

 School of Engineering and Technology

i

University of Hertfordshire

School of Engineering and Technology

Detection of Driver Drowsiness and Distraction

using Computer Vision and Machine Learning

Approaches

Ofonime Dominic Okon

Submitted to the University of Hertfordshire in partial fulfilment
of the requirements for the degree of Master of Philosophy (MPhil)

November 2018

 School of Engineering and Technology

ii

Abstract

Drowsiness and distracted driving are leading factor in most car crashes and near-crashes. This

research study explores and investigates the applications of both conventional computer vision and

deep learning approaches for the detection of drowsiness and distraction in drivers.

In the first part of this MPhil research study conventional computer vision approaches was studied

to develop a robust drowsiness and distraction system based on yawning detection, head pose

detection and eye blinking detection. These algorithms were implemented by using existing human

crafted features. Experiments were performed for the detection and classification with small image

datasets to evaluate and measure the performance of system. It was observed that the use of human

crafted features together with a robust classifier such as SVM gives better performance in

comparison to previous approaches. Though, the results were satisfactorily, there are many

drawbacks and challenges associated with conventional computer vision approaches, such as

definition and extraction of human crafted features, thus making these conventional algorithms to

be subjective in nature and less adaptive in practice.

In contrast, deep learning approaches automates the feature selection process and can be trained to

learn the most discriminative features without any input from human. In the second half of this

research study, the use of deep learning approaches for the detection of distracted driving was

investigated. It was observed that one of the advantages of the applied methodology and technique

for distraction detection includes and illustrates the contribution of CNN enhancement to a better

pattern recognition accuracy and its ability to learn features from various regions of a human body

simultaneously. The comparison of the performance of four convolutional deep net architectures

(AlexNet, ResNet, MobileNet and NASNet) was carried out, investigated triplet training and

explored the impact of combining a support vector classifier (SVC) with a trained deep net. The

images used in our experiments with the deep nets are from the State Farm Distracted Driver

Detection dataset hosted on Kaggle, each of which captures the entire body of a driver. The best

results were obtained with the NASNet trained using triplet loss and combined with an SVC. It was

observed that one of the advantages of deep learning approaches are their ability to learn

discriminative features from various regions of a human body simultaneously. The ability has

enabled deep learning approaches to reach accuracy at human level.

 School of Engineering and Technology

iii

Acknowledgement

I am immensely thankful to God Almighty, in which in his mercy and loving grace, has

protected me and blessed me with wisdom and knowledge to complete this project and

research study. He shielded me with love, mercy, and from woes, during my stay at the

University. I am eternally grateful and appreciative to him.

With gratitude, I would like to thank my supervisor, Dr. Lily Meng, for her wisdom,

ongoing support, attentiveness and impartial advice, whenever I was faced with issues,

concerns or challenges during the development and final stages of this project. Thank you

for guiding and reinforcing me with patience and unflinching support while on my way to

success.

While creating and developing my project, I was blessed and privileged to have continuous

support from my dear father, Obong Dominic Edet Okon Umoetok. Thank you for

providing me with the much-needed support, advice and also for helping me to see things

in perspective. May the good Lord continue to bless you. To my mother, Late Mrs.

Dominica Dominic Okon, which bestowed upon on me the motivation and patience to carry

out my project successfully. She was a blessing to me and may her soul rest in peace.

Furthermore, I would like to thank my siblings, Irene, Dorathy, Anthonia, Pius and

Dominica Jnr. for their generous assistance and encouragement. May God bless all of you.

I would also like to take this opportunity to thank with recognition, to all members of my

family and friends, who has granted me with the inspiration, patience and tranquility during

the competition of my project. May God bless you all.

 School of Engineering and Technology

iv

Dedication

I dedicate this project to God Almighty, my father Obong Dominic Edet Okon Umoetok,

and also my dear mother, late Mrs. Dominica Dominic Okon.

 School of Engineering and Technology

v

Declaration

DECLARATION STATEMENT

I, Ofonime Dominic Okon, the author of this project, hereby declare that this research
study titled “Detection of Driver Drowsiness and Distraction using Computer Vision and
Machine Learning Approaches” is my own genuine work from beginning to end. All the
materials, sources, information and research used in this thesis, were correctly and
satisfactorily acknowledged by means of IEEE Numeric Referencing and Harvard System
of Referencing. (ref. UPRAS/C/6.1, Appendix I, Section 2 – Section on cheating and
plagiarism)

Student Full Name: Ofonime Dominic Okon

Student Registration Number: 14179916

Signed:
…………………………………………………………………………………………….

Date: 05/11/2018

 School of Engineering and Technology

vi

TABLE OF CONTENTS

LIST OF FIGURES ... x

LIST OF TABLES .. xiii

LIST OF ABBREVIATIONS ... xv

CHAPTER 1

INTRODUCTION ... 1

1.1. Introduction and Background .. 1

1.2. Problem Statement ... 4

1.3. Research Questions ... 5

1.4. Thesis Layout .. 5

CHAPTER 2

SUBJECT REVIEW ... 6

2.1. Drowsiness Behaviors and Levels ... 6

2.2. Types of Distraction and Their Causes ... 7

2.3. Stages of Drowsiness and Distraction Detection ... 10

2.4. Conventional Approaches for Drowsiness and Distraction Detection 11

2.5. Deep Learning ... 31

2.6. The Architecture of Convolution Neural Networks .. 34

2.6.1. Convolution Layer ... 34

2.6.2. Pooling Layer .. 35

2.6.3. Fully Connected Layer .. 35

2.7. Activation Functions ... 36

2.7.1. Simple Threshold Function ... 36

2.7.2. Sigmoid Function .. 36

2.7.3. Hyperbolic Function .. 37

2.7.4. Rectified Linear Unit (ReLU) ... 37

2.8. Loss Functions ... 37

 School of Engineering and Technology

vii

2.8.1. Mean Squared Error (L2 Loss) .. 37

2.8.2. Hinge Loss ... 38

2.8.3. Cross-Entropy Loss ... 38

2.9. Optimisation Methods ... 39

2.9.1. Backpropagation .. 39

2.9.2. Gradient Descent ... 39

2.9.3. Stochastic Gradient Descent .. 40

2.9.4. Adam Optimiser .. 42

2.10. Regularisation Methods ... 43

2.10.1. Dropout .. 43

2.10.2. Batch Normalisation .. 44

2.10.3. L1 and L2 Normalisation ... 44

2.10.4. Early Stopping ... 45

2.11. Classification Method .. 46

2.11.1. Softmax Classifier ... 46

2.11.2. Support Vector Machines as the Classification Layer of CNN 48

2.12. Deep Learning Approaches for Drowsiness and Distraction Detection 49

CHAPTER 3

CONVENTIONAL APPROACHES ... 57

3.1. Introduction ... 57

3.2. Face Detection ... 57

3.2.1. Viola and Jones Face Detection Algorithm ... 58

3.3. Eye Detection .. 61

3.4. Yawning Detection .. 64

3.5. Head Pose Detection .. 67

3.6. Support Vector Machine (SVM) Classifier ... 68

Summary .. 70

 School of Engineering and Technology

viii

CHAPTER 4

EXPERIMENTS WITH CONVENTIONAL APPROACHES 71

4.1. The Detection Algorithms ... 71

4.2. Image Datasets ... 72

4.3. !-Fold Cross Validation .. 76

4.4. Head Pose Detection Results ... 77

4.5. Yawning Detection Results ... 79

4.6. Eye Blink Detection Results .. 82

CHAPTER 5

DEEP LEARNING APPROACHES ... 86

5.1. Introduction ... 86

5.2. Deep CNN Architectures ... 86

5.2.1. AlexNet .. 86

5.2.2. ResNet ... 88

5.2.3. MobileNet .. 90

5.2.4. NASNet ... 92

5.3. Theory of Transfer Learning ... 93

5.4. Distance Metric Learning .. 94

5.5. Triplet Loss .. 95

5.6. Activation Functions with Triplet Loss ... 96

5.6.1. Margin Triplet Loss ... 97

5.6.2. Naïve Triplet Loss ... 98

5.6.3. Batch Triplet Loss ... 98

5.7. Triplet Mining ... 100

5.8. Offline Mining Triplet ... 101

5.8.1. Triplet Sampling .. 102

Summary .. 103

 School of Engineering and Technology

ix

CHAPTER 6

EXPERIMENTS WITH DEEP LEARNING APPROACHES 104

6.1. Introduction ... 104

6.2. Implementation .. 105

6.2.1. Preliminary Experiments ... 105

6.2.2. Experiment 2: Softmax vs SVC .. 106

6.2.3. Experiment 3: Triplet Loss .. 109

6.3. Kaggle Dataset ... 115

6.4. Implementation Frameworks ... 116

6.5. Evaluation Criteria ... 118

6.5.1. Kaggle Scores .. 118

6.6. Experimental Results ... 119

6.6.1. Preliminary Experiment Results .. 119

6.6.2. Experiment 2 Results ... 127

6.6.3. Experiment 3 Results ... 135

6.7. Conclusion ... 146

CHAPTER 7

CONCLUSION AND FUTURE WORK ... 147

7.1. Conclusion ... 147

7.2. Future Work ... 149

REFERENCES .. 151

 School of Engineering and Technology

x

LIST OF FIGURES

Figure 2.1: Basic Structure of Drowsiness Detection System using Computer Vision Based
Techniques by Fuletra and Bosamiya [27]. ... 11
Figure 2.2: Block Diagram of Stress Detection System Proposed by Gao et al. [34]. 13
Figure 2.3: Distance Parameters and Filtering Area for Eye Blink Detection and Textural
Changes Proposed by Nakamura et al. [20]. ... 14
Figure 2.4: The Block Diagram of the System Used in [37] to Detect Facial Expression in
a Single Video Frame. ... 15
Figure 2.5: Relation between Artificial Intelligence, Machine Learning and Deep Learning
[66]. ... 31
Figure 2.6: Functional Working Diagram of Deep Learning [66]. 33
Figure 2.7: A Typical CNN Architecture. ... 36
Figure 2.8: Illustration of Dropout Concept (Taken From [87]). 43
Figure 3.1: Haar-Like Features Proposed by Viola and Jones for Face Detection. 59
Figure 3.2: Cascade Classifier Structure of the Viola and Jones Algorithm. 60
Figure 3.3: Block Diagram of Steps Involved in the Viola and Jones Object Detection
Algorithm [102]. .. 60
Figure 3.4: Demonstration of the eye Detection with Region Parameters. 62
Figure 3.5: Principle of PERCLOS Computation Proposed by the Weijie et al. [107]. ... 63
Figure 3.6: The Ratio of the eye-Height and Eye-Width Proposed by Weijie et al. [107].
 ... 64
Figure 3.7: Mathematical Model of Mouth Proposed by Wang et al. [100]. 66
Figure 3.8: General Block Diagram and Respective Output for Mouth Detection [100]. 66
Figure 3.9: Vector Space Representation of a Linear Binary SVM Classifier [115]. 69
Figure 4.1: Block Diagram for the Proposed Eye Closure, Yawning and Head Pose
Detection Mechanisms. ... 72
Figure 4.2: Examples from Head Pose Dataset. .. 74
Figure 4.3: Examples from Yawning Dataset. .. 75
Figure 4.4: Examples from Eye Blinking Dataset. .. 76
Figure 4.5: (a) Examples of Correct Head Pose Detection (b) Examples of Wrong Head
Pose Detection. .. 77
Figure 4.6: Confusion Matrices For "-Fold Cross Validation Results Head Pose Detection
 ... 79
Figure 4.7: (a) Examples of Correct Yawning Detection (b) Examples of Wrong Yawning
Detection. ... 80
Figure 4.8: Confusion Matrices For k-Fold Cross Validation Results Yawning Detection.
 ... 81

 School of Engineering and Technology

xi

Figure 4.9: (a) Examples of Correct Eye Blink Detection (b) Examples of Wrong Eye Blink
Detection. ... 82
Figure 4.10: Confusion Matrices For "-Fold Cross Validation Results Eye Blinking
Detection. ... 83
Figure 5.1: Structure of the Adopted AlexNet Deep Architecture used in this Research. 87
Figure 5.2: Residual Learning, Building Block of ResNet (Taken From [75]). 89
Figure 5.3: Architecture of ResNet Proposed for the ImageNet Challenge (Taken From
[75]). .. 89
Figure 5.4: Concept of Depthwise Convolution Proposed by Howard et al. [130]. 91
Figure 5.5: Architecture of MobileNet CNN Proposed by Howard et al. [130]. 92
Figure 5.6: Overview of Neural Architecture Search (NAS) (Taken From [126]). 93
Figure 5.7: Example of Triplet Before and After Training to Illustrate the Advantage of
Triplet Loss Function. ... 96
Figure 5.8: Illustration of Overlapping Issue in Triplet Loss [144]. 99
Figure 6.1: Summary of All the Processes Followed in Experiment 2. 107
Figure 6.2: Comparison of the Architectures used for Traditional Softmax and SVC. .. 108
Figure 6.3: Summary of Process Followed in Experiment 3. .. 113
Figure 6.4: Example of Single Training Instance using Adaptive Triplet Sampling Strategy.
 ... 114
Figure 6.5: Pipeline for the Classification of Features Extracted from Neural Network.
 ... 115
Figure 6.6: Sample Images from Each Kaggle Driver Distraction Challenge Class. 116
Figure 6.7: Classification Accuracy and Loss Plots for all Models in Preliminary
Experiment. ... 120
Figure 6.8: Confusion Matrices for All Three Models in Preliminary Experiments. 121
Figure 6.9: Instances of Correct Classification as Class 7 and Wrong Classification for
Class 7 as Class 2. ... 122
Figure 6.10: Instances of Correct Classification as Class 9 and Wrong Classification for
Class 9 as Class 0. ... 123
Figure 6.11: Instances of Correct Classification as Class 3 and Wrong Classification for
Class 3 as Class 0. ... 125
Figure 6.12: Training Accuracy and Loss Plots for All Models with Softmax Classifier
 ... 128
Figure 6.13: Confusion Matrices for Models with Softmax Classifier over Validation
Dataset. .. 129
Figure 6.14: Confusion Matrices for Models with SVC over Validation Dataset. 130
Figure 6.15: Training Loss Plots for All Models with Margin Triplet Loss. 135
Figure 6.16: Training Loss Plots for All Model with Naïve Triplet Loss. 136
Figure 6.17: Training Loss Plots for All Models with Batch Triplet Loss. 137

 School of Engineering and Technology

xii

Figure 6.18: Confusion Matrices for Models with Margin Triplet Loss Over Validation
Dataset. .. 138
Figure 6.19: Confusion Matrices for Models with Naïve Triplet Loss Over Validation
Dataset. .. 139
Figure 6.20: Confusion Matrices for Models with Batch Triplet Loss Over Validation
Dataset. .. 140

 School of Engineering and Technology

xiii

LIST OF TABLES

Table 2.1: Drowsiness State Levels and Corresponding Behaviors, States and Indicators . 7
Table 2.2: Different Sources of Distraction among Drivers Categorized by NHTSA [7]. . 9
Table 2.3: Contributions of Different Distraction Sources to Vehicle Crashes. 10
Table 2.4: Comparison of Literature Related to Drowsiness and Distraction Detection using
Conventional Computer Vision Approaches. .. 27
Table 2.5: Categorization of Conventional Computer Vision Approaches from Literature
for Distraction and Drowsiness Detection. .. 30
Table 2.6: Comparison of Literature Related to Drowsiness and Distraction Detection using
Deep Learning Approaches. .. 55
Table 2.7: Categorization of Deep Learning Based Approaches from Literature for
Distraction and Drowsiness Detection. ... 56
Table 4.1: "-Fold Cross Validation Results of Head Pose Detection Algorithm. 78
Table 4.2: "-Fold Cross Validation Results of Yawning Detection Algorithm. 81
Table 4.3: "-Fold Cross Validation Results of Eye Blink Detection Algorithm. 83
Table 4.4: Statistics of SVM Classification for Drowsiness Detection. 84
Table 6.1: Prediction Classes for Kaggle Task and Number of Images in Each Class [2].
 ... 116
Table 6.2: Comparison of Common Deep Learning Implementation Frameworks. 117
Table 6.3: Percentages of Images being Classified as Safe and Distracted for All Three
Models ... 124
Table 6.4: Percentages of Images being Classified as Correct and Wrong Distracted Driving
for All Three Models. .. 126
Table 6.5: Summary of Experimental Results of Preliminary Experiment. 126
Table 6.6: Percentages of Images being Classified as Safe and Distracted for All CNN
Model Configuration in Experiment 2. ... 131
Table 6.7: Percentages of Images being Classified as Correct and Wrong Distracted Driving
for All CNN Model Configurations in Experiment 2. ... 132
Table 6.8: Kaggle Scores for Models with Softmax and SVC Classifiers Over Test Dataset
 ... 133
Table 6.9: Times for All Models with Softmax and SVC to Process Single Instance of Test
Input. .. 134
Table 6.10: Numerical Comparison of All Models for Training and Validation Accuracies.
 ... 141
Table 6.11: Percentages of Images being Classified as Safe and Distracted Driving for All
CNN Model Configurations in Experiment 3. .. 143
Table 6.12: Percentages of Images being Classified as Correct and Wrong Distracted
Driving for All CNN Model Configurations in Experiment 3. 144

 School of Engineering and Technology

xiv

Table 6.13: Kaggle Scores for Models with Margin, Naïve and Batch Triplet Loss
Functions Over Test Dataset. .. 145
Table 6.14: Times for All Models with Margin, Naïve and Batch Triplet Loss Functions to
Process Single Instance of Test Input. ... 145

 School of Engineering and Technology

xv

LIST OF ABBREVIATIONS

AAAFTS American Automobile Association Foundation for Traffic Safety

Adam Adaptive Moment Estimation

ADAS Advanced Driver Assistance System

AECS Average Eye Closure Speed

BAIR Berkley AI Research

BHE Bi-Histogram Equalization

BU-3DFE Birmingham University 3D Facial Expression

CCD Charge-Coupled Device

CNN Convolutional Neural Network

DBN Deep Belief Networks

DDD Deep Drowsiness Detection

DOO Degree of Openness

FC Fully Connected

FF-Bp Feed Forward Back Propagation

GPU Graphical Processing Unit

HMM Hidden Markov Model

HOG Histograms Oriented Gradient

LBP Local Binary Patterns

LDA Linear Discriminant Analysis

LRN Local Response Normalization

MAC Multiply and Accumulated

MLP Multiple Layer Perceptron

MSE Mean Squared Error

NAS Neural Architecture Search

NHTSA National Highway Traffic Safety Administration

NIR Near Infrared

 School of Engineering and Technology

xvi

NLL Negative Log Likelihood

PCA Principal Component Analysis

PERCLOS Percentage Eye Closure

PRC Percentage Road Centre

RBF Radial Basis Function

ReLU Rectified Linear Unit

RI Region of Interest

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SVC Support Vector Classifier

SVM Support Vector Machine

SVR Support Vector Regressor

 School of Engineering and Technology

1

CHAPTER 1

1. INTRODUCTION

1.1. Introduction and Background

The integration of advanced safety systems in modern vehicles has reduced the number of

road accidents significantly. However, the number of accidents are still not under an

acceptable range. In their research, Murray and Lopez [1] reported that road accidents

would be the third main reason for deaths by the year 2020. Fatigue and drowsiness among

drivers result in fatal driving errors are considered one of the most important causes of road

accidents [2, 3]. The involvement of the number of factors such as driver attention,

cognitive skills and physical fitness makes driving a relatively complex task [4]. However,

it is not uncommon for drivers to involve themselves in activities that distract their attention

from driving tasks. These distraction-related activities significantly degrade the driving

performance and, due to the complex nature of driving, result in road accidents. Some

common distraction-related activities of drivers include conversations with other

passengers, the use of technological devices (mobile phones, navigation systems, radios,

etc.), eating and using makeup tools while driving [5]. According to a report published by

National Highway Traffic Safety Administration (NHTSA), of all the road accidents,

approximately 25% are due to the inattention of drivers [6], and half of those 25% are due

to the distraction of drivers [7, 8].

Fatigue and drowsiness are the hypnosis effects among drivers, and the major causes of

these effects include lack of sleep, long and continuous drives, illness and the use of drugs

[9]. Although the introduction of advanced comfort level and autonomy in modern day

vehicles has improved the safety of drivers, it also contributes to fatigue and drowsiness of

drivers [10, 11]. In a study, Sagberg et al. [11] reported that drowsy driving increased the

probability of errors in driving due to drivers’ impaired mental capacity. Fatigue and

drowsiness-related accidents are considered more fatal and more dangerous compared to

normal accidents because of their direct effects on the decision-making abilities of drivers.

Fatigue and drowsiness are technically different. Fatigue is defined as the extreme tiredness

 School of Engineering and Technology

2

because of physical and mental exertions when a person is executing some tasks, whereas

drowsiness is the state resulted by lack of rest and sleep [3]. However, fatigue and

drowsiness are often interchangeable. In many existing driver monitoring systems, both

terms are used for the same meaning as the symptoms of both health conditions are almost

identical. Hence, in this research, the term of drowsiness will be used to represent the

mutual effect of fatigue and drowsiness on driving performance.

In the research carried out by Lal and Craig [12], they pointed out a number of symptoms

that could facilitate the detection of drivers fatigue, including eye blinking rate, yawning

frequency, variations in mouth positions, variations in head positions and driving patterns.

In a report by Federal Motor Carrier Safety Administration [13], the relationship between

the number of continuous driving hours and fatigue-related accidents has been indicated

and stated that an increase in continuous driving hours increased the percentage of fatigue-

related accidents (up to 4 percent increase for 10 continuous hours of driving). Kaggle

challenge defined nine types of distracted driving.

According to Bayly et al. [14], the number of road accidents can be reduced by about 20%

if there is a proper mechanism that can monitor in-drive behaviours of drivers. The

development of efficient driver-attention monitoring systems using the state-of-the-art

emerging technologies is one possible solution that can reduce the number of accidents and

improve road safety. Dinges and Mallis [15] listed four types of drowsiness detection

approaches: the mathematical model-based approach, fitness for duty technologies

approach, vehicle performance-based approach and in-vehicle operator monitoring-based

approach. The in-vehicle operator monitoring based approach is widely explored by

researchers, which uses computer vision-based technologies and studies the physiological

signals to detect the attention level of drivers. The computer vision-based approach is non-

intrusive and easily applicable in real-time situations. Furthermore, the detection results of

these approaches are more effective and adaptive than others; hence, they are active areas

for researchers in this domain. In addition to drowsiness, distraction among drivers is

equally significant while developing attention-monitoring systems. In one study,

Thimbleby et al. [16] indicated how in-vehicle objects could distract drivers and affect their

driving performance.

 School of Engineering and Technology

3

State Farm has taken an initiative to improve road safety by introducing an initiative called

Kaggle challenge for detection of distracted drivers, where camera images of the entire

body of the driver are provided for the development of computer vision and machine

learning-based algorithms.

This research study aims to improve road safety by applying efficient computer vision and

machine learning based algorithms that can detect hazardous driving behaviours such as

drowsiness and distraction. Computer vision approaches have been used for face/eye/mouth

detection, image normalization, extraction of key features, etc. ML for classification of

extracted features in conventional approaches and the learning, extraction and classification

of features in the deep learning approaches. Initially, a comprehensive subject review of

the most-related literature has been performed. Two different categories of approaches have

been identified through the subject review and investigated in the practical work, the

category of conventional approaches and the category of deep-learning approaches. The

first phase of practical work has involved the use of conventional approaches for the

drowsiness-related visual information analysis and predictions. The idea of using the

combination of different drowsiness-related features such as eye blinking, yawning and

head pose has been adopted to classify drowsy driving effectively.

For the second phase of the practical work, the focus was shifted towards studying deep

learning approaches such as Convolutional Neural Networks (CNNs) for detecting

distracted driving. In the literature, it has been identified that deep-learning approaches, for

instance, CNN are type of deep networks explained in detail in Chapter 5, which involve

the extraction and learning of features automatically from the number of hidden layers in

the architecture which improves the overall generalization problem. Based on the

comprehensive findings from the literature review, for the distraction detection, we have

implemented four different pre-trained deep CNN architectures; AlexNet, ResNet, NasNet

and MobileNet for detecting distraction among drivers. The proposed models were trained

over the large dataset provided by Kaggle [17] and the performance was evaluated and

compared.

 School of Engineering and Technology

4

1.2. Problem Statement

Research carried out in this thesis is within the scope of detecting hazardous driving

behaviours such as the distraction and drowsiness using the computer vision and machine

learning-based approaches. The monitoring of driving behaviours and the detection of

hazardous driving behaviours can significantly improve road safety. Automobile

manufacturing companies are investing and interested in developing driving-attention

monitoring systems to improve road safety. These systems can warn drivers, most

especially when their attention level (distraction and drowsiness) exceeds a certain

threshold. Although in the literature there is extensive research in the domain of drowsiness

and distraction available, it is rare to see these systems in practice. Furthermore, if the

accuracy of is still not satisfactory and false warning of distracted driving is constantly

issued, this can be intrusive and thus distract drivers attention unnecessarily and cause

unnecessary negative impact to road safety. The objectives of this research are as follows:

• To identify the existing approaches and potential limitations in their practical

applications.

• To detect facial regions relevant to drowsiness and distraction detections such as

eyes, mouth, face and head positions.

• To extract drowsiness and distraction-related features from the detected facial

regions such as the yawning rate, blinking rate, head nodding and head pose.

• To develop an efficient classification algorithm that can classify the extracted facial

features and decide the level of distraction and drowsiness based on the

classification results.

• To provide a detailed study of CNN and deep learning approaches for object

detections (Deep learning approaches).

• To implement deep CNNs which can solve the Kaggle challenge for distracted

drivers.

 School of Engineering and Technology

5

1.3. Research Questions

Base on the problem statement, the research questions explored in this research are as

follows:

• RQ1: What are the potential challenges hindering the practical implementation of

vision based drowsiness and distraction detection systems?

• RQ2: What conventional vision approaches can offer in detecting drowsiness and

distraction in drivers?

• RQ3: How to measure and compare the performance of the conventional

approaches? How is the performance of the conventional approaches in terms of

detection accuracies and generalization?

• RQ4: What deep learning approaches can offer in the detection of distraction in

drivers?

• RQ5: How to measure and compare the performance of the deep learning

approaches? How is the performance in terms of their training, hyper-parameter

time, classification accuracies, processing time, and memory consumption?

1.4. Thesis Layout

Rest of the chapters in the thesis are organized as follows. Chapter 2 presents the

comprehensive subject review regarding the conventional and deep learning approaches for

detection of hazardous behaviors in drivers. Chapter 3 presents the theoretical details of

conventional vision approaches i.e. face detection, yawning detection, Viola and Jones,

eyes detection. Chapter 4 presents the details regarding the implementation of conventional

approaches and their corresponding results. Chapter 5 provides the theoretical background

of deep learning approaches and different deep architectures used in this thesis. Chapter 6

presents the implementation of deep learning approaches and corresponding results and

discussions. Finally, Chapter 7 concludes the thesis and provides potential future directions

of research presented in this thesis.

 School of Engineering and Technology

6

CHAPTER 2

2. SUBJECT REVIEW

This chapter presents a subject review on the detection of hazardous driving behaviours

(drowsiness and distraction) using the computer vision approaches; both conventional and

deep learning. This chapter explores the different symptoms of drowsiness and distraction

and their effects on the driving performance. Furthermore, this chapter reviews the latest

literature regarding drowsiness and distraction detection in order to compare the performed

research with the state of the art. Finally, this chapter highlights some potential challenges,

identified from the literature, which have prevented the practical implementation of real-

time driver monitoring systems.

2.1. Drowsiness Behaviors and Levels

Critical symptoms of drowsiness reported in literature include eye-blinking rate variations,

a decline in driving concentration, a change in driver posture, steering grips, signs of

depression, head nodding frequency, an increase in yawning frequency, a change in facial

expressions, steering behaviour variations, confused thinking, reduced reaction responses,

heart rate variations, skin potential variations, variations in brain signals, shallow breathing

and frequency of touching face [18, 19]. Eye blinking rate, yawning rate and head position

are the most significant signs of drowsiness in drivers.

Behaviours of drivers vary according to the level of drowsiness experienced by them. Based

on research in [20, 21], Table 2.1 shows five different drowsiness levels and their

corresponding behaviours, states and indicators.

 School of Engineering and Technology

7

Table 2.1: Drowsiness State Levels and Corresponding Behaviors, States and Indicators

Drowsiness	
Level	 Behavior	 State	 Indicator	

1	
Reduced	eye	movement	
frequency	and	little	
opening	of	lips	

Very	Awake	 Eyes	widely	open.	very	steady,	thermal	
facial	tone	

2	 Frequent	movement	of	the	
eyes,	motion	is	activated	 Awake	

Normal	fast	eye	blinks;	active	eyeball	
movement;	apparent	focus	on	driving	
with	occasional	fast	sideways	glances;	

normal	facial	tone	

3	
Mouth	movements,	

frequently	touching	on	
face	and	reseating	

Drowsy	
Increase	in	eye	blinking	duration,	
abrupt	face	rubbing,	irregular	eyes	
movement,	restlessly	seating	and	

frequent	yawning	

	4	 Shakes	head,	frequent	
yawning,	blinks	are	slow	 Very	Drowsy	

Occasional	disruption	of	eye	focus,	eye	
blinking	duration	increases,	eyes	
openness	decreases,	reduced	body	

movements	and	no	facial	tune	for	some	
periods.	

	5	 Eyes	closed,	dead	fall	
(forward	or	backward)		 Fatigue	

Eyes	completely	closed,	frequent	
yawning,	complete	disappearance	of	

the	facial	tone	

2.2. Types of Distraction and Their Causes

Distraction is a sub-type of in-attention, and the American Automobile Association

Foundation for Traffic Safety (AAAFTS) as defined distraction as

 “Slower response of drivers in recognizing the information needed to perform and

complete successful/safe driving task because of some vehicles or outside vehicle events

which shift the attention of drivers from driving task” [22]

According to [22], there are four main types of distraction: visual distraction,

biomechanical distraction, cognitive distraction and auditory distraction. The definitions of

each type of distraction is given below.

 School of Engineering and Technology

8

• Visual distraction: It is a type of distraction which involves the shift of drivers’

visual field from driving by engaging in events such as observing in-vehicle objects

or looking outside the vehicle [23].

• Biomechanical distraction: This involves the diversion of focus from driving

because of the engagement of manipulating physical objects [24].

• Cognitive distraction: This type of distraction is directly related to thinking about

other events while driving, a distraction that diverts the attention of drivers away

from driving [25].

• Auditory distraction: It is a type of distraction which involves drivers’ listening

to audio devices such as radio and mobile phones while driving. Furthermore, this

type of distraction may be due to drivers conversing with other passengers while

driving [25].

Although the distraction is divided into four main categories, it has been observed that

occurrence of distracted driving does not take place individually, Rather, the driver may

encounter different types of distraction at the same time. In practical scenarios, all four

types are inter-linked with each other and occur in combinations collaboratively. A perfect

example of this interconnection is a driver answering a phone call while driving. In this

particular case, all the four types of distraction mentioned above will occur. Visual

distraction occurs when a driver looks at the display information on the cell phone before

answering the call and locates the button to answer the call. Physical distraction occurs

when a driver moves his hand from the steering to find the mobile phone in order to receive

an incoming call. Cognitive distraction occurs when a driver in a call conversation shifts

his/her thoughts toward the topic of conversation. Finally, auditory distraction occurs when

a driver involves in conversation with someone on a call.

In a report published by the NHTSA [7], thirteen different sources of distraction were

identified. These sources can be further categorized into three main streams: technology-

based sources, non-technology-based sources and miscellaneous sources. Table 2.2

presents the categorization for the different sources of distraction.

 School of Engineering and Technology

9

Table 2.2: Different Sources of Distraction among Drivers Categorized by NHTSA [7].

Type of Distraction Source

Technology-Based

Operating Radio and/or Music Devices
Talking and/or Conversing on Mobile Phone

Dialling and/or Using Mobile Phone
Adjusting Climate Controls

Using devices/objects brought into vehicles
Using devices/controls integral to vehicles

Non-Technology-Based

Eating or Drinking
Outside Object, Event or Person

Other Passengers in Vehicles
Moving Object in Vehicles

Smoking

Miscellaneous Other Distraction Sources
Unknown Distraction Sources

Although the introduction of modern and state-of-the-art technological systems such as

navigation and entertainment systems has facilitated drivers in many ways, they also

contribute to distracted driving. This claim is well-supported by Stutts et al. [7] who

predicted that the more the increase in advanced in-vehicle technologies, the more the

chances of distraction-related accidents will rise. Stutts et al. [7] and Glaze and Ellis [26]

investigated the impact of distraction and its contributions to road accidents. Stutts et al.

explored the data from Crashworthiness Data System and highlighted the contribution of

different distraction types in road accidents. On the other hand, Glaze and Ellis investigated

the data from Troopers Crash Record and were focused on highlighting different sources

of distraction and their involvement in road accidents. Based on these two studies and

above-mentioned sources of distraction, a comparison has been carried out to study the

impacts of distraction on road accidents and the involvement of different distraction

sources. Table 2.3 lists the results.

 School of Engineering and Technology

10

Table 2.3: Contributions of Different Distraction Sources to Vehicle Crashes.

Distraction Type

Stutts et al. Study [7] Glaze and Ellis’s Study [26]

Distraction Sources
% of

Crashes
Distraction Source

% of

Crashes

Technology-Based

Adjusting radio, cassette,
CD*

11.4 Adjusting radio, cassette,
CD*

6.5

Using/dialling mobile
phone*

1.5 Using/dialling mobile
phone*

3.9

Adjusting vehicle/climate
controls*

2.8 Adjusting vehicle/climate
controls*

3.6

- - Technology device* 0.3

- - Pager* 0.1

Total 15.7 14.4

Non-Technology-
Based

Smoking related* 0.9 Smoking related* 2.1

Other occupant in vehicle* 10.9 Passenger/children
distraction*

8.7

Eating or drinking* 1.7 Eating or drinking* 4.2

Moving object ahead** 4.3 - -

Person, object or event** 29.4 - -

- - Grooming* 0.4

- - Other personal items* 2.9

- - Unrestrained pet* 0.6

- - Document* 1.8

Total 47.2 20.7

Miscellaneous

Other distraction 25.6 Other distraction inside
vehicle*

26.3

Unknown distraction 8.6 - -

Object brought in * 2.9 - -

Total 37.1 26.3

* Inside Vehicle Distraction Source

** Outside Vehicle Distraction Source

2.3. Stages of Drowsiness and Distraction Detection

In general, a drowsiness detection system consists of two main stages; first stage of

extracting drowsiness related features from the facial information captured by sensor and

second stage of classifying the extracted features to decide on the current state of driver

(Drowsy or Active). Face, mouth, eyes and head pose are considered the most relevant

facial features to detect the drowsiness in drivers. Figure 2.1 presents the basic structure of

 School of Engineering and Technology

11

a drowsiness detection system using computer vision technologies reported by Fuletra and

Bosamiya [27].

Figure 2.1: Basic Structure of Drowsiness Detection System using Computer Vision
Based Techniques by Fuletra and Bosamiya [27].

Towards the distraction detection, eye glance of drivers has been considered one of the

credible measure by researchers [28]. In eye glance approach, total time for eyes off the

road is measured for the drivers when involved in performing some secondary task other

than driving [29]. Head movements and eye glances of driver are captured and monitored

using the camera sensor. Further, modern computer vision based tools such as FaceLAB

[6] are used by the researchers in this domain to measure the eye glances based on eye

tracking and head tracking information.

Visual occlusion is another commonly practiced approach by researchers towards detecting

distraction in drivers. In visual occlusion technique, visual distraction of drivers is

mimicked by temporarily blocking the view of drivers and to measure the road off the eyes.

This approach considers that driver does not look on the road always but can be involved

in short interval secondary tasks such as adjusting radio and controlling climate. All the

secondary tasks which can be performed by driver within two second interval are classified

as accepted tasks under this approach. For the defined occluded time interval, a driver can

perform secondary tasks without visually looking at them which give the estimate of drivers

visual demand to perform a task without getting distracted visually [30]. Visual occlusion

based distraction detection approach is considered a promising approach by researchers

[31-33].

2.4. Conventional Approaches for Drowsiness and Distraction

Detection

This section presents the review of some benchmark existing approaches in the literature

regarding the detection of drowsiness and distraction state/level among drivers using the

Image
Acquisition

Face
Detection

Eyes
Detection

Eyes
Tracking

Drowsiness
Detection Alarm

 School of Engineering and Technology

12

computer vision conventional approaches. Conventional approaches involve the extraction

of features using the traditional vision-based approaches, the mathematical expressions or

manually crafted approaches.

