distance between the positive and the anchor “ÿ6A < ÿ6œ”. 

• Semi-Hard Triplets: This is triplets in which ÿ6œ is greater than ÿ6A but still the loss 

is positive (ÿ6œ < ÿ6A < ÿ6œ + O).  

From the above definitions, it can be clearly observed that all the triplets depend on the 

negative position; therefore, these three categories can be also called hard negatives, easy 

negatives and semi-hard negatives. Mathematically, hard positive, hard negative and semi-

hard negative can be expressed as given in Equation 5.10, Equation 5.11 and Equation 5.12, 

respectively.  
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																																																												ÿ6œ < ÿ6A, ÿ6œ − ÿ6A + O > 0																																		(5.13) 
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In terms of mining of these triplets, there are two commonly used methods: offline mining 

and online mining. To sample triplets that violate the constraints imposed by the loss 

function, we can use two different methods to find the hardest candidates over the whole 

dataset (Offline triplet mining) or finding the hardest samples within the batch in the current 

iteration of the training (Online triplet mining). For now, we were unable to implement the 

online mining due to limited resources and due to the required large mini-batch size, which 

consumes lots of GPU memory. Online mining will be part of our future work. In this 

research, we implemented the offline mining approach.  

5.8. Offline Mining Triplet 

Offline triplet mining aims to sample triplets that break the assumptions of the loss function 

by the largest margin [77]. It means that it samples the positive image whose distance to 

the anchor is the largest and the negative image whose distance to the anchor is the smallest. 

Finding only the hardest samples to train the model might not 

be a good idea because they can be over-complicated samples 

which can make the training diverge. The image on the left 

shows how the offline triplet mining is performed. The half-

transparent green and red circles represent the positive and 

negative samples, respectively. The blue circle is the anchor. 

Finally, the dark circles represent the hard positive and negative sample chosen with respect 

to the anchor using this mining method. 

In offline mining, triplets are found offline before the start of each training epoch. All the 

embedding are computed over the training dataset and then hard or semi-hard triplets are 

selected. Then, each epoch is trained over these selected triplets. We can then train one 

epoch on these triplets. Concretely, we would produce a list of triplets (∞, ‚, µ) and then 

create batches of these triplets of size B. This means that we will have to compute 3B 

embedding to get the B triplets and the loss of these B triplets and then back-propagate into 

the network. We need to do a full pass on the training set to generate triplets. An update of 

the offline mined triplets regularly is also required.  
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The possible combination of triplets in a dataset of X elements is (jP) = 	
P!

j!(P∫j)!
. By 

choosing a value of X	 = 	10000, we already have 1.6	 ×	10-- possible combinations of 

triplets, thus making it impossible to sample all of them. To avoid the computation cost of 

sampling all the triplets, we could use random sampling, but this can generate triplets that 

do not break the constraints of the loss function. Thus, they do not contribute to the training 

of the model. By randomly sampling triplets, the converge of the training becomes slow, 

and given that the triplets used are not meaningful, the model could converge in a poor 

local minima. Because of this, it is crucial to have a powerful sampling technique that not 

only yields meaningful triplets to the training but also speeds up model convergence. 

5.8.1. Triplet Sampling 

The selection of triplet from a large number randomly is inefficient for training the network, 

and is slow. This makes triplet selection and the important aspect of the triplet loss function 

implementation. Hard triplets are those which actively participates in the training, and 

mining of hard triplets is a challenging task. In general, two main approaches used for 

mining of hard triplet are online and offline [143]. While implementing the triplet loss 

function, researchers have observed that choosing hardest pairs of triplets for the CNN can 

result in the local minima problem and in poor performance. The first technique involves 

the selection of negative samples randomly. Given an anchor vector for a given image, this 

technique involves taking a negative example randomly. This is the fastest method, but it 

does not guarantee that the model will learn to produce high-quality discriminative 

embedding.  

Semi-hard sampling is another approach for the selection of triplets which at the first stage 

involves the computation of Euclidean distance between all anchors and positive samples 

in the same class. In the next step each negative samples distance from each positive sample 

is calculated. The selection of positive and negative vectors is performed by selecting the 

negative sample such that the distance between the anchor and negative is less than the 

distance between the anchor and its negative. This method results in a more effective way 

to force the model into focusing and bringing together anchors and positive samples before 

increasing the distance between anchor and negative samples.  
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The final method is called “hard sampling” or “hard sampling mining”. It requires the 

calculation of distances between all pairs of samples of the dataset. Then, the positive 

sample is drawn randomly. As the negative sample, we take the vector embedding with the 

closest distance from the current anchor vector. This constitutes a raw method, which leads 

to a difficult optimization problem. Starting with this method often causes the network to 

be stuck into a bad local minimum, thus producing a poor performance. This research uses 

an offline sampling methodology for triplet selection, which allows the CNN to adapt to 

triplet loss without arriving at the local minima.  

In the future, more sampling methods should be explored. One of such method is online 

sampling. Using online sampling, hard negatives are chosen directly from the mini-batch. 

For this reason, a large batch size may be needed to make online methods work properly. 

Some research efforts have also be carried out to improve the stability of training through 

an online method which incorporates the loss from all triplets in a batch simultaneously 

rather than just the ones that are sent separately. 

Summary 

This chapter has detailed the various CNN architectures including AlexNet, RASNet, 

NASNet and MobileNet, that have been used in the experiments with Kaggle dataset. 

Furthermore, theoretical details about distance metric learning, triplet loss function, triplet 

loss training and triplet mining that has been proposed to enhance the performance of these 

CNN architectures are presented. 
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CHAPTER 6 

6. EXPERIMENTS WITH DEEP LEARNING 
APPROACHES 

6.1. Introduction 

The performance of deep learning approaches in classifying distracted behaviours of 

drivers has been evaluated by conducting a series of experiments using the Kaggle 

distracted driving challenge dataset [2], where different configurations of deep 

architectures such as AlexNet, ResNet, MobileNet, and NASNet have been implemented 

and trained with various loss functions. In total, three sets of experiments have been carried 

out. 

Initially, preliminary experiments were carried out using the AlexNet deep architecture, 

where the performance of the AlexNet model trained with cross-entropy loss function was 

used as the baseline performance to facilitate a comparison against the performance of the 

same AlexNet architecture trained with triplet and batch triplet loss functions, respectively. 

The aim of our preliminary experiments was to implement the simplest deep architecture 

on the Kaggle dataset and to explore whether the triplet loss and the batch triplet loss 

implementation would improve the accuracy of the trained model. From the results of our 

preliminary experiments, improvements in the classification accuracy were observed for 

both the triplet loss and the batch triplet loss functions.  

Secondly, more complex and state-of-the-art deep models were implemented. The set of 

experiment 2 was designed to implement four particular deep architectures, AlexNet, 

ResNet, MobileNet and NASNet, with Softmax and SVC. The aim was to explore whether 

the SVC classification instead of Softmax improves the overall classification accuracies. 

The experimental results indicate that the SVC has slight advantage over the conventional 

Softmax classification. 

Finally, in the third set of experiments, all four aforementioned deep models were 

implemented with the naïve triplet loss function, margin triplet loss function and batch 

triplet loss function. The aim of experiment 3 was to explore and identify the best deep 
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model among the three loss function configurations in terms of performance. Experiment 

3 results also showed that the batch triplet loss function resulted in the best performance 

for all four models. 

All the models in the experiments were trained over the Kaggle training dataset and were 

validated over the Kaggle test dataset. Results were submitted to Kaggle in the form of an 

Excel (.csv) sheet, and log loss public and private scores are used as a measure of 

performance. 

Overall, this chapter examines how different experiments were designed in terms of 

different parameters selection, including details about the Kaggle dataset, libraries used for 

implementing the models and the experimental results.  

6.2. Implementation 

6.2.1. Preliminary Experiments 

Three different models used in this set of experiments are listed as follows 

• Modified AlexNet (Model A) 

• Modified AlexNet with Triplet Loss Function (Model B) 

• Modified AlexNet with Batch Triplet Loss Function (Model C) 

The overall training dataset provided by Kaggle was used for both training and validation 

purposes in the preliminary experiments; while the dataset has been split into two subsets 

in the following two sets of experiments to support validation of trained models on unseen 

images. 

The AlexNet model was implemented using the Caffe framework with an input image size 

of (3 × 227 × 227) to the network. In all implemented models, Gaussian filters were used 

as weights in the convolutional layers with the stride of 4. What’s more, the max pooling 

approach was used in the pooling layers and ReLU activation function for the feature 

activations. At the fully connected layer (fc7), 4096 feature representations were achieved, 

and the Softmax classifier was used to predict the output classes. In the model trained with 

the margin triplet loss function, the Softmax layer was replaced with the triplet loss layer, 
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and a margin O of 0.2 was used. Furthermore, this model implemented the L2 normalization 

approach and 50% dropout in order to avoid the overfitting of the model during the training 

process. A batch size of 128 has been used in the training, and the output classes number 

was 10 as defined by the Kaggle Challenge. Also, rather than sparse connectivity, dense 

connectivity was used in the convolutional layers because of its limited computational 

resources. Results were obtained from the validation dataset in the form of confusion 

matrices, accuracy curves, loss curves and roc curves. Furthermore, the results of Model A 

have been submitted to Kaggle to receive the log loss score.  