Gao et al. [34] proposed and developed a monitoring system to detect the emotional state

of drivers in real-time scenario. The system was non-intrusive, and it used facial expression

analysis to detect the emotional state. Facial expressions of drivers were captured in real-

time by using in-vehicle camera sensors and were classified into two stress-related states:

anger and disgust. The pose normalization approach was used to reduce the effect of head

position on the detection and classification results. Figure 2.2 presents the block diagram

of the system. The system in [34] included two modules: the face acquisition module and

stress detection module working in sequential settings. In the face acquisition module, a

Near-Infrared (NIR) was used to capture the real-time images of drivers, and facial

landmarks were tracked using the face tracking system. In the stress detection module, at

the first stage, the relevant facial features such as face and head pose were extracted using

the local descriptors and holistic affine warping from the input captured data of the first

module. Furthermore, before moving into the classification stage, pose normalization was

applied. In the second stage, the module also provides a set of facial landmarks for the

subsequent stress detection module. In the stress detection module, holistic or local texture

features are extracted from the normalized facial images. They extracted features were

classified using the Support Vector Machine (SVM) technique which is a space vector

based machine learning classifier and aims to find the boundary between multiple output

classes in a hyperplane, to decide the current emotional state of drivers. Based on the

emotional state, the stress level of drivers was determined. SVM was trained offline over

the pre-defined data. Two databases were used for this purpose, Radbound [35] and FACES

[36], containing frontal view, evenly illuminated images from 49 and 179 subjects,

respectively. In [34] to evaluate their system, two datasets containing images and videos

were captured using the in-vehicle NIR camera. Dataset1 was recorded in the office

configuration and included data from 21 different subjects. Dataset2 was recorded in the

vehicle configuration and included data from 12 different subjects. The algorithm proposed

by [34] was independently evaluated for both datasets, and an accuracy of 90.5% and 85%

 School of Engineering and Technology

13

was achieved for office and in-vehicle datasets, respectively. Although the algorithm

exhibited promising performance over both evaluation datasets, it was not tested for

different lighting conditions. In order to implement this system practically, it is of

significant importance to validate the system over dataset containing images with different

illumination conditions because it has been observed that the performance of vision based

algorithms is sensitive to lighting conditions. Furthermore, the system only used the facial

expression analysis to decide the stress level which is most probable to fail in situations

where the face is not visible; thus, other approaches such as head movements and yawning

can be integrated to further improve the results.

Figure 2.2: Block Diagram of Stress Detection System Proposed by Gao et al. [34].

Nakamura et al. [20] developed a system to detect the drowsiness among drivers by

proposing the use of facial expression variations captured using infrared camera sensor.

Authors proposed the idea of using variations in facial wrinkles along with the eye blink

detection to make the system more robust and accurate. Variations in facial wrinkles were

determined by calculating the local edge intensities of captured faces. Eye blinking was

detected by calculating the distance between different feature points as demonstrated in

Figure 2.3 (a). Textural variations were calculated by determining the local edge intensities

at different facial regions such as mouth, eyebrows and nasolabial fold areas as

demonstrated in Figure 2.3 (b). Laplacian filters were implemented using facial feature

points. Extracted feature vectors of facial variations and local edge intensities were

classified using a k-nearest neighbors algorithm (k-NN) based estimation algorithm to

Image
Acquisition

Face
Tracking

Feature
Extraction

Emotion
Detection

Stress
Detection

Offline Model
Training

Face Acquisition Module Stress Detection Module

Pose
Normalization

 School of Engineering and Technology

14

determine the precise drowsiness state of drivers. From the results, the authors reported an

improvement in detection by using textural features and feature point distances. The

recommended algorithm was evaluated over the custom collected dataset from ten different

subjects. An overall accuracy of 82.2% was reported for the proposed algorithms from the

experimental evaluation. Although the proposed method of using wrinkle based textural

features is the novel approach in drowsiness detection, it is important to implement it in

real-time. Besides, more extensive validation of the proposed algorithm over the large

datasets, including different illuminations, is needed.

Figure 2.3: Distance Parameters and Filtering Area for Eye Blink Detection and Textural
Changes Proposed by Nakamura et al. [20].

Tadesse et al. [37] proposed a drowsiness detection system based on the Hidden Markov

Model (HMM), a dynamic modelling of facial expressions. [37] uses HMM to perform

temporal analysis of the dynamics of facial expressions. The detection of facial in each

video frame was carried out by a system as shown in Figure 2.4. They developed a temporal

analysis based system which included, change in facial features images caused by the facial

movements and compared the proposed temporal analysis based drowsiness detection

system with the frame based drowsiness detection system (see Figure 2.4) to highlight its

advantages. The dynamic temporal analysis based drowsiness system utilizes the changes

in the facial expressions of drivers and tries to associate the relation of those variations with

the current drowsiness state of drivers. The authors used yawning, eye gaze, eyelid position

and eye blinking as the facial expressions. The inclusion of additional facial features,

including the eye blinking, improved the overall accuracy of the system. To detect and track

 School of Engineering and Technology

15

the face of drivers, Viola and Jones, and Camshift algorithms were applied to the input

from the camera sensor. Important facial features from the captured faces were extracted

using the Gabor Wavelet Descriptors. Extracted features were selected in two stages before

the final classification stage. In the first stage, a simple threshold-based Adaboost weak

learning algorithm, which is a popular learning algorithm used for image classification and

face detection. The main idea of AdaBoost is to construct a succession of weak learners

through different training sets with different weights. The training sets are derived from

resampling the original data and the weights of the hard-to-leam instances will increase

during every resample which show the main feature of the AdaBoost. These weak learners

are fused through a weighted vote to predict the class label of a new testing instance. They

are very effective on the initial stages in eliminating unwanted features. Usually the

performance of a weak learner should be slightly better than random guessing and the weak

learner is called as base classifier or component classifier. After boosting the final strong

classifier can achieve high accuracy and good generalization ability. The authors applied

this algorithm in the first stage. In the second stage, adaptive-boosting-based strong

classifier was used to. Finally, the selected features from the second stage were classified

using the SVM and HMM to decide the drowsiness state of drivers. The proposed algorithm

was evaluated over the custom collected dataset from two driving subjects through

simulated driving environments for different driving conditions. From the experimental

evaluation of the system, an overall accuracy of 97% and 90% was achieved for the HMM-

based classifier and SVM-based classifier. Although the HMM-based classifier

demonstrated a promising detection accuracy, the proposed method was not validated for

different illumination conditions and diversity of drivers which are important features

towards real-time implementation of drowsiness detection systems.

Figure 2.4: The Block Diagram of the System Used in [37] to Detect Facial Expression in

a Single Video Frame.

Input
Image

Face
Detection and

Tracking

Feature
Extraction

Feature
Selection Classification Result

 School of Engineering and Technology

16

D’Orazio et al. [38] suggested an attention monitoring system for drivers by using eye

analyses and head movements. The team of authors proposed the monitoring of drivers’

eyelids to check if it is opened or closed. Authors used two candidate regions that could

contain eyes and used neural classifiers to recognize the eyes from input image sequences.

Based on the openness of eyes, the current attentive state of drivers was decided. The eye

closure duration and the frequency of eye closure were used as measures for behavioural

analysis of determining the level of fatigue among drivers. The proposed algorithm was

tested for its eye detection capability and behavioural analysis on a custom collected

dataset. Datasets consisted of image sequences of drivers which were captured in the

laboratory and in driving situations. An evaluation of the behavioural analysis was

performed over eye closure parameters collected from image sequences of two different

subjects. From the experimental evaluations, a maximum detection accuracy of 95% and

70% was achieved for subjects with open eyes and partially open eyes, respectively. The

proposed algorithm could train itself adaptively during the driving and introduce the novel

idea of reading driving habits of drivers to respond accordingly.

Saradadevi and Bajaj [39] developed a fatigue detection system for drivers by analysing

the yawning information of drivers captured from the camera sensor. The Viola and Jones

algorithm was used by authors to locate the face and mouth of drivers, and the SVM

classifier was used to decide the fatigue level of drivers. The suggested algorithm was

validated for a custom recorded dataset, and a performance of over 80% detection accuracy

was achieved. Although the proposed system showed promising performance, it is more

probable to fail when the mouth is not visible in the frame. Hence, the use of other visual

information such as eyes and head movements will enhance the overall performance of the

proposed system. Furthermore, the proposed system was not validated against extensive

dataset; thus, it could not be implemented in real-time unless it was tested for large datasets

containing images from the diversity of drivers under variable lighting conditions.

Singh and Papanikolopoulos [40] proposed a system to detect fatigue and distraction among

drivers using the facial feature analysis. A colour camera was used by the authors to

meticulously scan the driver face for relevant fatigue and distraction-related features such

as eyes, mouth and head pose. Prominent skin pixel variations were captured using the skin

 School of Engineering and Technology

17

colour mode. Skin like pixels from the input colour facial images were filtered using the

skin colour model and were further processed using the blob processing approach to

determine the connected areas and exact position of the face accordingly. To localize the

eyes in the facial region, a horizontal gradient technique was implemented; however, the

grey scale processing approach was used for real-time pupil detection. Information from

this processing helped the system to capture the eye blinking variations and face directions.

The proposed system was evaluated over a custom recorded dataset of drivers with different

skin colours, gender and facial hair. From the experimental results, authors achieved a

prolonged eye blink detection accuracy of approximately 95%. Although the proposed

system exhibited promising results for the fatigue detection among drivers, it was not tested

for different illumination conditions. Furthermore, other fatigue and distraction-related

facial features such as yawning, expressions, and nostrils can be integrated to enhance the

performance of the overall system.

Percentage Eye Closure (PERCLOS) [41] is one of the most commonly used and reliable

measures for detecting visual distraction reported in the literature. PERCLOS is the

percentage of eye closure over a given time interval. The feature of detecting slow eye

closure rather than eye-blinking makes PERCLOS an accurate measure to detect eye-

blinking among drivers [41]. Bergasa et al. [42] proposed an attention monitoring system

by detecting the level of drowsiness and distraction among drivers. The authors used the

head position information to determine the level of distraction, and PERCLOS and yawning

rate to measure the drowsiness level of driver. The combination of all three factors helped

the system to detect the attention level of drivers efficiently. They also used RANSAC and

POSIT 3D face tracking models to estimate the head movements. User-and-illumination-

independent model for facial expression was used to detect different facial features.

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) were

applied to reduce the input data dimensions. PERCLOS threshold was used to decide the

attention level of drivers. The proposed algorithm was evaluated over a custom recorded

video dataset in simulating the environment and actual driving scenario. Cohn-Kanadae

dataset [43] was used to train the facial expression classifier mode. Facial expressions were

efficiently detected by the proposed algorithm for the given dataset and were not

 School of Engineering and Technology

18

significantly affected by illumination conditions: however, the authors did not report any

numerical results. The face pose estimation algorithm was able to track the face with ±40&

face rotation accurately. Based on the performance results of two subsystems, the authors

achieved an accuracy of 92% in detecting the attention state of drivers.

Dasgupta et al. [44] proposed a driver attention monitoring system based on PERCLOS to

determine the level of drivers attention. They used Kalman filtering and Haar-like features

to track and detect the face captured by the camera sensor used in detection of eyes at day

and night using feature techniques. The authors proposed two different methods for

different lighting conditions to detect and extract the eyes from detected faces. In order to

extract more effective features from the static images, Local Binary Patterns (LBP) features

and the principal component analysis (PCA) approach are used. The PCA is used to reduce

dimensions of the features which are combined by the gray pixel value and Local Binary

Patterns (LBP) features is used as an important descriptor for the pattern analysis of image,

the authors used these feature technique to get the texture information from the images. All

the features are extracted from the active facial patches. The active facial patches are these

face regions which undergo a major change during different lighting conditions. PERCLOS

values were classified to determine the closeness and openness of eyes using the SVM

classifier, and, accordingly, the attention level of drivers was determined. To compensate

the face rotations during real-time driving scenarios, affine and perspective transformations

were applied. Furthermore, the Bi-Histogram Equalization (BHE) approach was used to

compensate for the different illumination conditions in real-time driving situations. The

proposed algorithm for attention monitoring of drivers was evaluated for simulated driving

conditions and actual driving conditions in both daylight and night scenarios. The scholars

achieved an overall classification accuracy of 98.6% with 9.5 framers per second speed.

Ji et al. [45] recommended a fatigue monitoring system for drivers in real-time situations

based on IR illumination device and Charge-Coupled Device (CCD) camera. The idea of

IR illumination devices was used by the authors to improve the monitoring results in low

light conditions. Combination of different behavioural measures such as gaze estimation,

eyelid movement, facial expressions and head pose was used to determine the driver

alertness. Eyes detection was achieved by using SVM classifier while for eye tracking a

 School of Engineering and Technology

19

combined approach of using Kalman filters and mean shift tracking was used. Talking more

technically, PERCLOS and Average Eye Closure Speed (AECS) [46] were used as a

measure to decide the driver alertness. A probabilistic model (Bayesian Networks) was

established by the authors to mimic human fatigue and visual information was used to

predict the current fatigue level of drivers. The proposed system was evaluated in two part

by authors. In the first part, detection accuracies of individual computer vision based facial

feature detection algorithms was validated while in the second part, fatigue parameters

validity was evaluated. For eye detection, a huge dataset of 13620 images was used and

detection accuracy of 95.8% was achieved by the researchers. For head pose, an estimated

root mean square error of 1.92 degrees and 1.97 degrees was achieved for pan and tilt

angles, respectively. For fatigue parameters evaluation, data from eight subjects was

collected and response time was used as metric for performance. However, no numerical

results were reported by the authors in this regard.

Sacco et al. [47] developed a driver alertness system in real-time by utilizing facial features

of drivers. Important visual facial features such as the face, eyes and mouth from the camera

input were detected using the Viola and Jones algorithm. Real-time tracking of the detected

facial features was achieved by using the template matching approach. Extracted facial

features were then classified using the SVM classifier. PERCLOS, average eye closure

interval and degree of mouth openness were utilised in deciding the level of alertness

among drivers. Viola and Jones face, eye and mouth detection algorithms were evaluated

over 6,000 images dataset containing the exact half of negative and positive images.

FERET dataset was used for the positive images, while negative images were captured from

an in-vehicle video feed. As for the face detection, an accuracy of 99.9% was achieved,

whereas as for the eye detection and mouth detection, detection accuracies of 96% and

91.9% were achieved. The overall accuracy of 93.24% and 95.20% were achieved by

authors for SVM with linear kernel and SVM with Radial Basis Function (RBF) kernel,

respectively.

Bergasa et al. [48] proposed a real-time non-intrusive driver vigilance monitoring system

using the computer vision approach. The authors used the IR illuminated camera sensor

hardware to capture the facial information of drivers. Six different vigilance related

 School of Engineering and Technology

20

parameters were calculated in the proposed research: the PERCLOS, eye closure interval

duration, frequency of eye blinking, frequency of head nodding, position of face and fixed

gaze directions. Computer parameters were combined into fuzzy-based classifier, and

decision on the driver attentiveness was made. The suggested algorithm was evaluated over

the custom collected dataset of real-driving from ten different users in both day and night

lighting conditions. The authors achieved the detection accuracies of 93.12%, 84.37%,

80%, 72.5%, 87.5% and 95.2% for PERCLOS, eye closure duration, eye blinking

frequency, head nosing frequency, face position and fixed gaze direction, respectively.

Fan et al. [49] suggested a yawning detection system for measuring the fatigue among

drivers. They used CCD camera sensor to capture the facial and mouth information of

drivers. Face detection was achieved using the Gravity-Center template approach, while

mouth corners were detected with the grey projection approach. Furthermore, the authors

used the Gabor Wavelets approach to extract the texture related features from the mouth.

Extracted yawning related features were then classified using the LDA classifier, and the

decision on yawning was made. They also evaluated the proposed algorithm over 400

image sequences selected from twenty different video sequences. From the experimental

results, the authors achieved an overall yawning detection accuracy of 95%.

Vural et al. [50] proposed a drowsiness detection system using machine learning on facial

movements of drivers. Machine learning approach was used by the authors to determine

the actual behaviours of drivers during drowsiness episodes. Machine learning classifiers

were developed using 30 different facial actions from Facial Action Coding. Classifier

included drowsiness-related facial actions such as eye blinking, yawning and head

movements. Information of these facial actions was passed to Adaboost and multi-nomial

ridge regressor to predict the sleep and crash episodes among drivers. Proposed algorithm

was evaluated using a driving computer game simulation and classification accuracy of

96% and 90% was achieved by the authors for in-subject and across-subject, respectively.

Yin et al. [51] proposed a novel approach for fatigue detection among drivers based on the

multiscale dynamic features of facial images. Multiscale representations from input image

sequences were achieved by using Gabor filtering technique. At the next stage, from each

 School of Engineering and Technology

21

multiscale image, LBP were extracted. Resulted LBP of image sequences were divided into

dynamic features and were concatenated with the histogram of each dynamic feature. A

statistical based learning algorithm was used to select the most distinguished dynamic

features and at the final stage a strong classifier was used to classify the state the drowsiness

among drivers based on selected dynamic features. The proposed algorithm was evaluated

over custom collected data set of 600 images coming from thirty different subjects. From

the experimental results, the researchers achieved the classification accuracy of 98.33%.

Flores et al. [52] proposed a computer vision and artificial intelligence based Advanced

Driver Assistance System (ADAS) to automatically detect the drowsiness among drivers.

They used the visual information such as face, eyes and head position to decide the

drowsiness and distraction level of drivers. Viola and Jones algorithm was used to detect

the face while eyes were located by defining the regions of interest in detected faces. To

track the eyes and face, fusion of condensation algorithm and neural networks was applied.

Finally, eye state detection was achieved by using SVM classifier. Important features of

eye were extracted using the Gabor filters. Drowsiness index was determined based on the

PERCLOS measurements. The proposed algorithm was evaluated over the custom

collected dataset under different lighting conditions and from the diversity of drivers. From

the experimental results, on average accuracy of 90% was achieved.

Liu et al. [53] proposed a drowsiness detection system based on the eyelid movements of

drivers. They used the cascade classifiers for the detection of the face from input sequences

and diamond search algorithm to track the face in real-time. Temporal difference image

approach was used to detect the eyelid movements. To judge on the performance of the

proposed system, the authors used eyelid closure duration, group of continuous blinks and

eye blinking frequency as three measures. The suggested algorithm was evaluated over

custom collected low resolution dataset of ten different subjects. From the experimental

results, an accuracy of about 98% was achieved by the scholars.

Zhang and Zhang [54] proposed a fatigue detection system for drivers based on the non-

linear Kalman filters and eye tracking. Unscented transformations were used by the authors

to non-linearly track the eyes in real-time. PERCLOS was used as a measure to detect the

 School of Engineering and Technology

22

fatigue level among drivers. Face detection was achieved using the SVM based classifiers.

The proposed algorithm was validated over 20 qualified drivers with different genders and

different ages. From the experimental results, eye detection accuracy of over 99% was

achieved by the authors.

Park and Trivedi [55] proposed a head posed detection system towards determining the

attentiveness of drivers using Support Vector Regressor (SVR). They implemented the

universal motion approach and colour statistical orders to monitor and track facial

behaviours of drivers. The proposed method was reported to be failed if driver is rotating

its head in certain direction, conversing with other in-vehicle passengers and if wearing the

glasses. Proposed algorithm was evaluated over a custom recorded NTSC image dataset of

subjects performing different driving related tasks. The authors did not report any extensive

evaluation results in numerical rather presented the results as segmented images.

Improvements in the proposed system can be made by integrating other sensors such as

thermal images and steering images. Furthermore, the fusion of this approach with vision

based attention monitoring approaches will enhance the overall performance.

Nguyen et al. [56] proposed a computer vision based system to monitor the real-time

drowsiness among drivers using the facial features of driver. A camera sensor was used to

capture the RGB visual information of driver. For face detection, Haar features based

approach was applied while for eyes detection random forest approach was used. From the

detected eyes, binary images of local eye regions were extracted. From the binary images,

a decision on drowsiness was taken based on closeness and openness of eyes. A pre-defined

threshold was used to determine if the driver is drowsy or not. Proposed algorithm was

evaluated over data collected from four different subjects in normal illumination

conditions. From the experimental results, the detection accuracy of 97.6% and 94% was

achieved for eye detection and eye-state prediction, respectively.

Kholerdi et al. [57] proposed a human visual system-based image processing approach to

detect the drowsy behaviour among drivers. Images captured by the camera were pre-

processed for illumination conditions, including the noise before getting into the feature

extraction stage. The luminance variation model was used for illumination variation, while

 School of Engineering and Technology

23

spatio-temporal filters were applied to compensate for the noise. To detect the eyes and

mouth from pre-processed images, the Viola and Jones algorithm was applied. Motion

events around the eyes and mouth were captured by using energy of the Mango approach

in the Region of Interest (RI). Finally, three measures – the head dropping, yawning and

closed eyes –were used to define thresholds and conditions and decide the drowsiness level

of drivers. The proposed system was evaluated for the custom defined dataset, and an

overall classification accuracy of 90% was achieved by the authors.

Jo et al. [58] defined a term PERLOOK as a measure that detects the distraction level of

drivers. A similar idea PERCLOS for drowsiness detection was used to define PERLOOK.

They defined PERLOOK as the percentage of time interval which a driver is not looking

straight i.e. a rotated head or eyes of the road. A certain threshold of PERLOOK was

defined for active driving. If the detected PERLOOK value of drivers was greater than the

defined threshold, the driver was classified as visually distracted. They used the yawning

information to determine PERLOOK, and the eye blinking information to determine

PERCLOS values of drivers. Then, they decided on the drowsiness and distraction level

based on these values. PCA and LDA approaches were used to extract the features. Nabo

[59] used a software toll, SmartEye [60], to determine the value of PERLOOK from camera

input towards detecting the distraction. Extracted features were then classified using the

SVM with BF kernel to determine the attention level of drivers. To evaluate the proposed

system, a dataset of 162,772 images from 22 different subjects was collected. The proposed

system was evaluated for eye detection, eye state detection and inattention classification.

The authors achieved the detection accuracy of 98.58%, 98.55% and 97.09% for eye

detection, open eye state detection and closed eye state detection, respectively. For attention

level measurements, 0% error was achieved for recognizing inattentive state as the normal

state, while 2% error was recorded for recognizing normal state as inattentive state.

Craye and Karray [61] proposed distraction detection and type recognition system for

drivers using computer vision based approach. Overall, the proposed system includes four

modules, eye behaviour module, arm position module, head pose module and facial features

module. Distraction related features such as eye blinking/gaze direction, arm position, head

position and facial expressions from each module were extracted, respectively. Extracted

 School of Engineering and Technology

24

features were then classified using two different classifiers, AdaBoost and HMM to decide

the distraction state of driver. The proposed algorithm was evaluated over the custom

collected video set and manually labelled for different distraction tasks. The authors

achieved an accuracy of 85% and 84% for AdaBoost and HMM classification, respectively.

Liao et al. [62] proposed a novel approach for detecting the real-time cognitive distraction

among drivers using SVM. The proposed system consisted of three main elements: a

feature calculation module, SVM classification module and a filtering recognizer module.

The algorithm used the facial information like gaze direction and head position from facial

images while incorporating the steering angles and speed of vehicles from in-vehicle

sensors. From the collected information, distraction-related features were calculated and

extracted. Extracted feature vectors were initially classified by SVM and were stored in the

buffer. Finally, a filtering recognizer was used to classify the attention level of drivers. To

validate the final classification, authors implemented a consistency tester. To evaluate the

proposed algorithm, they collected data from 26 different subjects using a driving simulator

under both urban area conditions and highway conditions. Froom the experimental results,

the researchers achieved the classification accuracy of 93% and 98.5% for highway and

urban areas, respectively.

Kircher et al. [63] proposed two algorithms, Percentage Road Centre (PRC) and the 3D

model of vehicles to detect the distraction among drivers. The first algorithm used the gaze

direction information of drivers, and the authors decided the type and level of distraction

based on the PRC measured values. PRC greater than 85 was classified as cognitive

distraction sand less than 58 was decided as visual distractions. In the second algorithm,

they defined the visual field of drivers by utilizing the internal 3D model of vehicles. A

driving-related visual field was defined by the authors; if the detected eye glance of drivers

was within the defined visual field, they were classified as active otherwise distracted. For

the evaluation purposes, seven subjects (4 males and 3 females) were involved in the study.

However, the authors did not report any numerical results; rather, they presented only the

qualitative analysis.

 School of Engineering and Technology

25

Pohl et al. [64] recommended a driver distraction detection system by using gaze direction

and head pose as measures of detection. They used a decision maker to classify the

distraction level among drivers accurately. Furthermore, lane keeping modules and lane

position modules were used by authors to detect distraction. The proposed system was

evaluated by the authors for true positive, false positive, and true negative interventions.

Murphy-Chutorian et al. [65] suggested a distraction detection system based on the head

pose detection. They used the localized gradient orientation histogram approach to extract

the distraction-related features. The authors also classified those features using SVM

regression to decide the level of distraction. Head orientation was estimated in two degrees

of freedom (yaw and pitch). They used an experimental testbed to mimic real driving

situation, and data were collected to evaluate the proposed algorithm. Data from ten

different subjects were captured and used to train the head pose estimation classifier. The

mean absolute error was used as a measure of performance for the proposed head pose

estimation algorithm. For laboratory experiments, an error of 5.58 and 6.40 degree was

recorded for yaw and pitch angles. For daylight driving experiments, an error of 3.99 and

9.28 degree was observed for yaw and pitch angles, respectively. Finally, for nightlight

driving experiments, an error of 5.18 and 7.74 was achieved for yaw and pitch angles,

respectively.

Table 2.4 presents the summary of overall cited literature related to drowsiness and

distraction detection using conventional approaches. Table 2.5 presents the categorization

of cited literature in terms of what detection measure being used, what approach was for

detection used and what classifier implemented to achieve the final decision.

Comprehensive literature study and critical analysis have been reported regarding the use

of conventional computer vision approaches in detecting drowsiness and distraction in

drivers. Mostly, the approaches involve the crafting of facial features related to drowsiness

and distraction manually and classifying manually crafter features using pre-trained

machine learning classifiers. However, from the literature it has been identified that

conventional approaches are poor in handling the generalized situations and hence are not

implemented in real-world applications. As part of this research, conventional approaches

 School of Engineering and Technology

26

based eye detection, yawning detection and head pose detection systems have been

implemented to detect the drowsiness in drivers and are critically analysed. Chapter 3 and

Chapter 4 of this thesis presents the theoretical and implementation details of conventional

computer vision approaches.

 School of Engineering and Technology

27

Table 2.4A: Comparison of Literature Related to Drowsiness and Distraction Detection using Conventional Computer Vision

Approaches.

Authors Database
Information Features/Measures Facial Elements Methods/Techniques Classifiers Performance

Gao et al [34]

FACES and
Radbound Dataset

for training.
Custom Dataset for

evaluation

Eye blinking, Yawning
and Head pose

Anger and Disgust stress
related emotional states

Face, Eyes, Mouth
and Head

Holistic affine, wrapping, local
descriptors, Gabor Wavelets

SVM, Ratio of eye-
height and eye-width

Office datateset:90.5%
In-vehicle dataset: 85%

Nakamura et al. [20]
Custom dataset

collected from 10
subjects

Eye blinking, Changes in
Wrinkles Face and Eyes

Laplacian filters, edge
detectors in addition with

feature methods
K-NN Neural Classifier 82.2%

Tadesse, et al. [37]
Custom dataset
collected from 2

subjects

Eye blinking, eye gaze,
head pose and yawning

Eyes, mouth, skin,
face and lips

Gabor wavelet
decomposition

Adaboost
SVM and HMM HMM: 97%

SVM: 90%

D’Orazio, et al [38]
Custom dataset
collected from 2

subjects

Eyelid movements and
head pose

Eye closure duration and
eye closure frequency

Eyes, face and head Hough Transforms and
Neural Netowrks Normal Behavior Model Open eyes: 95%

Partially open eyes: 70%

Saradadevi and Bajaj [39] Custom Dataset Yawning Face and mouth Viola and Jones algorithm SVM 80%

Singh and
Papanikolopoulos [40] Custom Dataset Skin variation, eye

blinking, face direction Face and Eyes
Skin Color Model,

Horizontal Gradient and
Grayscale Processing

Eye Closure Duration
Thresholding

Eye Blink Accuracy:
95%

Bergasa et al. [42] Cohn-Kanadae
Dataset

Head pose, eye blinking
and yawning
PERCLOS

Face, eyes, mouth
and head

RANSAC, POSIT 3D,
PCA and LDA PERCLOS Threshold

Head Pose: ±40$
Attention Detection:

92%

Dasgupta et al. [44] Custom Dataset Eyelid movements
PERCLOS Face and eyes

Kalman Filters, Haar-Like
Features, PCA, LBP and

BHE
SVM 98.6%

Ji et al. [45]
Custom collected
dataset of 13620

images

Gaze estimation, eyelid
movements, facial

expressions and head
pose

PERCLOS and AECS

Face, eyes and head Kalman Filters and Mean
Shift Tracking

SCM and Bayesian
Networks

Eye detection: 95.8%
Mean Square Error

Pan Angle: 1.92
Tilt Angle 1.97

Saccor et al. [47] FERET Dataset
Eye closures, degree of

mouth openness
PERCLOS

Face, Eyes and
Mouth

Viola and Jones, and
Template Matching SVM

Face detection: 99.9%
Eye Detection: 96%

Mouth Detection: 91.9%

 School of Engineering and Technology

28

Table 2.4B: Comparison of Literature Related to Drowsiness and Distraction Detection using Conventional Computer Vision

Approaches.

Authors Database
Information Features/Measures Facial Elements Methods/Techniques Classifiers Performance

Bergasa et al. [48] Custom Dataset

Eye blinking, head
nodding, gaze direction

and face position
PERCLOS, eye closure

Face, Eyes and
Head

Finite State Machine, Blob
Detection and Kalman Filters Fuzzy Classifier

PERCLOS: 93.12%
Eye Closure Duration: 84.37%
Eye Blinking Frequency: 80%

Head Nodding: 72.5%
Face Position: 87.5%

Gaze Direction: 95.2%

Fan et al. [49] 400 images from 20
videos Yawning Face and Mouth Gravity-Center Templates, Grey

Projection and Gabor Wavelets LDA 95%

Vural et al. [50]
Driving Game

Simulation collected
data

Eye blinking, yawning
and head movements

Face, Eyes and
Head Machine Learning Approach

Adaboost and
Multi-Nomial

Ridge Regressor

Within Subjects: 96%
Across Subjects: 90%

Yin et al. [51]
Custom collected

dataset of 600 images
from 30 subjects

Multiscale Dynamic
Facial Features Face LBP and Statistical Learning Cascade Strong

Classifier 98.33%

Flores et al. [52] Custom Dataset
Eye blinking and Head

Pose
PERCLOS

Face and Eyes

Viola and Jones,
Condensation Algorithm,

Neural Networks and Gabor
Wavelets

SVM and
PERCLOS
Threshold

90%

Liu et al. [53] Custom collected
data from 10 subjects

Eyelid movements, eye
closure and eye blinking Face and eyes

Diamond Search Algorithm
and Temporal Difference

Images

Threshold based
classification 98%

Zhang and Zhang [54]
Custom collected

data from 20
qualified drivers

Eye closure and
monitoring
PERCLOS

Face and Eyes Kalman Filters, Unscented
Transformations SVM 99%

Park and Trivedi [55] Custom collected
NTSC images

Facial behaviors and head
pose Face and Head Universal Motion Approach

and Color Statistical Model SVM Regrtessor No Quantitative Results Reported

Nguyen et al. [56]
Custom collected

dataset from 4
subjects

Eye blinking and eye
closure Face and Eyes Haar Features and Random

Forest
Pre-defined
Thresholds

Eye Detection: 97.6%
Eye State Prediction: 94%

Kholerdi et al. [57] Custom Dataset Head dropping, yawning
and eye blinking

Face, Mouth, Eyes
and Head

Viola and Jones, Spatio-
Temporal Filers and Energy

of Mango Approach

Pre-defined
Thresholds 90%

 School of Engineering and Technology

29

Table 2.4C: Comparison of Literature Related to Drowsiness and Distraction Detection using Conventional Computer Vision

Approaches.

Authors Database
Information Features/Measures Facial Elements Methods/Techniques Classifiers Performance

Jo et al. [58]
Data set of 162,772

images from 22
different subjects

Yawning and eye
blinking

PERLOOK and
PERCLOS

Face, Mouth and
Eyes PCA+LDA SVM with BF

Kernel

Eye Detection: 98.58%
Open Eye State: 98.55%
Close Eye State: 97.09%

Attention Level: 98%

Craye and Karray [61] Custom Database
Eye blinking, gaze

direction, arm position
and head pose

Eyes, Head and
Arm position

Marching Squares Algorithm
and Hough Transform

AdaBoost and
HMM

AdaBoost: 85%
HMM: 84%

Liao et al. [62]

Data collected from
26 different subjects

in urban and
highway driving

conditions

Gaze direction, head
pose, steering angles and

vehicle speed
Head SmartEye software tool SVM Highway driving: 93%

Urban driving: 98.5%

Kricher et al. [63]
Data from 7 subjects

(4 Male and 3
Female)

Gaze direction and Visual
field

PRC and AttenD
Head and Eyes Not Reported PRC and visual

field thresholds No Quantitative Results Reported

Pohl et al. [64] Custom Dataset Gaze direction and head
pose

Eyes and Head Not Reported Decision Maker No Quantitative Results Reported

Murphy-Choutrian et al.
[65]

Date collected from
different subjects

using experimental
testbed

Head pose and
orientation Head Local Gradient Orientation

Histogram SVM Regression

Mean Absolute Errors
Lab Experiments

Yaw Angle: 5.58 degree
Pitch Angle: 6.49 degree
Daylight Experiments
Yaw Angle: 3.99 degree
Pitch Angle: 9.28 degree

Night Experiments
Yaw Angle: 5.18 degree
Pitch Angle: 7.74 degree

 School of Engineering and Technology

30

Table 2.5: Categorization of Conventional Computer Vision Approaches from Literature for Distraction and Drowsiness

Detection.

 Detection Measures Approaches to
Feature Extraction Classifiers

 Eye
blink Yawning Head

pose
Gaze

direction Other Handcrafted
Filtering

Machine
Learning Threshold Fuzzy

Logic LDA SVM Other

D
ro

w
sin

es
s

[20] [34]
[37] [38]
[40] [42]
[44] [45]
[47] [48]
[50] [52]
[53] [54]
[56] [57]
[58] [61]

[34] [37]
[39] [42]
[47] [48]
[49] [50]
[57] [58]

– –

[20]
(change in
wrinkles)

[34]
(Emotional

states)
 [40]
(Skin

variation)
 [51]

(Multiscale
facial

features)
 [55]

(Facial
behavior)

[20] [34]
[37] [38]
[40] [42]
[44] [45]
[48] [49]
[53] [54]
[55] [57]
[58] [61]

[38] [39]
[44] [47]
[50] [51]
[52] [56]

[57]

[34] [40]
[42] [52]
[53] [56]

[57]

[48] [42] [49]

[34] [37]
[39] [44]
[47] [52]
[54] [55]

[58]

[20]
(KNN)

[37] [61]
(HMM)

 [38]
(Normal
Behavior
Model)

 [45]
(SCM and
Bayesian)

 [50]
(Ridge

Regressor)
 [51]

(Strong
Cascade)

D
ist

ra
ct

io
n

– –

[34] [37]
[38] [42]
[45] [48]
[50] [52]
[55] [57]
[58] [61]
[62] [64]

[65]

[37] [45]
[48] [61]
[62] [63]

[64]

[61]
(arm

position)
 [62]
(in-

vehicle)
[63]

(visual
field PRC)

[34] [37]
[38] [42]
[45] [48]
[55] [57]
[58] [61]

[65]

[38] [50]
[52] [57]

[42] [52]
[57] [63]

[64]
[48] [42]

[34] [37]
[52] [55]
[58] [62]

[65]

[37] [61]
(HMM)

[38]
(Normal
Behavior
Model)

[45]
(SCM and
Bayesian)

[50]
(Ridge

Regressor)

 School of Engineering and Technology

31

2.5. Deep Learning

Artificial intelligence, machine learning and deep learning are often associated together and

interlinked. Figure 2.5 presents the relation between artificial intelligence, machine

learning and deep learning.

Figure 2.5: Relation between Artificial Intelligence, Machine Learning and Deep
Learning [66].

Artificial intelligence is a broad domain of computer science which explores the concept

of making computing machines to be able to think and solve problems intelligently like

humans. Artificial intelligence involves various approaches to achieving the defined task,

and machine learning is one of the fields which can achieve this goal. Machine learning,

on the other hand, revolves around the concept of teaching a computer to solve a certain

problem by training it with sample data. This process is also referred to as learning

representation through data in technical language. It is important to understand how

learning takes place in this process. The process of learning involves the meaningful

transformations of input data automatically. These meaningful transformations are also

referred to as the learned feature representations, which are achieved using different

functions. Conventional machine learning algorithms involve the role of the engineer to

define human-crafted features or what type of features needs to be extracted. This makes

the conventional machine learning algorithms subjective in nature; that is why they differ

in results significantly when applied to different situations and when they are trained by

Artificial
Intelligence

Machine
Learning

Deep Learning

La
ye

r
(T

ra
ns

fo
rm

at
io

n)

Predictions

Ground Truth

Loss Function

OptimizerWeightsWeightsWeights

La
ye

r
(T

ra
ns

fo
rm

at
io

n)

La
ye

r
(T

ra
ns

fo
rm

at
io

n)

Input

 School of Engineering and Technology

32

different human-crafted features. In contrast, deep learning automates the feature selection

and extraction process [66].