6.2.2. Experiment 2: Softmax vs SVC 

The following model configurations were tested in this experimental setup: 

• AlexNet with Softmax (AlexNet+Softmax) 

• AlexNet with SVC (AlexNet+SVC) 

• ResNet50 with Softmax (ResNet50+Softmax) 

• ResNet50 with SVC (ResNet50+SVC) 

• MobileNet with Softmax (MobileNet+Softmax) 

• MobileNet with SVC (MobileNet+SVC) 

• NASNet with Softmax (NASNet+Softmax) 

• NASNet with SVC (NASNet+SVC) 

All the models were implemented using the Keras implementation framework with 

TensorFlow working on the backend. Apart from AlexNet, all the other models were 

imported from the Keras library and were used with an average pooling option. All the four 

models were already pre-trained on the ImageNet dataset. The pre-trained weights of 

AlexNet were obtained from [147]. The dimensions of the input images are 

(3 × 227 × 227), (3 × 224 × 224), (3 × 224 × 224) and (3 × 331 × 331) for AlexNet, 

RestNet, MobileNet and NASNet respectively. Also used were the implementations with 

the batch size of 64 with exception in the case of AlexNet where the batch size was 32. The 

training dataset was divided into 70% and 30% for training (22424 images in all the training 

dataset) and validation purposes. The test dataset (79726 images) is provided by the Kaggle 

and is unlabelled. To avoid overfitting, the dropout approach was used with the value of 
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0.4 for all the models except AlexNet where a dropout of 0.2 was used. A ReLU activation 

function with the batch normalization approach was used for the models in this set of 

experiment. Adam optimizer with a learning rate of 0.001and a decay of 0.0 was used with 

the cross-entropy loss while training the models with the Kaggle data. For all the models 

in this experiment set, the early stopping approach was used with the patience of 4 and 

“min” mode using the ModelCheckPoint. The feature representation of 4096, 2048, 1024 

and 4032 with trainable parameters of about 4 million, 2 million and 3 million were 

achieved at the fully connected layer in AlexNet, ResNet50, MobileNet and NASNet 

models with Softmax classification, respectively. All the models were trained over 15 

training epochs. Finally, the models were evaluated to validate and test the dataset. Results 

of the evaluation over validation dataset were saved in the form of accuracy/loss plots and 

confusion matrices. At the same time, results of evaluation for test dataset were saved as 

CSV files which were submitted to Kaggle, and log loss scores were received.  

 

Figure 6.1: Summary of All the Processes Followed in Experiment 2. 

First it was tried to adapt the pretrained models to the given distracted driver dataset using 

Softmax and negative log-likelihood. It was found out that this did not work properly. 

Therefore, tried to use the trained models as feature extractors and train a SVC with those 

features obtaining better results than with Softmax. 

First experiment was carried out to see how a deep net model could perform in the distracted 

driver dataset using Softmax and negative log likelihood for classification. Figure 6.1 

shows a diagram that summarizes this first experiment. For all other models except 
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AlexNet, 128 features were extracted at the fully connected layers with ReLU activation 

and were classified into 10 classes with Softmax activation giving us the probabilities of 

the input image to belong to each of the 10 classes of the distracted driver dataset. This was 

done in other to test the performance of the new trained models on the Kaggle dataset. All 

the deep net models have been pretrained on ImageNet before used as fixed feature 

extractor for the new Kaggle dataset, Once the features for all the images have been 

extracted, linear classifier was trained, in this experiment, Linear SVM and Softmax 

classifier for the new Kaggle dataset. 

The Figure 6.2 shows the different architectures used for Softmax classification and for 

SVC of the feature vectors extracted by the net. It can be seen that how the last Softmax 

and fully connected layer are removed when the network is used as a feature extractor. 

To make the network a feature extractor we removed the last two fully-connected layers of 

the model and changed it for a fully connected layer that has 128 features. Now the output 

of the network is the feature vector instead of the probabilities. This output feature vector 

was used as the input to a SVC model and trained the SVC with the hinge loss. Similar to 

Softmax classification, the SVC produces almost perfect confusion matrices with really 

low error in each class of the dataset.  

 

Figure 6.2: Comparison of the Architectures used for Traditional Softmax and SVC. 
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Classification 

The trained CNN learns to map each input provided to a normalized embedding vector of 

128 dimensions. It is worth mentioning that the embedding often needs to be normalized to 

have unit length, i.e., ∥ » ∥= 1, in order to be robust to illuminate and contrast changes and 

for training stability [148]. The spatial position, which each class ends up in, is not directly 

selected by the loss function as it is the case with sigmoid loss function training. For this 

reason, another model must be trained on top of the trained CNN to learn how to get class 

information from the embedding. To do this, the trained CNN is run to get embedding, and 

an SVC model is trained on the embedding. The reduction in input vector dimensionality 

has resulted in order-of-magnitude improvements in training convergence time compared 

to training the SVC model directly on the feature vector of a CNN. In this experiment two 

SVC kernels are tested: linear and radial bias function. In initial experiments, it was evident 

that the linear function outperforms radial bias kernel in this situation. Therefore, only 

linear kernel SVC model results are included in this report.  

In the experimental result section, it will be investigated that how the deep net model using 

Softmax classification and negative log-likelihood for training gets worst accuracy than 

using the deep net model as a feature extractor and classifying those features with a SVC. 

We argue this happens due to overfitting problems where the SVC has better generalization 

capacity than the Softmax function. 

6.2.3. Experiment 3: Triplet Loss 

If the classes in the feature space learned by a CNN are well separated, it would be even 

easier for a SVC model to learn the parameters required to distinguish between different 

classes. Triplet loss refers to a loss function which is used to direct a CNN to learn such a 

feature space. The model configurations tested in this experimental setup are as follows:  

• AlexNet with Margin Triplet Loss (AlexNet+Margin) 

• AlexNet with Naïve Triple Loss (AlexNet+Naïve) 

• AlexNet with Batch Triplet Loss (AlexNet+Batch) 

• ResNet50 with Margin Triplet Loss (ResNet50+Margin) 

• ResNet50 with Naïve Triple Loss (ResNet50+Naïve) 
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• ResNet50 with Batch Triplet Loss (ResNet50+Batch) 

• MobileNet with Margin Triplet Loss (MobileNet+Margin) 

• MobileNet with Naïve Triple Loss (MobileNet+Naïve) 

• MobileNet with Batch Triplet Loss (MobileNet+Batch) 

• NASNet with Margin Triplet Loss (NASNet+Margin) 

• NASNet with Naïve Triple Loss (NASNet+Naïve) 

• NASNet with Batch Triplet Loss (NASNet+Batch) 

Like in set of experiment 2, in this set of experiments all models were implemented using 

Keras framework with Tensorflow at the backend. Input image dimensions were the same 

for each model as in experiment 2 with same batch sizes. Furthermore, dataset division was 

identical to experiment 2: 70% of training dataset for training and 30% of training dataset 

for the validation. Certain pre-processing was performed on the image before it was 

subjected to the model. For triplet selection, a semi-hard sampling mode was used. All 

triplet loss is calculated with a margin O = 0.3 and › = 0.5 for the batch triplet loss. A 

dropout of 0.4 was used in all the models to avoid overfitting during the training process. 

Adam optimizer with a learning rate of 0.0001and decay of 0.005 was used along with 

naïve, margin and batch triplet loss functions for different deep models. Finally, based on 

the experiment 2 results which indicated that SVC is a better classifier than Softmax, for 

this experiment, SVC was used at the fully connected layer in place of Softmax for the final 

classification. Overall, 32 training epochs were used for training, and models were 

evaluated with the validation dataset and test dataset. On validation dataset results in the 

form of accuracy and loss were achieved, while on test dataset, results in the form of Kaggle 

loss score were achieved.  

Triplet Sampling Implementation 

Sampling begins with the selection of 600 samples of images from the various classes of 

safe and distracted driving, with taking sampling probabilities from each class all coming 

from the Kaggle dataset. These are taken randomly, two samples are added at a time, where 

anchor and positive are of the same category predictions made in sets of 3 for anchor, 

positive and negative. After this is complete, one of three methods (random, semi-hard or 
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hard) is applied to get negative samples. After pre-processing, triplets sampling is 

performed with semi-hard negatives using an offline approach. A negative sample is 

selected at random with forward pass choosing either hard or semi-hard negative samples, 

this is done in other to generate triplets. A data generator for triplets with a batch-size of 

3	 × 	100 for the size of a mini-batch is selected. In the next step, triplet loss functions were 

defined, and standard squared Euclidean distances were calculated all over the batch for 

standard triplet loss considering the distance from the anchor and positive ÿ6œ and for the 

anchor and negative, ÿ6A, means over the batch, t6œ and t6A for anchor and positive and 

anchor and negative respectively for naive and batch triplet loss as well as average variance 

for batch triplet loss. The model was built with the model.fit() function provided by Keras 

using the Adam algorithm for optimization specifying a margin triplet loss as a loss function 

and setting a learning rate of 0.0001 and a decay rate of 0.0005, as well as a L2 norm for 

regularization.  

For the experiments using the triplet losses with AlexNet, we have a total of 40611328 

trainable parameters, zero non-trainable parameters and an input size of 3 × 	227 × 	227. 

For the experiments with ResNet50, we used an input shape of (224 × 	244 × 	3) for 

23849984 total trainable parameters and 53120 non-trainable parameters. We also utilised 

an input shape of (331 × 	331 × 	3) for NASNet with 85433042 total parameters from 

which 85236374 are trainable and 196668 non-trainable parameters. For MobileNet, the 

input shape is 224 × 	224 × 	3, 3360064 total parameters, from where 3338176 are 

trainable and 21888 are non-trainable parameters.  

In this set of experiments, an early stopping was performed for each model using a 

validation dataset made of 30% of the total training set to define that we wanted to monitor 

the validation loss at each epoch and after the validation loss has not improved for 10 

consecutive epochs, then training is interrupted.  

Training Method 

All four models used in this experiment set are pre-trained on the ImageNet dataset. Then, 

each of the models is trained on 96 epochs of 300 triplets, where one triplet consists of three 

images. This number of triplets is selected to provide a good balance between being able 
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to gather effective hard and semi-hard negatives and being able to adjust to what the model 

learns during training. We denote completion of training for one of these sets of 300 images 

as an epoch. Summarizing:  

• Each Epoch consists of 30 computations 
• 1 computation consist of 10 triplets� 
• 30 computation consist of 30 × 10 = 300 triplets  
• 1 triplet consists of 3 images� 
• 300 triplet consist of 900 images. 

For all models except AlexNet, the first 32 epochs of training use random negatives triplets, 

the next 32 epochs use semi-hard negatives, and the last 32 utilise hard negatives. On 

AlexNet, this training regimen led to poor results, as the model never adapted to the point 

where it was successful at optimizing triplet loss on semi-hard or hard samples. The only 

moderately successful routine for training AlexNet with triplet loss was pure random 

sampling. This could be due to the limited capacity and the depth of the AlexNet model 

relative to other architectures used.  

The NASNet model implemented in this experiment is the NASNetLarge, and that is why 

NASNet is trained with the same batch size. However, the training is distributed over a 

6GPU HPC cluster in a data-parallel fashion. This was necessary for training NASNet with 

a batch size of 12, considering the larger input size of (331, 331, 3) to the model. NASNet 

used the same training process as MobileNet and ResNet50.  

All models were trained using all three implementations of the triplet loss function 

described above. The models are trained using the Adam algorithm for first-order gradient-

based optimization with a learning rate of 0.0001 and a decay rate of 0.0005. Again, all 

models except AlexNet used 50% dropout to ensure training robustness while AlexNet used 

40% dropout. Approximately 30 % of all available training data is withheld from the 

training process and used to validate the classifier. A batch-size of 30 is used. The number 

used must be a multiple of three for the triplet loss calculation.  

Figure 6.3 has a summary on how to perform the training using triplet loss functions. We 

trained the four convolutional architectures using three different triplet loss functions: batch 
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triplet loss, margin triplet loss and naive triplet loss. Once trained we use the models as 

feature extractors that map the input image into an Euclidean feature space where we can 

compute distances. Then, we input those feature vectors into a SVC trained using two 

different kernels: linear kernel and a radial basis function. At the end we compare the results 

and we found out the linear kernel consistently outperforms the radial basis function one. 

The final predictions are submitted to the distracted driver Kaggle competition obtaining 

really low error rates. 

 

Figure 6.3: Summary of Process Followed in Experiment 3. 

In Figure 6.4, first we forward the input images of the whole dataset to the network, then 

we are capable to compare distances between the obtained feature vectors and sample the 

triplets according to the strategy that corresponds regarding the training iteration. The 

triplet sampling is performed obtaining semi-hard negative samples or hard negative 

samples. After obtained the triplet we compare the distances between the anchor and 

positive image and the anchor and negative image and add a margin to finally obtain the 

value of the triplet loss function (the error). We optimize on this error applying then 

backpropagation to the CNN in order to refine the Euclidean space where the generated 

feature vectors lie. After training, the feature vectors that belong to images of the same 
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semantic class are placed together in the Euclidean space while the feature vectors of the 

images that have different semantic class are placed with a large distance between them. 

 

Figure 6.4: Example of Single Training Instance using Adaptive Triplet Sampling 
Strategy. 

Feature vector classification 

After training, the network can produce high-quality feature vectors capable of encoding 

all the image information. The feature vectors are placed in an Euclidean space together 

with other samples of the same semantic class while far away of items with different label, 

but, the network is only capable of producing a feature vector with 128 features. Instead 

we want the probabilities of the input image »" to belong to each of the 10 classes of the 

distracted driver dataset. Therefore, the feature vectors are classified using a SVC that will 

give us the probabilities of the input image »" to belong to each of the 10 classes. Using 

these feature vectors, we can compute the Euclidean distances and directly apply the loss 

functions that we described to place the input images »" into a feature space where 

clustering by distance can be applied. Due to the characteristics of the dataset, where 

similarity between the different actions plays a key role, a training by similarity is highly 

suitable. 

Figure 6.5 shows the pipeline of the classification of the features extracted from the neural 

network. The CNN has been pretrained in the ImageNet dataset and then fine-tuned using 

Kaggle distracted driver dataset. This allows it to extract high-quality feature vectors that 

are then plugged into the SVC (in this case with a linear kernel) that is trained using the 

hinge loss in order to perform an accurate classification of the input image into the ten 

classes of the distracted driver dataset. 
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Figure 6.5: Pipeline for the Classification of Features Extracted from Neural Network. 

All models were trained using the Adam optimizer [85], where we set empirically set a 

learning rate of 0.0001 with a weight decay of 0.0005 and standard β values of 0.9 and 

0.999 respectively. To ensure generalization and robustness during training, we set the 

dropout [87] rate in 0.4 except in AlexNet where we found out that Dropout made the 

training diverge instead of helping it to converge.  

To avoid high feature values and give robustness to the SVC training, we normalize the 

feature vectors to have unit norm ||X(»")|| 	= 	1 before feeding it to the SVC. We tested 

two different kernels that are applied before performing the classification, linear kernel 

with formula µ(»", Â") = »"ÆÂ" + Ê  and RBF kernel, with formula µ(»", Â") 	=

	Á∫	
∥»fiËÂfi∥

C

CÈC 	where  is a trainable parameter. 

The SVC with the linear kernel consistently outperforms the RBF kernel. Therefore we 

only show the results obtained using the linear kernel for the SVC and getting the input 

features with the margin, naïve and batch triplet loss training in the CNN.  

6.3. Kaggle Dataset 

Dataset provided by the Kaggle challenge for distracted driving classification [2] has been 

used in this research for the investigation on deep learning approaches. Kaggle training 

dataset includes 22,424 two dimensional RGB images of 480 × 680 size divided into 10 

different classes. One of the 10 classes is for safe driving, and the other 9 classes include 

the images of drivers involved in different distraction related activities such as eating, 

talking on phone, texting, makeup, reaching behind, adjusting radio, or conversing with 

other passengers. All images in the dataset have been captured using a single vehicle 

dashboard optical sensor (camera) [2]. Table 6.1 presents the details of all the 10 classes 
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defined by the Kaggle challenge and the exact number of images in each class. Figure 6.6 

presents example images from each of the Kaggle challenge classes. In all experiments, the 

Kaggle images were pre-processed before they were subjected to deep learning models and 

the images were processed for resizing and normalizing based on the means obtained from 

the initial training of deep learning models. 

Table 6.1: Prediction Classes for Kaggle Task and Number of Images in Each Class [2]. 

Class0 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 

Safe 
Driving 

Texting-
Right 

Talking on 
Phone-
Right 

Texting-
Left 

Talking on 
Phone-

Left 

Operating 
the Radio Drinking Reaching 

Behind 
Hair and 
Makeup 

Talking to 
Passenger 

2489 2267 2317 2346 2326 2312 2325 2002 1911 2129 

 

 

Class 0 Class 1 Class 2 Class 3 Class 4 

 

Class 5 Class 6 Class 7 Class 8 Class 9 

Figure 6.6: Sample Images from Each Kaggle Driver Distraction Challenge Class. 

6.4. Implementation Frameworks  

In the literature, researchers have used a number of implementation frameworks to 

implement deep learning algorithms such as Caffe, Keras with TensorFlow, Torch and 

PyTorch. All the mentioned implementation platforms have their own advantages and 

disadvantages. Table 6.2 presents the comparison of the most commonly used deep learning 

frameworks in the literature.  
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For the preliminary experiments of this research, Caffe [149] was used as the 

implementation framework because it was easy-to-use, the best choice for beginners and 

the most popular choice at the time of the experiments. Caffe is a deep learning architecture 

created by Yangqing Jia at Berkeley AI Research (BAIR) during his PhD from UC 

Berkeley. This framework was developed to facilitate the researchers by providing 

expressive structure, faster speeds and modularity. This library contains a number of pre-

trained deep architectures such as AlexNet, which has been used in this research.  

Table 6.2: Comparison of Common Deep Learning Implementation Frameworks. 

Framework License Open Source Core 
Language Interface Pre-trained 

Models 
CUDA 

Support 

Caffe [149] BSD Yes C++ Python, C++, 
MATLAB Yes Yes 

Keras [150] MIT Yes Python Python, R Yes Yes 

MATLAB 
[151] Proprietary No C, C++, 

MATLAB MATLAB Yes Yes 

PyTorch [152] BSD Yes Python Python Yes Yes 

TensorFlow 
[153] Apache Yes C++, Python Python, C++, 

Java, R Yes Yes 

Theano [154] BSD Yes Python Python Yes Yes 

Torch [155] BSD Yes C, Lua C, C++ Yes Yes 

 

For experiment sets 2 and 3, Keras [150] with TensorFlow [153] backend was used as the 

deep learning framework API. All the scripts were written in Python 3 programming 

language and supported by a number of libraries such as Theano, Scipy, Numpy, and 

Pandas, and part of SciPy and Sklearn ecosystems were used. Together with Keras, we have 

used the well-known scikit-learn package in order to train the SVCs for classification. 