Deep learning is a branch of machine learning which uses deep layered network

architectures to learn the feature representations in a hierarchal way i.e. learning of low-

level features at initial layers of the network while higher level features towards the end of

the network. Deep learning provides the advantage of learning feature representations

automatically without any human intervention, an advantage which was the major

drawback of conventional machine learning algorithms. Deep architectures are basically

inspired from the animal cortex system which consists of a number of hidden layers unlike

the shallow architectures which have only a few hidden layers [67]. Each layer in the

architecture transforms the input data which is characterized by the weights of the layer.

The goal of deep learning is to train the layer weights so that inputs are mapped to the

output with minimum possible losses. This objective seems quite simple, but in practice,

deep architecture consists of a number of layers and involves the learning of a large number

of parameters. Given that changing the value of one parameter will change the behaviour

of all the other parameters, learning large number of parameters is a relatively complex

problem. To measure the performance of predictions made by a deep architecture, a loss

function also known as the objective function is used to compare the predicted values with

the ground truth and to generate a loss score. This loss score is then propagated backwards

using some optimiser to update the weights of layers so that the loss score is minimized.

The optimiser is basically the central element in the training of a deep architecture, and it

usually implements efficient backpropagation algorithms such as the gradient descent.

Figure 2.6 presents the basic functional diagram of how a deep architecture works.

At the beginning of the training process, the layer weights are initialized with random

values in most cases. This means that some random transformations are applied to the input,

thus making the predictions not close to the ground-truth (and hence a high loss score).

However, as the numbers of iterations are performed, the weights are updated to adopt the

minimization of the loss score to produce a better output. It is important to mention that the

initialization of weights in a deep architecture in itself is an active area of research. With

 School of Engineering and Technology

33

the introduction of a Deep Belief Network (DBN) by Hinton et al. [68] in 2006, the training

process of deep architectures was revolutionized.

Figure 2.6: Functional Working Diagram of Deep Learning [66].

Deep learning approaches offer a number of advantages over the conventional machine

learning methods, including better performances for a number of tasks and effective

computational abilities. However, the most important advantage of deep learning is the

automation of feature engineering processes for complex real-world tasks in improving

performances, efforts and generalization. Despite all the advantages, the efficiency of deep

learning is encumbered with the following limitations.

(a) Overfitting: Given that deep architectures involve a large number of parameters at

different layers, the problem of overfitting is likely to be encountered during the

training process.

(b) Training Data: Deep architectures require a huge amount of data to train the model

efficiently and to achieve better performance. However, the availability of such

amount of data is not always possible. To deal with the problem of data

insufficiency, researchers now use augmented datasets [69, 70] and transfer the

learning of pre-trained models [71, 72].

(c) Computational Resources: To train a deep architecture, huge amount of

computational power is needed depending upon the complexity of the architecture

Artificial
Intelligence

Machine
Learning

Deep Learning

La
ye

r
(T

ra
ns

fo
rm

at
io

n)
Predictions

Ground Truth

Loss Function

OptimizerWeightsWeightsWeights

La
ye

r
(T

ra
ns

fo
rm

at
io

n)

La
ye

r
(T

ra
ns

fo
rm

at
io

n)

Input

 School of Engineering and Technology

34

and the nature of the problem being solved. However, the computational resources

are only needed at the time of training. Once the model is trained, it can be used in

real-time applications using the existing hardware commercially. Given the

availability of Graphical Processing Units (GPUs) in the market and the concept of

cloud computing, training deep architectures is no longer considered a limitation.

Nevertheless, such training is time-consuming.

(d) Parameter Optimization: Although deep architectures can be used to solve

complex problems successfully, a number of questions remain unanswered, for

example which model is appropriate for a given problem, why the performance of

one model is better in one situation than the other, and how to optimise different

parameters involved in the deep architecture.

2.6. The Architecture of Convolution Neural Networks

CNNs also known as ConvNet are a class of deep-learning feed-forward networks widely

used for processing grid-like topology data i.e. images. CNN models are designed to

emulate the visual cortex behaviour and are considered the most powerful models that can

perform computer vision tasks such as image classification. The CNN architecture consists

of convolution layers, pooling or down-sampling layers, non-linear layers (activation

functions), fully connected layers, classifiers, loss functions and optimizations [73].

2.6.1. Convolution Layer

A convolution layer is the principal operation in these networks whose task is to transform

the input data to extract features without losing the spatial dimensions/information of the

input data. Equation 2.1 presents the mathematical expression for the convolution

operation.

																																																																	"# =%&' ∗)
' + +

,

'-.

																																																(2.1)

where) is the input image of convolution layer with the dimension 4 × 4 × 6, & is the

filer of size 7 × 7 with 8 kernel size and "# is the convolved output with 7 × 7 × 8 size.

 School of Engineering and Technology

35

At different convolutional layers, different filters are used. Each filter extracts different

feature representations. In practice, it is common to use multiple filters at each

convolutional layer. The output of the convolutional layer is usually referred to as the

activation maps which are then fed to an non-linear activation function. The size of

convolutional layers is dependent on three factors: the size of stride or filter translational

jump, the size of padding to the input image, and the number of filters used at the layer

(depth).

2.6.2. Pooling Layer	
A pooling layer is also referred to as the down-sampling layer and usually follows the

convolutional layer periodically. The primary objective of a pooling layer is to reduce the

spatial size of activation maps, the computations and the size of the number of parameters

to avoid overfitting problems. The most commonly used pooling approach is max pooling

in which input maps are divided into clusters, commonly a 2 by 2 rectangle with a stride of

2, and a maximum value of each cluster is taken. It is important to note that the depth of

the data remains unchanged in pooling even though the spatial dimensions are reduced.

Other pooling approaches available include average pooling and L2-norm pooling;

however, in practice mostly max-pooling is used.

2.6.3. Fully Connected Layer

A fully connected layer is the final layer before classification. In this layer, all the learned

classification maps are represented as vectors and are connected to all the neurons of the

previous layer. These learned feature representations are then classified or predicted as one

of the multiple output classes in classification tasks.

Deep learning has been effectively implemented by researchers in computer vision for

visual-computation and face-recognition tasks. Some CNN-based deep learning

architectures with validated performances on large datasets in computer vision include

AlexNet architecture [74], ResNet50 architecture [75], NASNet architecture [76], and

MobileNet architecture [77]. Some applications of deep learning include SLAM, natural

language processing, deep reinforcement learning and semantic segmentation. Figure 2.7

presents a typical CNN architecture.

 School of Engineering and Technology

36

Figure 2.7: A Typical CNN Architecture.

2.7. Activation Functions

An activation function is the non-linearity which determines the output of a neuron in terms

of the local field. A number of activation functions are available to be used depending on

the type of problems being solved.

2.7.1. Simple Threshold Function

A threshold function is usually a piecewise function which assigns a specific value (usually

1) if the input is greater than or equal to 0, and it assigns zero if the value of the input is

less than zero [78]. Mathematically, it can be represented as shown below (see Equation

2.2).

																																																																		9(:) = ;
1, : ≥ 0
0, : < 0

																																																							(2.2)

2.7.2. Sigmoid Function

A Sigmoid function is the “S” shape function and is the most commonly used activation

function in neural-network constructions. Mathematically, a sigmoid function can be

represented as shown in Equation 2.3.

																																																																		9(:) =
1

(1 + @A)
																																																								(2.3)

Two main limitations of a sigmoid function are that it is not zero-centred and that it offers

saturation in the most positive and negative region. Furthermore, because it involves the

exponential term, it requires a high computational power.

 School of Engineering and Technology

37

2.7.3. Hyperbolic Function

A hyperbolic activation function is similar to a sigmoid function, and it addresses one of

the limitations of a sigmoid function, which is the inability to be zero-centred. However,

due to the saturation, there are chances of getting dead neurons. Mathematically, hyperbolic

activation function is represented as shown in Equation 2.4.

																																																															9(:) = tanh(:)																																																												(2.4)

2.7.4. Rectified Linear Unit (ReLU)

A ReLU is the most commonly used activation function with deep nets given that it offers

the solution to the problem of computational resources. Mathematically ReLU is expressed

as shown in Equation 2.5.

																																																																		9(:) = max(0, :)																																																					(2.5)

Because it computes the maximum of the input, it is very fast and efficient. Furthermore, it

solves the saturation problem in the positive domain even though the problem remains the

same in the negative domain [79]. Networks with ReLU learns many times faster than those

that involves saturating nonlinearities. Besides, the desired learning error rate are achieved

several times faster in networks with ReLU.

2.8. Loss Functions

A loss function in the CNN are used to measure the performance by comparing the actual

and predicted values. In general, a loss function guides the training process. Commonly

used loss functions for classification problem include Mean Squared Error (MSE) and

Cross Entropy Loss.

2.8.1. Mean Squared Error (L2 Loss)

In the conventional machine learning domain, the MSE is the most commonly used loss

function, and it is considered efficient for beginner machine-learning problems [80].

Equation 2.6 presents the mathematical representation of the MSE.

 School of Engineering and Technology

38

																																																													MSE	Loss =
1

Q
%@R

S

T

R-.

																																																				(2.6)

Where Q denotes the number of output classes, and @ denotes the difference between the

predicted output and the ground truth. In the Euclidean space, the MSE represents a straight

line between two points.

2.8.2. Hinge Loss

The hinge loss is another loss function used with the SVM classifier in the machine learning

training process. The hinge loss is used for maximum margin classification [81].

Mathematically, the hinge loss can be expressed as shown in Equation 2.7.

																																																						V(W) =%max(0,1 − Y' ⋅ W')

'

																																												(2.7)

Where W' is the predicted output score of the classifier and Y' is the intended output score

of the classifier.

2.8.3. Cross-Entropy Loss

Cross-entropy loss is another commonly used loss function for the classification problems

in machine learning, and it performs better than MSE. Cross-entropy loss is based on the

maximum likelihood estimation in the statistics [82]. Equation 2.8 presents the

mathematical expression for the computation of cross-entropy loss.

																																																											8\](W) = −%W'
^ log(W')

R

																																														(2.8)

Where W'′ denotes the ground truth label of the ith training instance and W' denotes the

predicted label of the ith training instance. Cross-entropy loss is the most commonly used

loss function in deep learning. However, its application is different compared to other loss

functions.

 School of Engineering and Technology

39

2.9. Optimisation Methods

2.9.1. Backpropagation

Backpropagation in machine learning is the algorithm of updating the weights of neural

networks by propagating the error or loss as feedback. Usually, backpropagation involves

the calculation of gradient descent which aims to minimize the loss function and update the

weight accordingly. Backpropagation is also referred to as the delta rule for the perceptron

for multiplayer feed forward neural networks [83]. Talking about the overall process of

training the models and the role of backpropagation, the usual flow of training involves

multiple iterations over the input data. For each iteration, the loss function is calculated and

the error is back-propagated to update the weights and improve its performance. Hence, the

learning or training process involves the loss function to generate errors which are then

minimized using the optimization functions and updated based on those optimization

network weights or parameters.

Usually, backpropagation achieves this goal by applying the chain rule recursively over the

layers and by calculating gradient descent loss with respect to the parameters. This is most

commonly optimization approach in backpropagation, an approach known as gradient

descent. This approach is discussed in detail in the following sections. Optimized weights

of the network are considered as the solution of the learning process. The term “back” in

the name refers to the fact that gradient descent is calculated in reverses flow (from output

towards input) i.e. the gradient of the final layer is calculated before the gradient of the first

layer is calculated. Given the number of computations, training deep networks involves

significant computations. However, with the availability of advanced hardware such as

GPU, backpropagation computations are no longer a difficult task.

2.9.2. Gradient Descent

Gradient descent is one of the conventional and basic optimization functions used in the

backpropagation process, and it involves the optimization of network weights to achieve

the local minima of loss functions. This is achieved by moving gradually towards the

negative gradient direction of the loss function to achieve the local minima [84]. The aim

 School of Engineering and Technology

40

of gradient descent is to find the weights (cd) and biases (+e) which minimize the cost

function given in Equation 2.9.

																																																					Cost	Function = klm:)('), o(')p																																											(2.9)

where m denotes the optimized parameter which is to be optimized,)(') denotes the input

vector for the ith training sample and o(') represents the class label for the ith training

sample. To minimize this cost function, gradient vectors (∇k) with respect to cd s
tu

tvw
x and

+e s
tu

tyz
x are computed, respectively. Based on the gradient calculations, Equation 2.10 and

Equation 2.11 present the update rules for weights and biases, respectively.

																																																														cd → cd
^ = cd − |

}k

}cd
																																											(2.10)

																																																																+e → +e
^ = +e − |

}k

}+e
																																																(2.11)

Where | denotes the learning rate. By applying above-mentioned update rules repeatedly,

all parameters in the trainable networks are optimized to achieve the convergence to a local

minima. In practice, gradients for each input sample are computed separately and then

averaged as shown in Equation 2.12.

																																																																					∇k =
1

Q
%∇k)
)

																																																							(2.12)

From the expression, it can be deduced that the calculation of gradients for deep networks

involving large numbers of parameters will require a huge computation power and hence

will cause the learning process to slow down.

2.9.3. Stochastic Gradient Descent

SGD is basically the extension of the conventional gradient descent algorithm to improve

the speed of learning by estimating the gradients ∇k and by computing ∇k) for randomly

selected small training input samples. This idea of taking the average over small sample

leads to better ∇k estimation and helps in speeding the gradient descent computation process

 School of Engineering and Technology

41

and ultimately the overall learning process [81]. Mathematically, SGD can be expressed as

given in Equation 2.13.

																																																																	
∑ ∇k)�
Ä
Å

Ç
≈
∑ ∇k))

Q
= ∇k																																											(2.13)

Where Ç denotes the number of randomly selected input samples, also referred to as mini-

batch, and Q denotes the total training dataset. The expression in Equation 2.13 can be re-

written as follows (see Equation 2.14):

																																																																∇k) =
1

Ç
%Ç∇k)�
Å-.

																																																			(2.14)

These calculated gradients from the randomly selected mini-batch are then used to update

the weights cd and biases +e using the updated rules given in Equation 2.15 and Equation

2.16, respectively.

																																																								cd → cd
^ = cd −

|

Ç
%

}k)�

}cd
Å

																																									(2.15)

																																																							+e → +e
^ = +e −

|

Ç
%

}k)�

}+e
Å

																																															(2.16)

The total of the above equations are computed over the training examples)Å within the

mini-batch. Once one batch is computed, the next mini-batch is selected for training, and

this process continues until the whole training data is covered. An epoch is often referred

to as a whole iteration of training using randomly selected mini-batches covering the entire

training data. Models are trained over multiple epochs to minimize the loss function

towards local minima. In the implementation of SGD, three hyper-parameters which

significantly influence the training process are as follows:

• Learning Rate: It is usually a float value, and it determines the speed of training.

• Momentum: It is usually a float value and it influences the rate of damped

acceleration in the relevant direction.

• Decay Rate: It is the decay of the learning rate over each update.

 School of Engineering and Technology

42

2.9.4. Adam Optimiser

Adaptive Moment Estimation (Adam) [85] is the method in gradient descent which

involves the computation of individual adaptive learning parameters by first and second

moments of gradient estimations. Learning rates are adapted based on the average of second

moments (un-centered variance) of the gradients. Adam computes the exponential moving

average of the gradient and squared gradient. Parameters Ñ. and ÑS control the decay of

these moving averages. Based on these parameters, updates of first and second moments

can be expressed mathematically as given in Equation 2.17 and Equation 2.18, respectively.

																																																				ÇR = Ñ.ÇRÖ. + (1 − Ñ.)ÜR																																																(2.17)

																																																				áR = ÑSáRÖ. + (1 − ÑS)ÜR
S																																																		(2.18)

The parameters ÇR and áR are usually initialized as vectors of zero and biased towards zero

when the decay rates are small. Equation 2.19 and Equation 2.20 present the biased centered

first and the second moment estimates of gradients.

																																																																								ÇàR =
ÇR

1 − Ñ.
R 																																																							(2.19)	

																																																																							áâR =
áR

1 − ÑS
R 																																																									(2.20)	

Based on these moments, parameters of the network are updated using the update rule

expressed in Equation 2.21.

																																																																		mRä. = mR −
|

ãáâR + å
																																													(2.21)	

where m denotes the network parameters. For a non-convex optimization problem, the main

advantages of using the Adam optimizer are as follows:

• Easy to implement and computationally efficient

• Requires low memory

• Suitable for problems involving huge data and large number of parameters

• Appropriate for problems involving sparse or noisy gradients

 School of Engineering and Technology

43

• Hyper-parameters require very less tuning efforts.

2.10. Regularisation Methods

Overfitting occurs when models learn the training data effectively but does not generalise

them well enough, thus leading to poor performance over the test data set. In simple words,

model learns the training data satisfactory, however, it performs poorly over the unseen

testing data. To prevent the problem of overfitting in deep architectures, normalization

approaches are used in the literature [86] to generalise the model for unseen data even when

the model is trained using smaller datasets and/or with imperfect optimization procedures.

This section presents some of the commonly used regularization methods in CNNs.

2.10.1. Dropout

Dropout is one of the most commonly used regularization approach in the deep neural

networks to avoid the overfitting problem by leaving or dropping the number of

nodes/neuron activations in the network. More specifically, dropout refers to leaving the

neuron activations in both visible and hidden layers i.e. temporarily removing the neurons

from the network along with all incoming and outgoing connections [87]. Figure 2.8

illustrates the concept of the dropout technique.

Figure 2.8: Illustration of Dropout Concept (Taken From [87]).

By introducing dropout layers in between, the number of neuron activations are left out

which leads to different numbers of architectures, each one of them is trained in parallel

and the predictions are averaged. For example, if there are Q neurons attached to a dropout

layer, there will be 2T ensemble architectures, and predictions will be averaged over all

ensembles. Given that the selection of neuron activations to be left is a random process,

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

 School of Engineering and Technology

44

there are no co-adaptations which enable the process to develop meaningful learning

feature. The size of computations and model is significantly decreased by introducing

dropout layers in the network.

2.10.2. Batch Normalisation

Batch normalization [86] is the approach in which the previous layer activations are

subtracted by an averaged batch and divided by the standard deviation of the batch to

achieve the stability in the output of neural networks. Batch normalisation adds two

trainable parameters in the output activations of layer: standard deviation parameter and

mean parameter. Rather than updating all the weights after each iteration, in this approach,

SGD performs the de-normalization by changing only two (batch normalization) added

parameters for every output activation. Training the model with the pre-trained weights by

normalization improves the performance of the pertained model [86]. Batch normalization

layers can be added after the dense layer or convolution layer; however, in [86], it was

added after the last linear layer.

2.10.3. L1 and L2 Normalisation	
L1 and L2 normalisations [88] are the methods involving the parameter regularisation, and

the aim to shrink some network parameters by varying regression coefficient to zero to

maximise likelihood estimates. Overfitting due to high predictions correlation, which may

result in false positive results, is prevented by shrinking the number of parameters. L1

regularization approach helps to achieve feature selection in the sparse feature space by

providing an optimal solution when the data are biased and the noise ratio in the data is

high. Whenever two predictors are used with high correlation between them, L1

regularization selects one of the two predictors. One significant limitation of L1

regularization is that using it results in the loss of predictive power. On the other hand, L2

regularization leads to small non-zero regression coefficients distributed through the vector

space. If two correlated predictors are to be differentiated, L2 regularization keeps both and

jointly shrink the coefficients to a small extent.

 School of Engineering and Technology

45

Regularization methods usually involve an additional term in the loss function. If the loss

function aims to minimize the Negative Log Likelihood (NLL), it will be expressed

mathematically as shown below (see Equation 2.22).

																																		4VVlm;)('); o(')p = −%logélè = o(')ê)('), mp

ë

'-.

																										(2.22)

where m denotes the parameter for which the loss function is computed,)(') denotes the

input vector for the ith training sample and o(') represents the class label for the ith training

sample. Using the above relation, the regularization loss can be expressed as shown in

Equation 2.23.

																																								ílm;)('); o(')p = 4VVlm;)('); o(')p + ìî(m)																													(2.23)

where î(m) is the regularization parameter and ì is the hyper-parameter which controls the

regularization parameters. î(m) can be expressed mathematically as follows:

î(m) = ê|m|ê
ñ

ñ

where

ê|m|ê
ñ
= ó%êmÅê

ñ

|m|

Å-ò

ô

.
ñ

	

Commonly, in neural network, ö = 1 (L1 norm) is used to shrink the sum of the absolute

value of weight. For deep neural networks, ö = 2 (L2 norm) is used in which the sum of

squared of the weights is shrinked. Therefore, regularization is also known as weight decay

in the literature.

2.10.4. Early Stopping

Early stopping is an algorithm that is used to determine the best time required by a neural

network required to be trained. Early stopping has been proved helpful in preventing the

overfitting of huge and complex models [89]. Technically, early stopping is used to monitor

the performance of trained models over the validation dataset. Using the early stopping

 School of Engineering and Technology

46

concept, model training is stopped when the error of model performance increases or shows

no further improvement as both are the indicators of overfitting. Early stopping provides

the last best copy of parameters (least validation error) which helps in obtaining a better

test error for the model [89].

2.11. Classification Method

2.11.1. Softmax Classifier

Inside the CNN, the image has several linear and non-linear operations followed by pooling

layers and normalization layers. At the end of the process, we have a feature vector

containing raw real numbers that are hardly understandable. The Softmax layer is used to

map the feature vector, obtained on the forward pass through the network, into a vector

containing the probabilities of) to belong to each class. The Softmax layer is a

generalization of the logistic function, and it performs a mapping ℝú 	→ 	ℝú where each

element of the output is within the range (0, 1) and ∑ softmax()')
ë
' = 1. Its formula is

given by softmax()') =
û)ü

∑ û
)�†

�

This layer is the main part of multi-label classification problems as it allows us to compare

the distribution of probabilities returned by the CNN and the ground-truth labels.

The last layer of a CNN for image classification tasks is the Softmax layers and is used to

normalize a real value vector of K dimensions into a vector between 0 and 1. Softmax is

the generalization of binary logistic regression classifier for the multiple classes. In terms

of loss function, Softmax loss can be expressed as shown in Equation 2.24.

																																																										V' = −°\ü + log%@°�	

Å

																																																		(2.24)

where ° is the vector of class scores which is usually represented as 9()';&) and °Å

represents the ¢th element of that vector. The output of the Softmax function represents the

probabilities of an image belonging to certain class ¢. Mathematically, the softmax function

can be illustrated as shown below (see Equation 2.25).

 School of Engineering and Technology

47

																																																													£(§)Å =
@§�

∑ @§w•
d-.

																																																									(2.25)

where § is a k dimensional vector of real values and £(§) is the output probability vector.

Because Softmax guarantees a well-behaved probability distribution function without

losing generality, we can use the £ distribution provided by the output of the Softmax layer

as an argument for this expression from above to calculate the cross-entropy loss function

as shown in Equation 2.26.

																																V' =
1

4
%8(ö', ¶')

ë

'-.

= −
1

4
%ö()') logl¶()')p

ë

'-.

																													(2.26)

Where ö()') is the data, ¶()') is the estimated distribution of the variable and 4 denotes

the dimensions of the feature space. Particularly, this calculation will be performed over

mini-batch for the feature vectors)' with the ß dimensions. Equation 2.26 can be expressed

as given in Equation 2.27.

																						V' = −
1

4
%log ®

@©ü

∑ @©�d
Å-.

™

ë

'-.

= −
1

4
%logó

@vü
´Aüäyü

∑ @v�
´A�äy�d

Å-.

ô

ë

'-.

																(2.27)

2.11.1.1. Categorical Cross-Entropy Loss Function

In order to measure the performance of the model in multi-label classification problems the

categorical cross-entropy loss function is used (also named negative log-likelihood, NLL).

Considering ¨()') as the output of the model before the Softmax layer, this loss functions

is defined as

V≠Æ = −%W'

ë

'

log(softmax(¨()')))

where o' is the ground-truth vector for the image)' in one-hot encoding format,

log(softmax(¨()'))) will give us the log-probabilities of)' to belong to each class of the

dataset. Since it is multiplied to o', it will only account for the log-probability of the ground-

truth class. Therefore, if softmax(¨()')) tends to zero, then the error V≠Æ tends to ∞

(because the model assigned a probability of almost zero to the ground-truth class), while

 School of Engineering and Technology

48

if softmax(¨()')) tends to one, then V≠Æ tends to zero (because it correctly assigned a

probability of one to the ground-truth class).

2.11.2. Support Vector Machines as the Classification Layer of CNN	
SVM use a different loss function, called hinge loss. This loss function main goal is to find

the hyperplane with the biggest support between samples of different class. Using a 2D

geometrical interpretation, this means, that the hinge loss will find the line that splits

different semantic label while it has the biggest possible distance between samples of

different classes. The SVM loss function is

ℒ±≤ℳ = −%max	(0,¨l)Åp − ¨()') + 1

ë

Å¥'

which accumulates the differences on the classification between the ground-truth class

¨()') and the rest of the classes ¨l)Åp. In the case that the model returns the highest value

to the ground-truth class ¨()') then the loss will have a value between [0, 1]. if ¨()') is

not the highest probability then the loss will accumulate the differences between the values

returned for all the classes against the ground-truth class. Note that the value of ¨()') or

¨l)Åp is not necessarily a probability. Usually, SVM use a linear function applied to the

feature vectors before computing the hinge loss. However, there are other possible kernel

approaches that might give better result. For example, in this project we have used a

quadratic radial basis function that maps the input into a higher dimensional space which

is supposed to make easier the classification problem. Therefore, applying this function we

are capable to get better performance. Moreover, this function has a free parameter that can

be trained in order to obtain higher accuracy rates.

Adding non-linearities SVM by themselves do not add any non-linearities to the input

features. That means that its separability and, therefore, the performance of the model will

depend only on the quality of those features. In some cases, it can be helpful to add a

previous step (before classification) that applies a non-linear kernel to the input in order to

map it into a new feature space. In this project we have explored two different kernels: the

linear kernel and the radial basis function. Considering x and y as the input and the ground-

 School of Engineering and Technology

49

truth, the linear kernel is defined as 7(µ, ∂) = µ∑∂ + ∏ where c is an optional constant. On

the other hand, the radial basis function kernel is defined as a quadratic mapping of the

input 7(µ', ∂') 	= 	 @
Ö	
∥µü∫∂ü∥

ª

ªºª 	 where is a trainable parameter.

In this project we are going to compare the performance of CNNs using Softmax

classification on top against using a SVM to classify the feature vectors extracted from a

CNN model that has been fine-tuned using a triplet loss function.

2.12. Deep Learning Approaches for Drowsiness and Distraction

Detection

This section presents the details of the existing deep learning approaches based on computer

vision and machine learning for the distraction and drowsiness detection among drivers.

Deep learning approaches involve the extraction of features automatically from the entire

input image to facilitate the detection. This is often achieved through the use of machine

learning approaches.

Dwivedi et al. [90] proposed a drowsiness detection algorithm based on the representation

learning technique. In machine learning, representation learning techniques have been

proposed and used to automatically discover (through learning) the key discriminative

features (representation) from raw data to perform detection and/or classification tasks.

CNN-based deep learning architecture was used to learn and extract drowsiness related

facial features. Both latent and complex non-linear facial features which include local

receptive fields, sharing of weights and sometimes spatial or temporal pooling were

extracted by the deep architecture; all weights are learnt, all the learned weights acts a

learned feature detectors for driver drowsiness and these feature detectors are convolved

with input images to produce the final features used for classification in the last layer,

Softmax was used to classify the features in order to decide the drowsiness state of the

driver. The proposed algorithm was trained and evaluated over the customized dataset since

the standard dataset in this regard was not available. Data was collected from 30 different

subjects, including the diversity of skin tones, eye colors, and eye shapes. Authors achieved

 School of Engineering and Technology

50

the classification accuracy of 92% and 78% for the validation data and real-driving data,

respectively.

Park et al. [91] proposed a driver drowsiness detection system that utilised multiple deep

neural networks. The proposed deep learning architecture was named as Deep Drowsiness

Detection (DDD). A camera sensor was used to capture RGB videos of the driver. Three

different deep neural networks were used to learn the facial features, head pose and

background illumination variations. The outputs from of all three networks was

concatenated and categorised by a Softmax classifier. Authors evaluated the proposed

algorithm on the NTHU-drowsy driver detection benchmark dataset which consists of

640×480 videos collected under Infrared (IR) illumination. 22 different subjects of both

genders and different ethnicities have been recorded with various facial characteristics. The

database consists of training and evaluation sets: training set contains 360 video clips of 18

subjects, while the evaluation set consists of 20 video clips of 4 subjects and achieved the

overall detection accuracy of 73.06%.

Zhang [92] suggested and compared two different machine learning classifiers, SVM and

CNN. In the SVM based distraction detection algorithm, the PCA approach was used to

reduce the data dimensionality and produce inputs to the SVM. For the CNN based

algorithm, the VGG architecture was trained using the transfer learning approach rather

than the scratch approach. Both algorithms were evaluated with the Kaggle distracted

driving dataset; after that, the results were compared The Kaggle scores of 1.53 and 0.22

were reported for SVM-based and CNN-based algorithms, respectively. Although CNN-

based algorithm proved more efficient in distraction detection; however, the problem of

overfitting was observed.

Mbuvha and Wang [93] also recommended CNN-based distraction detection algorithm in

solving the Kaggle challenge of distracted driving. The transfer learning of two deep

architectures, VGG and AlexNet, was performed. Both deep architectures were modified

according to the requirements of Kaggle challenge and were evaluated based on the dataset

provided by Kaggle. Authors achieved an accuracy of 98.2% and 99.7% for off-the-shelf

classifier and fine-tuned CNN classifier, respectively. Furthermore, authors evaluated the

 School of Engineering and Technology

51

performance of classifiers with the split data set where training and testing data was divided

among different drivers. A significant degradation from 99.7% to 55.9% was observed for

the fine-tuned CNN algorithm. As a result, the authors concluded that the CNN algorithm

is not efficient for driver invariances, and overfitting may be observed if the algorithm is

subjected to more training.

Venturelli et al. [94] proposed the deep CNN-based head pose estimation algorithm to

estimate the yaw, pitch and roll angles of head. The group of researchers used the Microsoft

Kinect camera sensor to accurately capture the depth maps of drivers. Rather than

extracting facial features, they solved the problem as a regressing problem, which involves

the estimation of mapping function to map given input variables into continuous output

variables and extracted the head position (head angles) directly from the depth images.

Authors used Stochastic Gradient Descent (SGD) optimization algorithm to resolve the

back-propagation and L2 loss function. The proposed algorithm was evaluated with the

Biwi Kinect Head Pose dataset, and promising results were achieved. The group of scholars

achieved estimation angles of 2.8 ± 3.1, 2.3 ± 2.9 and 3.6 ± 4.1 for head pitch, head roll

and head yaw angles respectively. Furthermore, a processing time of 10 milliseconds per

frame was achieved by the proposed algorithm.

Streiffer et al. [95] developed a deep architecture known as DarNet to detect the distracted

behaviours of drivers autonomously. DarNet is a unified data collection and analysis

platform which can automatically detect and classify the distracted behaviours. The

proposed DarNet architecture consisted of two modules: a data collection system and an

analysis engine. An in-vehicle mounted camera sensor was used to collect the frontal facial

information of the driver. The analysis engine comprises a CNN-based deep architecture,

which can classify the distraction state. The proposed system was evaluated with the

datasets collected from five different drivers. From the experiments, Top-1 classification

accuracies for normal and down-sampled datasets are 87.02 and 80%, respectively.

Dellinger et al. [96] proposed a computer vision-based algorithm for the autonomous

detection of secondary driving tasks. They captured the visual information of face, steering

wheel and speed pedal to detect if a driver was involved in secondary driving tasks e.g.

 School of Engineering and Technology

52

talking on the phone or texting on the phone. Two different algorithms were proposed in

this research: the Histograms Oriented Gradient (HOG) with the SVM algorithm and the

deep learning based CNN architecture. HOG with the SVM algorithm was used to detect

the presence of passengers and foot over pedal using the information from the cockpit

camera and pedal camera. A RI was found from the input data sequences and then HOG

descriptors were computed. At the next stage, the computed HOG descriptors were

classified by a pre-trained SVM classifier to decide if the passenger was present and if the

foot of drivers was over the pedal. Deep learning-based algorithm was used to detect if the

driver was texting or putting the phone close to the ear and if the driver’s hands were on

the steering wheel. Algorithms were evaluated over a large dataset of 48 videos captured

by authors under diversity of conditions such as day light condition, night driving condition,

sunny day condition, rainy day condition and different drivers. From the experimental

results, the detection accuracy of 95.6% and about 99% was achieved for the presence of

passengers and foot over pedal using HOG with SVM. Furthermore, the detection

accuracies of 99.5%, 21% and 18% were achieved by the deep learning approach for hands

on steering wheel, texting and phone to the ear detections, respectively. Lower detection

accuracies for texting and phone to the ear detections were because of unbalanced dataset.

Masala and Grosso [97] presented a real-time driver-attention monitoring system using

machine learning robust classifiers. A combination of a binary classifier and neural network

based data reduction was used to detect the attention level among drivers. The overall

system consisted of two stages. At the first stage, the head pose is detected for each frame.

At the second stage, eye blinking is detected. Viola and Jones algorithm was used to detect

the face and eyes from the input image sequences. Feed Forward Back Propagation (FF-

Bp) neural network was used to classify the attentive behaviours from the inattentive

behaviours, based on the extracted information of head pose and eye blinking. The

proposed head pose detection and eye detection algorithm were evaluated over the IDIAP

Head Pose Database and the FERET dataset, respectively. An accuracy of 92% and 81%

was achieved for pose detection and eye detection, respectively.

Abouelnaga et al. [98] developed a public dataset for distracted driver posture estimation.

Furthermore, they proposed a deep learning-based distraction classification system to

 School of Engineering and Technology

53

detect distracted driving behaviours efficiently. Genetically-weighted ensemble of

classifiers were used in the proposed system. Two deep architectures, AlexNet (from

scratch) and Inception V3 (transfer learned from ImageNet), were trained over the dataset.

Distraction related facial features such as face orientation, hand positions and skin

segmentation were classified by the deep networks. Proposed algorithms were evaluated

over the established dataset, which was divided into two groups: 75% for training and 25%

for testing. classification accuracies of 93.65% and 95.17% were achieved with AlexNet

and Inception V3 architectures without implementation of genetically weighted at

classification layer, respectively. Furthermore, the genetically weighted ensemble of CNN

achieved classification accuracy of 95.98%.

Hssayeni et al. [99] suggested a distraction detection system for drivers using computer

vision and machine learning approaches. An in-vehicle dashboard camera was used to

capture the visual information of the driver. The aim was to classify the distracted

behaviours into one of seven classes (one of safe and six of distracted driving). Two

techniques, handcrafted features with SVM classification and deep CNN, were

implemented and compared. For handcrafted features, a blend of HOG and Scale Invariant

Feature Transform (SIFT) descriptors were used. On the other hand, for deep learning

architecture, transfer learning of AlexNet, VGG-16 and ResNet-152 were performed for

the distraction detection tasks. To evaluate the proposed algorithms, an online dataset of

over 20,000 images [add reference] was used, including the images of safe and distracted

driving. The overall dataset was divided into two parts: 80% images were used for training

and the remaining 20% were used for testing. From the experimental results, very low

accuracies of 33.2% and 21.5% were achieved by HOG and SIFT handcrafted features with

SVM classifiers. For deep architectures, classification accuracies of 72.6%, 82.5% and 85%

were achieved by AlexNet, VGG-16 and ResNet-152, respectively.

Table 2.6 presents a comparison of the above cited literature regarding distraction and

drowsiness detection among drivers using deep learning approaches. Furthermore, Table

2.7 presents the categorization of cited literature at much higher level.

 School of Engineering and Technology

54

Critical analysis of comprehensive literature on drowsiness and distraction detection in

drivers revealed that use of deep learning approaches has improved the overall detection

accuracies and generalization problem. Conventional approaches were able to detect

drowsiness and distraction based on the local hand crafted facial features, however, would

not be able to detect distracted behaviours such as use of mobile phone. Where deep

learning approaches provided the solution for the challenge. As a result, various deep

networks have been implemented for the detection of distraction detection in drivers as a

part of research presented in this thesis. Chapter 5 and Chapter 6 present the theoretical and

implementation details of deep learning based distraction detection in drivers.

 School of Engineering and Technology

55

Table 2.6: Comparison of Literature Related to Drowsiness and Distraction Detection using Deep Learning Approaches.