Similar to Keras, scickit-learn is a high-level API that allows the users to train machine 

learning models easily and abstracting the user from the mathematical and low-level 

formulation that it requires. To create learning curves and confusion matrices we have used 

the Matplotlib library which easily allows the users to create line plots or graphs. Also, 

Jupyter Notebooks have played an important role. Jupyter Notebook is similar to a 

development environment that puts interactivity as a priority, making it an essential tool 
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for machine learning projects to show graphs, confusion matrices and other kinds of 

visualization. 

6.5. Evaluation Criteria 

Well-defined evaluation criteria are significant in assessing experimental performances. In 

this research, the performance of the trained deep learning models is assessed based on the 

classification accuracy over validation data and evaluated with the Kaggle log loss scores 

obtained from the Kaggle submissions. Overall, the training dataset provided by the Kaggle 

is divided into certain ratio for training and validation. For the preliminary experiments, the 

Kaggle training set has been divided in a ratio of 75% to 25% for training and validating 

the proposed algorithms, respectively. For experiment sets 2 and 3, the split was 70% and 

30%. Models are trained over the training set and validated for their performance on the 

validation dataset in terms of classification accuracies and the loss. Then, algorithms are 

subjected to the test dataset provided by the Kaggle. Because the correct labels of the test 

dataset provided are not public and only Kaggle has the access to those labels, results over 

the test dataset are submitted to Kaggle in the form of CSV file, and public and private log 

loss scores are achieved. Given that it is a loss, smaller values of Kaggle loss score indicates 

better performance. Finally, in terms of real-world implementation, models in experiment 

2 and experiment 3 are compared in terms of their sizes and processing times. 

6.5.1. Kaggle Scores 

A total of 22424 images was provided by Kaggle to the Kagglers for the purpose of training 

their algorithms, and they were asked to submit the classification results for 79,726 test 

images in the form of an Excel sheet in csv format. Kaggle evaluated each submission and 

issues a loss score using a multiclass log loss function given in Equation 6.1.  

																																																						logloss =
1
5
)):"$ log(≈"$)	

P

$

*

"

																																								(6.1) 

where 5 denotes the total number of images, X denotes the total number of classes, :"$ 

denotes the actual class of image and ≈"$ denotes the predicted class of the image.  
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6.6. Experimental Results  

This section presents the results and discussions on the three sets of experiments performed 

using the deep learning approaches. Results are critically analysed, and important insights 

have been reported.  

6.6.1. Preliminary Experiment Results 

AlexNet based deep architectures with Softmax, triplet loss and batch triplet loss were 

tested against the Kaggle dataset to evaluate their performance. Results are presented in the 

form of confusion matrices and accuracy/loss plots. Model A (AlexNet+Softmax) was 

trained over 3960 iterations, while Model B (AlexNet+Triplet Loss) and Model C 

(AlexNet+Batch Triplet Loss) were further trained over 60 iterations. The purpose of the 

preliminary experiments was to have insights into the fundamentals of deep learning 

implementation, including the effectiveness of triplet loss in improving the classification 

accuracy.  

For the accuracy assessment, top 1 and top 5 accuracies have been determined for all three 

models. Top 5 accuracy is also a credible measure to assess the working performance of 

algorithms in computer vision. The idea behind top 5 accuracy is that a prediction is 

considered as accurate if the correct class is included in the top 5 predictions produced by 

the algorithm. Hence, the top-5 accuracy is definitely a number with higher values than top 

1 accuracy. Figure 6.7 present the accuracy and loss plots for all three models in the 

preliminary experiments, respectively. From figure, it can be observed that top 1 and top 5 

accuracies improved as the number of training iterations increases, with top 5 accuracy 

always remain above the top 1 accuracy. Furthermore, the loss was reduced to nearly zero 

after 2000 training iterations. The behaviour of accuracy and training plots was normal in 

reference to the literature as in machine learning accuracy plots more or less follows a 

positive exponential curve, while loss plots follow a negative exponential curve. In Figure 

6.7 (a) and Figure 6.7 (b), the accuracy and loss plots are more or less straight lines as the 

training was performed on a pre-trained model. From Figure 6.7, it can be observed that 

the training with all three deep learning approaches has converged. 
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(a) Model A (b) Model B 

 

(c) Model C 
Figure 6.7: Classification Accuracy and Loss Plots for all Models in Preliminary 

Experiment. 
Proposed deep models were validated against the Kaggle dataset, and confusion matrices 

were plotted to visualize the results of their classification performance. Figure 6.8 show the 

confusion matrices for all three models ((a) Model A, (b) Model B and (c) Model C), 

respectively. From the confusion matrices, it can be observed that Model A classification 

results were lowest among the three, while Model C results were the best. Furthermore, 

while interpreting the results in more detail, it can be observed that there are couple of 

classes in which mis-classification percentages are high and prominent in comparison to 

other classes. Two such examples include class 7 misclassified as class 2 and class 9 

misclassified as class 0.  
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(a) Model A 

 

(b) Model B 

 

(c) Model C 

Figure 6.8: Confusion Matrices for All Three Models in Preliminary Experiments. 

Figure 6.9 and Figure 6.10 shows some instances of correct classifications of class 7 and 

class 9 as well as wrong classifications of class 7 as class 2 and class 9 as class 0, 

respectively. From the figures, it can be suggested that the mis-classifications are due to 

similarity between two classes. In case of class 7 and class 2, only right hand of driver is 

different i.e. using mobile phone in class 2 while reaching back in class 7. Other than the 
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Model B. Increase in the training iterations for Model B and Model C may also result in 

further improved results.  

 

(a) Model A 

 

(b) Model B 

 

(c) Model C 

Figure 4.2: Confusion Matrices for All Three Models. 
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right hand, there are no other noticeable differences in images between the two classes since 

driver has same head posture, body orientation and left hand on steering. This situation 

makes it difficult for the algorithm to clearly differentiate and results in mis-classification. 

Similarly, in case of class 9 and class 0, there are a high number of mis-classifications 

which are due to a high similarity between the two classes. The only noticeable difference 

is the position of the head. Otherwise, both hands of the driver are on steering wheel and 

the driver has highly similar body position. This situation makes it highly probable for 

algorithm to mis-classify between the two classes as demonstrated by the results in 

confusion matrices. 

 

(a) True Positives Class 7 

 

(b) False Negatives Class 2 

Figure 6.9: Instances of Correct Classification as Class 7 and Wrong Classification for 

Class 7 as Class 2. 

 

   
 

   
 

(a) Correctly Classified as Class 7 
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(b) Mis-classified as Class 2 
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(a) True Positives of Class 9 

 

(b) False Negatives of Class 0 

Figure 6.10: Instances of Correct Classification as Class 9 and Wrong Classification for 

Class 9 as Class 0. 

Among the errors caused by mis-classification, the most dangerous error in our problem 

scenario of detection of distracted driving is to mis-classify a distracted driving as safe, i.e. 

in the case of Kaggle challenge mis-classifying an image from one of classes 1 to 9 as class 

0 and vice versa. Table 6.3 shows the percentages of the images in each Kaggle class being 

recognised as safe driving and distracted driving for all three models, respectively. Table 

6.4 presents the percentages of images of distracted driving (i.e. the images in Kaggle 

classes 1-9) being classified as its correct class or an incorrect class of distracted driving. 
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Table 6.3 shows that for Model A, 38.58%, 31.60%, 10.52% and 19.92% of images in class 

3, class4, class 8 and class 9 have been mis-classified as safe driving, respectively. These 

miss-classifications are assumed to be associated with the similarities in images of some 

classes and indicate the failure of Model A to extract more meaningful features to support 

classification. These miss-classifications were reduced to some extent by Model B and 

Model C. However, there were still some high number of miss-classification percentages 

such as 15.30% for class 3 by Model B and 12.87% by Model C and 16.91% for the class 

9 by Model B and 17.52% by Model C. As illustrated in Figure 6.10, a high level of 

similarity exists between class 0 and some images in class 9. Figure 6.11 illustrates the high 

level of similarity between class 0 and some images in class 3. The percentages of the other 

classes being mis-classified as safe driving have all been reduced to less than 10%. This 

indicates that use of triplet loss has improved the deep net performance by some extent.  

Table 6.3: Percentages of Images being Classified as Safe and Distracted for All Three 

Models 

Class Label 0 1 2 3 4 5 6 7 8 9 

 True +ev False -ev 

C
la

ss
ifi

ed
 a

s 

Sa
fe

 D
ri

vi
ng

 Model A 81.32 4.50 6.56 38.58 31.60 5.28 0.34 1.70 10.52 19.92 

Model B 70.75 1.50 1.12 15.30 8.21 1.34 0.09 0.20 5.60 16.91 

Model C 72.88 1.68 4.32 12.87 14.53 2.21 0.09 0.60 7.01 17.52 

 False +ev True -ev 

C
la

ss
ifi

ed
 a

s 

D
ist

ra
ct

ed
 

D
ri

vi
ng

 

Model A 18.68 95.50 93.44 61.42 68.40 94.72 99.66 98.30 89.48 80.08 

Model B 29.25 98.50 98.88 84.70 91.79 98.66 99.91 99.80 94.40 83.09 

Model C 27.12 98.32 95.68 87.13 85.47 97.79 99.91 99.40 92.99 82.48 

 

Table 6.4 presents the results from another important aspect. It shows that when images are 

classified as distracted driving, how many percent of them has been classified to the correct 

distraction class and how many wrong. Table 6.4 shows that by Model A class 2 and class 
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8 both have a higher chance to be classified as a wrong distraction than the correct class of 

distraction. Models B and C have produced better classification results by replacing the 

Softmax of Model with a triplet loss function. However, for some classes such as classes 

2, 8 and 9 the percentages of mis-classifications are still unsatisfactory. Such low 

classification performance is because the AlexNet used by all three models in our 

preliminary experiments was trained from scratch over the limited dataset of Kaggle rather 

than, like in our experiment sets 2 and 3, pre-train on some huge benchmark dataset like 

ImageNet and then further trained on Kaggle dataset. 