Authors Database Information Features and Measures Feature Extraction Method Classifiers Performance

Dwivedi et al [90] Custom collected data
from 30 subjects Facial Features Face SoftMax CNN For Training Dataset: 92%

For Random Dataset: 78%

Park et al. [91]
NTHU-drowsy driver
detection benchmark

dataset
Facial Features, and Head pose Face, eyes and head Softmax CNN 73.06%

Zhang [92] Kaggle Distraction
Challenge Dataset Distraction related features Deep Learning Approach SVM and VGG CNN

Architecture
Kaggle Score

SVM: 1.53
VGG CNN: 0.22

Mbuvha and Wang [93] Kaggle Distraction
Challenge Dataset Distraction related features Deep Learning Approach VGG and AlexNet Off-the-shelf VGG: 98.2%

Fine-tuned AlexNet: 99.7%

Venturelli et al [94] Biwi Kinect Head Pose
Dataset Head Pose Neural Networks Deep CNN

Pitch angle: 2.8 ± 3.1
Roll angle: 2.3 ± 2.9
Yaw angle: 3.6 ± 4.1

Streiffer et al. [95] Dataset Collected from
5 different subjects

Frontal Facial Features and
IMU sensor data Deep Learning Approach DarNet deep architecture Normal data: 87.02%

Down-sampled data: 80%

Hssayeni et al. [99] Online dataset of over
20,000 images

Distraction related facial
features HOG and SIFT SVM, AlexNet, VGG-16

and ResNet-152

HOG+SVM: 33.2%
SIFT+SVM: 21.5%

AlexNet: 72.6%
VGG-16: 82.5%

ResNet-152: 85%

Dellinger et al. [96] Custom collected
dataset

Facial information, steering
wheel and speed pedal HOG and Deep Learning SVM and Deep CNN

HOG+SVM
Passenger: 95.6%

Foot over pedal: 99%
Deep CNN

Hand on wheel: 99.5%
Texting: 21%

Phone with ear: 18%

Masala and Grosso [97] IDIAP Head Pose
Database and FERET Head pose and eye blinking Viola and Jones

Feed Forward Back
Propagation Neural

Network
Pose detection: 92%
Eye detection: 81%

Abouelnaga et al. [98] Proposed Custom
Dataset

Face orientation, hand position
and skin segmentation Deep Learning Approach

AlexNet, Inception V3
and Genetically weighted

CNN

Alexnet: 93.65%
Inception V3: 95.17%

Genetically weighted CNN:
95.98%

 School of Engineering and Technology

56

Table 2.7: Categorization of Deep Learning Based Approaches from Literature for Distraction and Drowsiness Detection.

 CNN Model Extracted Features Extraction Approach Classifier

 AlexNet VGG ResNet Inception others Facial
Head and

body
Pose

In-
Vehcile Handcrafted CNN Softmax SVM

D
ro

w
sin

es
s

[91] [91] – – [90]
[91]

[90]
[91] [91] – [90] [91] [90]

[91] –

D
ist

ra
ct

io
n [93]

[98]
[99]

[92]
[93]
[99]

[99] [98]

[94]
[95]
[96]
[97]

[95]
[96]
[99]

[92]
[93]
[94]
[97]
[98]
[99]

[95]
[96]

[97] [99]
[92]

[92]
[93]
[94]
[96]
[98]
[99]

[92]
[93]
[94]
[98]
[99]

[99]
[92]

 School of Engineering and Technology

57

CHAPTER 3

3. CONVENTIONAL APPROACHES

3.1. Introduction

Drowsiness detection using computer vision approaches often involves the combination of

different detection algorithms for different visual features within multiple local regions of

the human body such as the face, eyes, mouth, and head pose detections. Features related

to drowsiness and distraction from each detection algorithm are extracted using

mathematical measures such as PERCLOS, Degree of Openness (DOO) [100] and HWrate

[101] and can then be categorized using a SVM classifier. These approaches are referred to

as conventional vision approaches as their popularity has been overtaken by the deep

learning approaches mainly due to their better performance. The conventional approaches

extract and rely on hand-crafted features whereas the deep learning approaches learns from

a huge dataset the best features for a given task. This chapter outlines the theoretical and

mathematical basis of conventional vision approaches used for detecting drowsiness and

distraction among drivers. Furthermore, this chapter provides the details of SVM

classifications using conventional vision approaches in the context of drowsiness and

distraction detection. The first year of my MPhil research, mainly focused on conventional

vision approaches and methodologies used in detecting drowsiness and distraction among

drivers. This part of my early research will be discussed more elaborately in this chapter.

3.2. Face Detection

Face detection is one of the most significant elements in detecting drowsiness among

drivers using the visual information because most drowsiness-related features which are

required for extraction are related to the facial region. Hence, it is of paramount importance

that at the first stage, the facial region is accurately identified and isolated from the input

images.

Evidence from the literature indicates that the following are the most commonly used face-

detection approaches.

 School of Engineering and Technology

58

• Knowledge Base Face Detection: This approach uses previous knowledge of the

characteristics and locations of different facial features such as eyes, nose and

mouth. The relationship of these facial features is used to identify a facial region.

• Template Matching Base Face Detection: This method uses the pre-stored images

of different types of face in the database and computes the similarity of captured

images by finding the correlation between the captured images and stored images

to decide whether the captured image is a face or not.

• Appearance Base Face Detection: This technique utilises machine learning and

statistical models trained over large datasets to classify the captured images as facial

or non-facial images. These algorithms usually use approaches such as SVM, CNN,

and deep learning.

In this research, face detection was achieved using the knowledge-based Viola and Jones

face detection algorithm. The following section presents theoretical details regarding the

Viola and Jones face algorithm.

3.2.1. Viola and Jones Face Detection Algorithm

Viola and Jones algorithm [102] is commonly used in literature for efficient facial-region

detection in real-time situations. There are mainly three steps or elements involved in the

Viola and Jones object detection algorithm, and they are as follows:

• Integral Image Representation

• Haar-Like Feature Computation

• Classification

In the first step, the input image is depicted as an integral representation, and then Haar-

Like features are computed from the integral image representation. Generally, Haar-Like

features represent the difference of intensity values between different regions of the face.

Figure 3.1 shows three 2D-Haar-like features for facial features proposed by Viola and

Jones for face detection.

 School of Engineering and Technology

59

Figure 3.1: Haar-Like Features Proposed by Viola and Jones for Face Detection.

The simple idea of taking difference of the sum of pixels in the white region and that of

pixels in the black region is used to compute the Haar-Like features. For example, if !"

denotes the black region and #$ represents the white region, then the feature vector %& can

be computed by using the mathematical expression presented in Equation 3.1.

																																																												%& =)!"

*+

",-

−)#$

*/

$,-

																																																								(3.1)

where 56 denotes the total number of pixels in the black region, while 57 represents the

total number of pixels in the white region. The integral image at any point is basically the

sum of pixels above and to the left of that point. For example, the integral image at point

(8-, :-) will be denoted as !;<=(8-, :-) and can be computed using the mathematical

expression presented in Equation 3.2.

																																										!;<=(8-, :-) =)) !>?"@A6B(8-, :-)

*C
D

EF,-

*F
D

GF,-

																																			(3.2)

where !>?"@A6B(8-, :-) denotes the pixel value of the original input image.

AdaBoost using haar classifier is the single rectangle feature and threshold that best

separates positive (faces) and negative (non-faces) training examples, in terms of weighted

error, its used as an input feature for cascade classifier.

Therefore, in order to select them effectively, it is prudent to weigh, rank and train the weak

classifiers. Rather than a single classifier, a group of AdaBoost-based classifiers is used in

the Viola and Jones algorithm. This group of AdaBoost-based classifiers is referred to as

weak classifiers. Figure 3.2 illustrates the structure and the working principle of cascade

 School of Engineering and Technology

60

classifiers. At the final stage, the features selected through the weak classifiers (reduced

significantly in numbers) are selected/classified by a strong classifier.

At final stage of Viola and Jones algorithm [102], a strong cascade classifier has been used

to select some of the features which are not rejected by initial weak classifiers. Figure 3.2

presents the generalized structure of the cascade classifier. Equations 3.3 and 3.4 shows the

mathematical representation of the strong classifier.

Figure 3.2: Cascade Classifier Structure of the Viola and Jones Algorithm.

																																																		ℎ(J) = sgnN)O$

P

$,-

ℎ$(J)Q																																																				(3.3)

																																																												O$ =
1
2
log T

1 − U$
U$

V																																																								(3.4)

were ℎ$(J) represents the weak classifiers, X represents the total number of classifiers in

the cascade structure and U$ denotes the weighted error rate of the weak classifier. The use

of weak classifiers at the initial stage of the algorithm helps in rejecting sub-windows in

the image that do not contain a face. The strong classifier at the end of algorithm assists in

selection regions with the possibility of a face [102, 103]. Figure 3.3 presents the block

diagram of different steps involved in the Viola and Jones face detector algorithm.

Figure 3.3: Block Diagram of Steps Involved in the Viola and Jones Object Detection
Algorithm [102].

Classifier 1 Classifier 2 Classifier 3Input Image
Windows

True True True

FalseFalseFalse

Reject Non-
Face Windows

Reject Non-
Face Windows

Reject Non-
Face Windows

Input
Image

Integral
Representation of

Image

Computation of
Haar-Like Features

in the Image

Adaboost Weak
Classifiers to

Select the Features

Cascade Classifiers
to Select the Face

Regions

 School of Engineering and Technology

61

The Viola and Jones object detection algorithm is considered one of the most efficient and

effective algorithms for detecting objects in real-time and is often used by the researchers

in the field of computer vision for this purpose. The idea of using the integral image

representation significantly improves the feature computation process. Furthermore, from

a large number of computed features, cascade classifiers can reject a significant number of

negative sub-windows or sub-windows in the image that do not contain a face, thus making

the final classification process faster. The purpose of cascade classifiers is to focus only on

regions in an image where the possibility of a face is maximum. However, real-time face

detection is a relatively complex task, and its performance significantly depends on the

number of factors such as illumination conditions, face pose variations, the person’s skin,

the presence of the eyeglasses and occlusion.

3.3. Eye Detection

The eyes are considered one of the most significant facial features in detecting drowsy

driving. Also, eye blinking and gaze direction are prominent measures used in ascertaining

whether a driver is susceptive to drowsy driving. Based on the illumination, two approaches

are used in the literature for eyes detection. One is the IR-based detection, and the other is

natural light-based detection. In the IR approach, the eyes are exposed to near-infrared light

and synchronous approximation, and pupil reflection properties are studied to effectively

track the eyes. Furthermore, IR lighting conditions help in estimating the eye gaze [104].

In the natural light-based eye detection method, only active natural light is used to track the

eyes. However, eye detection in natural light is relatively complex because of multiple

reflections and shadows.

In this literature, localization of the eyes on the detected facial region is achieved by using

the face anthropometric properties derived from a face database analysis [105]. From the

facial RI, two rectangles containing the eyes are obtained. RI[is used to denote the left eye

rectangle and RI\ the right eye rectangle. Figure 3.4 presents the visual illustration of the

implemented concept for eye detection using Viola and Jones.

 School of Engineering and Technology

62

Figure 3.4: Demonstration of the eye Detection with Region Parameters.

Once the eyes region are identified as rectangles, the exact eye location is computed using

the set of equations presented in Equation 3.5 [106] and isolated by small rectangles within

large rectangles. (8], :]) is taken as the top left point of the large rectangle, while (8-, :-)

is taken as the right bottom point of large rectangle.

(^]_, `]_) = a8] +
c
6
, :] +

ℎ
4
e

(^-_, `-_) = a8] +
c
2
, :] +

ℎ
2
e

(^]f, `]f) = a8] +
c
2
, :] +

ℎ
4
e

																																																					(^-f, `-f) = a8- −
c
6
, :- +

ℎ
2
e																																										(3.5)	

Where c = 8- − 8] and ℎ = :- − :] denote the width and height of the respective region

of the rectangle for eye detection. (^]_, `]_), (^-_, `-_), (^]f, `]f) and (^-f, `-f) represent

the top left and bottom right corner points for the left eye rectangle and right eye rectangle,

respectively. Head movements, illuminations changes do not usually allow for complete

incorporation of information from grey level pixels, so we use pixel information from a

()1 1,x y

()1 1,L Lu v()1 1,R Ru v

LRIRRI

()0 0,x y

()0 0,R Ru v ()0 0,L Lu v

 School of Engineering and Technology

63

random sample, grey-level pixel values are incorporated by obtaining a random sample and

then adjusting it to the defined parametric model. In this way, the exact eye position is

obtained [106].

It has been reported in the symptoms of drowsiness section presented in Section 2.3 of this

thesis that the eye-blinking rate of a driver varies differ between active and drowsy

conditions. Therefore, eye blinking is used as a criterion for deciding the level of

drowsiness among drivers. In the literature, the term used to represent the eye blinking rate

is called the PERCLOS [48, 54] and considered one of the most valid ocular parameters for

drowsiness detection. Basically, the PERCLOS defines the amount of time needed to

completely open or close the eyes (speed of blink), and it can effectively be used as

drowsiness monitoring measure. In this research, the idea that the eyes close when the pupil

is occluded by the eyelids has been used for the calculation of PERCLOS. Figure 3.5

presents the principle used in this research to determine the PERCLOS.

Figure 3.5: Principle of PERCLOS Computation Proposed by the Weijie et al. [107].

In Figure 3.5, time h- − hi denotes the time of the eye closing from 80% to 20%, time

interval hi − hj denotes the time duration for which the eyelid remains at 20% opened or

closed, while time interval hj − hk denotes the time of the eye opening from 20% to 80%.

Based on these time intervals, the PERCLOS is computed using the expression presented

in Equation 3.6.

occluded by the eyelids and their shapes get more elliptical. So, we can use the ratio of pupil ellipse axes to characterize
the degree of eye opening. The cumulative eye closure duration excluding the time spent on normal eye blinks is used to
compute PERCLOS. To obtain a more robust measurement for these two parameters, we compute their running average
(time tracking). To obtain running average of PERCLOS measurement, for example, the program continuously tracks the
person's pupil shape and monitors eye closure at each time instance. We compute these two parameters in 30 seconds
window and output them onto the computer screen in real time, so we can easily analyze the alert state of the driver.
Figure 5 illustrates the measurement principle of the PERCLOS: 1t to 4t are used to measure the value of PERCLOS.

The formula is:

3 2

4 1

100%t t
t t

K �

�
 (3)

TheK is the value of PERCLOS, 1t , 2t are the time that eyes closed from the largest to 80 percent, from 80 % to
20 %; 3t is the time from 20% closed to 20% open, 4t is the amount of time spent that that eyes open from 20% to 0%.

When used this method to measure state of eyes we use camera to get the image of driver's face, then we position eyes
through image processing methods, at last we analysis and identify the image to confirm that the eyes are open or closed.
Define that eyes pupil level with greater than 20% is open state.

t1 t2 t3 t4 t

20%

80%

The Largest Pupil

Eye open extend

Figure 5. PERCLOS principle
3.4. Mouth texture detection using edge detection and yawning analysis

Yawning is also an important feature that can provide a visual clue in order to detect driver fatigue. When yawning,
mouths open widely and the geometric features of the mouth change obviously. In this system, we propose a Gabor
wavelet feature based texture detection approach for mouth feature selection [16].

There are three states of mouth: close, open normally and yawning. Basically, driver's mouth is in close state during
the normal driving processing. Driver's mouth opens normally when driver talks. And driver's mouth opens widely when
the driver is yawning. Therefore, we can detect yawning according to the openness of mouth. If the ratio of mouth height
and width is above 0.5, we think the driver is yawning. And if the ratio is above 0.5 in more than 6 frames, we think the
driver is fatigued.

In order to verify the effect of driver fatigue detection, we simulate the driver fatigue in the laboratory. There are 10
peoples are in different light conditions (morning, afternoon, evening) and on the different states (awake, fatigue), which
are detected 10 times. The PERCLOS results are quite good. It has been found to be a robust ocular parameter for
characterizing driver fatigue.

 Because of its utility in easily characterizing the texture differences in the images using its frequency and
orientation representations, Gabor wavelets filters [17] have been found to be particularly appropriate for texture
representation and discrimination. The Gabor filters-based features, directly extracted from gray-level images, have been
successfully and widely applied to texture segmentation, handwritten numerals recognition and fingerprint recognition.
Use of Gabor filter in solving edge detection problem was experimented based on the assumption that an edge map should
have both intensity and texture edges. As we know, texture edge is defined as image locations with a sudden change in the
textural properties. In order to get information of yawning, we apply a 2-D Gabor filter for mouth texture detection, which
has been a popular tool in medical image classification, texture analysis and discrimination. In using Gabor filter the
challenge is to optimally capture texture information in the intermediate responses and eventually compute the significant

 School of Engineering and Technology

64

																																																				PERCLOS =
hj − hi
hk − h-

× 100																																																			(3.6)

Furthermore, along with the PERCLOS, this research incorporates the idea of calculating

the height and width of the eye for each frame as proposed by the Weijie et al. [107]. Figure

3.6 indicates the visual illustration for the idea of using the eye height and width as a

measure for eye openness. A term known as the EyeHWRate (t) has been used and

calculated using the expression as presented in Equation 3.7. If the t < 27%, the eye is

considered a closed state and if the t ≥ 40%, the eye is regarded as an open state [107].

																																																																					t =
y
z
× 100																																																											(3.7)

where y denotes the height of the eye and z denotes the width of the eye.

Figure 3.6: The Ratio of the eye-Height and Eye-Width Proposed by Weijie et al. [107].

3.4. Yawning Detection

Yawning detection and the level of mouth openness are considered critical features in

estimating the drowsiness level of drivers. Yawning detection at its first stage involves the

detection and localization of the mouth. A number of approaches are available in the

literature for yawning detection. In a study carried out by Abtahi et al. [108] yawning is

Eye Width

Ey
e

H
ei

gh
t

Eye HeightEyeHWRate= 100
Eye Width

u

x

y

0

Width(w)

H
ei

gh
t (

h)

'h

T
x

y

 School of Engineering and Technology

65

detected in two steps independent of the mouth location in the facial region. At the first

stage, a hole is detected within the facial region due to a wide opening of the yawning

mouth; at the second stage, the detected hole is verified if it is within the region where the

mouth is localized in a facial image. Hariri et al. [109] detected the yawning by utilizing

features such the rate of change in mouth contour during yawning and mouth area aspect

ratio. In this literature, following are the methods which have been used to detect the mouth

and yawning among drivers. Three main steps are involved. The first is the detection of the

mouth region. The second is the detection of mouth related features, and the last is the

determination of the degree of mouth openness.

Detecting the mouth: Before determining the angle of mouth openness, a system must be

able to detect the mouth in the facial images correctly. To estimate the position of the mouth

on the face, previous knowledge can be used such as knowing that the mouth is always

present in the lower region of the face and being knowledgeable about the distance between

the lips corner and the lips from chin [100].

Detecting the features of the mouth: The next step after the detection of the mouth region

is to detect the important features of the mouth for which in this literature a projection-

based approach is used. Given that the mouth variations are much dominant in the vertical

direction, the lips corners are detected using the vertical differences. Applying the

thresholding technique will result into two columns of the mouth having lips corner points.

These points define the mouth and can be used to determine the orientation of the mouth

[100].

Degree of mouth opening: It is defined by the reaction of the driver’s mouth during the

yawning state and is used to calculate the exact mouth angle. It is represented with {||=.

Using the mouth model presented in Figure 3.7, {||= can be represented mathematically

as given in Equation 3.8.

																																												{||= =
ℎ
c
=
ℎ} × cos �

c
																																																	(3.8)

 School of Engineering and Technology

66

where c represents the width of the mouth (the distance between lips corners), ℎ represents

the mouth height (the distance between the upper and the lower boundary) and � represents

the orientation angle of the detected mouth. The basic block diagram of the mouth detection

and respective results are shown in Figure 3.8.

Figure 3.7: Mathematical Model of Mouth Proposed by Wang et al. [100].

Figure 3.8: General Block Diagram and Respective Output for Mouth Detection [100].

In the next step after detecting the mouth and determining the degree of mouth openness,

the model is to estimate the yawning state of the driver by measuring the height of the

mouth (mouth opening). It has been reported by Zainal et al. [101] that during yawning, the

Eye Width

Ey
e

H
ei

gh
t

Eye HeightEyeHWRate= 100
Eye Width

u

x

y

0

Width(w)

H
ei

gh
t (

h)

'h

T
x

y

Input Face
Image

Mouth Detection
using prior
knowledge

Veritcal Projection
to determine

mouth features
(lips corner points)

DOO
determination
based on lips
corner points

 School of Engineering and Technology

67

height of an individual’s mouth is increased by a specific value. Hence, based on the

respective threshold value for a normal mouth height, yawning can be determined in terms

of yes or no by a simple comparison. Zainal et al [101] note that every individual has

different facial features. They also commented that a common threshold cannot be used;

rather, by taking the average of 50 frames, an efficient threshold value can be calculated

which will result in a more accurate classification of yawning. Expressions for threshold

and yawning estimations are presented in Equation 3.9 and Equation 3.10, respectively.

					ThresholdÜáàâä = MouthHeightêëí	áì	î]	ìïñóòô +
MouthHeightêëí	áì	î]	ìïñóòô

3
				(3.9)

																																			õ
Yawning, current	height > ThresholdÜáàâä

Not	Yawning, Otherwise
																(3.10)

3.5. Head Pose Detection

The head pose is another important feature which is commonly used in drowsiness and

distraction systems for determining the attention level of drivers. Mainly, the decision on

the alertness is made based on whether the driver is looking straight or not - a factor that is

determined by measuring the head tilt angle. If the head tilt angle of drivers is greater than

a certain value, the driver is classified as the in-attentive. The gaze direction is an important

feature for connecting with the head pose, and it is used to determine the attention level.

Head pose detection is integrated usually because it is helpful in situations where the facial

features are not visible, such as the driver looking sideways or looking down. In such case,

head pose detection is used to alert the driver about its attentiveness. Kang et al. [110]

present a comprehensive review of different head pose detection techniques. Furthermore,

Chapter 2 includes a complete section of the literature review about head-pose detection

techniques.

For the purpose of this research, a simple idea has been implemented based on the position

of the head whether it is downward or straight. If it is downward, it is classified as

distracted; otherwise, it is regarded as attentive. For this purpose, a trained SVM classifier

has been used with the distraction dataset. Also available in the literature there are many

 School of Engineering and Technology

68

comprehensive approaches, which can effectively be used for head pose detection. A

detailed description of the head-pose detection mechanism used in this research is presented

in Chapter 4.

3.6. Support Vector Machine (SVM) Classifier

SVM is a machine learning classifier which is based on the vector space, and it aims to

determine the boundary between two or multiple output classes. SVM was first introduced

by the Boser et al. [111] in 1992. In the field of information processing and computer vision,

SVM gained popularity among researchers and was considered one of the most efficient

and robust approaches for pattern classifications [50, 52, 60, 112]. Talking about the utility

of SVM in computer vision based on drowsiness and distraction detection systems, in most

of the literature presented in Chapter 2, it can be observed that SVM is one of the most

often used techniques for classification, and it provided good classification results.

To perform the classification task, SVM required data sample to train itself. Once the SVM

is trained, it can be applied for test data to solve the classification problem. For any basic

classification problem, there are certain features based on what target values or classes are

predicted. The simplest SVM classifier is called the binary classifier in which input features

are predicted to be one of two output classes. For more complex classification tasks, non-

linear and kernel-based SVM classifiers are available [113]. One of the most important

properties of SVM is that it involves the optimization of convex function during the

learning of parameters which results in no false minima. Furthermore, unlike neural

networks, SVM requires only a few parameters are required for tuning and training

purposes [114].

Given the case of the simplest binary classification, (8", :") is a set of input labelled points.

Where,	8" is the set of feature vectors and :" ∈ {−1,+1} is class labels, assuming that both

classes are linearly separable. The binary SVM classification function as represented in

Equation 3.11 will be used to construct a rule in which any input feature vector 8 will be

assigned to one of the two classes.

																																																§(8; c, ¶) =< c, 8 > +¶																																															(3.11)

 School of Engineering and Technology

69

Where c and ¶ denotes the decision hyperplane vector and the intercept term, respectively.

The aim of the function is to predict the output class for the input feature to be one of the

two separable classes in the space. It is matter of fact that there can possibly be more than

one solutions available for the decision boundary. However, SVM chooses the decision

hyperplane with the maximum margin, where a margin is the minimum distance between

the plane and any of the sample data point. Figure 3.9 shows a feature space for a binary

classifier, in which (c,−¶) defines the decision hyperplane, and ß describes the margin

from the decision line [115].

Figure 3.9: Vector Space Representation of a Linear Binary SVM Classifier [115].

The points which determine the location of the plane boundary are referred to as support

vectors. Mathematically, the maximum margin solution can be formulated as the

optimization problem as illustrated in Equation 3.12 and Equation 3.13.

																																																														minimize	
1
2
™|c|™

i
																																																						(3.12)

																																															subject	to	:"(cÆ8" + ¶) ≥ 1, ∀∞																																											(3.13)

SVM are based on the statistical learning theory which proves that the bounds for the

generalization error can be obtained. Bounds are the function of complexity and are used

for training data misclassification errors. Maximizing separation margins reduces the

 School of Engineering and Technology

70

overall function complexity and minimizes the bounds for generalization errors, a function

that is desired in the classification problem. In simple words, maximizing separation margin

results in better generalization and probability. In other words, it can be said that models

with high capacity usually results in the overfitting of training data and thus in poor

generalization [116].

If two classes are not linearly separable, a technique called soft margins is used to handle

such problems. The idea behind soft margins is to minimize the influence of individual

sample data points and allow some training points to be misclassified. To achieve this, slack

variables are defined ±" ≥ 0. Where ±" ∈ {±- … ±A} is the slack variable for each data point.

Hence, in this case, the mathematical formulation of the optimization problem changes as

shown in Equation 3.14 and Equation 3.15

																																																			minimize	
1
2
™|c|™

i
+ ≥)±"

A

",-

																																													(3.14)

																																				subject	to	:"(cÆ8" + ¶) ≥ 1 − ±", ±" ≥ 0, ∀∞																																(3.15)

where ≥ controls the trade-off between the minimization of error and the maximisation of

plane margins.

Summary

This chapter presented a review of the conventional approaches used for detecting

drowsiness and/or distraction of drivers. These conventional approaches tend to focus on a

particular local region of the human body, for example the eye, the mouth and the head.

Experiments has been conducted in this research to evaluate some of the commonly used

conventional approaches, which is detailed in the next chapter.

 School of Engineering and Technology

71

CHAPTER 4

4. EXPERIMENTS WITH CONVENTIONAL
APPROACHES

In this research study, conventional computer vision approaches that are commonly used

for drowsiness and distraction detection have been experimentally tested on images to

evaluate their working performance. In particular, experiments have been conducted on

algorithms for detecting eye blinking, yawning and head pose, respectively. This chapter

outlines the functional block diagrams of the proposed algorithms, information about image

datasets, and results of conducted experiments. All the experiments were implemented

using MATLAB as a software tool.

4.1. The Detection Algorithms

The implementation of each individual detection algorithm i.e. eye blinking, yawning and

head pose detection is presented in the form of block diagram in Figure 4.1. All the three

detection units follow the same approach and consist of two phases: training phase and

testing phase. First, the SVM classifier for blinking, yawning and head pose detection is

trained using a diverse set of features that are generated through the steps of detecting the

facial regions, localising the facial regions of interest, and extracting the relevant features

from each facial region and finally training the SVM based on those features. Once an SVM

classifier is trained, the same steps can be followed for unseen test images which include

detecting the facial regions, extracting the relevant features using the defined formulations

and predicting the outcome based on the trained SVM classifier model. Eye blinking and

yawning each has been used to assist drowsiness detection. Head pose has been used in this

work to determine whether a driver is looking straight ahead (as in safe driving) or looking

away/down (as in distracted or drowsy driving)

 School of Engineering and Technology

72

Figure 4.1: Block Diagram for the Proposed Eye Closure, Yawning and Head Pose

Detection Mechanisms.

4.2. Image Datasets

The proposed conventional computer vision approaches have been trained and evaluated

over three different datasets for the detection of yawning, head pose and eye blinking,

respectively.

The Pointing’04 database [117] has been used for head pose training and testing purposes.

The pointing’04 database consists of 2970 images captured from 15 subjects of various

skin tones. The images in the dataset were captured under constant illumination conditions

with white background from the constant distance of one meter to achieve face-focused

image. All images in the dataset were captured in room settings, and the maximum allowed

head angle was 45 degrees. From this big dataset of head pose images, in total, 200 images

were randomly taken and used in our experiment to train and test the proposed head pose

detection algorithm. Small set of images were used since the dataset referred to was not

specifically designed for this purpose and relevant images were manually taken from the

dataset and were manually labelled to be used for this experiment. Before they were

Eye/Mouth/
Face

Detection

Cropping Eye/
Mouth/Face

Part

Feature
Extraction SVM Training

Eye/Mouth/
Face

Detection

Cropping Eye/
Mouth/Face

Part

Feature
Extraction

Prediction
using SVM

Training
Images

Test
Image

Predicted Output

Net

Eye/Mouth/Head pose
Labels

 School of Engineering and Technology

73

subjected to training, all the coloured images were converted to grayscale. Figure 4.2

presents some sample images from the dataset used for the head pose detection.

The training and testing of yawning detection algorithm have been performed using the

Birmingham University 3D Facial Expression (BU-3DFE) dataset [118] which consists of

data from 100 different subjects with 2500 different facial expressions. The dataset is

diverse in terms of age ranges (18 – 70 years), skin tone and nationality. All images in this

dataset include images of the face captured using front view, black background and constant

illumination conditions. Furthermore, it is important to mention that all the images are

captured in room settings but not in real in-vehicle settings. Figure 4.3 presents some

example images from the BU-3DFE dataset.

 School of Engineering and Technology

74

Figure 4.2: Examples from Head Pose Dataset.

 	

70
	

	

	

Figure 4.8: Test Database for Head Pose Detection.

	

 School of Engineering and Technology

75

Figure 4.3: Examples from Yawning Dataset.

 	

72
	

	

	

	

	

Figure 4.9: Training Database for Yawning Detection.

	 	

 	

73
	

	

Figure 4.10: Test Database for Yawning Detection.

	

Figure 4.11: Train and Test Database for the Eye Blink Detection.

4.2. Viola and Jones Face Detector Results

Viola and Jones algorithm has been used for the detection of facial objects such as mouth,

eyes and face from the given image. Figure 4.12 shows the results of Viola-Jones object

detection algorithm for two random images. Detected facial regions for mouth and eyes are

enclosed in boxes.

 	

72
	

	

	

	

	

Figure 4.9: Training Database for Yawning Detection.

	 	

 	

73
	

	

Figure 4.10: Test Database for Yawning Detection.

	

Figure 4.11: Train and Test Database for the Eye Blink Detection.

4.2. Viola and Jones Face Detector Results

Viola and Jones algorithm has been used for the detection of facial objects such as mouth,

eyes and face from the given image. Figure 4.12 shows the results of Viola-Jones object

detection algorithm for two random images. Detected facial regions for mouth and eyes are

enclosed in boxes.

 School of Engineering and Technology

76

In general, there are a number of eye datasets and databases available publicly [119].

However, most of these benchmark and major datasets are designed for eye localization,

position of eyes and coordinates of pupils. Although, many of these datasets contain a good

number of eye images from a diversity of subjects, but, all the images in these datasets

contain open eyes and therefore cannot be used to train and test the eye blinking classifier.

For the research performed in this thesis, the dataset [120] used for the eye blinking include

in total 200 images, 100 for open eyes and 100 for closed eyes. Images are colored and

each contains only the cropped region of a pair of eyes. Ground truth includes the labels of

open and closed eyes. The dataset containing both close and open eye images has been used

to train and test the eye blinking classifier. The dataset used for our eye blinking detection

experiment contains cropped colored (RGB) eye images from a diversity of subjects.

Images were converted to grayscale before being subjected to the training and testing.

Figure 4.4 shows few sample images used for eye blink detection algorithm.

Figure 4.4: Examples from Eye Blinking Dataset.

4.3. ¥-Fold Cross Validation

In order to assess the performance of proposed head pose, yawning and eye blinking

algorithms for a generalized and independent dataset, µ-fold cross validation approach has

been implemented. In this approach, all the data in a dataset is randomly divided into k

batches or bins of images. During each run of µ-fold cross validation, one batch is used for

testing and the rest for training. This process keeps on iterating for all the batches. In all

 1

 School of Engineering and Technology

77

our experiments the value of µ is selected as 10. In the end, results of each batch were then

averaged to get generalized precision of the correct and false detection of the proposed

algorithm.

4.4. Head Pose Detection Results

The head pose detection classifier was trained with the images in the Pointing’04 database.

Labels used by the SVM classifier for prediction are binary in the sense that the face in the

image is either straight or tilted. It is important to mention that the dataset was manually

labelled in this study. Figure 4.5 (a) and Figure 4.5 (b) present examples of correct and wrong

pose detection cases with the face enclosed in a rectangular region along with SVM

predicted labels, respectively.

Head Straight Head Straight Head Down Head Stright

Head Straight Head Down Head Straight Head Straight

(a) Correct Detections

Head Straight Head Down Head Straight

(b) Wrong Detections

Figure 4.5: (a) Examples of Correct Head Pose Detection (b) Examples of Wrong Head Pose
Detection.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

	 School Of Engineering and Technology
 PhD Registration Report 	

51
	

4.4. Head Pose Detection Results

This section presents the results of head pose detection algorithm. Results from each

subject has been presented along with the detection images. Detected faces are enclosed

with the red box in the results and decision on pose has been taken using the SVM

prediction. Figure 4.8 shows the output of the pose detection algorithm with detected

faces. Detailed statistics of the experiments on the pose detection are presented in Table

4.2. Table presents the results for each subject with the correct detection, false detection

and detection accuracy. Overall accuracy of pose detection algorithm tested for 112

images has been recorded as 85.5%. From the sample of 112 images, 92 images were

correctly detected and 20 were false detected.

 Head Down Head Down Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Down face Detection of test images face Detection of test images face Detection of test images face Detection of test images

 Head Straight Head Straight Head Straight Head Straight face Detection of test images face Detection of test images face Detection of test images face Detection of test images

Figure 4.8: Results of Head Pose Detection Algorithm.

 School of Engineering and Technology

78

Table 4.1 presents the detailed results of the 10-fold cross validation experiments. In total,

10 iterations were performed and in the end detection accuracies were averaged. Overall,

the head pose detection algorithm showed a correct detection accuracy of 98.50% and false

detection of 1.5%. High classification accuracies of SVM are because a controlled and

relatively small dataset with not much of diversity has been used. The few wrong

classifications may be due to the small training set used in the experiments.

Table 4.1: µ-Fold Cross Validation Results of Head Pose Detection Algorithm.

Number of Iteration (¥) Accuracy detection(%) False detection(%)

1 100.0 0.0

2 100.0 0.0

3 100.0 0.0

4 90.0 10.0

5 100.0 0.0

6 95.0 5.0

7 100.0 0.0

8 100.0 0.0

9 100.0 0.0

10 100.0 0.0

Average 98.50 1.5

In Figure 4.6 as shown below, the first two diagonal cells show the number and percentage

of correct classifications by the trained network. As shown, 98 images from the class

belonging to ‘Head Straight’ are correctly classified. This corresponds to 98.0% of all

the100 images in the class belonging to ‘Head Straight’. Similarly, 99 images are correctly

classified from the class belonging to ‘Head Down’. This corresponds to 99.0% of all

the100 images in the class belonging to ‘Head Down’. Two (2) images belonging to the

class of ‘Head Straight’ are incorrectly classified and this corresponds to 2.0% of all 100

images in the class belonging to ‘Head Straight’. Similarly, 1 image belonging to the class

 School of Engineering and Technology

79

of ‘Head Down’ is incorrectly classified and this corresponds to 1.0% of all 100 images in

the class belonging to ‘Head Down’. After applying the µ-fold cross validation, Overall,

98.5% of the predictions are correct and 1.5% are wrong

Figure 4.6: Confusion Matrices For µ-Fold Cross Validation Results Head Pose Detection

4.5. Yawning Detection Results

Yawning detection using the DOO features defined in equation 3.8 has exhibited promising

results despite the relatively small dataset used. It is important to mention that the ground

truth labelling was not available within the dataset and the dataset was therefore manually

labelled. As a result, the labelling was subjective in nature. Figure 4.7 (a) and Figure 4.7

(b) present the instances of correct and wrong detections of yawning detection, including

the predicted labels of mouth opened and mouth closed. Furthermore, detected mouths are

enclosed in a rectangle region.

 School of Engineering and Technology

80

Mouth Open Moth Close Mouth Close Mouth Open Mouth Open Mouth Open

Mouth Open Mouth Open Mouth Close Moth Close Mouth Open Mouth Open

(a) Correct Detections

Mouth Close Mouth Close

(b) Wrong Detection

Figure 4.7: (a) Examples of Correct Yawning Detection (b) Examples of Wrong Yawning

Detection.

Table 4.2 presents the details of µ-fold cross validation applied to assess the performance

of yawning detection algorithm. Overall, on average, 99.0% correct classification accuracy

and 1.0% false classification accuracy was achieved from the cross validation.

In Figure 4.8, as shown below, the first two diagonal cells show the number and percentage

of correct classifications by the trained network. As shown, 100 images from the class

belonging to ‘Mouth Open’ are correctly classified. This corresponds to 100.0% of all

the100 images in the class belonging to ‘Mouth Open’. Similarly, 98 images are correctly

classified from the class belonging to ‘Mouth Close’. This corresponds to 98.0% of all the

100 images in the class belonging to ‘Mouth Close’ There is no incorrect classification of

image in the class belonging to ‘Mouth Open’. Similarly, Two(2) images belonging to the

class of ‘Mouth Close’ are incorrectly classified and this corresponds to 2.0% of all 100

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images

 	

74
	

																	 	

																 	

Figure 4.12: Result of Viola and Jones Object Detection for Face, Eyes and Mouth.