 

(a) True Positive of Class 3 

 

(b) False Negative of Class 0 

Figure 6.11: Instances of Correct Classification as Class 3 and Wrong Classification for 

Class 3 as Class 0. 
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Table 6.4: Percentages of Images being Classified as Correct and Wrong Distracted 

Driving for All Three Models. 

Class Label  1 2 3 4 5 6 7 8 9 

C
la

ss
ifi

ed
 a

s 

C
or

re
ct

 

D
ist

ra
ct

io
n  

Model A 63.30 38.24 41.47 53.14 83.82 84.82 63.29 42.02 66.56 

Model B 78.74 60.08 66.84 71.80 85.47 84.73 76.97 56.62 58.53 

Model C 80.36 66.77 71.78 70.64 89.32 93.29 83.62 56.41 60.45 

C
la

ss
ifi

ed
 a

s 

W
ro

ng
 

D
ist

ra
ct

io
n 

Model A 32.20 55.20 19.95 15.26 10.90 14.84 35.01 47.46 13.53 

Model B 19.76 38.80 17.86 19.99 13.19 15.18 22.83 37.78 24.57 

Model C 17.96 28.92 15.35 14.83 8.48 6.62 15.78 36.58 22.03 

 

Table 6.5 presents the summary of experimental results for all three models. In the 

experiments, top-1 accuracy of 62.21%, 71.31% and 74.84% have been observed for Model 

A, Model B and Model C, respectively. It can be seen that Model C has the highest value 

of top-1 accuracy. Top-5 accuracy of 95.59%, 97.35% and 98.14% has been recorded for 

Model A, Model B and Model C, respectively. Again, it can be observed that Model C has 

shown the highest classification accuracy. To test the Kaggle dataset, results from the 

Model A were submitted to the Kaggle and a loss score of 1.55 and rank of 500+ out of 

2000+ was achieved. Model B and Model C results were not submitted to Kaggle at that 

time; hence, they cannot be compared.  

Table 6.5: Summary of Experimental Results of Preliminary Experiment. 

 Top 1 Accuracy Top 5 Accuracy Test Loss 

AlexNet+Softmax 62.21 95.59 0.008658 

AlexNet+Triplet Loss 71.31 97.35 0.004345 

AlexNet+Batch Triplet Loss 74.84 98.14 0.009093 
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Satisfactory results were achieved from the preliminary experiments, thus indicating the 

potential of deep architectures in the distraction detection task. Through preliminary 

experiments, a basic understanding of the practical implementation of deep learning 

algorithms was established, and a familiarisation with different tools was achieved.  

6.6.2. Experiment 2 Results 

Based on the results of preliminary experiments which identified that deep architectures 

are potential candidates for being used in distraction detection effectively, more detailed 

and comprehensive experiments have been be performed using the state-of-the-art deep 

architectures rather than utilising only the basic AlexNet. In addition, experiment set 2 was 

performed to compare the performance of the Softmax classifier against SVC for four 

different state-of-the-art deep models. All models were modified to carry out the distraction 

classification task. It is worth mentioning that the AlexNet reported in this subsection is 

implemented and trained in Tensorflow and different from the one reported in the 

preliminary experiments. 

First, the performance of all four models with Softmax during the training process was 

recorded. Figure 6.12 presents the accuracy and loss plots for all four models during the 

training process. Overall, the behaviour of models during the training was in accordance 

with standard training process i.e. the accuracy increases and the loss decreases with an 

increase in the number of training iterations. All the models were able to achieve high 

accuracies (over 98%) for the training dataset. The AlexNet model quickly converged 

towards a high accuracy, showing a sign of overfitting. However, other models such as 

ResNet and MobileNet indicated a slightly normal behaviour. The most appropriate 

training behaviour from all four models was shown by the NASNet architecture as it almost 

followed the exponential curves (positive exponential for accuracy plot and negative 

exponential for loss plot). Although the performance of models during the training are not 

considered to be much significant in terms of evaluating the overall functional performance 

of models because it only considers the data already known to the model, it is important to 

monitor these curves to ensure that models are well-trained. 



    
                                                                                 School of Engineering and Technology   
  

128 
 

 

(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.12: Training Accuracy and Loss Plots for All Models with Softmax Classifier 

Once the models were trained, they were validated over the validation dataset, and the 

results of their predictions were plotted as confusion matrices as shown in Figure 6.13 for 

Softmax and Figure 6.14 for SVC, respectively. Based on the confusion matrices, it can be 

observed that for the Softmax classifier, AlexNet and NASNet outperformed MobileNet 

and ResNet in terms of performance over the validation dataset. AlexNet even 

outperformed ResNet over validation dataset which was unusual compared to what has 

been reported in the literature. AlexNet accuracy was almost 100 percent with few wrong 

predictions, while NASNet accuracy was about 98 percent with some wrong predictions. 

On the other hand, ResNet and MobileNet performance over validation data was not as 

accurate. For the SVC, all four models performed almost the same with over 99% correct 

predictions and very few incorrect predictions.  
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(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.13: Confusion Matrices for Models with Softmax Classifier over Validation 
Dataset. 
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(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.14: Confusion Matrices for Models with SVC over Validation Dataset. 

Table 6.6 and Table 6.7 present the validation results of the proposed algorithms in 

experiment set 2. Table 6.6 presents the percentages of images in each dataset class being 

classified as safe or distracted by each of the models evaluated in this experiment set. Since 

it is very important for an algorithm not to classify a distracted driving as safe, these 

percentages are critical. From the Table 6.6, it can be observed that in all eight 

configurations of CNN models, there were very few miss-classifications from distracted 

driving classes into safe driving classes. Surprisingly, AlexNet results in Table 6.6 were 
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nearly perfect in comparison to the other state of the art models. However, from the training 

accuracy plot shown in Figure 6.12, the training of AlexNet converged rapidly and there 

was possibly overfitting during the training. Therefore, although AlexNet performance on 

the validation dataset is almost over 99%, its accuracy on the test dataset is significantly 

lower as shown in Table 6.8. Among other three models, MobileNet with SVC was the best 

in terms of least number of images being classified as safe driving from the distracted 

driving classes. Highest percentage of incorrect classification was observed as 0.49% for 

the case of class 9.  

Table 6.6: Percentages of Images being Classified as Safe and Distracted for All CNN 
Model Configuration in Experiment 2. 

Class Label 0 1 2 3 4 5 6 7 8 9 

 True +ev False -ev 
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 AlexNet + Softmax 99.57 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 

AlexNet + SVC 99.43 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 

ResNet + Softmax 69.08 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.82 

ResNet + SVC 99.72 0.00 0.00 0.00 0.14 0.43 0.00 0.00 0.34 0.16 

MobileNet + Softmax 89.08 0.00 0.28 0.82 0.00 1.15 0.00 0.87 1.72 0.82 

MobileNet + SVC 99.57 0.28 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.49 

NasNet + Softmax 99.86 0.28 0.00 0.27 0.14 1.01 0.00 0.00 0.17 0.16 

NasNet + SVC 99.86 0.28 0.00 0.27 0.14 1.15 0.00 0.00 0.00 0.00 

 False +ev True -ev 
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 AlexNet + Softmax 0.43 99.86 100 100 100 100 100 100 100 99.67 

AlexNet + SVC 0.57 99.86 100 100 100 100 100 100 99.83 100 

ResNet + Softmax 30.92 100 100 100 100 99.42 100 100 100 99.18 

ResNet + SVC 0.28 100 100 100 99.86 99.57 100 100 99.66 99.84 

MobileNet + Softmax 10.92 100 99.72 99.18 100 98.85 100 99.13 98.28 99.18 

MobileNet + SVC 0.43 99.72 100 100 100 99.71 100 100 100 99.51 

NasNet + Softmax 0.14 99.72 100 99.73 99.86 98.99 100 100 99.83 99.84 

NasNet + SVC 0.14 99.72 100 99.73 99.86 98.85 100 100 100 100 

 

Table 6.7 presents when images are classified as distracted driving, how many percent of 

them has been classified to the correct distraction class and how many wrong. From the 
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table, it can be observed that other than MobileNet with Softmax and ResNet with Softmax, 

all other configurations were able to classify the distraction classes nearly 100% correctly. 

However, for these two model configurations, there were high miss-classifications in the 

cases of classes 4, 5, and 9. As revealed by the confusion matrix in Figure 6.13 (c), all the 

incorrect classifications by MobileNet+Softmax were in the form of classifying an image 

from a class rather than 6 as class 6. As revealed by the confusion matrix in Figure 6.13 

(d), ResNet+Softmax has mis–classified images from class 4 as class 3 or 6, images from 

class 5 as class 6, and images from class 9 as class 1, 6 or 8. Our results confirm  with the 

general practice in deep learning community where Softmax is typically used during the 

training of a deep net and then replaced by a bespoke classifier such as SVC during the test 

stage for a better classification accuracy. 

Table 6.7: Percentages of Images being Classified as Correct and Wrong Distracted 
Driving for All CNN Model Configurations in Experiment 2. 

Class Label 1 2 3 4 5 6 7 8 9 
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AlexNet + Softmax 99.72 99.86 100.00 99.72 99.71 99.86 100.00 98.62 99.34 

AlexNet + SVC 99.72 99.86 100.00 99.86 99.86 99.86 100.00 98.45 99.51 

ResNet + Softmax 91.89 97.89 94.37 81.37 67.44 99.15 99.83 96.56 59.70 

ResNet + SVC 99.72 99.58 99.86 99.58 99.28 99.86 99.83 98.28 99.18 

MobileNet + Softmax 61.88 32.21 87.09 85.99 75.07 100.00 81.88 23.06 80.92 

MobileNet + SVC 99.57 99.58 99.86 99.72 99.42 99.86 99.65 99.31 99.01 

NasNet + Softmax 99.72 99.58 99.73 99.58 98.85 99.58 99.83 97.93 99.01 

NasNet + SVC 99.72 99.58 99.73 99.58 98.70 99.58 99.83 98.45 99.18 
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AlexNet + Softmax 0.14 0.14 0.00 0.28 0.29 0.14 0.00 1.38 0.33 

AlexNet + SVC 0.14 0.14 0.00 0.14 0.14 0.14 0.00 1.38 0.49 

ResNet + Softmax 8.11 2.11 5.63 18.63 31.99 0.85 0.17 3.44 39.47 

ResNet + SVC 0.28 0.42 0.14 0.28 0.29 0.14 0.17 1.38 0.66 

MobileNet + Softmax 38.12 67.51 12.09 14.01 23.78 0.00 17.25 75.22 18.26 

MobileNet + SVC 0.14 0.42 0.14 0.28 0.29 0.14 0.35 0.69 0.49 

NasNet + Softmax 0.00 0.42 0.00 0.28 0.14 0.42 0.17 1.89 0.82 

NasNet + SVC 0.00 0.42 0.00 0.28 0.14 0.42 0.17 1.55 0.82 
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For the final evaluation, the proposed models were applied to test dataset provided by 

Kaggle. Table 6.8 presents the Kaggle scores for all four models with the Softmax and the 

SVC, respectively. In terms of performance comparison between different models, it can 

be observed that NASNet outperformed the other three models (lowest log loss score), 

followed by ResNet and MobileNet in terms of ranking. AlexNet, on the other hand, had 

the worst performance (highest log loss score). The performance of all other models was 

expected and in line with the validation data results. Even though AlexNet performance 

over validation data was over 99%, it failed when it was subjected to unseen test datasets. 

This confirms the hypothesis that AlexNet architecture was not well- trained and there was 

overfitting during the training which caused the model to quickly converge to highest 

accuracy. On the other hand, NASNet training followed the ideal training curve with 

smooth convergence and results of NASNet over test data are indicator that model was 

well-trained. Talking about the performance of Softmax and SVC, the performance of the 

SVC was slightly better than Softmax. Thus, the overall best model in terms of performance 

in this experiment was NASNet with the SVC. 

Table 6.8: Kaggle Scores for Models with Softmax and SVC Classifiers Over Test 
Dataset 

 
Softmax  SVC 

Public Score Private Score  Public Score  Private Score 

AlexNet 0.98153 1.02838  0.86610 0.918897 

ResNet50 0.46246 0.51201  0.49651 0.44833 

MobileNet 0.69831 0.64412  0.65180 0.63883 

NASNet 0.34826 0.34235  0.34546 0.33957 

 

Lastly, for the practical implementation, framerates and sizes of all four models were 

compared to evaluate the best choice for implementation in the real-world applications. In 

terms of sizes, no model was above 1GB size. This means that, given the state-of-the-art 

memories, all models can be easily implemented on standalone hardware. The exact sizes 

of the trained models were recorded as 251.2MB, 102MB, 90MB and 658MB for AlexNet, 
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ResNet, MobileNet and NASNet, respectively. Processing times or frame rates are 

considered one of the core requirements for a computer vision algorithm to be implemented 

in real-time. For a computer vision algorithm, it is important to be more accurate, but it is 

more vital to be fast enough to be implemented in real-time using standalone hardware. 

Table 6.9 presents the processing time for each model to predict a single instance of the test 

image into one of the ten output classes. From the processing time, it can be observed that 

MobileNet and AlexNet were the fastest, while NASNet was the slowest. The difference 

and importance of these measures is apparent. Before the processing time comparisons, 

based on the accuracies only, NASNet outperformed all other algorithms. However, for 

real-life implementation on low cost hardware, MobileNet is the valid choice.  

Table 6.9: Times for All Models with Softmax and SVC to Process Single Instance of 
Test Input. 

 Processing Time for A Single Test Image 

 Softmax  SVC 

AlexNet 4.82ms  4.79ms 

ResNet50 8.84ms  8.91ms 

MobileNet 4.94ms  4.72ms 

NASNet 72.3ms  72.2ms 

 

Results: We observe that the SVC as a classifier of the CNN features produced better result 

than the Softmax loss, it is able to generalize better between training and test data. 

Moreover, it fits the data in few seconds providing better training times than Softmax even 

with GPU acceleration over the CNN. The Table 6.4 shows the results obtained using both 

methods. Given the benefits of the SVC with the CNN features, we decided to further 

explore this approach, analysing how to obtain better features using triplet loss functions 

and how to further improve accuracy by proposing a novel modification to the triplet loss 

function. 
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6.6.3. Experiment 3 Results 

Results of experiment set 2 highlighted the better performance of the SVC in comparison 

to the Softmax classifier for Kaggle distracted driving dataset. Based on the results of 

experiment set 2, the final experiments were planned in which performance of state-of-the-

art deep architectures with the SVC was evaluated and compared for margin, naïve and 

batch triplet functions.  

  

(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.15: Training Loss Plots for All Models with Margin Triplet Loss. 

At training time, we can observe how loss increases every time the training becomes more 

difficult. At epoch 32 we change to semi-hard negative mining and at epoch 64 we change 

to hard-negative mining except for the AlexNet diagram (top-left) that uses only random 

negative samples. The curve looks smoother in the Alexnet training. However, this does 

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss



    
                                                                                 School of Engineering and Technology   
  

136 
 

not mean a better performance since the loss function in the other models is working with 

harder samples than with Alexnet. Figure 6.15 shows the training curves of the four 

architectures. 

All the four deep models were trained over 70% of the Kaggle training dataset, and 

performances were plotted in terms of training loss plots for margin, naïve and batch triplet 

loss functions. Figure 6.15 presents the training loss plots for the models with margin triplet 

loss. Peaks in the training plots at epochs 32 and 64 are the indicators of shift of triplet 

mining from random to semi-hard and then to hard. Overall, the loss curves followed the 

standard training behaviour i.e. loss reduced with an increase in training epochs. In terms 

of performance, NASNet illustrated more smooth transition from semi-hard towards the 

hard triplet mining which is the indicator of a better and more stable model training.  

  

(a) AlexNet  (b) ResNet 

  

(c) MobileNet  (d) NASNet 

Figure 6.16: Training Loss Plots for All Model with Naïve Triplet Loss. 

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss



    
                                                                                 School of Engineering and Technology   
  

137 
 

Figure 6.16 presents the loss plots for all the four models with the naïve triplet loss function 

implementation. The same training procedure was adopted as in the case of the margin 

triplet loss with transition from random to semi-hard at epoch 32 and then to hard triplet 

mining at epoch 64. From the loss plots, the peaks at the 32 and 64 epochs are the indicator 

of the shift between different triplet mining methods. Based on the plots, it can clearly be 

seen that there are a lot of ups and downs in the loss plots and the curves are not smooth, 

indicating a poor training of models. In terms of training performance, MobileNet was on 

the top, followed by ResNet and NASNet. Finally, Figure 6.17 presents the loss plots of all 

four models for the batch triplet loss function implementation. Loss plots were smooth in 

all cases, indicating a better training of models. 

  

(a) AlexNet  (b) ResNet 

  

(c) MobileNet  (d) NASNet 

Figure 6.17: Training Loss Plots for All Models with Batch Triplet Loss. 
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In the second phase of evaluation, after the models were trained, the performance was 

evaluated over the validation data, and predictions were plotted as confusion matrices. 

Figure 6.18, Figure 6.19 and Figure 6.20 presents the confusion matrices of all four models 

for margin, naïve and batch triplet loss functions, respectively. From the confusion 

matrices, it can be observed that AlexNet performance was way below par as expected from 

the training phase since only random triplet mining was used. For the other three models, 

similar trend in terms of performance was observed as was in training process. 

 

(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.18: Confusion Matrices for Models with Margin Triplet Loss Over Validation 
Dataset. 



    
                                                                                 School of Engineering and Technology   
  

139 
 

 

(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.19: Confusion Matrices for Models with Naïve Triplet Loss Over Validation 

Dataset. 

Table 6.10 presents the comparison in terms of numerical values of training accuracies and 

validation accuracies of all four models with margin, naïve and batch triplet loss functions. 

From the table, it can clearly be observed that for margin triplet loss function, ResNet 

ranked first, NASNet ranked second, MobileNet ranked third with a negligible performance 

difference among the three models and AlexNet ranked the last with a nearly 30% drop in 

accuracy. For the naïve triplet loss function, MobileNet ranked first, ResNet ranked second, 
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NASNet ranked third with a small difference of less than 5% in accuracy whereas AlexNet 

ranked the last with a over 50% drop in accuracy. Finally, for the batch triplet loss function, 

ResNet ranked first, MobileNet ranked second, NASNet ranked third with a negligible 

difference in prediction accuracy and AlexNet ranked the last with a over 30% drop.  