4.3. Yawning Detection Results

This section presents the results of yawning detection algorithm. Results from each of 16

subjects have been presented along with the original images. Detected mouths are enclosed

with the red box in the results and decision on yawning has been taken using the SVM

prediction. Figure 4.13 shows the output of the yawning detection algorithm with detected

mouths.

 Mouth Open Mouth Close Mouth Close Mouth Open Mouth Close Mouth Open

 Mouth Open Mouth Close Mouth Open Mouth Open Mouth Open Mouth Open

 Mouth Open Mouth Open Mouth Open Mouth Close

Figure 4.13: Results of Yawning Detection Algorithm.

mouth Detection

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

mouth Detection of test images mouth Detection of test images mouth Detection of test images mouth Detection of test images

 School of Engineering and Technology

81

images in the class belonging to ‘Mouth close’. After applying the µ-fold cross validation,

Overall, 99.0% of the predictions are correct and 1.0% are wrong

Table 4.2: µ-Fold Cross Validation Results of Yawning Detection Algorithm.

Number of Iteration (¥) Accuracy detection(%) False detection(%)

1 100.0 0.0

2 100.0 0.0

3 100.0 0.0

4 100.0 0.0

5 100.0 0.0

6 95.0 5.0

7 100.0 0.0

8 100.0 0.0

9 95.0 5.0

10 100.0 0.0

Average 99.0 1.0

Figure 4.8: Confusion Matrices For k-Fold Cross Validation Results Yawning Detection.

 School of Engineering and Technology

82

4.6. Eye Blink Detection Results

For eye blinking detection, Viola and Jones algorithm and Haar-like features have been

used in our experiments. Manually labelled groundtruth was provided with the dataset.

Figure 4.9 (a) and Figure 4.9 (b) present examples of some correct and false cases of eye

blink detection along with SVM predicted labels, respectively.

Eyes Closed Eyes Open Eyes Open Eyes Closed

Eyes Open Eyes Closed Eyes Open Eyes Closed

 (a) Correct Detection

Eyes Open Eyes Closed

(b) Wrong Detections

Figure 4.9: (a) Examples of Correct Eye Blink Detection (b) Examples of Wrong Eye
Blink Detection.

Table 4.3 presents the 10-fold cross validation results for the eye blinking classifier.

Overall, an accuracy of 99.0% has been achieved. High detection accuracies of SVM are

because of similar samples of data in the testing and training datasets.

In Figure 4.10, as shown below, the first two diagonal cells show the number and

percentage of correct classifications by the trained network. As shown, 99 images from the

class belonging to ‘open eye’ are correctly classified. This corresponds to 99.0% of all

the100 images in the class belonging to ‘open eyes’. Similarly, 99 images are correctly

classified from the class belonging to ‘closed eye’. This corresponds to 99.0% of all the

100 images in the class belonging to ‘closed eyes’ 1 image belonging to the class of open

eye is incorrectly classified and this corresponds to 1.0% of all 100 images in the class

belonging to ‘open eyes’. Similarly, 1 image belonging to the class of ‘closed eye’ is

 School of Engineering and Technology

83

incorrectly classified and this corresponds to 1.0% of all 100 images in the class belonging

to ‘close eyes’. After applying the µ-fold cross validation, Overall, 99.0% of the predictions

are correct and 1% are wrong

Table 4.3: µ-Fold Cross Validation Results of Eye Blink Detection Algorithm.

Number of Iteration (K) Accuracy detection(%) False detection(%)

1 100.0 0.0

2 100.0 0.0

3 100.0 0.0

4 100.0 0.0

5 100.0 0.0

6 90.0 10.0

7 100.0 0.0

8 100.0 0.0

9 100.0 0.0

10 100.0 0.0

Average 99.0 1.0

Figure 4.10: Confusion Matrices For µ-Fold Cross Validation Results Eye Blinking
Detection.

 School of Engineering and Technology

84

Table 4.4 presents the overall statistics of SVM classification for drowsiness and distraction

related features i.e. yawing, head pose and eye blinking. In terms of number of images,

from total of 200 images in each case, head pose detection and eye blinking detection

algorithms were able to correctly classify 198 images while 2 images were incorrectly

classified. On the other hand, for the head pose detection, out of 200, 197 were correctly

classifier where 3 were incorrectly classified. Overall, accuracy of 98.83% has been

achieved using SVM classifier. Few incorrect instances were because of reasons presented

in head pose results section.

Table 4.4: Statistics of SVM Classification for Drowsiness Detection.

 Number of
Images

Correct
Classification

False
Classification

Classification
Accuracy

Yawning 200 198 2 99%
Head Pose 200 197 3 98.5%

Eye Blinking 200 198 2 99%
Overall 600 593 7 98.83%

The proposed drowsiness and distraction system based on the conventional computer vision

approaches has performed satisfactorily in terms of classifying the drowsiness-related

behaviours. In this research, the main purpose of performing these experiments was to

investigate the effectiveness of the conventional computer vision approaches in terms of

drowsiness detection. Nevertheless, in order to make the proposed algorithms robust and

practically functional, certain limitations still need to be addressed. The algorithms were

not trained and tested with comprehensive datasets such as the Kaggle dataset that will be

used in Chapter 6 of this thesis; rather, relatively small datasets were used to train an SVM

as well as evaluate its performance. This means that the reported performance figures might

not be the same when the trained classifier is applied to images of other unseen subjects.

Furthermore, the datasets used for the experiments were captured in room-settings rather

than in vehicle real-time settings. Thus, it cannot be proven that the tested algorithms will

work with similar accuracies with images such as those in the Kaggle dataset. To work with

the Kaggle dataset and perform classification of various driving behaviors, Chapter 5

 School of Engineering and Technology

85

investigates the feasibility of deep learning architectures and Chapter 6 shows their

experimental results on the Kaggle dataset.

 School of Engineering and Technology

86

Chapter 5

5. DEEP LEARNING APPROACHES

5.1. Introduction

To overcome the drawbacks of conventional vision approaches in terms of accuracy and

generalization identified from the experiments reported in previous chapters, deep learning

approach-based techniques have been proposed and implemented. Deep learning

approaches such as CNN have proved to improve the classification accuracies and

generalization issues. The second half of this MPhil study attempted to implement different

configurations of deep CNN architectures and compared their performance for a Kaggle

challenge of detecting distracted drivers. A number of deep architectures such as AlexNet,

ResNet, MobileNet and NASNet have been implemented to compare the performance

using Softmax and SVM classifiers with cross-entropy loss and hinge-loss respectively.

Experimental design and results are presented in the next chapter. This chapter explains the

CNN architectures, which are one of the deep architectures commonly used for computer

vision tasks. Theoretical details about different CNN architectures (such as AlexNet,

ResNet, MobileNet and NASNet) which are used in this research have been included.

Finally, this chapter provides the information about the triplet loss and batch triplet-loss

functions.

5.2. Deep CNN Architectures

This section provides the details about four different deep architectures AlexNet, ResNet,

MobileNet and NASNet, all of which are implemented in this research to classify the

distracted driving behaviours. This section provides the theoretical basis to each of these

deep networks.

5.2.1. AlexNet

Krizhevesky et al. [74] proposed a deep CNN architecture named AlexNet as shown in

Figure 5.1. AlexNet was the winner of one of the most advanced and challenging object

recognition competitions called ImageNet [121], which involves the classification of the

 School of Engineering and Technology

87

real-life images into one of 1000 prediction classes. AlexNet was trained over 1.3 million

images from the ImageNet challenge database and achieved the test error rate of 15.3%

[74]. First five layers of the model are convolution layers. Also used are max pooling layers

with Local Response Normalization (LRN) and 96 different filters of 11 × 11 size. For the

max pooling operation, a filter size of 3 × 3 with the stride of 2 is used. The same operations

are performed in the second layer with 5 × 5 filters. A filter size 3 × 3 is used in the third,

fourth, and fifth convolutional layers with 384, 384, and 296 feature maps respectively.

Two fully connected (FC) layers are used with dropout followed by a Softmax layer at the

end.

Figure 5.1: Structure of the Adopted AlexNet Deep Architecture used in this Research.

Networks with similar structure and the same number of feature maps are trained in parallel

for this model. Two new concepts, LRN and dropout, are introduced in this network. LRN

can be applied in two different ways: first, it can be applied on a single channel or feature

maps, where an 5 × 5 patch is selected from the same feature map and normalized based

one the neighbourhood values. Second, LRN can be applied across the channels or feature

maps (neighbourhood along the third dimension but a single pixel or location).

AlexNet network has been chosen for this research because this deep architecture has

already demonstrated its ability to classify objects in ImageNet challenge over large

number of images. Besides, features that are already learnt by this network are also useful

in detecting driver distraction. Hence, rather than training the architecture from scratch,

preserving the features learnt from ImageNet challenge will fasten the training process and

reduce the risk of overfitting. From the previously learn features, AlexNet will be able to

 School of Engineering and Technology

88

classify objects such as phones, pets, hand, cups, and coke cans, all of which are valuable

measures in classifying distracted driving.

AlexNet has 5 convolution layers and 2 fully connected layers. When processing the

ImageNet dataset, the total number of parameters for AlexNet can be calculated as follows

for the first layer: input samples are 224	 × 	224	 × 	3, filters (kernels or masks) or

receptive field have a size of 11, the stride is 4, and the output of the first convolution layer

is 55	 × 	55	 × 	96. We can calculate that this first layer has 290400 (55 × 55 × 96)

neurons and 364 (11 × 11 × 3 = 363 + 1 bias) weights. The parameters for the first

convolution layer are 290400 × 364 = 105,705,600. The total number of weights and

Multiply and Accumulated (MACs) for the whole network are 61M and 724M,

respectively.

The modified architecture of the AlexNet deep network for Kaggle challenge is explained

as follows. Each input is of the size defined by Kaggle challenge i.e. 227 × 227 × 3. The

first five layers in the architecture are local layers, and they provide the representation of

local features, while last layers are responsible for learning and classification of features

and are fully connected layers. At the layer fc7, a total of 4096 features are extracted and

saved in a matrix ∂. The dimension of feature matrix ∂ is ∑ × 4096, where ∑ is the number

of training images in each batch. In this case, ∑ equals 50. At the next stage, the Softmax

classifier is given with this feature matrix, which then classifies those features in one of the

10 Kaggle classes. The output probability values from the Softmax classifier are compared

with the ground truth labels to calculate classification loss.

5.2.2. ResNet

Proposed by Kaiming He, ResNet [75] was named after the residual connection which is a

connection between convolution layers as shown in Figure 5.2. ResNet was proposed with

the aim of developing an ultra-deep network towards the solution of gradient problem in

the conventional deep CNN architectures.

ResNet was proposed to have different number of layers i.e. 34, 50, 101 and 152 depending

on the type of application used. The most popular of them was ResNet50 with 50 layers

deep, 49 convolutional layers and 1 fully connected layer at the end of the network. The

 School of Engineering and Technology

89

total number of weights and MACs for the whole network are 25.5M and 3.9G,

respectively. Figure 5.3 presents the architecture of the ResNet proposed by author of [75]

for ImageNet challenge.

ResNet is a traditional feed forward network with a residual connection. The output of a

residual layer can be defined based on the outputs of (∏ − 1)π& which comes from the

previous layer defined as 8B∫-. ª(8B∫-) is the output after performing various operations,

e.g., convolution with different sizes of filters, Batch Normalization (BN), and an activation

function such as ReLU on 8B∫-. The final output of residual unit is 8B which can be defined

with Equation 5.1.

																																																																					8B = ª(8B∫-) + 8B∫-																																												(5.1)

Figure 5.2: Residual Learning, Building Block of ResNet (Taken From [75]).

Figure 5.3: Architecture of ResNet Proposed for the ImageNet Challenge (Taken From
[75]).

identity

weight layer

weight layer

relu

relu

F(x)�+�x

x

F(x) x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

layer name output size 18-layer 34-layer 50-layer 101-layer 152-layer
conv1 112⇥112 7⇥7, 64, stride 2

conv2 x 56⇥56

3⇥3 max pool, stride 2

3⇥3, 64
3⇥3, 64

�
⇥2

3⇥3, 64
3⇥3, 64

�
⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

2

4
1⇥1, 64
3⇥3, 64

1⇥1, 256

3

5⇥3

conv3 x 28⇥28

3⇥3, 128
3⇥3, 128

�
⇥2

3⇥3, 128
3⇥3, 128

�
⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥4

2

4
1⇥1, 128
3⇥3, 128
1⇥1, 512

3

5⇥8

conv4 x 14⇥14

3⇥3, 256
3⇥3, 256

�
⇥2

3⇥3, 256
3⇥3, 256

�
⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥6

2

4
1⇥1, 256
3⇥3, 256
1⇥1, 1024

3

5⇥23

2

4
1⇥1, 256
3⇥3, 256

1⇥1, 1024

3

5⇥36

conv5 x 7⇥7

3⇥3, 512
3⇥3, 512

�
⇥2

3⇥3, 512
3⇥3, 512

�
⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512

1⇥1, 2048

3

5⇥3

2

4
1⇥1, 512
3⇥3, 512
1⇥1, 2048

3

5⇥3

1⇥1 average pool, 1000-d fc, softmax
FLOPs 1.8⇥109 3.6⇥109 3.8⇥109 7.6⇥109 11.3⇥109

Table 1. Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of 2.

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

plain-18
plain-34

0 10 20 30 40 5020

30

40

50

60

iter. (1e4)

er
ro

r (
%

)

ResNet-18
ResNet-34

18-layer

34-layer

18-layer

34-layer

Figure 4. Training on ImageNet. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain
networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to
their plain counterparts.

plain ResNet
18 layers 27.94 27.88
34 layers 28.54 25.03

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation.
Here the ResNets have no extra parameter compared to their plain
counterparts. Fig. 4 shows the training procedures.

34-layer plain net has higher training error throughout the
whole training procedure, even though the solution space
of the 18-layer plain network is a subspace of that of the
34-layer one.

We argue that this optimization difficulty is unlikely to
be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated
signals to have non-zero variances. We also verify that the
backward propagated gradients exhibit healthy norms with
BN. So neither forward nor backward signals vanish. In
fact, the 34-layer plain net is still able to achieve compet-
itive accuracy (Table 3), suggesting that the solver works
to some extent. We conjecture that the deep plain nets may
have exponentially low convergence rates, which impact the

reducing of the training error3. The reason for such opti-
mization difficulties will be studied in the future.

Residual Networks. Next we evaluate 18-layer and 34-
layer residual nets (ResNets). The baseline architectures
are the same as the above plain nets, expect that a shortcut
connection is added to each pair of 3⇥3 filters as in Fig. 3
(right). In the first comparison (Table 2 and Fig. 4 right),
we use identity mapping for all shortcuts and zero-padding
for increasing dimensions (option A). So they have no extra
parameter compared to the plain counterparts.

We have three major observations from Table 2 and
Fig. 4. First, the situation is reversed with residual learn-
ing – the 34-layer ResNet is better than the 18-layer ResNet
(by 2.8%). More importantly, the 34-layer ResNet exhibits
considerably lower training error and is generalizable to the
validation data. This indicates that the degradation problem
is well addressed in this setting and we manage to obtain
accuracy gains from increased depth.

Second, compared to its plain counterpart, the 34-layer
3We have experimented with more training iterations (3⇥) and still ob-

served the degradation problem, suggesting that this problem cannot be
feasibly addressed by simply using more iterations.

5

 School of Engineering and Technology

90

The residual network consists of several basic residual blocks. However, the operations in

the residual block can be varied depending on the different architectures of residual

networks. The wider version of the residual network was proposed by Zagoruvko et al.

[122]. Another improved residual network approach known as aggregated residual

transformation was proposed in 2016 [123]. Recently, some other variants of residual

models have been proposed based on the residual network architecture [124-126].

5.2.3. MobileNet

In the deep learning domain, trends are shifted to develop more deeper and complex

architectures and to improve the performance of the tasks [127-129]. However, making

more deeper architectures was not always efficient in terms of size and time. In most real-

world applications, the task is to perform the classification quickly using the limited

computational resources (on board processing units); therefore, complex and deeper

networks were proving not to be the real-world architectures.

In an effort to achieve the improved performance by not using deeper layered architecture,

Howard et al. [130] proposed MobileNet, a fast, precise and most importantly a low size

network. The concept behind the MobileNet was the use of depthwise convolutions which

are a form of factorized convolutions. In simple words, standard convolution operation was

factorized into 1 × 1 pointwise convolutions. Factorizing the standard convolutions into

pointwise depth convolutions significantly reduced the size of the model and increase the

processing speed [130]. Figure 5.4 presents the illustration of standard convolution,

depthwise convolution and pointwise depth convolution.

A standard convolution layer takes a {º × {º ×X feature map Ω as the input to the layer

and produces a {æ × {æ × 5 feature map ø. {º denotes the spatial height and width of the

squared input while X represents the number of input channels. Similarly, {æ denotes the

spatial height and width of the output feature map and 5 represents the number of output

channels. Mathematically, the output of a standard convolution can be expressed as shown

in Equation 5.2.

																																																					ø¿,B,A =) ¡",$,=,A ⋅ Ω¿√"∫-,B√$∫-,=
",$,=

																															(5.2)

 School of Engineering and Technology

91

where Ω denotes the input feature map, ¡ represents the kernel size and ø denotes the output

feature map.

Figure 5.4: Concept of Depthwise Convolution Proposed by Howard et al. [130].

Unlike the standard convolution, depthwise separable convolution operation involves two

layers: a depthwise convolution and a pointwise convolution. MobileNet uses depthwise

convolution operations by first applying a single filter to each input depth and then applying

1 × 1 pointwise convolution to produce linear combination of depthwise outputs. Both

ReLU and BatchNorm non-linearites are used in MobileNet. This combination of

depthwise convolution and pointwise convolution is referred to as the depthwise separable

convolution with the computational cost as expressed in Equation 5.3.

																																																		{ƒ ⋅ {ƒ ⋅ X ⋅ {º ⋅ {º + X ⋅ 5 ⋅ {º ⋅ {º																														(5.3)	

Expressing convolution operation as a two-step filtering process can be reduced as
expressed in Equation 5.4.

separable convolutions for substantial reduction in compu-
tational cost.

Depthwise separable convolution are made up of two
layers: depthwise convolutions and pointwise convolutions.
We use depthwise convolutions to apply a single filter per
each input channel (input depth). Pointwise convolution, a
simple 1⇥1 convolution, is then used to create a linear com-
bination of the output of the depthwise layer. MobileNets
use both batchnorm and ReLU nonlinearities for both lay-
ers.

Depthwise convolution with one filter per input channel
(input depth) can be written as:

Ĝk,l,m =
X

i,j

K̂i,j,m · Fk+i�1,l+j�1,m (3)

where K̂ is the depthwise convolutional kernel of size
DK ⇥ DK ⇥ M where the mth filter in K̂ is applied to
the mth channel in F to produce the mth channel of the
filtered output feature map Ĝ.

Depthwise convolution has a computational cost of:

DK ·DK ·M ·DF ·DF (4)

Depthwise convolution is extremely efficient relative to
standard convolution. However it only filters input chan-
nels, it does not combine them to create new features. So
an additional layer that computes a linear combination of
the output of depthwise convolution via 1 ⇥ 1 convolution
is needed in order to generate these new features.

The combination of depthwise convolution and 1 ⇥ 1
(pointwise) convolution is called depthwise separable con-
volution which was originally introduced in [26].

Depthwise separable convolutions cost:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF (5)

which is the sum of the depthwise and 1⇥ 1 pointwise con-
volutions.

By expressing convolution as a two step process of filter-
ing and combining we get a reduction in computation of:

DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF

DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

MobileNet uses 3⇥ 3 depthwise separable convolutions
which uses between 8 to 9 times less computation than stan-
dard convolutions at only a small reduction in accuracy as
seen in Section 4.

Additional factorization in spatial dimension such as in
[16, 31] does not save much additional computation as very
little computation is spent in depthwise convolutions.

...

...

...

M

M

M

DK

DK

DK

DK

N

N
1

1

1

(a) Standard Convolution Filters

...

...

...

M

M

M

DK

DK

DK

DK

N

N
1

1

1

(b) Depthwise Convolutional Filters

...

...

...

M

M

M

DK

DK

DK

DK

N

N
1

1

1

(c) 1⇥1 Convolutional Filters called Pointwise Convolution in the con-
text of Depthwise Separable Convolution

Figure 2. The standard convolutional filters in (a) are replaced by
two layers: depthwise convolution in (b) and pointwise convolu-
tion in (c) to build a depthwise separable filter.

3.2. Network Structure and Training
The MobileNet structure is built on depthwise separable

convolutions as mentioned in the previous section except for
the first layer which is a full convolution. By defining the
network in such simple terms we are able to easily explore
network topologies to find a good network. The MobileNet
architecture is defined in Table 1. All layers are followed by
a batchnorm [13] and ReLU nonlinearity with the exception
of the final fully connected layer which has no nonlinearity
and feeds into a softmax layer for classification. Figure 3
contrasts a layer with regular convolutions, batchnorm and
ReLU nonlinearity to the factorized layer with depthwise
convolution, 1 ⇥ 1 pointwise convolution as well as batch-
norm and ReLU after each convolutional layer. Down sam-
pling is handled with strided convolution in the depthwise
convolutions as well as in the first layer. A final average
pooling reduces the spatial resolution to 1 before the fully
connected layer. Counting depthwise and pointwise convo-
lutions as separate layers, MobileNet has 28 layers.

It is not enough to simply define networks in terms of a
small number of Mult-Adds. It is also important to make
sure these operations can be efficiently implementable. For

 School of Engineering and Technology

92

																																							
{ƒ ⋅ {ƒ ⋅ X ⋅ {º ⋅ {º + X ⋅ 5 ⋅ {º ⋅ {º

{ƒ ⋅ {ƒ ⋅ X ⋅ 5 ⋅ {º ⋅ {º
=
1
5
+

1

{ƒ
i 																				(5.4)	

Figure 5.5 shows the architecture of MobileNet CNN Model as proposed by Howard et al.
[130].

Figure 5.5: Architecture of MobileNet CNN Proposed by Howard et al. [130].

5.2.4. NASNet

The development of deep neural networks for the tasks of image classification is based

mainly on the manual or human architecture engineering. With better architecture,

improved results have been achieved in the past over a number of classification tasks.

However, Zoph et al. [131] proposed a new paradigm for deep neural network development

by introducing the idea of using a scalable method to optimize the deep architecture for the

dataset where it is intended to be applied. The proposed method for scalable optimization

is based on the Neural Architecture Search (NAS) which uses reinforcement learning

approach to optimize the architecture.

The implementations of the NAS or any other search method for huge image datasets is

challenging in terms of computational power. Because of this challenge, Zoph et al. [131]

proposed the idea of optimizing the good architecture over proxy dataset (small) and then

transferring the learned architecture to the actual dataset (large). This transfer of learning

Figure 3. Left: Standard convolutional layer with batchnorm and
ReLU. Right: Depthwise Separable convolutions with Depthwise
and Pointwise layers followed by batchnorm and ReLU.

instance unstructured sparse matrix operations are not typ-
ically faster than dense matrix operations until a very high
level of sparsity. Our model structure puts nearly all of the
computation into dense 1⇥ 1 convolutions. This can be im-
plemented with highly optimized general matrix multiply
(GEMM) functions. Often convolutions are implemented
by a GEMM but require an initial reordering in memory
called im2col in order to map it to a GEMM. For instance,
this approach is used in the popular Caffe package [15].
1⇥1 convolutions do not require this reordering in memory
and can be implemented directly with GEMM which is one
of the most optimized numerical linear algebra algorithms.
MobileNet spends 95% of it’s computation time in 1 ⇥ 1
convolutions which also has 75% of the parameters as can
be seen in Table 2. Nearly all of the additional parameters
are in the fully connected layer.

MobileNet models were trained in TensorFlow [1] us-
ing RMSprop [33] with asynchronous gradient descent sim-
ilar to Inception V3 [31]. However, contrary to training
large models we use less regularization and data augmen-
tation techniques because small models have less trouble
with overfitting. When training MobileNets we do not use
side heads or label smoothing and additionally reduce the
amount image of distortions by limiting the size of small
crops that are used in large Inception training [31]. Addi-
tionally, we found that it was important to put very little or
no weight decay (l2 regularization) on the depthwise filters
since their are so few parameters in them. For the ImageNet
benchmarks in the next section all models were trained with
same training parameters regardless of the size of the model.

3.3. Width Multiplier: Thinner Models
Although the base MobileNet architecture is already

small and low latency, many times a specific use case or
application may require the model to be smaller and faster.
In order to construct these smaller and less computationally
expensive models we introduce a very simple parameter ↵
called width multiplier. The role of the width multiplier ↵ is
to thin a network uniformly at each layer. For a given layer

Table 1. MobileNet Body Architecture
Type / Stride Filter Shape Input Size
Conv / s2 3⇥ 3⇥ 3⇥ 32 224⇥ 224⇥ 3
Conv dw / s1 3⇥ 3⇥ 32 dw 112⇥ 112⇥ 32
Conv / s1 1⇥ 1⇥ 32⇥ 64 112⇥ 112⇥ 32
Conv dw / s2 3⇥ 3⇥ 64 dw 112⇥ 112⇥ 64
Conv / s1 1⇥ 1⇥ 64⇥ 128 56⇥ 56⇥ 64
Conv dw / s1 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 128 56⇥ 56⇥ 128
Conv dw / s2 3⇥ 3⇥ 128 dw 56⇥ 56⇥ 128
Conv / s1 1⇥ 1⇥ 128⇥ 256 28⇥ 28⇥ 128
Conv dw / s1 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 256 28⇥ 28⇥ 256
Conv dw / s2 3⇥ 3⇥ 256 dw 28⇥ 28⇥ 256
Conv / s1 1⇥ 1⇥ 256⇥ 512 14⇥ 14⇥ 256

5⇥ Conv dw / s1 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 512 14⇥ 14⇥ 512

Conv dw / s2 3⇥ 3⇥ 512 dw 14⇥ 14⇥ 512
Conv / s1 1⇥ 1⇥ 512⇥ 1024 7⇥ 7⇥ 512
Conv dw / s2 3⇥ 3⇥ 1024 dw 7⇥ 7⇥ 1024
Conv / s1 1⇥ 1⇥ 1024⇥ 1024 7⇥ 7⇥ 1024
Avg Pool / s1 Pool 7⇥ 7 7⇥ 7⇥ 1024
FC / s1 1024⇥ 1000 1⇥ 1⇥ 1024
Softmax / s1 Classifier 1⇥ 1⇥ 1000

Table 2. Resource Per Layer Type
Type Mult-Adds Parameters
Conv 1⇥ 1 94.86% 74.59%
Conv DW 3⇥ 3 3.06% 1.06%
Conv 3⇥ 3 1.19% 0.02%
Fully Connected 0.18% 24.33%

and width multiplier ↵, the number of input channels M be-
comes ↵M and the number of output channels N becomes
↵N .

The computational cost of a depthwise separable convo-
lution with width multiplier ↵ is:

DK ·DK · ↵M ·DF ·DF + ↵M · ↵N ·DF ·DF (6)

where ↵ 2 (0, 1] with typical settings of 1, 0.75, 0.5 and
0.25. ↵ = 1 is the baseline MobileNet and ↵ < 1 are
reduced MobileNets. Width multiplier has the effect of re-
ducing computational cost and the number of parameters
quadratically by roughly ↵2. Width multiplier can be ap-
plied to any model structure to define a new smaller model
with a reasonable accuracy, latency and size trade off. It
is used to define a new reduced structure that needs to be
trained from scratch.

3.4. Resolution Multiplier: Reduced Representa-
tion

The second hyper-parameter to reduce the computational
cost of a neural network is a resolution multiplier ⇢. We ap-

 School of Engineering and Technology

93

is achieved by using the NASNet search space, and that is why this type of architectures is

known as NASNets. The NAS search uses the Recurrent Neural Network (RNN) to sample

the child networks [126]. Sampling is done with a probability ≈. Once the architecture is

sampled, it gets trained on the specific dataset. When the training phase reaches a local

minimum and an accuracy ∆, gradients of ≈ gets scaled by ∆, the RNN controller gets

updated and better architectures are achieved over time. Figure 5.6 shows the function

block diagram of the RNN controlled based NAS.

Figure 5.6: Overview of Neural Architecture Search (NAS) (Taken From [126]).

5.3. Theory of Transfer Learning

Transfer learning is the approach in machine learning where well-trained models for one

problem are tuned and used for different but similar problems. Because training a deep

architecture from scratch requires huge dataset, computational resources and time, transfer

learning concept has gained popularity among researchers and provided reasonable results

when practiced in real-world problems. In technical terms, when a model is trained over

comprehensive dataset, it gains the knowledge and stores it in the form of layer weights. In

transfer learning approach, pre-trained models are used while preserving the weights

learned for previous problem and then fine-tuned to conform to the requirement of the new

problem. For example, a deep network learned over huge dataset of ImageNet challenge

will have features learned, and they are useful for most object-detection and classification

problems in computer vision. Hence, if these features are used with fine-tuning, they will

1.2% improvement in top-1 accuracy than the best human-
invented architectures while having 9 billion fewer FLOPS.
On CIFAR-10 itself, NASNet achieves 2.4% error rate,
which is also state-of-the-art.

Additionally, by simply varying the number of the con-
volutional cells and number of filters in the convolutional
cells, we can create different versions of NASNets with dif-
ferent computational demands. Thanks to this property of
the cells, we can generate a family of models that achieve
accuracies superior to all human-invented models at equiv-
alent or smaller computational budgets [60, 29]. Notably,
the smallest version of NASNet achieves 74.0% top-1 ac-
curacy on ImageNet, which is 3.1% better than previously
engineered architectures targeted towards mobile and em-
bedded vision tasks [24, 70].

Finally, we show that the image features learned by
NASNets are generically useful and transfer to other com-
puter vision problems. In our experiments, the features
learned by NASNets from ImageNet classification can be
combined with the Faster-RCNN framework [47] to achieve
state-of-the-art on COCO object detection task for both the
largest as well as mobile-optimized models. Our largest
NASNet model achieves 43.1% mAP, which is 4% better
than previous state-of-the-art.

2. Related Work

The proposed method is related to previous work in hy-
perparameter optimization [44, 4, 5, 54, 55, 6, 40] – es-
pecially recent approaches in designing architectures such
as Neural Fabrics [48], DiffRNN [41], MetaQNN [3] and
DeepArchitect [43]. A more flexible class of methods for
designing architecture is evolutionary algorithms [65, 16,
57, 30, 46, 42, 67], yet they have not had as much success
at large scale. Xie and Yuille [67] also transferred learned
architectures from CIFAR-10 to ImageNet but performance
of these models (top-1 accuracy 72.1%) are notably below
previous state-of-the-art (Table 2).

The concept of having one neural network interact with a
second neural network to aid the learning process, or learn-
ing to learn or meta-learning [23, 49] has attracted much
attention in recent years [1, 62, 14, 19, 35, 45, 15]. Most
of these approaches have not been scaled to large problems
like ImageNet. An exception is the recent work focused
on learning an optimizer for ImageNet classification that
achieved notable improvements [64].

The design of our search space took much inspira-
tion from LSTMs [22], and Neural Architecture Search
Cell [71]. The modular structure of the convolutional cell is
also related to previous methods on ImageNet such as VGG
[53], Inception [59, 60, 58], ResNet/ResNext [20, 68], and
Xception/MobileNet [9, 24].

3. Method
Our work makes use of search methods to find good con-

volutional architectures on a dataset of interest. The main
search method we use in this work is the Neural Architec-
ture Search (NAS) framework proposed by [71]. In NAS,
a controller recurrent neural network (RNN) samples child
networks with different architectures. The child networks
are trained to convergence to obtain some accuracy on a
held-out validation set. The resulting accuracies are used
to update the controller so that the controller will generate
better architectures over time. The controller weights are
updated with policy gradient (see Figure 1).

The controller (RNN)

Train a child network!
with architecture A to !
convergence to get !

validation accuracy R

Sample architecture A!
with probability p

Scale gradient of p by R!
to update the controller

Figure 1. Overview of Neural Architecture Search [71]. A con-
troller RNN predicts architecture A from a search space with prob-
ability p. A child network with architecture A is trained to con-
vergence achieving accuracy R. Scale the gradients of p by R to
update the RNN controller.

The main contribution of this work is the design of a
novel search space, such that the best architecture found
on the CIFAR-10 dataset would scale to larger, higher-
resolution image datasets across a range of computational
settings. We name this search space the NASNet search

space as it gives rise to NASNet, the best architecture found
in our experiments. One inspiration for the NASNet search
space is the realization that architecture engineering with
CNNs often identifies repeated motifs consisting of com-
binations of convolutional filter banks, nonlinearities and a
prudent selection of connections to achieve state-of-the-art
results (such as the repeated modules present in the Incep-
tion and ResNet models [59, 20, 60, 58]). These observa-
tions suggest that it may be possible for the controller RNN
to predict a generic convolutional cell expressed in terms of
these motifs. This cell can then be stacked in series to han-
dle inputs of arbitrary spatial dimensions and filter depth.

In our approach, the overall architectures of the convo-
lutional nets are manually predetermined. They are com-
posed of convolutional cells repeated many times where
each convolutional cell has the same architecture, but dif-
ferent weights. To easily build scalable architectures for
images of any size, we need two types of convolutional cells
to serve two main functions when taking in a feature map

 School of Engineering and Technology

94

perform effectively for new problems. There are two commonly used approaches in transfer

learning. In the first approach, new layers are added over the previously learned layers, and

the whole architecture is trained including the previously learned weights. However, this

approach results in breaking of previously learned features if the learning rate is not selected

carefully. In the second approach, only the newly added layers in the architecture are

learned while preserving the weights from the pre-learned model. In practice, a

combination of both approaches is more commonly used and proved effective [132].

In other words, the usual transfer learning approach is to train a base network and then copy

its first « layers to the first « layers of a target network. The remaining layers of the target

network are then randomly initialized and trained for the target task. It is possible to choose

to back-propagate the errors from the new task into the base features and fine-tune them to

the new task. Besides, the transferred feature layers can be left frozen, but leaving them

frozen usually turns out to be the best choice.

5.4. Distance Metric Learning

Metric learning is a long-standing problem whose main goal is to find a function §(»", »$)

that gives us a distance between items »". The learned distance function is problem

dependent, symmetric f(»", »$) = f(»", »$) and non-negative §(»", »$) 	≥ 	0. In particular,

we will focus on how to learn the distance function § over images using CNN [133-135].

With the recent computational capabilities and the increase in the data available online,

CNNs have become a de facto standard model for tasks involving image manipulation due

to its great performance. The concatenation of linear and non-linear layers squeezes the raw

information given by image pixels. Together with the back-propagation algorithm [136],

they build a high-level feature representation of the input that is encoded into a feature

vector that has shown to have outstanding capabilities [137-140]. These feature vectors are

usually the last layers of the model, and they encode the high and low-level information in

the network extracted from the input image. In other words, the CNN can be regarded as a

feature extractor that maps an input xi into a new Euclidean space X(8") ∈ ℝ 	where d is

the dimensionality of the resulting feature vector.

 School of Engineering and Technology

95

5.5. Triplet Loss

Distance metric learning is the approach that improves the classification efficiency for real-

world applications and aims to keep the data points from the same classes close to each

other and to ensure data points from the different classes are far apart from each other. At

the fully connected layer in a CNN, the output is in the form of feature representations

vector which are then classified by Softmax or Support Vector Classifier (SVC). However,

it has been observed that if the feature vectors are learned in a way that information is

spatially separated and features are embedded into a new space where the position of

features is an indication of the similarity with certain class, the classification accuracy of

the overall network will improve. Furthermore, the reduced dimensionality of the new

space allows the classifier model to learn good boundaries for classes more quickly.

Triplet loss is the approach in distance metric learning which is used to train the CNN in a

way that it maps feature representations to a d-dimensional Euclidean space

À§(») ∈ ℝ , ™|§(»)|™
i
= 1Ã where the position of the feature representations indicates the

similarity to certain class [77]. Unlike categorical cross-entropy, optimizing triplet loss

does not directly involve improving the class-prediction accuracy; rather, it focuses on the

creation of an encoding in which different classes are separated spatially. Figure 5.7

presents the three main components involved in triplet loss: positive, anchor and negative.

Triplet loss function aims to improve the classification accuracy by increasing the distance

between the anchor and the negative while decreasing the distance between anchor and

negative during the learning process. The triplet of samples means the anchor and positive

samples belongs to the same class, while negative sample belongs to a different class.

Optimizing the loss function causes the CNN to bring the encoding for the anchor and

positive example closer together and to separate the anchor and negative sample. This is

done for an entire batch of triplets at a time. In this way, the model learns to map related

data to a similar position in the encoding space, while separating unrelated data [141, 142].