 

(a) AlexNet  (b) ResNet 

 

(c) MobileNet  (d) NASNet 

Figure 6.20: Confusion Matrices for Models with Batch Triplet Loss Over Validation 
Dataset. 

From the triplet margin loss function confusion matrix in Figure 6.18, we can observe how 

the features produced by the AlexNet model are not accurate therefore the classification of 

the SVC becomes poor obtaining accuracies lower than 50% for the class 4. Overall, the 
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linear SVC with the features extracted from AlexNet does not perform well. The other three 

architectures are capable of producing high-quality embeddings using the adaptive triplet 

mining. The SVC with the linear kernel is capable of fitting the training data and having 

really good accuracy rates. However, MobileNet architecture is designed to operate with 

constrained hardware requirements. This has made it less powerful than other models like 

ResNet or NasNet. 

As shown in Figure 6.19 and Figure 6.20, when using the features of the models trained 

with the naive triplet loss or the batch triplet loss function to train the SVC, we can see 

exactly the same pattern in the performance of the models as with margin triplet loss 

functions (in the confusion matrices of Figure 6.18). AlexNet performed the worst whereas 

the other three models produced comparable results. 

Table 6.10: Numerical Comparison of All Models for Training and Validation 
Accuracies. 

 

Margin Triplet Loss  Naïve Triplet Loss  Batch Triplet Loss 

Training 
Accuracy  

Validation 
Accuracy 

 Training 
Accuracy 

Validation 
Accuracy 

 Training 
Accuracy 

Validation 
Accuracy 

AlexNet 0.7039 0.6996  0.4261 0.4168  0.6779 0.6715 

ResNet50 0.9955 0.9909  0.9685 0.9574  0.9917 0.9874 

MobileNet 0.9908 0.9762  0.9876 0.9781  0.9887 0.9818 

NASNet 0.9941 0.9893  0.9449 0.9397  0.9836 0.9809 

 

Table 6.11 and Table 6.12 present the validation results of all the CNN model 

configurations in experiment set 3, where each model has been used with a SVC. As 

emphasised earlier, it is important to study that how many percent of images were classified 

as safe driving from the distracted driving classes since it is dangerous and will result in 

fatal consequences. Table 6.11 presents the percentages of images being classified as safe 

driving from all the distracted driving classes. From the table, it can be observed that 

AlexNet with all three configurations of margin, naïve and batch triplet loss performed 
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worst among all models in the sense that a large proportion of images of safe driving has 

been classified wrongly as distracted. As mentioned, AlexNet was trained using only 

random triplet mining while other models were trained using random, semi-hard and hard 

negative mining.  In comparison to preliminary experiment, results of AlexNet in 

experiment 3 were improved because AlexNet model pre-trained over ImageNet dataset 

was used with SVC rather than Kaggle dataset trained AlexNet with Softmax as in 

preliminary experiment. Although overall for safe driving class, models with batch triplet 

loss function were able to give highest classification percentage, in terms of miss-

classification as safe from other distraction classes margin triplet loss function was able to 

achieve the least number of wrong classifications. Highest percentages of miss-

classification as safe driving were observed from class 9 which is consistent with the 

observations in preliminary experiments due to high similarity between class 0 and class 9.  

Table 6.12 presents when images are classified as distracted driving, how many percent of 

them has been classified to the correct distraction class and how many wrong. As expected, 

AlexNet produced some errors. On the other hand, all the other three state-of-the-art models 

were able to achieve on average correct classifications above 90%.  These results indicate 

that these state-of-the-art models have managed to learn and extract discriminative features 

and the SVC was able to correctly differentiate them into respective distracted driving 

classes.  

In the third phase of evaluation, all the models were subjected to the Kaggle test dataset 

and predictions were recorded in excel sheet in a csv format. Prediction results for test 

evaluations were submitted to Kaggle. Table 6.13 presents the summary of all the log loss 

scores obtained from Kaggle website for the test dataset. From the table, it can be observed 

that once again NASNet outperformed all the other models in all three triplet loss 

implementations with the lowest log loss scores. Performance of AlexNet model was the 

worst among all as expected from the results of training and validation evaluations. Mixed 

performance with less difference was observed in ResNet and MobileNet models with 

ResNet outperforming MobileNet in batch triplet loss implementation while MobileNet 

outperforming ResNet in margin and naïve triplet loss implementations. Overall, batch 

triplet loss implementation with the NASNet model was the best in terms of performance 
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for the test dataset. More or less similar performances were recorded for MobileNet and 

ResNet models with triplet loss function implementations.  

Table 6.11: Percentages of Images being Classified as Safe and Distracted Driving for All 
CNN Model Configurations in Experiment 3. 

Class Label 0 1 2 3 4 5 6 7 8 9 

 True +ev False -ev 
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AlexNet + Margin 58.58 0.15 0.00 6.83 17.50 0.43 0.00 0.17 4.01 23.35 

AlexNet + Naïve 42.36 0.74 0.00 13.51 13.49 0.87 0.00 0.00 3.32 11.91 

AlexNet + Batch 59.52 0.00 0.00 21.34 25.11 0.14 0.00 0.17 3.32 17.87 

ResNet + Margin 98.53 0.00 0.00 0.28 0.14 0.43 0.00 0.17 0.00 0.78 

ResNet + Naïve 95.84 0.44 0.14 1.00 0.43 0.43 0.00 0.17 1.40 6.90 

ResNet + Batch 98.66 0.29 0.00 0.28 0.43 0.58 0.00 0.00 0.87 1.57 

MobileNet + Margin 97.99 0.00 0.00 0.57 0.14 0.29 0.00 0.00 0.70 2.19 

MobileNet + Naïve 96.25 0.29 0.00 0.57 0.29 0.87 0.00 0.17 0.87 3.92 

MobileNet + Batch 97.18 0.00 0.00 0.14 0.57 0.58 0.00 0.17 1.05 2.66 

NASNet + Margin 98.53 0.15 0.00 0.57 0.29 1.15 0.00 0.17 0.00 0.94 

 NASNet + Naïve 92.09 0.44 0.00 2.42 2.87 1.30 0.00 0.17 4.71 12.23 

NASNet + Batch 99.06 0.29 0.00 1.00 0.29 1.73 0.00 0.17 1.22 6.58 
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AlexNet + Margin 41.42 99.85 100 93.17 82.50 99.57 100 99.83 95.99 76.65 

AlexNet + Naïve 57.64 99.26 100 86.49 86.51 99.13 100 100 96.68 88.09 

AlexNet + Batch 40.48 100 100 78.66 74.89 99.86 100 99.83 96.68 82.13 

ResNet + Margin 1.47 100 100 99.72 99.86 99.57 100 99.83 100 99.22 

ResNet + Naïve 4.16 99.56 99.86 99.00 99.57 99.57 100 99.83 98.60 93.10 

ResNet + Batch 1.34 99.71 100 99.72 99.57 99.42 100 100 99.13 98.43 

MobileNet + Margin 2.01 100 100 99.43 99.86 99.71 100 100 99.30 97.81 

MobileNet + Naïve 3.75 99.71 100 99.43 99.71 99.13 100 99.83 99.13 96.08 

MobileNet + Batch 2.82 100 100 99.86 99.43 99.42 100 99.83 98.95 97.34 

NASNet + Margin 1.47 99.85 100 99.43 99.71 98.85 100 99.83 100 99.06 

 NASNet + Naïve 7.91 99.56 100 97.58 97.13 98.70 100 99.83 95.29 87.77 

NASNet + Batch 0.94 99.71 100 99.00 99.71 98.27 100 99.83 98.78 93.42 
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Table 6.12: Percentages of Images being Classified as Correct and Wrong Distracted 
Driving for All CNN Model Configurations in Experiment 3. 

Class Label 1 2 3 4 5 6 7 8 9 
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ct

 D
ist

ra
ct

io
n  

AlexNet + Margin 93.97 73.38 74.11 45.48 96.97 86.94 79.33 44.85 42.01 

AlexNet + Naïve 53.53 29.35 62.59 21.66 83.26 81.06 10.67 12.74 7.52 

AlexNet + Batch 95.59 72.09 69.42 17.65 98.41 84.22 88.67 38.05 45.30 

ResNet + Margin 99.71 99.57 99.29 99.71 99.57 99.71 99.50 97.21 97.81 

ResNet + Naïve 98.53 96.40 97.72 98.28 99.13 97.85 98.67 84.12 88.71 

ResNet + Batch 99.56 99.28 99.43 99.14 99.13 99.28 99.17 96.51 96.71 

MobileNet + Margin 99.56 99.71 99.15 99.57 99.57 99.28 99.33 92.32 95.61 

MobileNet + Naïve 99.41 99.86 99.15 99.14 98.99 99.42 99.67 92.32 93.26 

MobileNet + Batch 99.56 99.71 99.43 99.00 99.28 99.57 99.33 92.84 94.98 

NASNet + Margin 99.56 99.42 99.29 99.14 98.56 99.00 99.50 98.08 98.12 

 NASNet + Naïve 99.41 97.84 94.31 94.84 98.41 95.70 99.50 81.33 84.33 

NASNet + Batch 99.56 99.57 98.72 99.28 98.27 98.57 99.67 95.11 92.32 

C
la

ss
ifi

ed
 a

s W
ro

ng
 D

ist
ra

ct
io

n 

AlexNet + Margin 5.88 26.62 19.06 37.02 2.60 13.06 20.50 51.13 34.64 

AlexNet + Naïve 45.74 70.65 23.90 64.85 15.87 18.94 89.33 83.94 80.56 

AlexNet + Batch 4.41 27.91 9.25 57.25 1.44 15.78 11.17 58.64 36.83 

ResNet + Margin 0.29 0.43 0.43 0.14 0.00 0.29 0.33 2.79 1.41 

ResNet + Naïve 1.03 3.45 1.28 1.29 0.43 2.15 1.17 14.49 4.39 

ResNet + Batch 0.15 0.72 0.28 0.43 0.29 0.72 0.83 2.62 1.72 

MobileNet + Margin 0.44 0.29 0.28 0.29 0.14 0.72 0.67 6.98 2.19 

MobileNet + Naïve 0.29 0.14 0.28 0.57 0.14 0.58 0.17 6.81 2.82 

MobileNet + Batch 0.44 0.29 0.43 0.43 0.14 0.43 0.50 6.11 2.35 

NASNet + Margin 0.29 0.58 0.14 0.57 0.29 1.00 0.33 1.92 0.94 

 NASNet + Naïve 0.15 2.16 3.27 2.30 0.29 4.30 0.33 13.96 3.45 

NASNet + Batch 0.15 0.43 0.28 0.43 0.00 1.43 0.17 3.66 1.10 
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Table 6.13: Kaggle Scores for Models with Margin, Naïve and Batch Triplet Loss 
Functions Over Test Dataset. 

 
Margin Triplet Loss  Naïve Triplet Loss  Batch Triplet Loss 

Public Private  Public Private  Public Private 

AlexNet 1.6068 1.6799  1.8928 1.9110  1.5638 1.5513 

ResNet50 0.4407 0.5229  0.7334 0.6837  0.4475 0.4289 

MobileNet 0.5836 0.5216  0.5707 0.5016  0.5311 0.5005 

NASNet 0.3736 0.3149  0.5975 0.4664  0.3764 0.3168 

 

Table 6.14: Times for All Models with Margin, Naïve and Batch Triplet Loss Functions 
to Process Single Instance of Test Input. 

 
Processing Time for Single Test Instance 

Margin Triplet Loss  Naïve Triplet Loss  Batch Triplet Loss 

AlexNet 8.7ms  8.6ms  8.5ms 

ResNet50 7.57ms  7.38ms  7.61ms 

MobileNet 4.69ms  5.9ms  4.65 

NASNet 75.1ms  77.4ms  76.4ms 

 

Finally, the performance in terms of processing times by each model was evaluated to 

analyse the practical implementation of algorithms on standalone hardware systems to 

perform real-time classification tasks. The processing time reported in this thesis were 

obtained from highly parallel and powerful machines. Therefore, they are not the real 

reflection of real-world performance. However, they were included to highlight the trend 

which would be same. When used on the low performance hardware, only the numbers will 

change. Table 6.14 presents the processing time taken by each model to process a single 
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instance of the test image. From the table, it can be observed that NASNet is the slowest 

among them, while MobileNet is fastest among them. The same results have been observed 

in experiment set 2. The importance of the practical implementation of models can be 

highlighted from this comparison. Although NASNet is the best among them in terms of 

prediction accuracy, it is the slowest by a huge margin. Hence, it is not the best choice for 

real-world implementation on hardware such as a portable device. On the other hand, the 

prediction accuracy from MobileNet was not poor compared to NASNet. Nevertheless, in 

terms of speed, it is almost 20 times faster, thus making it the best choice for the real-world 

implementation on portable devices.  

6.7. Conclusion 

Experiments performed in this research resulted into a number of insights. From the results 

of experiment set 2, it has been observed that SVC is much more powerful in terms of 

classification as compared to Softmax. From experiment set 3, it has been concluded that 

the novel batch triplet loss outperformed all others because it minimises intra-class 

variations as well as maximises inter-class variations. Furthermore, in terms of the best 

performed model, NASNet was the best for its accuracy while MobileNet was observed as 

the best for its lowest requirement on storage space and processing time without 

compromising the accuracy to a large extent. Overall, it can be concluded that if 

classification accuracy is the priority, NASNet model trained with margin triplet loss or 

batch triplet loss using SVC is the best in terms of performance when compared to AlexNet, 

MobileNet and ResNet. However, if processing time or real-time implementation on 

portable devices is the first priority, in that case MobileNet trained with batch triplet loss 

using SVC is the best in terms of performance when compared with other three addressed 

in this research. 
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CHAPTER 7 

7. CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

Classification is a long-standing problem, with many different approaches to it. Focusing 

on the image domain, it was traditionally solved using hand-crafted features that were 

classified by a Multi-Layer Perceptron (MLP), SVM or other simpler methods like k-NN 

[156, 157]. Nowadays, the process of engineering hand-crafted features has been replaced 

by an end-to-end learning using CNNs [73, 158]. They take the raw image pixels as the 

input and are trained to learn the most discriminative features for a given classification task. 

To improve road safety and a number of accidents due to hazardous behaviours such as 

drowsiness and distraction of drivers, this research has successfully addressed some 

research questions and investigated the potential solutions. To answer RQ1, a 

comprehensive subject review was performed, and the most relevant literature regarding 

local and deep learning approaches for distraction and drowsiness detection was reviewed. 

The literature was critically analysed and compared based on key factors in order to identify 

the obstacles to the real-world implementation of robust drowsiness and distraction 

detection systems. Some potential challenges identified as a result included the impact of 

lightning conditions on the accuracy of computer vision algorithms, the dependence on the 

performance of individual computer vision approaches involved, extensive computational 

power requirements, transition from high resolution to lower resolution detections, cost of 

system compared to vehicles, consequences of false alarms, visibility of regions of interest, 

early stage detections, and consideration of in-vehicle factors such as interference due to 

vibrations.  

As for RQ2, conventional computer vision approaches such as detection of eye blinking, 

yawning and head pose were successfully implemented for small datasets to evaluate the 

performance. 



    
                                                                                 School of Engineering and Technology   
  

148 
 

To address RQ3, the proposed system was evaluated experimentally with a number of 

images taken from various standard databases. Given the use of smaller datasets, 

performance was evaluated using the µ-fold cross validation approach in which whole 

dataset was used for training and testing. Classification accuracies of 99%, 98.5% and 99% 

were recorded for head pose, yawning and eye blinking detection, respectively. From the 

results over smaller datasets, a satisfactory performance was observed. However, in the 

conventional computer vision approaches, features were manually identified for each RI, 

such as the eyes, the mouth and the head. Furthermore, the conventional methods require a 

close-up image of the face/head to deliver a satisfactory performance. When the image 

resolution is low or when the face/head moves out of the camera view, conventional 

methods become powerless. 

Talking about RQ4, the use of deep learning approaches is considered in the detection of 

distracted driving. Unlike conventional approaches where features are hand engineered to 

facilitate classification, deep learning approaches can be trained to learn the most 

discriminative features for a given classification task and the deep net architectures are able 

to learn such features from various regions of a human body simultaneously. 

In reference to RQ5, various deep learning approaches were evaluated for their training 

performance, validation performance and test performance. Based on the encouraging 

results of preliminary experiments, in experiment 2, Softmax and the SVC classifier were 

compared for four states of the art deep models: AlexNet, ResNet, MobileNet and NASNet. 

From the results, the SVC performance was slightly better compared to that of Softmax. 

Finally, in experiment 3, the performance of all four deep architectures with the SVC was 

evaluated for margin, naïve and batch triplet loss implementations. The approach of 

transition from random to semi-hard to hard triplet mining was effectively used during the 

training of models. From the results, the performance of NASNet model with batch triplet 

loss implementation was ranked first in terms of accuracies; however, it was the slowest 

among them. The performance of ResNet and MobileNet was more or less similar to that 

of MobileNet in terms of fast processing times. The performance comparison between 

NASNet and MobileNet was not huge in terms of classification accuracies; however, 
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MobileNet was almost 20 times faster than NASNet, thus making MobileNet the best 

possible choice among them for real-world implementation on portable devices.  

7.2. Future Work 

In this MPhil thesis critical analysis of the literature have been conducted, which identifies 

potential challenges that occurs in the real-world implementation of computer vision 

methods in the detection of distraction driving.  Each identified challenge can be a future 

direction to the research presented in this thesis. Listed are the possible future work for this 

research.  

• Evaluation and improvement of existing algorithms for varied lighting conditions, 

more precisely, real in-vehicle lighting conditions especially during night time.  

• Addressing and minimising the computational resources required to implement the 

proposed algorithms in real-world situation. One approach can be the use of image 

frames with a lower resolution to reduce the computational cost while keeping the 

accuracy up to a satisfactory level. 

• Addressing the issue of false alarming to make it more user friendly. A system 

alarming the driver after every short interval of distraction is not practical since it 

will irritate the driver.  

• The class 0 (safe driving) of Kaggle dataset does not include images of a driver 

checking a driving assistance equipment such as back mirror, side mirrors etc. 

Further experiments are required to ensure such images are not classified as 

distracted driving.  

• Integration of non-vision based solutions to assist the scenarios when the driver’s 

face is occluded.  

• Incorporate the impact of vibrations and driving interferences on the detection 

accuracies. 

• Implementation of hybrid conventional and deep learning\approaches to detect 

hazardous behaviours in drivers. 
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• Implementation of deep learning approaches on standalone hardware to test the real-

world performances.  
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