 School of Engineering and Technology

96

5.6. Activation Functions with Triplet Loss

Knowing that CNNs are powerful feature extractors, we can find the function

§(X(»"),X(»$)) that will give us the distance between two input images »" and »$. In an

ideal case, we would like both images to be close in the Euclidean space when both images

belong to the same semantic class §(X(»"),X(»$)) ≃0. We would also like to have a large

distance between them when they do not belong to the same class §(X(»"),X(»$)) ≫ 0

[77]. In our case, f will be the Euclidean distance between feature vectors. Thus, the

equation is as follows

§(X(»"),X(»$)) = ||X(»") − 	X(»$)||i
i

Moreover, the feature vectors lie on the d-dimensional hypersphere ||X(»")||i = 	1, thus

making the distance between feature vectors proportional to the cosine similarity. Using §,

we can compare the distances between the anchor image (»"6) and the positive sample

(»"
œ)given by §(X(»"6),X(»"

œ)) ≃0, including the distances between the anchor and the

negative sample »"A given by §(X(»"6),X(»"
œ)) ≫ 0. Figure 5.7 shows the geometrical

interpretation of the training performed and compares the distances with a triplet loss using

a margin. To learn how to place the images of the same semantic class nearby in the

Euclidean space while separating the images of different class, we use a triplet loss function

involving the anchor, positive and negative images.

Figure 5.7: Example of Triplet Before and After Training to Illustrate the Advantage of
Triplet Loss Function.

Positive

Negative

Positive

NegativeTraining

Anchor Anchor

 School of Engineering and Technology

97

There are number of ways in which loss function, sample selection and batching are

implemented using the triplet loss. Some commonly used triplet loss implementations are

discussed as follows.

5.6.1. Margin Triplet Loss

The margin triplet loss function uses the simple idea that the difference between the anchor-

positive vector distance and anchor-negative vector distance must be separated by a

minimum margin of O [143]. Mathematically, the standard margin triplet loss function can

be expressed as shown in Equation 5.5.

																																													– =)max(0, §“»"
6, »"

œ” − §(»"
6, »"

A) + O)

*

"

																								(5.5)

Where »"6 denotes the anchor feature vector, »"
œ denotes the positive feature vector, »"A

denotes the negative feature vector, and O denotes the forced margin between the anchor-

to-positive distance and the anchor-to-negative distance. In Equation 5.32, the function

§“»"
6, »"

œ” determines the distance between two feature vectors (in this case anchor and

positive). From this equation, it can be observed that triplet loss function tries to separate

the positive and negative samples by a margin of O. The only condition at which the triplet

loss will be greater than zero is this: §“»"6, »"
œ” + O > 	§(»"

6, »"
A). This loss function is

formulated in a similar way to hinge loss in that a sample only contributes to the loss and

the gradient of the model if the total loss for a specific sample is positive. Additionally, a

margin O is used to specify a minimum distance which the Euclidean distance squared

between the embedding for »6and »œ must reach before the loss becomes zero.

Triplet loss function can equivalently be expressed as shown in Equation 5.6.

																																																												max“0, t6œ − t6A + O”																																															(5.6)

where

t6œ =
1
5
)§(»"

6, »"
œ)

*

"

 School of Engineering and Technology

98

t6A =
1
5
)§(»"

6, »"
A)

*

"

5.6.2. Naïve Triplet Loss

The naïve triplet loss function is similar to the margin triplet loss function. The only

difference between them is that in the naïve triplet loss function, the mean operation is

placed around the squared Euclidean distances. In simple words, Euclidean distances

between anchor-positive and anchor-negative vectors are averaged before the margin O is

applied. This means that individual samples cannot be set to zero if they are not positive.

The entire batch must satisfy the margin constraint in order to set the gradient to zero.

Mathematically, this can be expressed as shown in Equation 5.7.

																				– = ‘
1
5
)À’§(»"

6) − §“»"
œ”’

i

i
Ã 	−	

1
5
)(‖§(»"

6) − §(»"
A)‖i

i) 	+ 	O

*

",]

	

*

",]

◊

√

(5.7)

5.6.3. Batch Triplet Loss

The third formulation of loss implemented and tested as a part of this project is the batch

triplet loss.

ÿ6œ = 	 ’§(»"
6) − §“»"

œ”’
i

i

ÿ6A = 	‖§(»"
6) − §(»"

A)‖i
i

For batch triplet loss, the distances between embeddings for the anchor and positive anchor

are calculated using squared Ÿi (Euclidean) distance. The same is done for the distance

between the anchor and negative.

t6œ = 	
1
5
)ÿ6œ

*

",]

t6A = 	
1
5
)ÿ6A

*

",]

As for triplet loss function implementation, the separation of mean value for each

distribution does not always result in improved performance as there may be overlapping

 School of Engineering and Technology

99

between the distributions which may result in an increased number of false positives and

false negatives. In this case, for the means of distributions t- and ti, there will be a decision

threshold which will define how both distributions are well-separated. Parameters ⁄-and

⁄i are the standard deviations of two distributions, and the decision overlapping can de

represented mathematically as given in Equation 5.8 [144]. Figure 5.8 presents the

illustration of overlapping problem graphically.

																																																decison	threshold =
|t- − ti|

¤⁄-
i + ⁄i

i/2
																																						(5.8)

Figure 5.8: Illustration of Overlapping Issue in Triplet Loss [144].

Towards the solution of this overlapping problem, the batch triplet loss function uses the

variances of the squared Euclidean distance to be minimized along with means. Equation

5.9 presents the mathematical expression for the batch triplet loss function.

																																	(1 − ›)max“0, t6œ − t6A + O” + ›“⁄6œi + ⁄6Ai ”																												(5.9)

Where

⁄6œi =
1
5
)“§“»"

6, »"
œ” − t6œ”

i
*

"

⁄6Ai =
1
5
)(§(»"

6, »"
A) − t6A)i

*

"

FARFRR

Error

Decision Threshold

Authentic

Impostor

 School of Engineering and Technology

100

The term › in Equation 5.36 balances each term contribution in the loss function. At unity

value of ›, it can be seen from Equation 5.36 that the first term will be zero. This means

that only the effect of variances will be effective for loss function. On the other hand, by

selecting › as zero, the effect of variances can be eliminated from the loss function [145,

146].

5.7. Triplet Mining

Triplet mining is the process of selecting the efficient triplets from the large number of

available ones. From the definition of triplet loss, triplets can be categorized into three-fold:

• Easy Triplets: This is triplets with zero loss i.e. the distance between the anchor and

the negative (ÿ6A) is greater than the distance between the anchor and the positive

“ÿ6œ” plus the margin (O). Mathematically, it can be expresses as ÿ6œ + O < ÿ6A.

• Hard Triplets: This is triplets in which the distance between the negative and the

anchor is less than distance between the positive and the anchor “ÿ6A < ÿ6œ”.

• Semi-Hard Triplets: This is triplets in which ÿ6œ is greater than ÿ6A but still the loss

is positive (ÿ6œ < ÿ6A < ÿ6œ + O).

From the above definitions, it can be clearly observed that all the triplets depend on the

negative position; therefore, these three categories can be also called hard negatives, easy

negatives and semi-hard negatives. Mathematically, hard positive, hard negative and semi-

hard negative can be expressed as given in Equation 5.10, Equation 5.11 and Equation 5.12,

respectively.

																																																													argmax
»fi
fl

‡™§(»"
6) − §“»"

œ”™‡
i

i
																																						(5.11)

																																																														argmax
»fi
·

™|§(»"
6) − §(»"

A)|™
i

i
																																						(5.12)

																																																												ÿ6œ < ÿ6A, ÿ6œ − ÿ6A + O > 0																																		(5.13)

 School of Engineering and Technology

101

In terms of mining of these triplets, there are two commonly used methods: offline mining

and online mining. To sample triplets that violate the constraints imposed by the loss

function, we can use two different methods to find the hardest candidates over the whole

dataset (Offline triplet mining) or finding the hardest samples within the batch in the current

iteration of the training (Online triplet mining). For now, we were unable to implement the

online mining due to limited resources and due to the required large mini-batch size, which

consumes lots of GPU memory. Online mining will be part of our future work. In this

research, we implemented the offline mining approach.

5.8. Offline Mining Triplet

Offline triplet mining aims to sample triplets that break the assumptions of the loss function

by the largest margin [77]. It means that it samples the positive image whose distance to

the anchor is the largest and the negative image whose distance to the anchor is the smallest.

Finding only the hardest samples to train the model might not

be a good idea because they can be over-complicated samples

which can make the training diverge. The image on the left

shows how the offline triplet mining is performed. The half-

transparent green and red circles represent the positive and

negative samples, respectively. The blue circle is the anchor.

Finally, the dark circles represent the hard positive and negative sample chosen with respect

to the anchor using this mining method.

In offline mining, triplets are found offline before the start of each training epoch. All the

embedding are computed over the training dataset and then hard or semi-hard triplets are

selected. Then, each epoch is trained over these selected triplets. We can then train one

epoch on these triplets. Concretely, we would produce a list of triplets (∞, ‚, µ) and then

create batches of these triplets of size B. This means that we will have to compute 3B

embedding to get the B triplets and the loss of these B triplets and then back-propagate into

the network. We need to do a full pass on the training set to generate triplets. An update of

the offline mined triplets regularly is also required.

 School of Engineering and Technology

102

The possible combination of triplets in a dataset of X elements is (jP) = 	
P!

j!(P∫j)!
. By

choosing a value of X	 = 	10000, we already have 1.6	 ×	10-- possible combinations of

triplets, thus making it impossible to sample all of them. To avoid the computation cost of

sampling all the triplets, we could use random sampling, but this can generate triplets that

do not break the constraints of the loss function. Thus, they do not contribute to the training

of the model. By randomly sampling triplets, the converge of the training becomes slow,

and given that the triplets used are not meaningful, the model could converge in a poor

local minima. Because of this, it is crucial to have a powerful sampling technique that not

only yields meaningful triplets to the training but also speeds up model convergence.

5.8.1. Triplet Sampling

The selection of triplet from a large number randomly is inefficient for training the network,

and is slow. This makes triplet selection and the important aspect of the triplet loss function

implementation. Hard triplets are those which actively participates in the training, and

mining of hard triplets is a challenging task. In general, two main approaches used for

mining of hard triplet are online and offline [143]. While implementing the triplet loss

function, researchers have observed that choosing hardest pairs of triplets for the CNN can

result in the local minima problem and in poor performance. The first technique involves

the selection of negative samples randomly. Given an anchor vector for a given image, this

technique involves taking a negative example randomly. This is the fastest method, but it

does not guarantee that the model will learn to produce high-quality discriminative

embedding.

Semi-hard sampling is another approach for the selection of triplets which at the first stage

involves the computation of Euclidean distance between all anchors and positive samples

in the same class. In the next step each negative samples distance from each positive sample

is calculated. The selection of positive and negative vectors is performed by selecting the

negative sample such that the distance between the anchor and negative is less than the

distance between the anchor and its negative. This method results in a more effective way

to force the model into focusing and bringing together anchors and positive samples before

increasing the distance between anchor and negative samples.

 School of Engineering and Technology

103

The final method is called “hard sampling” or “hard sampling mining”. It requires the

calculation of distances between all pairs of samples of the dataset. Then, the positive

sample is drawn randomly. As the negative sample, we take the vector embedding with the

closest distance from the current anchor vector. This constitutes a raw method, which leads

to a difficult optimization problem. Starting with this method often causes the network to

be stuck into a bad local minimum, thus producing a poor performance. This research uses

an offline sampling methodology for triplet selection, which allows the CNN to adapt to

triplet loss without arriving at the local minima.

In the future, more sampling methods should be explored. One of such method is online

sampling. Using online sampling, hard negatives are chosen directly from the mini-batch.

For this reason, a large batch size may be needed to make online methods work properly.

Some research efforts have also be carried out to improve the stability of training through

an online method which incorporates the loss from all triplets in a batch simultaneously

rather than just the ones that are sent separately.

Summary

This chapter has detailed the various CNN architectures including AlexNet, RASNet,

NASNet and MobileNet, that have been used in the experiments with Kaggle dataset.

Furthermore, theoretical details about distance metric learning, triplet loss function, triplet

loss training and triplet mining that has been proposed to enhance the performance of these

CNN architectures are presented.

 School of Engineering and Technology

104

CHAPTER 6

6. EXPERIMENTS WITH DEEP LEARNING
APPROACHES

6.1. Introduction

The performance of deep learning approaches in classifying distracted behaviours of

drivers has been evaluated by conducting a series of experiments using the Kaggle

distracted driving challenge dataset [2], where different configurations of deep

architectures such as AlexNet, ResNet, MobileNet, and NASNet have been implemented

and trained with various loss functions. In total, three sets of experiments have been carried

out.

Initially, preliminary experiments were carried out using the AlexNet deep architecture,

where the performance of the AlexNet model trained with cross-entropy loss function was

used as the baseline performance to facilitate a comparison against the performance of the

same AlexNet architecture trained with triplet and batch triplet loss functions, respectively.

The aim of our preliminary experiments was to implement the simplest deep architecture

on the Kaggle dataset and to explore whether the triplet loss and the batch triplet loss

implementation would improve the accuracy of the trained model. From the results of our

preliminary experiments, improvements in the classification accuracy were observed for

both the triplet loss and the batch triplet loss functions.

Secondly, more complex and state-of-the-art deep models were implemented. The set of

experiment 2 was designed to implement four particular deep architectures, AlexNet,

ResNet, MobileNet and NASNet, with Softmax and SVC. The aim was to explore whether

the SVC classification instead of Softmax improves the overall classification accuracies.

The experimental results indicate that the SVC has slight advantage over the conventional

Softmax classification.

Finally, in the third set of experiments, all four aforementioned deep models were

implemented with the naïve triplet loss function, margin triplet loss function and batch

triplet loss function. The aim of experiment 3 was to explore and identify the best deep

 School of Engineering and Technology

105

model among the three loss function configurations in terms of performance. Experiment

3 results also showed that the batch triplet loss function resulted in the best performance

for all four models.

All the models in the experiments were trained over the Kaggle training dataset and were

validated over the Kaggle test dataset. Results were submitted to Kaggle in the form of an

Excel (.csv) sheet, and log loss public and private scores are used as a measure of

performance.

Overall, this chapter examines how different experiments were designed in terms of

different parameters selection, including details about the Kaggle dataset, libraries used for

implementing the models and the experimental results.

6.2. Implementation

6.2.1. Preliminary Experiments

Three different models used in this set of experiments are listed as follows

• Modified AlexNet (Model A)

• Modified AlexNet with Triplet Loss Function (Model B)

• Modified AlexNet with Batch Triplet Loss Function (Model C)

The overall training dataset provided by Kaggle was used for both training and validation

purposes in the preliminary experiments; while the dataset has been split into two subsets

in the following two sets of experiments to support validation of trained models on unseen

images.

The AlexNet model was implemented using the Caffe framework with an input image size

of (3 × 227 × 227) to the network. In all implemented models, Gaussian filters were used

as weights in the convolutional layers with the stride of 4. What’s more, the max pooling

approach was used in the pooling layers and ReLU activation function for the feature

activations. At the fully connected layer (fc7), 4096 feature representations were achieved,

and the Softmax classifier was used to predict the output classes. In the model trained with

the margin triplet loss function, the Softmax layer was replaced with the triplet loss layer,

 School of Engineering and Technology

106

and a margin O of 0.2 was used. Furthermore, this model implemented the L2 normalization

approach and 50% dropout in order to avoid the overfitting of the model during the training

process. A batch size of 128 has been used in the training, and the output classes number

was 10 as defined by the Kaggle Challenge. Also, rather than sparse connectivity, dense

connectivity was used in the convolutional layers because of its limited computational

resources. Results were obtained from the validation dataset in the form of confusion

matrices, accuracy curves, loss curves and roc curves. Furthermore, the results of Model A

have been submitted to Kaggle to receive the log loss score.

6.2.2. Experiment 2: Softmax vs SVC

The following model configurations were tested in this experimental setup:

• AlexNet with Softmax (AlexNet+Softmax)

• AlexNet with SVC (AlexNet+SVC)

• ResNet50 with Softmax (ResNet50+Softmax)

• ResNet50 with SVC (ResNet50+SVC)

• MobileNet with Softmax (MobileNet+Softmax)

• MobileNet with SVC (MobileNet+SVC)

• NASNet with Softmax (NASNet+Softmax)

• NASNet with SVC (NASNet+SVC)

All the models were implemented using the Keras implementation framework with

TensorFlow working on the backend. Apart from AlexNet, all the other models were

imported from the Keras library and were used with an average pooling option. All the four

models were already pre-trained on the ImageNet dataset. The pre-trained weights of

AlexNet were obtained from [147]. The dimensions of the input images are

(3 × 227 × 227), (3 × 224 × 224), (3 × 224 × 224) and (3 × 331 × 331) for AlexNet,

RestNet, MobileNet and NASNet respectively. Also used were the implementations with

the batch size of 64 with exception in the case of AlexNet where the batch size was 32. The

training dataset was divided into 70% and 30% for training (22424 images in all the training

dataset) and validation purposes. The test dataset (79726 images) is provided by the Kaggle

and is unlabelled. To avoid overfitting, the dropout approach was used with the value of

 School of Engineering and Technology

107

0.4 for all the models except AlexNet where a dropout of 0.2 was used. A ReLU activation

function with the batch normalization approach was used for the models in this set of

experiment. Adam optimizer with a learning rate of 0.001and a decay of 0.0 was used with

the cross-entropy loss while training the models with the Kaggle data. For all the models

in this experiment set, the early stopping approach was used with the patience of 4 and

“min” mode using the ModelCheckPoint. The feature representation of 4096, 2048, 1024

and 4032 with trainable parameters of about 4 million, 2 million and 3 million were

achieved at the fully connected layer in AlexNet, ResNet50, MobileNet and NASNet

models with Softmax classification, respectively. All the models were trained over 15

training epochs. Finally, the models were evaluated to validate and test the dataset. Results

of the evaluation over validation dataset were saved in the form of accuracy/loss plots and

confusion matrices. At the same time, results of evaluation for test dataset were saved as

CSV files which were submitted to Kaggle, and log loss scores were received.

Figure 6.1: Summary of All the Processes Followed in Experiment 2.

First it was tried to adapt the pretrained models to the given distracted driver dataset using

Softmax and negative log-likelihood. It was found out that this did not work properly.

Therefore, tried to use the trained models as feature extractors and train a SVC with those

features obtaining better results than with Softmax.

First experiment was carried out to see how a deep net model could perform in the distracted

driver dataset using Softmax and negative log likelihood for classification. Figure 6.1

shows a diagram that summarizes this first experiment. For all other models except

 School of Engineering and Technology

108

AlexNet, 128 features were extracted at the fully connected layers with ReLU activation

and were classified into 10 classes with Softmax activation giving us the probabilities of

the input image to belong to each of the 10 classes of the distracted driver dataset. This was

done in other to test the performance of the new trained models on the Kaggle dataset. All

the deep net models have been pretrained on ImageNet before used as fixed feature

extractor for the new Kaggle dataset, Once the features for all the images have been

extracted, linear classifier was trained, in this experiment, Linear SVM and Softmax

classifier for the new Kaggle dataset.

The Figure 6.2 shows the different architectures used for Softmax classification and for

SVC of the feature vectors extracted by the net. It can be seen that how the last Softmax

and fully connected layer are removed when the network is used as a feature extractor.

To make the network a feature extractor we removed the last two fully-connected layers of

the model and changed it for a fully connected layer that has 128 features. Now the output

of the network is the feature vector instead of the probabilities. This output feature vector

was used as the input to a SVC model and trained the SVC with the hinge loss. Similar to

Softmax classification, the SVC produces almost perfect confusion matrices with really

low error in each class of the dataset.

Figure 6.2: Comparison of the Architectures used for Traditional Softmax and SVC.

 School of Engineering and Technology

109

Classification

The trained CNN learns to map each input provided to a normalized embedding vector of

128 dimensions. It is worth mentioning that the embedding often needs to be normalized to

have unit length, i.e., ∥ » ∥= 1, in order to be robust to illuminate and contrast changes and

for training stability [148]. The spatial position, which each class ends up in, is not directly

selected by the loss function as it is the case with sigmoid loss function training. For this

reason, another model must be trained on top of the trained CNN to learn how to get class

information from the embedding. To do this, the trained CNN is run to get embedding, and

an SVC model is trained on the embedding. The reduction in input vector dimensionality

has resulted in order-of-magnitude improvements in training convergence time compared

to training the SVC model directly on the feature vector of a CNN. In this experiment two

SVC kernels are tested: linear and radial bias function. In initial experiments, it was evident

that the linear function outperforms radial bias kernel in this situation. Therefore, only

linear kernel SVC model results are included in this report.

In the experimental result section, it will be investigated that how the deep net model using

Softmax classification and negative log-likelihood for training gets worst accuracy than

using the deep net model as a feature extractor and classifying those features with a SVC.

We argue this happens due to overfitting problems where the SVC has better generalization

capacity than the Softmax function.

6.2.3. Experiment 3: Triplet Loss

If the classes in the feature space learned by a CNN are well separated, it would be even

easier for a SVC model to learn the parameters required to distinguish between different

classes. Triplet loss refers to a loss function which is used to direct a CNN to learn such a

feature space. The model configurations tested in this experimental setup are as follows:

• AlexNet with Margin Triplet Loss (AlexNet+Margin)

• AlexNet with Naïve Triple Loss (AlexNet+Naïve)

• AlexNet with Batch Triplet Loss (AlexNet+Batch)

• ResNet50 with Margin Triplet Loss (ResNet50+Margin)

• ResNet50 with Naïve Triple Loss (ResNet50+Naïve)

 School of Engineering and Technology

110

• ResNet50 with Batch Triplet Loss (ResNet50+Batch)

• MobileNet with Margin Triplet Loss (MobileNet+Margin)

• MobileNet with Naïve Triple Loss (MobileNet+Naïve)

• MobileNet with Batch Triplet Loss (MobileNet+Batch)

• NASNet with Margin Triplet Loss (NASNet+Margin)

• NASNet with Naïve Triple Loss (NASNet+Naïve)

• NASNet with Batch Triplet Loss (NASNet+Batch)

Like in set of experiment 2, in this set of experiments all models were implemented using

Keras framework with Tensorflow at the backend. Input image dimensions were the same

for each model as in experiment 2 with same batch sizes. Furthermore, dataset division was

identical to experiment 2: 70% of training dataset for training and 30% of training dataset

for the validation. Certain pre-processing was performed on the image before it was

subjected to the model. For triplet selection, a semi-hard sampling mode was used. All

triplet loss is calculated with a margin O = 0.3 and › = 0.5 for the batch triplet loss. A

dropout of 0.4 was used in all the models to avoid overfitting during the training process.

Adam optimizer with a learning rate of 0.0001and decay of 0.005 was used along with

naïve, margin and batch triplet loss functions for different deep models. Finally, based on

the experiment 2 results which indicated that SVC is a better classifier than Softmax, for

this experiment, SVC was used at the fully connected layer in place of Softmax for the final

classification. Overall, 32 training epochs were used for training, and models were

evaluated with the validation dataset and test dataset. On validation dataset results in the

form of accuracy and loss were achieved, while on test dataset, results in the form of Kaggle

loss score were achieved.

Triplet Sampling Implementation

Sampling begins with the selection of 600 samples of images from the various classes of

safe and distracted driving, with taking sampling probabilities from each class all coming

from the Kaggle dataset. These are taken randomly, two samples are added at a time, where

anchor and positive are of the same category predictions made in sets of 3 for anchor,

positive and negative. After this is complete, one of three methods (random, semi-hard or

 School of Engineering and Technology

111

hard) is applied to get negative samples. After pre-processing, triplets sampling is

performed with semi-hard negatives using an offline approach. A negative sample is

selected at random with forward pass choosing either hard or semi-hard negative samples,

this is done in other to generate triplets. A data generator for triplets with a batch-size of

3	 × 	100 for the size of a mini-batch is selected. In the next step, triplet loss functions were

defined, and standard squared Euclidean distances were calculated all over the batch for

standard triplet loss considering the distance from the anchor and positive ÿ6œ and for the

anchor and negative, ÿ6A, means over the batch, t6œ and t6A for anchor and positive and

anchor and negative respectively for naive and batch triplet loss as well as average variance

for batch triplet loss. The model was built with the model.fit() function provided by Keras

using the Adam algorithm for optimization specifying a margin triplet loss as a loss function

and setting a learning rate of 0.0001 and a decay rate of 0.0005, as well as a L2 norm for

regularization.

For the experiments using the triplet losses with AlexNet, we have a total of 40611328

trainable parameters, zero non-trainable parameters and an input size of 3 × 	227 × 	227.

For the experiments with ResNet50, we used an input shape of (224 × 	244 × 	3) for

23849984 total trainable parameters and 53120 non-trainable parameters. We also utilised

an input shape of (331 × 	331 × 	3) for NASNet with 85433042 total parameters from

which 85236374 are trainable and 196668 non-trainable parameters. For MobileNet, the

input shape is 224 × 	224 × 	3, 3360064 total parameters, from where 3338176 are

trainable and 21888 are non-trainable parameters.

In this set of experiments, an early stopping was performed for each model using a

validation dataset made of 30% of the total training set to define that we wanted to monitor

the validation loss at each epoch and after the validation loss has not improved for 10

consecutive epochs, then training is interrupted.

Training Method

All four models used in this experiment set are pre-trained on the ImageNet dataset. Then,

each of the models is trained on 96 epochs of 300 triplets, where one triplet consists of three

images. This number of triplets is selected to provide a good balance between being able

 School of Engineering and Technology

112

to gather effective hard and semi-hard negatives and being able to adjust to what the model

learns during training. We denote completion of training for one of these sets of 300 images

as an epoch. Summarizing:

• Each Epoch consists of 30 computations
• 1 computation consist of 10 triplets�
• 30 computation consist of 30 × 10 = 300 triplets
• 1 triplet consists of 3 images�
• 300 triplet consist of 900 images.

For all models except AlexNet, the first 32 epochs of training use random negatives triplets,

the next 32 epochs use semi-hard negatives, and the last 32 utilise hard negatives. On

AlexNet, this training regimen led to poor results, as the model never adapted to the point

where it was successful at optimizing triplet loss on semi-hard or hard samples. The only

moderately successful routine for training AlexNet with triplet loss was pure random

sampling. This could be due to the limited capacity and the depth of the AlexNet model

relative to other architectures used.

The NASNet model implemented in this experiment is the NASNetLarge, and that is why

NASNet is trained with the same batch size. However, the training is distributed over a

6GPU HPC cluster in a data-parallel fashion. This was necessary for training NASNet with

a batch size of 12, considering the larger input size of (331, 331, 3) to the model. NASNet

used the same training process as MobileNet and ResNet50.

All models were trained using all three implementations of the triplet loss function

described above. The models are trained using the Adam algorithm for first-order gradient-

based optimization with a learning rate of 0.0001 and a decay rate of 0.0005. Again, all

models except AlexNet used 50% dropout to ensure training robustness while AlexNet used

40% dropout. Approximately 30 % of all available training data is withheld from the

training process and used to validate the classifier. A batch-size of 30 is used. The number

used must be a multiple of three for the triplet loss calculation.

Figure 6.3 has a summary on how to perform the training using triplet loss functions. We

trained the four convolutional architectures using three different triplet loss functions: batch

 School of Engineering and Technology

113

triplet loss, margin triplet loss and naive triplet loss. Once trained we use the models as

feature extractors that map the input image into an Euclidean feature space where we can

compute distances. Then, we input those feature vectors into a SVC trained using two

different kernels: linear kernel and a radial basis function. At the end we compare the results

and we found out the linear kernel consistently outperforms the radial basis function one.

The final predictions are submitted to the distracted driver Kaggle competition obtaining

really low error rates.

Figure 6.3: Summary of Process Followed in Experiment 3.

In Figure 6.4, first we forward the input images of the whole dataset to the network, then

we are capable to compare distances between the obtained feature vectors and sample the

triplets according to the strategy that corresponds regarding the training iteration. The

triplet sampling is performed obtaining semi-hard negative samples or hard negative

samples. After obtained the triplet we compare the distances between the anchor and

positive image and the anchor and negative image and add a margin to finally obtain the

value of the triplet loss function (the error). We optimize on this error applying then

backpropagation to the CNN in order to refine the Euclidean space where the generated

feature vectors lie. After training, the feature vectors that belong to images of the same

 School of Engineering and Technology

114

semantic class are placed together in the Euclidean space while the feature vectors of the

images that have different semantic class are placed with a large distance between them.

Figure 6.4: Example of Single Training Instance using Adaptive Triplet Sampling
Strategy.

Feature vector classification

After training, the network can produce high-quality feature vectors capable of encoding

all the image information. The feature vectors are placed in an Euclidean space together

with other samples of the same semantic class while far away of items with different label,

but, the network is only capable of producing a feature vector with 128 features. Instead

we want the probabilities of the input image »" to belong to each of the 10 classes of the

distracted driver dataset. Therefore, the feature vectors are classified using a SVC that will

give us the probabilities of the input image »" to belong to each of the 10 classes. Using

these feature vectors, we can compute the Euclidean distances and directly apply the loss

functions that we described to place the input images »" into a feature space where

clustering by distance can be applied. Due to the characteristics of the dataset, where

similarity between the different actions plays a key role, a training by similarity is highly

suitable.

Figure 6.5 shows the pipeline of the classification of the features extracted from the neural

network. The CNN has been pretrained in the ImageNet dataset and then fine-tuned using

Kaggle distracted driver dataset. This allows it to extract high-quality feature vectors that

are then plugged into the SVC (in this case with a linear kernel) that is trained using the

hinge loss in order to perform an accurate classification of the input image into the ten

classes of the distracted driver dataset.

 School of Engineering and Technology

115

Figure 6.5: Pipeline for the Classification of Features Extracted from Neural Network.

All models were trained using the Adam optimizer [85], where we set empirically set a

learning rate of 0.0001 with a weight decay of 0.0005 and standard β values of 0.9 and

0.999 respectively. To ensure generalization and robustness during training, we set the

dropout [87] rate in 0.4 except in AlexNet where we found out that Dropout made the

training diverge instead of helping it to converge.

To avoid high feature values and give robustness to the SVC training, we normalize the

feature vectors to have unit norm ||X(»")|| 	= 	1 before feeding it to the SVC. We tested

two different kernels that are applied before performing the classification, linear kernel

with formula µ(»", Â") = »"ÆÂ" + Ê and RBF kernel, with formula µ(»", Â") 	=

	Á∫	
∥»fiËÂfi∥

C

CÈC 	where is a trainable parameter.

The SVC with the linear kernel consistently outperforms the RBF kernel. Therefore we

only show the results obtained using the linear kernel for the SVC and getting the input

features with the margin, naïve and batch triplet loss training in the CNN.

6.3. Kaggle Dataset

Dataset provided by the Kaggle challenge for distracted driving classification [2] has been

used in this research for the investigation on deep learning approaches. Kaggle training

dataset includes 22,424 two dimensional RGB images of 480 × 680 size divided into 10

different classes. One of the 10 classes is for safe driving, and the other 9 classes include

the images of drivers involved in different distraction related activities such as eating,

talking on phone, texting, makeup, reaching behind, adjusting radio, or conversing with

other passengers. All images in the dataset have been captured using a single vehicle

dashboard optical sensor (camera) [2]. Table 6.1 presents the details of all the 10 classes

 School of Engineering and Technology

116

defined by the Kaggle challenge and the exact number of images in each class. Figure 6.6

presents example images from each of the Kaggle challenge classes. In all experiments, the

Kaggle images were pre-processed before they were subjected to deep learning models and

the images were processed for resizing and normalizing based on the means obtained from

the initial training of deep learning models.

Table 6.1: Prediction Classes for Kaggle Task and Number of Images in Each Class [2].

Class0 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9

Safe
Driving

Texting-
Right

Talking on
Phone-
Right

Texting-
Left

Talking on
Phone-

Left

Operating
the Radio Drinking Reaching

Behind
Hair and
Makeup

Talking to
Passenger

2489 2267 2317 2346 2326 2312 2325 2002 1911 2129

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

Figure 6.6: Sample Images from Each Kaggle Driver Distraction Challenge Class.

6.4. Implementation Frameworks

In the literature, researchers have used a number of implementation frameworks to

implement deep learning algorithms such as Caffe, Keras with TensorFlow, Torch and

PyTorch. All the mentioned implementation platforms have their own advantages and

disadvantages. Table 6.2 presents the comparison of the most commonly used deep learning

frameworks in the literature.

 School of Engineering and Technology

117

For the preliminary experiments of this research, Caffe [149] was used as the

implementation framework because it was easy-to-use, the best choice for beginners and

the most popular choice at the time of the experiments. Caffe is a deep learning architecture

created by Yangqing Jia at Berkeley AI Research (BAIR) during his PhD from UC

Berkeley. This framework was developed to facilitate the researchers by providing

expressive structure, faster speeds and modularity. This library contains a number of pre-

trained deep architectures such as AlexNet, which has been used in this research.

Table 6.2: Comparison of Common Deep Learning Implementation Frameworks.

Framework License Open Source Core
Language Interface Pre-trained

Models
CUDA

Support

Caffe [149] BSD Yes C++ Python, C++,
MATLAB Yes Yes

Keras [150] MIT Yes Python Python, R Yes Yes

MATLAB
[151] Proprietary No C, C++,

MATLAB MATLAB Yes Yes

PyTorch [152] BSD Yes Python Python Yes Yes

TensorFlow
[153] Apache Yes C++, Python Python, C++,

Java, R Yes Yes

Theano [154] BSD Yes Python Python Yes Yes

Torch [155] BSD Yes C, Lua C, C++ Yes Yes

For experiment sets 2 and 3, Keras [150] with TensorFlow [153] backend was used as the

deep learning framework API. All the scripts were written in Python 3 programming

language and supported by a number of libraries such as Theano, Scipy, Numpy, and

Pandas, and part of SciPy and Sklearn ecosystems were used. Together with Keras, we have

used the well-known scikit-learn package in order to train the SVCs for classification.

Similar to Keras, scickit-learn is a high-level API that allows the users to train machine

learning models easily and abstracting the user from the mathematical and low-level

formulation that it requires. To create learning curves and confusion matrices we have used

the Matplotlib library which easily allows the users to create line plots or graphs. Also,

Jupyter Notebooks have played an important role. Jupyter Notebook is similar to a

development environment that puts interactivity as a priority, making it an essential tool

 School of Engineering and Technology

118

for machine learning projects to show graphs, confusion matrices and other kinds of

visualization.

6.5. Evaluation Criteria

Well-defined evaluation criteria are significant in assessing experimental performances. In

this research, the performance of the trained deep learning models is assessed based on the

classification accuracy over validation data and evaluated with the Kaggle log loss scores

obtained from the Kaggle submissions. Overall, the training dataset provided by the Kaggle

is divided into certain ratio for training and validation. For the preliminary experiments, the

Kaggle training set has been divided in a ratio of 75% to 25% for training and validating

the proposed algorithms, respectively. For experiment sets 2 and 3, the split was 70% and

30%. Models are trained over the training set and validated for their performance on the

validation dataset in terms of classification accuracies and the loss. Then, algorithms are

subjected to the test dataset provided by the Kaggle. Because the correct labels of the test

dataset provided are not public and only Kaggle has the access to those labels, results over

the test dataset are submitted to Kaggle in the form of CSV file, and public and private log

loss scores are achieved. Given that it is a loss, smaller values of Kaggle loss score indicates

better performance. Finally, in terms of real-world implementation, models in experiment

2 and experiment 3 are compared in terms of their sizes and processing times.

6.5.1. Kaggle Scores

A total of 22424 images was provided by Kaggle to the Kagglers for the purpose of training

their algorithms, and they were asked to submit the classification results for 79,726 test

images in the form of an Excel sheet in csv format. Kaggle evaluated each submission and

issues a loss score using a multiclass log loss function given in Equation 6.1.

																																																						logloss =
1
5
)):"$ log(≈"$)	

P

$

*

"

																																								(6.1)

where 5 denotes the total number of images, X denotes the total number of classes, :"$

denotes the actual class of image and ≈"$ denotes the predicted class of the image.

 School of Engineering and Technology

119

6.6. Experimental Results

This section presents the results and discussions on the three sets of experiments performed

using the deep learning approaches. Results are critically analysed, and important insights

have been reported.

6.6.1. Preliminary Experiment Results

AlexNet based deep architectures with Softmax, triplet loss and batch triplet loss were

tested against the Kaggle dataset to evaluate their performance. Results are presented in the

form of confusion matrices and accuracy/loss plots. Model A (AlexNet+Softmax) was

trained over 3960 iterations, while Model B (AlexNet+Triplet Loss) and Model C

(AlexNet+Batch Triplet Loss) were further trained over 60 iterations. The purpose of the

preliminary experiments was to have insights into the fundamentals of deep learning

implementation, including the effectiveness of triplet loss in improving the classification

accuracy.

For the accuracy assessment, top 1 and top 5 accuracies have been determined for all three

models. Top 5 accuracy is also a credible measure to assess the working performance of

algorithms in computer vision. The idea behind top 5 accuracy is that a prediction is

considered as accurate if the correct class is included in the top 5 predictions produced by

the algorithm. Hence, the top-5 accuracy is definitely a number with higher values than top

1 accuracy. Figure 6.7 present the accuracy and loss plots for all three models in the

preliminary experiments, respectively. From figure, it can be observed that top 1 and top 5

accuracies improved as the number of training iterations increases, with top 5 accuracy

always remain above the top 1 accuracy. Furthermore, the loss was reduced to nearly zero

after 2000 training iterations. The behaviour of accuracy and training plots was normal in

reference to the literature as in machine learning accuracy plots more or less follows a

positive exponential curve, while loss plots follow a negative exponential curve. In Figure

6.7 (a) and Figure 6.7 (b), the accuracy and loss plots are more or less straight lines as the

training was performed on a pre-trained model. From Figure 6.7, it can be observed that

the training with all three deep learning approaches has converged.

 School of Engineering and Technology

120

(a) Model A (b) Model B

(c) Model C
Figure 6.7: Classification Accuracy and Loss Plots for all Models in Preliminary

Experiment.
Proposed deep models were validated against the Kaggle dataset, and confusion matrices

were plotted to visualize the results of their classification performance. Figure 6.8 show the

confusion matrices for all three models ((a) Model A, (b) Model B and (c) Model C),

respectively. From the confusion matrices, it can be observed that Model A classification

results were lowest among the three, while Model C results were the best. Furthermore,

while interpreting the results in more detail, it can be observed that there are couple of

classes in which mis-classification percentages are high and prominent in comparison to

other classes. Two such examples include class 7 misclassified as class 2 and class 9

misclassified as class 0.

 School of Engineering and Technology

121

(a) Model A

(b) Model B

(c) Model C

Figure 6.8: Confusion Matrices for All Three Models in Preliminary Experiments.

Figure 6.9 and Figure 6.10 shows some instances of correct classifications of class 7 and

class 9 as well as wrong classifications of class 7 as class 2 and class 9 as class 0,

respectively. From the figures, it can be suggested that the mis-classifications are due to

similarity between two classes. In case of class 7 and class 2, only right hand of driver is

different i.e. using mobile phone in class 2 while reaching back in class 7. Other than the

 School Of Engineering and Technology
 Doctoral Review Report Assessment

28

Model B. Increase in the training iterations for Model B and Model C may also result in

further improved results.

(a) Model A

(b) Model B

(c) Model C

Figure 4.2: Confusion Matrices for All Three Models.

0 1 2 3 4 5 6 7 8 9
0 2024 10 11 6 59 7 8 0 1 363

1 102 1435 50 56 0 1 256 8 35 324

2 152 34 886 0 0 52 228 175 208 582

3 905 2 3 973 101 4 90 1 13 254

4 735 4 31 10 1236 1 12 16 17 264

5 122 52 6 20 0 1938 2 6 2 164

6 8 7 30 0 0 3 1972 49 168 88

7 34 11 127 2 0 36 39 1267 67 419

8 201 6 66 7 15 39 227 100 803 447

9 424 71 11 2 115 43 35 3 8 1417

A
ct
ua
l

Predicted

0 1 2 3 4 5 6 7 8 9
0 1761 12 17 41 120 7 3 0 27 501

1 34 1785 136 65 0 1 69 24 100 53

2 26 31 1392 1 1 52 121 299 234 160

3 359 35 5 1568 150 5 18 0 38 168

4 191 12 83 141 1670 5 2 58 17 147

5 31 3 139 52 17 1976 0 5 7 82

6 2 20 117 0 2 5 1970 29 178 2

7 4 20 225 6 0 41 29 1541 87 49

8 107 16 166 21 27 18 203 208 1082 63

9 360 79 69 12 141 57 31 12 122 1246

A
ct
ua
l

Predicted

0 1 2 3 4 5 6 7 8 9
0 1814 3 18 90 55 12 4 5 34 454

1 38 1821 118 72 6 2 112 20 28 49

2 100 15 1547 0 0 86 152 182 150 85

3 302 8 3 1684 66 27 47 0 37 172

4 338 6 81 21 1643 19 9 6 84 119

5 51 2 126 25 2 2065 1 5 6 29

6 2 7 57 1 0 0 2169 6 82 1

7 12 14 189 0 0 28 16 1674 46 23

8 134 12 100 22 53 57 249 148 1078 58

9 373 85 74 6 150 80 25 19 30 1287

A
ct
ua
l

Predicted

 School Of Engineering and Technology
 Doctoral Review Report Assessment

28

Model B. Increase in the training iterations for Model B and Model C may also result in

further improved results.

(a) Model A

(b) Model B

(c) Model C

Figure 4.2: Confusion Matrices for All Three Models.

0 1 2 3 4 5 6 7 8 9
0 2024 10 11 6 59 7 8 0 1 363

1 102 1435 50 56 0 1 256 8 35 324

2 152 34 886 0 0 52 228 175 208 582

3 905 2 3 973 101 4 90 1 13 254

4 735 4 31 10 1236 1 12 16 17 264

5 122 52 6 20 0 1938 2 6 2 164

6 8 7 30 0 0 3 1972 49 168 88

7 34 11 127 2 0 36 39 1267 67 419

8 201 6 66 7 15 39 227 100 803 447

9 424 71 11 2 115 43 35 3 8 1417

A
ct
ua
l

Predicted

0 1 2 3 4 5 6 7 8 9
0 1761 12 17 41 120 7 3 0 27 501

1 34 1785 136 65 0 1 69 24 100 53

2 26 31 1392 1 1 52 121 299 234 160

3 359 35 5 1568 150 5 18 0 38 168

4 191 12 83 141 1670 5 2 58 17 147

5 31 3 139 52 17 1976 0 5 7 82

6 2 20 117 0 2 5 1970 29 178 2

7 4 20 225 6 0 41 29 1541 87 49

8 107 16 166 21 27 18 203 208 1082 63

9 360 79 69 12 141 57 31 12 122 1246

A
ct
ua
l

Predicted

0 1 2 3 4 5 6 7 8 9
0 1814 3 18 90 55 12 4 5 34 454

1 38 1821 118 72 6 2 112 20 28 49

2 100 15 1547 0 0 86 152 182 150 85

3 302 8 3 1684 66 27 47 0 37 172

4 338 6 81 21 1643 19 9 6 84 119

5 51 2 126 25 2 2065 1 5 6 29

6 2 7 57 1 0 0 2169 6 82 1

7 12 14 189 0 0 28 16 1674 46 23

8 134 12 100 22 53 57 249 148 1078 58

9 373 85 74 6 150 80 25 19 30 1287

A
ct
ua
l

Predicted

 School Of Engineering and Technology
 Doctoral Review Report Assessment

28

Model B. Increase in the training iterations for Model B and Model C may also result in

further improved results.

(a) Model A

(b) Model B

(c) Model C

Figure 4.2: Confusion Matrices for All Three Models.

0 1 2 3 4 5 6 7 8 9
0 2024 10 11 6 59 7 8 0 1 363

1 102 1435 50 56 0 1 256 8 35 324

2 152 34 886 0 0 52 228 175 208 582

3 905 2 3 973 101 4 90 1 13 254

4 735 4 31 10 1236 1 12 16 17 264

5 122 52 6 20 0 1938 2 6 2 164

6 8 7 30 0 0 3 1972 49 168 88

7 34 11 127 2 0 36 39 1267 67 419

8 201 6 66 7 15 39 227 100 803 447

9 424 71 11 2 115 43 35 3 8 1417

A
ct
ua
l

Predicted

0 1 2 3 4 5 6 7 8 9
0 1761 12 17 41 120 7 3 0 27 501

1 34 1785 136 65 0 1 69 24 100 53

2 26 31 1392 1 1 52 121 299 234 160

3 359 35 5 1568 150 5 18 0 38 168

4 191 12 83 141 1670 5 2 58 17 147

5 31 3 139 52 17 1976 0 5 7 82

6 2 20 117 0 2 5 1970 29 178 2

7 4 20 225 6 0 41 29 1541 87 49

8 107 16 166 21 27 18 203 208 1082 63

9 360 79 69 12 141 57 31 12 122 1246

A
ct
ua
l

Predicted

0 1 2 3 4 5 6 7 8 9
0 1814 3 18 90 55 12 4 5 34 454

1 38 1821 118 72 6 2 112 20 28 49

2 100 15 1547 0 0 86 152 182 150 85

3 302 8 3 1684 66 27 47 0 37 172

4 338 6 81 21 1643 19 9 6 84 119

5 51 2 126 25 2 2065 1 5 6 29

6 2 7 57 1 0 0 2169 6 82 1

7 12 14 189 0 0 28 16 1674 46 23

8 134 12 100 22 53 57 249 148 1078 58

9 373 85 74 6 150 80 25 19 30 1287

A
ct
ua
l

Predicted

 School of Engineering and Technology

122

right hand, there are no other noticeable differences in images between the two classes since

driver has same head posture, body orientation and left hand on steering. This situation

makes it difficult for the algorithm to clearly differentiate and results in mis-classification.

Similarly, in case of class 9 and class 0, there are a high number of mis-classifications

which are due to a high similarity between the two classes. The only noticeable difference

is the position of the head. Otherwise, both hands of the driver are on steering wheel and

the driver has highly similar body position. This situation makes it highly probable for

algorithm to mis-classify between the two classes as demonstrated by the results in

confusion matrices.

(a) True Positives Class 7

(b) False Negatives Class 2

Figure 6.9: Instances of Correct Classification as Class 7 and Wrong Classification for

Class 7 as Class 2.

(a) Correctly Classified as Class 7

(b) Mis-classified as Class 2

(a) Correctly Classified as Class 7

(b) Mis-classified as Class 2

 School of Engineering and Technology

123

(a) True Positives of Class 9

(b) False Negatives of Class 0

Figure 6.10: Instances of Correct Classification as Class 9 and Wrong Classification for

Class 9 as Class 0.

Among the errors caused by mis-classification, the most dangerous error in our problem

scenario of detection of distracted driving is to mis-classify a distracted driving as safe, i.e.

in the case of Kaggle challenge mis-classifying an image from one of classes 1 to 9 as class

0 and vice versa. Table 6.3 shows the percentages of the images in each Kaggle class being

recognised as safe driving and distracted driving for all three models, respectively. Table

6.4 presents the percentages of images of distracted driving (i.e. the images in Kaggle

classes 1-9) being classified as its correct class or an incorrect class of distracted driving.

 School of Engineering and Technology

124

Table 6.3 shows that for Model A, 38.58%, 31.60%, 10.52% and 19.92% of images in class

3, class4, class 8 and class 9 have been mis-classified as safe driving, respectively. These

miss-classifications are assumed to be associated with the similarities in images of some

classes and indicate the failure of Model A to extract more meaningful features to support

classification. These miss-classifications were reduced to some extent by Model B and

Model C. However, there were still some high number of miss-classification percentages

such as 15.30% for class 3 by Model B and 12.87% by Model C and 16.91% for the class

9 by Model B and 17.52% by Model C. As illustrated in Figure 6.10, a high level of

similarity exists between class 0 and some images in class 9. Figure 6.11 illustrates the high

level of similarity between class 0 and some images in class 3. The percentages of the other

classes being mis-classified as safe driving have all been reduced to less than 10%. This

indicates that use of triplet loss has improved the deep net performance by some extent.

Table 6.3: Percentages of Images being Classified as Safe and Distracted for All Three

Models

Class Label 0 1 2 3 4 5 6 7 8 9

 True +ev False -ev

C
la

ss
ifi

ed
 a

s

Sa
fe

 D
ri

vi
ng

 Model A 81.32 4.50 6.56 38.58 31.60 5.28 0.34 1.70 10.52 19.92

Model B 70.75 1.50 1.12 15.30 8.21 1.34 0.09 0.20 5.60 16.91

Model C 72.88 1.68 4.32 12.87 14.53 2.21 0.09 0.60 7.01 17.52

 False +ev True -ev

C
la

ss
ifi

ed
 a

s

D
ist

ra
ct

ed

D
ri

vi
ng

Model A 18.68 95.50 93.44 61.42 68.40 94.72 99.66 98.30 89.48 80.08

Model B 29.25 98.50 98.88 84.70 91.79 98.66 99.91 99.80 94.40 83.09

Model C 27.12 98.32 95.68 87.13 85.47 97.79 99.91 99.40 92.99 82.48

Table 6.4 presents the results from another important aspect. It shows that when images are

classified as distracted driving, how many percent of them has been classified to the correct

distraction class and how many wrong. Table 6.4 shows that by Model A class 2 and class

 School of Engineering and Technology

125

8 both have a higher chance to be classified as a wrong distraction than the correct class of

distraction. Models B and C have produced better classification results by replacing the

Softmax of Model with a triplet loss function. However, for some classes such as classes

2, 8 and 9 the percentages of mis-classifications are still unsatisfactory. Such low

classification performance is because the AlexNet used by all three models in our

preliminary experiments was trained from scratch over the limited dataset of Kaggle rather

than, like in our experiment sets 2 and 3, pre-train on some huge benchmark dataset like

ImageNet and then further trained on Kaggle dataset.

(a) True Positive of Class 3

(b) False Negative of Class 0

Figure 6.11: Instances of Correct Classification as Class 3 and Wrong Classification for

Class 3 as Class 0.

 School of Engineering and Technology

126

Table 6.4: Percentages of Images being Classified as Correct and Wrong Distracted

Driving for All Three Models.

Class Label 1 2 3 4 5 6 7 8 9

C
la

ss
ifi

ed
 a

s

C
or

re
ct

D
ist

ra
ct

io
n

Model A 63.30 38.24 41.47 53.14 83.82 84.82 63.29 42.02 66.56

Model B 78.74 60.08 66.84 71.80 85.47 84.73 76.97 56.62 58.53

Model C 80.36 66.77 71.78 70.64 89.32 93.29 83.62 56.41 60.45

C
la

ss
ifi

ed
 a

s

W
ro

ng

D
ist

ra
ct

io
n

Model A 32.20 55.20 19.95 15.26 10.90 14.84 35.01 47.46 13.53

Model B 19.76 38.80 17.86 19.99 13.19 15.18 22.83 37.78 24.57

Model C 17.96 28.92 15.35 14.83 8.48 6.62 15.78 36.58 22.03

Table 6.5 presents the summary of experimental results for all three models. In the

experiments, top-1 accuracy of 62.21%, 71.31% and 74.84% have been observed for Model

A, Model B and Model C, respectively. It can be seen that Model C has the highest value

of top-1 accuracy. Top-5 accuracy of 95.59%, 97.35% and 98.14% has been recorded for

Model A, Model B and Model C, respectively. Again, it can be observed that Model C has

shown the highest classification accuracy. To test the Kaggle dataset, results from the

Model A were submitted to the Kaggle and a loss score of 1.55 and rank of 500+ out of

2000+ was achieved. Model B and Model C results were not submitted to Kaggle at that

time; hence, they cannot be compared.

Table 6.5: Summary of Experimental Results of Preliminary Experiment.

 Top 1 Accuracy Top 5 Accuracy Test Loss

AlexNet+Softmax 62.21 95.59 0.008658

AlexNet+Triplet Loss 71.31 97.35 0.004345

AlexNet+Batch Triplet Loss 74.84 98.14 0.009093

 School of Engineering and Technology

127

Satisfactory results were achieved from the preliminary experiments, thus indicating the

potential of deep architectures in the distraction detection task. Through preliminary

experiments, a basic understanding of the practical implementation of deep learning

algorithms was established, and a familiarisation with different tools was achieved.

6.6.2. Experiment 2 Results

Based on the results of preliminary experiments which identified that deep architectures

are potential candidates for being used in distraction detection effectively, more detailed

and comprehensive experiments have been be performed using the state-of-the-art deep

architectures rather than utilising only the basic AlexNet. In addition, experiment set 2 was

performed to compare the performance of the Softmax classifier against SVC for four

different state-of-the-art deep models. All models were modified to carry out the distraction

classification task. It is worth mentioning that the AlexNet reported in this subsection is

implemented and trained in Tensorflow and different from the one reported in the

preliminary experiments.

First, the performance of all four models with Softmax during the training process was

recorded. Figure 6.12 presents the accuracy and loss plots for all four models during the

training process. Overall, the behaviour of models during the training was in accordance

with standard training process i.e. the accuracy increases and the loss decreases with an

increase in the number of training iterations. All the models were able to achieve high

accuracies (over 98%) for the training dataset. The AlexNet model quickly converged

towards a high accuracy, showing a sign of overfitting. However, other models such as

ResNet and MobileNet indicated a slightly normal behaviour. The most appropriate

training behaviour from all four models was shown by the NASNet architecture as it almost

followed the exponential curves (positive exponential for accuracy plot and negative

exponential for loss plot). Although the performance of models during the training are not

considered to be much significant in terms of evaluating the overall functional performance

of models because it only considers the data already known to the model, it is important to

monitor these curves to ensure that models are well-trained.

 School of Engineering and Technology

128

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.12: Training Accuracy and Loss Plots for All Models with Softmax Classifier

Once the models were trained, they were validated over the validation dataset, and the

results of their predictions were plotted as confusion matrices as shown in Figure 6.13 for

Softmax and Figure 6.14 for SVC, respectively. Based on the confusion matrices, it can be

observed that for the Softmax classifier, AlexNet and NASNet outperformed MobileNet

and ResNet in terms of performance over the validation dataset. AlexNet even

outperformed ResNet over validation dataset which was unusual compared to what has

been reported in the literature. AlexNet accuracy was almost 100 percent with few wrong

predictions, while NASNet accuracy was about 98 percent with some wrong predictions.

On the other hand, ResNet and MobileNet performance over validation data was not as

accurate. For the SVC, all four models performed almost the same with over 99% correct

predictions and very few incorrect predictions.

 School of Engineering and Technology

129

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.13: Confusion Matrices for Models with Softmax Classifier over Validation
Dataset.

 School of Engineering and Technology

130

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.14: Confusion Matrices for Models with SVC over Validation Dataset.

Table 6.6 and Table 6.7 present the validation results of the proposed algorithms in

experiment set 2. Table 6.6 presents the percentages of images in each dataset class being

classified as safe or distracted by each of the models evaluated in this experiment set. Since

it is very important for an algorithm not to classify a distracted driving as safe, these

percentages are critical. From the Table 6.6, it can be observed that in all eight

configurations of CNN models, there were very few miss-classifications from distracted

driving classes into safe driving classes. Surprisingly, AlexNet results in Table 6.6 were

 School of Engineering and Technology

131

nearly perfect in comparison to the other state of the art models. However, from the training

accuracy plot shown in Figure 6.12, the training of AlexNet converged rapidly and there

was possibly overfitting during the training. Therefore, although AlexNet performance on

the validation dataset is almost over 99%, its accuracy on the test dataset is significantly

lower as shown in Table 6.8. Among other three models, MobileNet with SVC was the best

in terms of least number of images being classified as safe driving from the distracted

driving classes. Highest percentage of incorrect classification was observed as 0.49% for

the case of class 9.

Table 6.6: Percentages of Images being Classified as Safe and Distracted for All CNN
Model Configuration in Experiment 2.

Class Label 0 1 2 3 4 5 6 7 8 9

 True +ev False -ev

C
la

ss
ifi

ed
 a

s S
af

e
D

ri
vi

ng
 AlexNet + Softmax 99.57 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33

AlexNet + SVC 99.43 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00

ResNet + Softmax 69.08 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.82

ResNet + SVC 99.72 0.00 0.00 0.00 0.14 0.43 0.00 0.00 0.34 0.16

MobileNet + Softmax 89.08 0.00 0.28 0.82 0.00 1.15 0.00 0.87 1.72 0.82

MobileNet + SVC 99.57 0.28 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.49

NasNet + Softmax 99.86 0.28 0.00 0.27 0.14 1.01 0.00 0.00 0.17 0.16

NasNet + SVC 99.86 0.28 0.00 0.27 0.14 1.15 0.00 0.00 0.00 0.00

 False +ev True -ev

C
la

ss
ifi

ed
 a

s D
ist

ra
ct

ed
 D

ri
vi

ng
 AlexNet + Softmax 0.43 99.86 100 100 100 100 100 100 100 99.67

AlexNet + SVC 0.57 99.86 100 100 100 100 100 100 99.83 100

ResNet + Softmax 30.92 100 100 100 100 99.42 100 100 100 99.18

ResNet + SVC 0.28 100 100 100 99.86 99.57 100 100 99.66 99.84

MobileNet + Softmax 10.92 100 99.72 99.18 100 98.85 100 99.13 98.28 99.18

MobileNet + SVC 0.43 99.72 100 100 100 99.71 100 100 100 99.51

NasNet + Softmax 0.14 99.72 100 99.73 99.86 98.99 100 100 99.83 99.84

NasNet + SVC 0.14 99.72 100 99.73 99.86 98.85 100 100 100 100

Table 6.7 presents when images are classified as distracted driving, how many percent of

them has been classified to the correct distraction class and how many wrong. From the

 School of Engineering and Technology

132

table, it can be observed that other than MobileNet with Softmax and ResNet with Softmax,

all other configurations were able to classify the distraction classes nearly 100% correctly.

However, for these two model configurations, there were high miss-classifications in the

cases of classes 4, 5, and 9. As revealed by the confusion matrix in Figure 6.13 (c), all the

incorrect classifications by MobileNet+Softmax were in the form of classifying an image

from a class rather than 6 as class 6. As revealed by the confusion matrix in Figure 6.13

(d), ResNet+Softmax has mis–classified images from class 4 as class 3 or 6, images from

class 5 as class 6, and images from class 9 as class 1, 6 or 8. Our results confirm with the

general practice in deep learning community where Softmax is typically used during the

training of a deep net and then replaced by a bespoke classifier such as SVC during the test

stage for a better classification accuracy.

Table 6.7: Percentages of Images being Classified as Correct and Wrong Distracted
Driving for All CNN Model Configurations in Experiment 2.

Class Label 1 2 3 4 5 6 7 8 9

C
la

ss
ifi

ed
 a

s C
or

re
ct

D
ist

ra
ct

io
n

AlexNet + Softmax 99.72 99.86 100.00 99.72 99.71 99.86 100.00 98.62 99.34

AlexNet + SVC 99.72 99.86 100.00 99.86 99.86 99.86 100.00 98.45 99.51

ResNet + Softmax 91.89 97.89 94.37 81.37 67.44 99.15 99.83 96.56 59.70

ResNet + SVC 99.72 99.58 99.86 99.58 99.28 99.86 99.83 98.28 99.18

MobileNet + Softmax 61.88 32.21 87.09 85.99 75.07 100.00 81.88 23.06 80.92

MobileNet + SVC 99.57 99.58 99.86 99.72 99.42 99.86 99.65 99.31 99.01

NasNet + Softmax 99.72 99.58 99.73 99.58 98.85 99.58 99.83 97.93 99.01

NasNet + SVC 99.72 99.58 99.73 99.58 98.70 99.58 99.83 98.45 99.18

C
la

ss
ifi

ed
 a

s W
ro

ng
 D

ist
ra

ct
io

n

AlexNet + Softmax 0.14 0.14 0.00 0.28 0.29 0.14 0.00 1.38 0.33

AlexNet + SVC 0.14 0.14 0.00 0.14 0.14 0.14 0.00 1.38 0.49

ResNet + Softmax 8.11 2.11 5.63 18.63 31.99 0.85 0.17 3.44 39.47

ResNet + SVC 0.28 0.42 0.14 0.28 0.29 0.14 0.17 1.38 0.66

MobileNet + Softmax 38.12 67.51 12.09 14.01 23.78 0.00 17.25 75.22 18.26

MobileNet + SVC 0.14 0.42 0.14 0.28 0.29 0.14 0.35 0.69 0.49

NasNet + Softmax 0.00 0.42 0.00 0.28 0.14 0.42 0.17 1.89 0.82

NasNet + SVC 0.00 0.42 0.00 0.28 0.14 0.42 0.17 1.55 0.82

 School of Engineering and Technology

133

For the final evaluation, the proposed models were applied to test dataset provided by

Kaggle. Table 6.8 presents the Kaggle scores for all four models with the Softmax and the

SVC, respectively. In terms of performance comparison between different models, it can

be observed that NASNet outperformed the other three models (lowest log loss score),

followed by ResNet and MobileNet in terms of ranking. AlexNet, on the other hand, had

the worst performance (highest log loss score). The performance of all other models was

expected and in line with the validation data results. Even though AlexNet performance

over validation data was over 99%, it failed when it was subjected to unseen test datasets.

This confirms the hypothesis that AlexNet architecture was not well- trained and there was

overfitting during the training which caused the model to quickly converge to highest

accuracy. On the other hand, NASNet training followed the ideal training curve with

smooth convergence and results of NASNet over test data are indicator that model was

well-trained. Talking about the performance of Softmax and SVC, the performance of the

SVC was slightly better than Softmax. Thus, the overall best model in terms of performance

in this experiment was NASNet with the SVC.

Table 6.8: Kaggle Scores for Models with Softmax and SVC Classifiers Over Test
Dataset

Softmax SVC

Public Score Private Score Public Score Private Score

AlexNet 0.98153 1.02838 0.86610 0.918897

ResNet50 0.46246 0.51201 0.49651 0.44833

MobileNet 0.69831 0.64412 0.65180 0.63883

NASNet 0.34826 0.34235 0.34546 0.33957

Lastly, for the practical implementation, framerates and sizes of all four models were

compared to evaluate the best choice for implementation in the real-world applications. In

terms of sizes, no model was above 1GB size. This means that, given the state-of-the-art

memories, all models can be easily implemented on standalone hardware. The exact sizes

of the trained models were recorded as 251.2MB, 102MB, 90MB and 658MB for AlexNet,

 School of Engineering and Technology

134

ResNet, MobileNet and NASNet, respectively. Processing times or frame rates are

considered one of the core requirements for a computer vision algorithm to be implemented

in real-time. For a computer vision algorithm, it is important to be more accurate, but it is

more vital to be fast enough to be implemented in real-time using standalone hardware.

Table 6.9 presents the processing time for each model to predict a single instance of the test

image into one of the ten output classes. From the processing time, it can be observed that

MobileNet and AlexNet were the fastest, while NASNet was the slowest. The difference

and importance of these measures is apparent. Before the processing time comparisons,

based on the accuracies only, NASNet outperformed all other algorithms. However, for

real-life implementation on low cost hardware, MobileNet is the valid choice.

Table 6.9: Times for All Models with Softmax and SVC to Process Single Instance of
Test Input.

 Processing Time for A Single Test Image

 Softmax SVC

AlexNet 4.82ms 4.79ms

ResNet50 8.84ms 8.91ms

MobileNet 4.94ms 4.72ms

NASNet 72.3ms 72.2ms

Results: We observe that the SVC as a classifier of the CNN features produced better result

than the Softmax loss, it is able to generalize better between training and test data.

Moreover, it fits the data in few seconds providing better training times than Softmax even

with GPU acceleration over the CNN. The Table 6.4 shows the results obtained using both

methods. Given the benefits of the SVC with the CNN features, we decided to further

explore this approach, analysing how to obtain better features using triplet loss functions

and how to further improve accuracy by proposing a novel modification to the triplet loss

function.

 School of Engineering and Technology

135

6.6.3. Experiment 3 Results

Results of experiment set 2 highlighted the better performance of the SVC in comparison

to the Softmax classifier for Kaggle distracted driving dataset. Based on the results of

experiment set 2, the final experiments were planned in which performance of state-of-the-

art deep architectures with the SVC was evaluated and compared for margin, naïve and

batch triplet functions.

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.15: Training Loss Plots for All Models with Margin Triplet Loss.

At training time, we can observe how loss increases every time the training becomes more

difficult. At epoch 32 we change to semi-hard negative mining and at epoch 64 we change

to hard-negative mining except for the AlexNet diagram (top-left) that uses only random

negative samples. The curve looks smoother in the Alexnet training. However, this does

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC45

(a) Margin Triplet Loss for AlexNet (b) Margin Triplet Loss for NASNet

(c) Margin Triplet Loss for ResNet50

(d) Margin Triplet Loss for MobileNet

Figure 8.1: Margin Triplet Loss

 School of Engineering and Technology

136

not mean a better performance since the loss function in the other models is working with

harder samples than with Alexnet. Figure 6.15 shows the training curves of the four

architectures.

All the four deep models were trained over 70% of the Kaggle training dataset, and

performances were plotted in terms of training loss plots for margin, naïve and batch triplet

loss functions. Figure 6.15 presents the training loss plots for the models with margin triplet

loss. Peaks in the training plots at epochs 32 and 64 are the indicators of shift of triplet

mining from random to semi-hard and then to hard. Overall, the loss curves followed the

standard training behaviour i.e. loss reduced with an increase in training epochs. In terms

of performance, NASNet illustrated more smooth transition from semi-hard towards the

hard triplet mining which is the indicator of a better and more stable model training.

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.16: Training Loss Plots for All Model with Naïve Triplet Loss.

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

8.3. GRAPHS AND CONFUSIONMATRICES FOR CATEGORICAL CROSS ENTROPYWITH SOFTMAXAND SVC47

(a) Naive Triplet Loss for AlexNet (b) Naive Triplet Loss for NASNet

(c) Naive Triplet Loss for ResNet50
(d) Naive Triplet Loss for MobileNet

Figure 8.6: Naive Triplet Loss

 School of Engineering and Technology

137

Figure 6.16 presents the loss plots for all the four models with the naïve triplet loss function

implementation. The same training procedure was adopted as in the case of the margin

triplet loss with transition from random to semi-hard at epoch 32 and then to hard triplet

mining at epoch 64. From the loss plots, the peaks at the 32 and 64 epochs are the indicator

of the shift between different triplet mining methods. Based on the plots, it can clearly be

seen that there are a lot of ups and downs in the loss plots and the curves are not smooth,

indicating a poor training of models. In terms of training performance, MobileNet was on

the top, followed by ResNet and NASNet. Finally, Figure 6.17 presents the loss plots of all

four models for the batch triplet loss function implementation. Loss plots were smooth in

all cases, indicating a better training of models.

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.17: Training Loss Plots for All Models with Batch Triplet Loss.

46 CHAPTER 8. RESULTS

(a) Batch Triplet Loss for AlexNet (b) Batch Triplet Loss for NASNet

(a) Batch Triplet Loss for ResNet50
(a) Batch Triplet Loss for MobileNet

Figure 8.5: Batch Triplet Loss

46 CHAPTER 8. RESULTS

(a) Batch Triplet Loss for AlexNet (b) Batch Triplet Loss for NASNet

(a) Batch Triplet Loss for ResNet50
(a) Batch Triplet Loss for MobileNet

Figure 8.5: Batch Triplet Loss

46 CHAPTER 8. RESULTS

(a) Batch Triplet Loss for AlexNet (b) Batch Triplet Loss for NASNet

(a) Batch Triplet Loss for ResNet50
(a) Batch Triplet Loss for MobileNet

Figure 8.5: Batch Triplet Loss

46 CHAPTER 8. RESULTS

(a) Batch Triplet Loss for AlexNet (b) Batch Triplet Loss for NASNet

(a) Batch Triplet Loss for ResNet50
(a) Batch Triplet Loss for MobileNet

Figure 8.5: Batch Triplet Loss

 School of Engineering and Technology

138

In the second phase of evaluation, after the models were trained, the performance was

evaluated over the validation data, and predictions were plotted as confusion matrices.

Figure 6.18, Figure 6.19 and Figure 6.20 presents the confusion matrices of all four models

for margin, naïve and batch triplet loss functions, respectively. From the confusion

matrices, it can be observed that AlexNet performance was way below par as expected from

the training phase since only random triplet mining was used. For the other three models,

similar trend in terms of performance was observed as was in training process.

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.18: Confusion Matrices for Models with Margin Triplet Loss Over Validation
Dataset.

 School of Engineering and Technology

139

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.19: Confusion Matrices for Models with Naïve Triplet Loss Over Validation

Dataset.

Table 6.10 presents the comparison in terms of numerical values of training accuracies and

validation accuracies of all four models with margin, naïve and batch triplet loss functions.

From the table, it can clearly be observed that for margin triplet loss function, ResNet

ranked first, NASNet ranked second, MobileNet ranked third with a negligible performance

difference among the three models and AlexNet ranked the last with a nearly 30% drop in

accuracy. For the naïve triplet loss function, MobileNet ranked first, ResNet ranked second,

 School of Engineering and Technology

140

NASNet ranked third with a small difference of less than 5% in accuracy whereas AlexNet

ranked the last with a over 50% drop in accuracy. Finally, for the batch triplet loss function,

ResNet ranked first, MobileNet ranked second, NASNet ranked third with a negligible

difference in prediction accuracy and AlexNet ranked the last with a over 30% drop.

(a) AlexNet (b) ResNet

(c) MobileNet (d) NASNet

Figure 6.20: Confusion Matrices for Models with Batch Triplet Loss Over Validation
Dataset.

From the triplet margin loss function confusion matrix in Figure 6.18, we can observe how

the features produced by the AlexNet model are not accurate therefore the classification of

the SVC becomes poor obtaining accuracies lower than 50% for the class 4. Overall, the

 School of Engineering and Technology

141

linear SVC with the features extracted from AlexNet does not perform well. The other three

architectures are capable of producing high-quality embeddings using the adaptive triplet

mining. The SVC with the linear kernel is capable of fitting the training data and having

really good accuracy rates. However, MobileNet architecture is designed to operate with

constrained hardware requirements. This has made it less powerful than other models like

ResNet or NasNet.

As shown in Figure 6.19 and Figure 6.20, when using the features of the models trained

with the naive triplet loss or the batch triplet loss function to train the SVC, we can see

exactly the same pattern in the performance of the models as with margin triplet loss

functions (in the confusion matrices of Figure 6.18). AlexNet performed the worst whereas

the other three models produced comparable results.

Table 6.10: Numerical Comparison of All Models for Training and Validation
Accuracies.

Margin Triplet Loss Naïve Triplet Loss Batch Triplet Loss

Training
Accuracy

Validation
Accuracy

 Training
Accuracy

Validation
Accuracy

 Training
Accuracy

Validation
Accuracy

AlexNet 0.7039 0.6996 0.4261 0.4168 0.6779 0.6715

ResNet50 0.9955 0.9909 0.9685 0.9574 0.9917 0.9874

MobileNet 0.9908 0.9762 0.9876 0.9781 0.9887 0.9818

NASNet 0.9941 0.9893 0.9449 0.9397 0.9836 0.9809

Table 6.11 and Table 6.12 present the validation results of all the CNN model

configurations in experiment set 3, where each model has been used with a SVC. As

emphasised earlier, it is important to study that how many percent of images were classified

as safe driving from the distracted driving classes since it is dangerous and will result in

fatal consequences. Table 6.11 presents the percentages of images being classified as safe

driving from all the distracted driving classes. From the table, it can be observed that

AlexNet with all three configurations of margin, naïve and batch triplet loss performed

 School of Engineering and Technology

142

worst among all models in the sense that a large proportion of images of safe driving has

been classified wrongly as distracted. As mentioned, AlexNet was trained using only

random triplet mining while other models were trained using random, semi-hard and hard

negative mining. In comparison to preliminary experiment, results of AlexNet in

experiment 3 were improved because AlexNet model pre-trained over ImageNet dataset

was used with SVC rather than Kaggle dataset trained AlexNet with Softmax as in

preliminary experiment. Although overall for safe driving class, models with batch triplet

loss function were able to give highest classification percentage, in terms of miss-

classification as safe from other distraction classes margin triplet loss function was able to

achieve the least number of wrong classifications. Highest percentages of miss-

classification as safe driving were observed from class 9 which is consistent with the

observations in preliminary experiments due to high similarity between class 0 and class 9.

Table 6.12 presents when images are classified as distracted driving, how many percent of

them has been classified to the correct distraction class and how many wrong. As expected,

AlexNet produced some errors. On the other hand, all the other three state-of-the-art models

were able to achieve on average correct classifications above 90%. These results indicate

that these state-of-the-art models have managed to learn and extract discriminative features

and the SVC was able to correctly differentiate them into respective distracted driving

classes.

In the third phase of evaluation, all the models were subjected to the Kaggle test dataset

and predictions were recorded in excel sheet in a csv format. Prediction results for test

evaluations were submitted to Kaggle. Table 6.13 presents the summary of all the log loss

scores obtained from Kaggle website for the test dataset. From the table, it can be observed

that once again NASNet outperformed all the other models in all three triplet loss

implementations with the lowest log loss scores. Performance of AlexNet model was the

worst among all as expected from the results of training and validation evaluations. Mixed

performance with less difference was observed in ResNet and MobileNet models with

ResNet outperforming MobileNet in batch triplet loss implementation while MobileNet

outperforming ResNet in margin and naïve triplet loss implementations. Overall, batch

triplet loss implementation with the NASNet model was the best in terms of performance

 School of Engineering and Technology

143

for the test dataset. More or less similar performances were recorded for MobileNet and

ResNet models with triplet loss function implementations.

Table 6.11: Percentages of Images being Classified as Safe and Distracted Driving for All
CNN Model Configurations in Experiment 3.

Class Label 0 1 2 3 4 5 6 7 8 9

 True +ev False -ev

C
la

ss
ifi

ed
 a

s S
af

e
D

ri
vi

ng

AlexNet + Margin 58.58 0.15 0.00 6.83 17.50 0.43 0.00 0.17 4.01 23.35

AlexNet + Naïve 42.36 0.74 0.00 13.51 13.49 0.87 0.00 0.00 3.32 11.91

AlexNet + Batch 59.52 0.00 0.00 21.34 25.11 0.14 0.00 0.17 3.32 17.87

ResNet + Margin 98.53 0.00 0.00 0.28 0.14 0.43 0.00 0.17 0.00 0.78

ResNet + Naïve 95.84 0.44 0.14 1.00 0.43 0.43 0.00 0.17 1.40 6.90

ResNet + Batch 98.66 0.29 0.00 0.28 0.43 0.58 0.00 0.00 0.87 1.57

MobileNet + Margin 97.99 0.00 0.00 0.57 0.14 0.29 0.00 0.00 0.70 2.19

MobileNet + Naïve 96.25 0.29 0.00 0.57 0.29 0.87 0.00 0.17 0.87 3.92

MobileNet + Batch 97.18 0.00 0.00 0.14 0.57 0.58 0.00 0.17 1.05 2.66

NASNet + Margin 98.53 0.15 0.00 0.57 0.29 1.15 0.00 0.17 0.00 0.94

 NASNet + Naïve 92.09 0.44 0.00 2.42 2.87 1.30 0.00 0.17 4.71 12.23

NASNet + Batch 99.06 0.29 0.00 1.00 0.29 1.73 0.00 0.17 1.22 6.58

 False +ev True -ev

C
la

ss
ifi

ed
 a

s D
ist

ra
ct

ed
 D

ri
vi

ng

AlexNet + Margin 41.42 99.85 100 93.17 82.50 99.57 100 99.83 95.99 76.65

AlexNet + Naïve 57.64 99.26 100 86.49 86.51 99.13 100 100 96.68 88.09

AlexNet + Batch 40.48 100 100 78.66 74.89 99.86 100 99.83 96.68 82.13

ResNet + Margin 1.47 100 100 99.72 99.86 99.57 100 99.83 100 99.22

ResNet + Naïve 4.16 99.56 99.86 99.00 99.57 99.57 100 99.83 98.60 93.10

ResNet + Batch 1.34 99.71 100 99.72 99.57 99.42 100 100 99.13 98.43

MobileNet + Margin 2.01 100 100 99.43 99.86 99.71 100 100 99.30 97.81

MobileNet + Naïve 3.75 99.71 100 99.43 99.71 99.13 100 99.83 99.13 96.08

MobileNet + Batch 2.82 100 100 99.86 99.43 99.42 100 99.83 98.95 97.34

NASNet + Margin 1.47 99.85 100 99.43 99.71 98.85 100 99.83 100 99.06

 NASNet + Naïve 7.91 99.56 100 97.58 97.13 98.70 100 99.83 95.29 87.77

NASNet + Batch 0.94 99.71 100 99.00 99.71 98.27 100 99.83 98.78 93.42

 School of Engineering and Technology

144

Table 6.12: Percentages of Images being Classified as Correct and Wrong Distracted
Driving for All CNN Model Configurations in Experiment 3.

Class Label 1 2 3 4 5 6 7 8 9

C
la

ss
ifi

ed
 a

s C
or

re
ct

 D
ist

ra
ct

io
n

AlexNet + Margin 93.97 73.38 74.11 45.48 96.97 86.94 79.33 44.85 42.01

AlexNet + Naïve 53.53 29.35 62.59 21.66 83.26 81.06 10.67 12.74 7.52

AlexNet + Batch 95.59 72.09 69.42 17.65 98.41 84.22 88.67 38.05 45.30

ResNet + Margin 99.71 99.57 99.29 99.71 99.57 99.71 99.50 97.21 97.81

ResNet + Naïve 98.53 96.40 97.72 98.28 99.13 97.85 98.67 84.12 88.71

ResNet + Batch 99.56 99.28 99.43 99.14 99.13 99.28 99.17 96.51 96.71

MobileNet + Margin 99.56 99.71 99.15 99.57 99.57 99.28 99.33 92.32 95.61

MobileNet + Naïve 99.41 99.86 99.15 99.14 98.99 99.42 99.67 92.32 93.26

MobileNet + Batch 99.56 99.71 99.43 99.00 99.28 99.57 99.33 92.84 94.98

NASNet + Margin 99.56 99.42 99.29 99.14 98.56 99.00 99.50 98.08 98.12

 NASNet + Naïve 99.41 97.84 94.31 94.84 98.41 95.70 99.50 81.33 84.33

NASNet + Batch 99.56 99.57 98.72 99.28 98.27 98.57 99.67 95.11 92.32

C
la

ss
ifi

ed
 a

s W
ro

ng
 D

ist
ra

ct
io

n

AlexNet + Margin 5.88 26.62 19.06 37.02 2.60 13.06 20.50 51.13 34.64

AlexNet + Naïve 45.74 70.65 23.90 64.85 15.87 18.94 89.33 83.94 80.56

AlexNet + Batch 4.41 27.91 9.25 57.25 1.44 15.78 11.17 58.64 36.83

ResNet + Margin 0.29 0.43 0.43 0.14 0.00 0.29 0.33 2.79 1.41

ResNet + Naïve 1.03 3.45 1.28 1.29 0.43 2.15 1.17 14.49 4.39

ResNet + Batch 0.15 0.72 0.28 0.43 0.29 0.72 0.83 2.62 1.72

MobileNet + Margin 0.44 0.29 0.28 0.29 0.14 0.72 0.67 6.98 2.19

MobileNet + Naïve 0.29 0.14 0.28 0.57 0.14 0.58 0.17 6.81 2.82

MobileNet + Batch 0.44 0.29 0.43 0.43 0.14 0.43 0.50 6.11 2.35

NASNet + Margin 0.29 0.58 0.14 0.57 0.29 1.00 0.33 1.92 0.94

 NASNet + Naïve 0.15 2.16 3.27 2.30 0.29 4.30 0.33 13.96 3.45

NASNet + Batch 0.15 0.43 0.28 0.43 0.00 1.43 0.17 3.66 1.10

 School of Engineering and Technology

145

Table 6.13: Kaggle Scores for Models with Margin, Naïve and Batch Triplet Loss
Functions Over Test Dataset.

Margin Triplet Loss Naïve Triplet Loss Batch Triplet Loss

Public Private Public Private Public Private

AlexNet 1.6068 1.6799 1.8928 1.9110 1.5638 1.5513

ResNet50 0.4407 0.5229 0.7334 0.6837 0.4475 0.4289

MobileNet 0.5836 0.5216 0.5707 0.5016 0.5311 0.5005

NASNet 0.3736 0.3149 0.5975 0.4664 0.3764 0.3168

Table 6.14: Times for All Models with Margin, Naïve and Batch Triplet Loss Functions
to Process Single Instance of Test Input.

Processing Time for Single Test Instance

Margin Triplet Loss Naïve Triplet Loss Batch Triplet Loss

AlexNet 8.7ms 8.6ms 8.5ms

ResNet50 7.57ms 7.38ms 7.61ms

MobileNet 4.69ms 5.9ms 4.65

NASNet 75.1ms 77.4ms 76.4ms

Finally, the performance in terms of processing times by each model was evaluated to

analyse the practical implementation of algorithms on standalone hardware systems to

perform real-time classification tasks. The processing time reported in this thesis were

obtained from highly parallel and powerful machines. Therefore, they are not the real

reflection of real-world performance. However, they were included to highlight the trend

which would be same. When used on the low performance hardware, only the numbers will

change. Table 6.14 presents the processing time taken by each model to process a single

 School of Engineering and Technology

146

instance of the test image. From the table, it can be observed that NASNet is the slowest

among them, while MobileNet is fastest among them. The same results have been observed

in experiment set 2. The importance of the practical implementation of models can be

highlighted from this comparison. Although NASNet is the best among them in terms of

prediction accuracy, it is the slowest by a huge margin. Hence, it is not the best choice for

real-world implementation on hardware such as a portable device. On the other hand, the

prediction accuracy from MobileNet was not poor compared to NASNet. Nevertheless, in

terms of speed, it is almost 20 times faster, thus making it the best choice for the real-world

implementation on portable devices.

6.7. Conclusion

Experiments performed in this research resulted into a number of insights. From the results

of experiment set 2, it has been observed that SVC is much more powerful in terms of

classification as compared to Softmax. From experiment set 3, it has been concluded that

the novel batch triplet loss outperformed all others because it minimises intra-class

variations as well as maximises inter-class variations. Furthermore, in terms of the best

performed model, NASNet was the best for its accuracy while MobileNet was observed as

the best for its lowest requirement on storage space and processing time without

compromising the accuracy to a large extent. Overall, it can be concluded that if

classification accuracy is the priority, NASNet model trained with margin triplet loss or

batch triplet loss using SVC is the best in terms of performance when compared to AlexNet,

MobileNet and ResNet. However, if processing time or real-time implementation on

portable devices is the first priority, in that case MobileNet trained with batch triplet loss

using SVC is the best in terms of performance when compared with other three addressed

in this research.

 School of Engineering and Technology

147

CHAPTER 7

7. CONCLUSION AND FUTURE WORK

7.1. Conclusion

Classification is a long-standing problem, with many different approaches to it. Focusing

on the image domain, it was traditionally solved using hand-crafted features that were

classified by a Multi-Layer Perceptron (MLP), SVM or other simpler methods like k-NN

[156, 157]. Nowadays, the process of engineering hand-crafted features has been replaced

by an end-to-end learning using CNNs [73, 158]. They take the raw image pixels as the

input and are trained to learn the most discriminative features for a given classification task.

To improve road safety and a number of accidents due to hazardous behaviours such as

drowsiness and distraction of drivers, this research has successfully addressed some

research questions and investigated the potential solutions. To answer RQ1, a

comprehensive subject review was performed, and the most relevant literature regarding

local and deep learning approaches for distraction and drowsiness detection was reviewed.

The literature was critically analysed and compared based on key factors in order to identify

the obstacles to the real-world implementation of robust drowsiness and distraction

detection systems. Some potential challenges identified as a result included the impact of

lightning conditions on the accuracy of computer vision algorithms, the dependence on the

performance of individual computer vision approaches involved, extensive computational

power requirements, transition from high resolution to lower resolution detections, cost of

system compared to vehicles, consequences of false alarms, visibility of regions of interest,

early stage detections, and consideration of in-vehicle factors such as interference due to

vibrations.

As for RQ2, conventional computer vision approaches such as detection of eye blinking,

yawning and head pose were successfully implemented for small datasets to evaluate the

performance.

 School of Engineering and Technology

148

To address RQ3, the proposed system was evaluated experimentally with a number of

images taken from various standard databases. Given the use of smaller datasets,

performance was evaluated using the µ-fold cross validation approach in which whole

dataset was used for training and testing. Classification accuracies of 99%, 98.5% and 99%

were recorded for head pose, yawning and eye blinking detection, respectively. From the

results over smaller datasets, a satisfactory performance was observed. However, in the

conventional computer vision approaches, features were manually identified for each RI,

such as the eyes, the mouth and the head. Furthermore, the conventional methods require a

close-up image of the face/head to deliver a satisfactory performance. When the image

resolution is low or when the face/head moves out of the camera view, conventional

methods become powerless.

Talking about RQ4, the use of deep learning approaches is considered in the detection of

distracted driving. Unlike conventional approaches where features are hand engineered to

facilitate classification, deep learning approaches can be trained to learn the most

discriminative features for a given classification task and the deep net architectures are able

to learn such features from various regions of a human body simultaneously.

In reference to RQ5, various deep learning approaches were evaluated for their training

performance, validation performance and test performance. Based on the encouraging

results of preliminary experiments, in experiment 2, Softmax and the SVC classifier were

compared for four states of the art deep models: AlexNet, ResNet, MobileNet and NASNet.

From the results, the SVC performance was slightly better compared to that of Softmax.

Finally, in experiment 3, the performance of all four deep architectures with the SVC was

evaluated for margin, naïve and batch triplet loss implementations. The approach of

transition from random to semi-hard to hard triplet mining was effectively used during the

training of models. From the results, the performance of NASNet model with batch triplet

loss implementation was ranked first in terms of accuracies; however, it was the slowest

among them. The performance of ResNet and MobileNet was more or less similar to that

of MobileNet in terms of fast processing times. The performance comparison between

NASNet and MobileNet was not huge in terms of classification accuracies; however,

 School of Engineering and Technology

149

MobileNet was almost 20 times faster than NASNet, thus making MobileNet the best

possible choice among them for real-world implementation on portable devices.

7.2. Future Work

In this MPhil thesis critical analysis of the literature have been conducted, which identifies

potential challenges that occurs in the real-world implementation of computer vision

methods in the detection of distraction driving. Each identified challenge can be a future

direction to the research presented in this thesis. Listed are the possible future work for this

research.

• Evaluation and improvement of existing algorithms for varied lighting conditions,

more precisely, real in-vehicle lighting conditions especially during night time.

• Addressing and minimising the computational resources required to implement the

proposed algorithms in real-world situation. One approach can be the use of image

frames with a lower resolution to reduce the computational cost while keeping the

accuracy up to a satisfactory level.

• Addressing the issue of false alarming to make it more user friendly. A system

alarming the driver after every short interval of distraction is not practical since it

will irritate the driver.

• The class 0 (safe driving) of Kaggle dataset does not include images of a driver

checking a driving assistance equipment such as back mirror, side mirrors etc.

Further experiments are required to ensure such images are not classified as

distracted driving.

• Integration of non-vision based solutions to assist the scenarios when the driver’s

face is occluded.

• Incorporate the impact of vibrations and driving interferences on the detection

accuracies.

• Implementation of hybrid conventional and deep learning\approaches to detect

hazardous behaviours in drivers.

 School of Engineering and Technology

150

• Implementation of deep learning approaches on standalone hardware to test the real-

world performances.

 School of Engineering and Technology

151

REFERENCES

[1] C. J. Murray and A. D. Lopez, "Alternative projections of mortality and disability

by cause 1990–2020: Global Burden of Disease Study," The Lancet, vol. 349, no.

9064, pp. 1498-1504, 1997.

[2] P. K. Arnold, L. R. Hartley, A. Corry, D. Hochstadt, F. Penna, and A. M. Feyer,

"Hours of work, and perceptions of fatigue among truck drivers," Accident Analysis

& Prevention, vol. 29, no. 4, pp. 471-477, 1997.

[3] P. Philip et al., "Fatigue, sleep restriction and driving performance," Accident

Analysis & Prevention, vol. 37, no. 3, pp. 473-478, 2005.

[4] D. J. Beirness, H. M. Simpson, and A. Pak, The road safety monitor: driver

distraction. Traffic Injury Research Foundation, 2002.

[5] E. Wahlstrom, O. Masoud, and N. Papanikolopoulos, "Vision-based methods for

driver monitoring," in Intelligent Transportation Systems, 2003. Proceedings. 2003

IEEE, 2003, vol. 2: IEEE, pp. 903-908.

[6] K. Young, M. Regan, and M. Hammer, "Driver distraction: A review of the

literature," Distracted Driving, pp. 379-405, 2007.

[7] J. C. Stutts, D. W. Reinfurt, L. Staplin, and E. A. Rodgman, "The role of driver

distraction in traffic crashes," ed: Report prepared for AAA Foundation for Traffic

Safety, Washington, DC, 2001.

[8] J.-S. Wang, R. R. Knipling, and M. J. Goodman, "The role of driver inattention in

crashes: New statistics from the 1995 Crashworthiness Data System," in 40th

annual proceedings of the Association for the Advancement of Automotive

Medicine, 1996, vol. 377, p. 392.

[9] A. H. Taylor and L. Dorn, "Stress, fatigue, health, and risk of road traffic accidents

among professional drivers: the contribution of physical inactivity," Annu. Rev.

Public Health, vol. 27, pp. 371-391, 2006.

[10] J. Park, Y. Kim, H. K. Chung, and N. Hisanaga, "Long working hours and

subjective fatigue symptoms," Industrial health, vol. 39, no. 3, pp. 250-254, 2001.

 School of Engineering and Technology

152

[11] F. Sagberg, P. Jackson, H.-P. Krüger, A. Muzet, and A. Williams, Fatigue,

sleepiness and reduced alertness as risk factors in driving. Institute of Transport

Economics Oslo, 2004.

[12] S. K. Lal and A. Craig, "A critical review of the psychophysiology of driver

fatigue," Biological psychology, vol. 55, no. 3, pp. 173-194, 2001.

[13] F. M. Carrier, "Regulatory Impact Analysis," 2011.

[14] M. Bayly, B. Fildes, M. Regan, and K. Young, "Review of crash effectiveness of

Intelligent Transport Systems," Emergency, vol. 3, p. 14, 2006.

[15] D. Dinges and M. Mallis, "Managing fatigue by drowsiness detection: Can

technological promises be realized?," in INTERNATIONAL CONFERENCE ON

FATIGUE AND TRANSPORTATION, 3RD, 1998, FREMANTLE, WESTERN

AUSTRALIA, 1998.

[16] H. Thimbleby, P. Duquenoy, and G. Marsden, "Ethics and consumer electronics,"

in Proceedings of the 4th ETHICOMP International Conference on the Social and

Ethical Impacts of Information and Communication Technologies—Ethicomp’99,

1999.

[17] Kaggle. Can computer vision spot distracted drivers? [Online]. Available:

https://www.kaggle.com/c/state-farm-distracted-driver-detection.

[18] J. Horne and L. Reyner, "Vehicle accidents related to sleep: a review,"

Occupational and environmental medicine, vol. 56, no. 5, pp. 289-294, 1999.

[19] A. Eskandarian, R. Sayed, P. Delaigue, A. Mortazavi, and J. Blum, "Advanced

driver fatigue research," FMCSA-RRR-07-001, 2007.

[20] T. Nakamura, A. Maejima, and S. Morishima, "Detection of driver's drowsy facial

expression," in Pattern Recognition (ACPR), 2013 2nd IAPR Asian Conference on,

2013: IEEE, pp. 749-753.

[21] W. Zhang, B. Cheng, and Y. Lin, "Driver drowsiness recognition based on

computer vision technology," Tsinghua Science and Technology, vol. 17, no. 3, pp.

354-362, 2012.

 School of Engineering and Technology

153

[22] T. A. Ranney, E. Mazzae, R. Garrott, and M. J. Goodman, "NHTSA driver

distraction research: Past, present, and future," in Driver distraction internet forum,

2000, vol. 2000.

[23] I. Hajime, B. ATSUMI, U. Hiroshi, and M. AKAMATSU, "Visual distraction while

driving: trends in research and standardization," IATSS research, vol. 25, no. 2, pp.

20-28, 2001.

[24] D. Haigney, "Mobile phones and driving: A literature review," RoSPA,

Birmingham, 1997.

[25] D. Line, "The Mobile Phone Report: A report on the effects of using a hand-held

and a hands-free mobile phone on road safety," ed: Direct Line Insurance. Croydon:

United Kingdom, 2002.

[26] A. L. Glaze and J. M. Ellis, "Pilot study of distracted drivers," Transportation Safety

Training Center for Public Policy, 2003.

[27] J. D. Fuletra and D. Bosamiya, "A Survey on Driver’s Drowsiness Detection

Techniques," International Journal on Recent and Innovation Trends in Computing

and Communication, vol. 1, no. 11, 2013.

[28] D. Haigney and S. Westerman, "Mobile (cellular) phone use and driving: A critical

review of research methodology," Ergonomics, vol. 44, no. 2, pp. 132-143, 2001.

[29] E. Farber, J. Foley, and S. Scott, "Visual attention design limits for ITS in-vehicle

systems: The Society of Automotive Engineers standard for limiting visual

distraction while driving," in Transportation Research Board Annual General

Meeting, 2000: Washington DC USA, pp. 2-3.

[30] J. J. Jain and C. Busso, "Assessment of driver’s distraction using perceptual

evaluations, self assessments and multimodal feature analysis," in 5th Biennial

Workshop on DSP for In-Vehicle Systems, Kiel, Germany, 2011.

[31] M. Baumann, A. Keinath, J. F. Krems, and K. Bengler, "Evaluation of in-vehicle

HMI using occlusion techniques: experimental results and practical implications,"

Applied ergonomics, vol. 35, no. 3, pp. 197-205, 2004.

[32] M. Baumann et al., "Assessing driver distraction using occlusion method and

peripheral detection task," 2003.

 School of Engineering and Technology

154

[33] M. Wooldridge, K. Bauer, P. Green, and K. Fitzpatrick, "Comparison of driver

visual demand in test track, simulator, and on-road environments," Ann Arbor, vol.

1001, pp. 48109-2150, 1999.

[34] H. Gao, A. Yuce, and J.-P. Thiran, "Detecting emotional stress from facial

expressions for driving safety," in Image Processing (ICIP), 2014 IEEE

International Conference on, 2014: IEEE, pp. 5961-5965.

[35] O. Langner, R. Dotsch, G. Bijlstra, D. H. Wigboldus, S. T. Hawk, and A. Van

Knippenberg, "Presentation and validation of the Radboud Faces Database,"

Cognition and emotion, vol. 24, no. 8, pp. 1377-1388, 2010.

[36] N. C. Ebner, M. Riediger, and U. Lindenberger, "FACES—A database of facial

expressions in young, middle-aged, and older women and men: Development and

validation," Behavior research methods, vol. 42, no. 1, pp. 351-362, 2010.

[37] E. Tadesse, W. Sheng, and M. Liu, "Driver drowsiness detection through HMM

based dynamic modeling," in Robotics and Automation (ICRA), 2014 IEEE

International Conference on, 2014: IEEE, pp. 4003-4008.

[38] T. D’Orazio, M. Leo, C. Guaragnella, and A. Distante, "A visual approach for driver

inattention detection," Pattern Recognition, vol. 40, no. 8, pp. 2341-2355, 2007.

[39] M. Saradadevi and P. Bajaj, "Driver fatigue detection using mouth and yawning

analysis," International Journal of Computer Science and Network Security, vol. 8,

no. 6, pp. 183-188, 2008.

[40] S. Singh and N. P. Papanikolopoulos, "Monitoring driver fatigue using facial

analysis techniques," in Intelligent Transportation Systems, 1999. Proceedings.

1999 IEEE/IEEJ/JSAI International Conference on, 1999: IEEE, pp. 314-318.

[41] D. F. Dinges and R. Grace, "PERCLOS: A valid psychophysiological measure of

alertness as assessed by psychomotor vigilance," US Department of Transportation,

Federal Highway Administration, Publication Number FHWA-MCRT-98-006,

1998.

[42] L. M. Bergasa, J. M. Buenaposada, J. Nuevo, P. Jimenez, and L. Baumela,

"Analysing driver's attention level using computer vision," in Intelligent

 School of Engineering and Technology

155

Transportation Systems, 2008. ITSC 2008. 11th International IEEE Conference on,

2008: IEEE, pp. 1149-1154.

[43] T. Kanade, Y. Tian, and J. F. Cohn, "Comprehensive database for facial expression

analysis," in fg, 2000: IEEE, p. 46.

[44] A. Dasgupta, A. George, S. Happy, and A. Routray, "A Vision-Based System for

Monitoring the Loss of Attention in Automotive Drivers," IEEE Trans. Intelligent

Transportation Systems, vol. 14, no. 4, pp. 1825-1838, 2013.

[45] Q. Ji, Z. Zhu, and P. Lan, "Real-time nonintrusive monitoring and prediction of

driver fatigue," IEEE transactions on vehicular technology, vol. 53, no. 4, pp. 1052-

1068, 2004.

[46] L. Lang and H. Qi, "The study of driver fatigue monitor algorithm combined

PERCLOS and AECS," in 2008 International Conference on Computer Science

and Software Engineering, 2008, vol. 1: IEEE, pp. 349-352.

[47] M. Sacco and R. A. Farrugia, "Driver fatigue monitoring system using support

vector machines," in Communications Control and Signal Processing (ISCCSP),

2012 5th International Symposium on, 2012: IEEE, pp. 1-5.

[48] L. M. Bergasa, J. Nuevo, M. A. Sotelo, R. Barea, and M. E. Lopez, "Real-time

system for monitoring driver vigilance," Intelligent Transportation Systems, IEEE

Transactions on, vol. 7, no. 1, pp. 63-77, 2006.

[49] X. Fan, B.-C. Yin, and Y.-F. Sun, "Yawning detection for monitoring driver

fatigue," in Machine Learning and Cybernetics, 2007 International Conference on,

2007, vol. 2: IEEE, pp. 664-668.

[50] E. Vural, M. Cetin, A. Ercil, G. Littlewort, M. Bartlett, and J. Movellan, "Drowsy

driver detection through facial movement analysis," in Human–computer

interaction: Springer, 2007, pp. 6-18.

[51] B.-C. Yin, X. Fan, and Y.-F. Sun, "Multiscale dynamic features based driver fatigue

detection," International Journal of Pattern Recognition and Artificial Intelligence,

vol. 23, no. 03, pp. 575-589, 2009.

 School of Engineering and Technology

156

[52] M. J. Flores, J. M. Armingol, and A. de la Escalera, "Real-time warning system for

driver drowsiness detection using visual information," Journal of Intelligent &

Robotic Systems, vol. 59, no. 2, pp. 103-125, 2010.

[53] D. Liu, P. Sun, Y. Xiao, and Y. Yin, "Drowsiness detection based on eyelid

movement," in Education Technology and Computer Science (ETCS), 2010 Second

International Workshop on, 2010, vol. 2: IEEE, pp. 49-52.

[54] Z. Zhang and J. Zhang, "A new real-time eye tracking based on nonlinear unscented

Kalman filter for monitoring driver fatigue," Journal of Control Theory and

Applications, vol. 8, no. 2, pp. 181-188, 2010.

[55] S. Park and M. Trivedi, "Driver activity analysis for intelligent vehicles: issues and

development framework," in Intelligent Vehicles Symposium, 2005. Proceedings.

IEEE, 2005: IEEE, pp. 644-649.

[56] Q. N. Nguyen, L. T. A. Tho, T. V. Van, H. Yu, and N. D. Thang, "Visual based

drowsiness detection using facial features," in International Conference on the

Development of Biomedical Engineering in Vietnam, 2017: Springer, pp. 723-727.

[57] H. A. Kholerdi, N. TaheriNejad, R. Ghaderi, and Y. Baleghi, "Driver's drowsiness

detection using an enhanced image processing technique inspired by the human

visual system," Connection Science, vol. 28, no. 1, pp. 27-46, 2016.

[58] J. Jo, S. J. Lee, H. G. Jung, K. R. Park, and J. Kim, "Vision-based method for

detecting driver drowsiness and distraction in driver monitoring system," Optical

Engineering, vol. 50, no. 12, pp. 127202-127202-24, 2011.

[59] A. Nabo, "Driver attention—Dealing with drowsiness and distraction," Göteborg:

IVSS, 2009.

[60] L. Yunqi, Y. Meiling, S. Xiaobing, L. Xiuxia, and O. Jiangfan, "Recognition of eye

states in real time video," in Computer Engineering and Technology, 2009.

ICCET'09. International Conference on, 2009, vol. 1: IEEE, pp. 554-559.

[61] C. Craye and F. Karray, "Driver distraction detection and recognition using RGB-

D sensor," arXiv preprint arXiv:1502.00250, 2015.

[62] Y. Liao, S. E. Li, G. Li, W. Wang, B. Cheng, and F. Chen, "Detection of driver

cognitive distraction: An SVM based real-time algorithm and its comparison study

 School of Engineering and Technology

157

in typical driving scenarios," in Intelligent Vehicles Symposium (IV), 2016 IEEE,

2016: IEEE, pp. 394-399.

[63] K. Kircher, C. Ahlstrom, and A. Kircher, "Comparison of two eye-gaze based real-

time driver distraction detection algorithms in a small-scale field operational test,"

in Proc. 5th Int. Symposium on Human Factors in Driver Assessment, Training and

Vehicle Design, 2009, pp. 16-23.

[64] J. Pohl, W. Birk, and L. Westervall, "A driver-distraction-based lane-keeping

assistance system," Proceedings of the Institution of Mechanical Engineers, Part I:

Journal of Systems and Control Engineering, vol. 221, no. 4, pp. 541-552, 2007.

[65] E. Murphy-Chutorian, A. Doshi, and M. M. Trivedi, "Head pose estimation for

driver assistance systems: A robust algorithm and experimental evaluation," in

Intelligent Transportation Systems Conference, 2007. ITSC 2007. IEEE, 2007:

IEEE, pp. 709-714.

[66] F. Chollet, Deep learning with python. Manning Publications Co., 2017.

[67] D. Xie, L. Zhang, and L. Bai, "Deep Learning in Visual Computing and Signal

Processing," Applied Computational Intelligence and Soft Computing, vol. 2017,

2017.

[68] G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief

nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.

[69] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, "Deep neural

networks segment neuronal membranes in electron microscopy images," in

Advances in neural information processing systems, 2012, pp. 2843-2851.

[70] H. R. Roth et al., "Improving computer-aided detection using convolutional neural

networks and random view aggregation," IEEE transactions on medical imaging,

vol. 35, no. 5, pp. 1170-1181, 2016.

[71] S. Xie and Z. Tu, "Holistically-nested edge detection," International Journal of

Computer Vision, pp. 1-16, 2017.

[72] N. Tajbakhsh et al., "Convolutional neural networks for medical image analysis:

full training or fine tuning?," IEEE transactions on medical imaging, vol. 35, no. 5,

pp. 1299-1312, 2016.

 School of Engineering and Technology

158

[73] Y. LeCun and Y. Bengio, "Convolutional networks for images, speech, and time

series," The handbook of brain theory and neural networks, vol. 3361, no. 10, p.

1995, 1995.

[74] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep

convolutional neural networks," in Advances in neural information processing

systems, 2012, pp. 1097-1105.

[75] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image

recognition," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770-778.

[76] Y. Taigman, M. Yang, M. A. Ranzato, and L. Wolf, "Deepface: Closing the gap to

human-level performance in face verification," in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1701-1708.

[77] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face

recognition and clustering," in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015, pp. 815-823.

[78] A. K. Jain, J. Mao, and K. M. Mohiuddin, "Artificial neural networks: A tutorial,"

Computer, vol. 29, no. 3, pp. 31-44, 1996.

[79] V. Nair and G. E. Hinton, "Rectified linear units improve restricted boltzmann

machines," in Proceedings of the 27th international conference on machine

learning (ICML-10), 2010, pp. 807-814.

[80] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik, "Support vector

regression machines," in Advances in neural information processing systems, 1997,

pp. 155-161.

[81] L. Bottou, "Large-scale machine learning with stochastic gradient descent," in

Proceedings of COMPSTAT'2010: Springer, 2010, pp. 177-186.

[82] R. M. Gray, Entropy and information theory. Springer Science & Business Media,

2011.

[83] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press

Cambridge, 2016.

 School of Engineering and Technology

159

[84] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv

preprint arXiv:1609.04747, 2016.

[85] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv

preprint arXiv:1412.6980, 2014.

[86] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training

by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.

[87] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

"Dropout: a simple way to prevent neural networks from overfitting," The Journal

of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.

[88] A. Y. Ng, "Feature selection, L 1 vs. L 2 regularization, and rotational invariance,"

in Proceedings of the twenty-first international conference on Machine learning,

2004: ACM, p. 78.

[89] R. Caruana, S. Lawrence, and C. L. Giles, "Overfitting in neural nets:

Backpropagation, conjugate gradient, and early stopping," in Advances in neural

information processing systems, 2001, pp. 402-408.

[90] K. Dwivedi, K. Biswaranjan, and A. Sethi, "Drowsy driver detection using

representation learning," in Advance Computing Conference (IACC), 2014 IEEE

International, 2014: IEEE, pp. 995-999.

[91] S. Park, F. Pan, S. Kang, and C. D. Yoo, "Driver Drowsiness Detection System

Based on Feature Representation Learning Using Various Deep Networks," in

Asian Conference on Computer Vision, 2016: Springer, pp. 154-164.

[92] B. Y. Zhang, S. University, Ed. Apply and Compare Different Classical Image

Classification Method: Detect Distracted Driver. 2016.

[93] H. W. Rendani Mbuvha, "Convolutional Neural Networks for Distracted Driver

Detection," KTH Royal Institute of Technology, 2016.

[94] M. Venturelli, G. Borghi, R. Vezzani, and R. Cucchiara, "Deep Head Pose

Estimation from Depth Data for In-car Automotive Applications," arXiv preprint

arXiv:1703.01883, 2017.

[95] C. Streiffer, R. Raghavendra, T. Benson, and M. Srivatsa, "Darnet: a deep learning

solution for distracted driving detection," in Proceedings of the 18th

 School of Engineering and Technology

160

ACM/IFIP/USENIX Middleware Conference: Industrial Track, 2017: ACM, pp.

22-28.

[96] M. R.-S. Flora Dellinger, Erwan Bernard, Laurette Guyonvarch, Anne Guillaume,

"Computer vision algorithms for detecting secondary tasks in naturalistic driving

studies," presented at the 5th International Conference on Driver Distraction and

Inattention, 2017.

[97] G. Masala and E. Grosso, "Real time detection of driver attention: Emerging

solutions based on robust iconic classifiers and dictionary of poses," Transportation

research part C: emerging technologies, vol. 49, pp. 32-42, 2014.

[98] Y. Abouelnaga, H. M. Eraqi, and M. N. Moustafa, "Real-time Distracted Driver

Posture Classification," arXiv preprint arXiv:1706.09498, 2017.

[99] M. D. Hssayeni, S. Saxena, R. Ptucha, and A. Savakis, "Distracted Driver

Detection: Deep Learning vs Handcrafted Features," Electronic Imaging, vol. 2017,

no. 10, pp. 20-26, 2017.

[100] T. Wang and P. Shi, "Yawning detection for determining driver drowsiness," in

VLSI Design and Video Technology, 2005. Proceedings of 2005 IEEE International

Workshop on, 2005: IEEE, pp. 373-376.

[101] M. S. B. Zainal, I. Khan, and H. Abdullah, "Efficient Drowsiness Detection by

Facial Features Monitoring," Research Journal of Applied Sciences, Engineering

and Technology, vol. 7, no. 11, pp. 2376-2380, 2014.

[102] P. Viola and M. J. Jones, "Robust real-time face detection," International journal

of computer vision, vol. 57, no. 2, pp. 137-154, 2004.

[103] S. Lajevardi, "Automatic recognition of facial expressions," BEng, RMIT, 2011.

[104] S. Ghosh, T. Nandy, and N. Manna, "Real Time Eye Detection and Tracking

Method for Driver Assistance System," in Advancements of Medical Electronics:

Springer, 2015, pp. 13-25.

[105] P. Gejguš and M. Šperka, "Face tracking in color video sequences," in Proceedings

of the 19th spring conference on Computer graphics, 2003: ACM, pp. 245-249.

[106] M. J. Flores, J. M. Armingol, and A. de la Escalera, "Driver drowsiness warning

system using visual information for both diurnal and nocturnal illumination

 School of Engineering and Technology

161

conditions," EURASIP journal on advances in signal processing, vol. 2010, p. 3,

2010.

[107] S. Weijie, S. Haixin, E. Cheng, Z. Qingkun, Q. Li, and S. Weijun, "Effective Driver

Fatigue Monitoring through Pupil Detection and Yawing Analysis in Low Light

Level Environments," International Journal of Digital Content Technology & its

Applications, vol. 6, no. 17, 2012.

[108] S. Abtahi, B. Hariri, and S. Shirmohammadi, "Driver drowsiness monitoring based

on yawning detection," in Instrumentation and Measurement Technology

Conference (I2MTC), 2011 IEEE, 2011: IEEE, pp. 1-4.

[109] B. Hariri, S. Abtahi, S. Shirmohammadi, and L. Martel, "A yawning measurement

method to detect driver drowsiness," Technical Papers, 2012.

[110] H.-B. Kang, "Various approaches for driver and driving behavior monitoring: a

review," in Proceedings of the IEEE International Conference on Computer Vision

Workshops, 2013, pp. 616-623.

[111] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal

margin classifiers," in Proceedings of the fifth annual workshop on Computational

learning theory, 1992: ACM, pp. 144-152.

[112] Y.-S. Wu, T.-W. Lee, Q.-Z. Wu, and H.-S. Liu, "An eye state recognition method

for drowsiness detection," in Vehicular Technology Conference (VTC 2010-

Spring), 2010 IEEE 71st, 2010: IEEE, pp. 1-5.

[113] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural networks and

learning machines. Pearson Education Upper Saddle River, 2009.

[114] M. B. Christopher, Pattern Recognition and Machine Learning. Springer-Verlag

New York, 2016.

[115] D. Fradkin and I. Muchnik, "Support vector machines for classification," Discrete

methods in epidemiology, vol. 70, pp. 13-20, 2006.

[116] K. P. Bennett and C. Campbell, "Support vector machines: hype or hallelujah?,"

Acm Sigkdd Explorations Newsletter, vol. 2, no. 2, pp. 1-13, 2000.

 School of Engineering and Technology

162

[117] N. Gourier and J. Letessier, "The pointing 04 data sets," in Proceedings of Pointing

2004, ICPR International Workshop on Visual Observation of Deictic Gestures,

2004, pp. 1-4.

[118] H. Ujir, M. Spann, and I. H. M. Hipiny, "3D facial expression classification using

3D facial surface normals," in The 8th International Conference on Robotic, Vision,

Signal Processing & Power Applications, 2014: Springer, pp. 245-253.

[119] O. Jesorsky, K. J. Kirchberg, and R. W. Frischholz, "Robust face detection using

the hausdorff distance," in International conference on audio-and video-based

biometric person authentication, 2001: Springer, pp. 90-95.

[120] H. Saleem, "eye-blink-detection."

[121] O. Russakovsky et al., "Imagenet large scale visual recognition challenge,"

International Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

[122] S. Zagoruyko and N. Komodakis, "Wide residual networks," arXiv preprint

arXiv:1605.07146, 2016.

[123] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, "Aggregated residual

transformations for deep neural networks," in Computer Vision and Pattern

Recognition (CVPR), 2017 IEEE Conference on, 2017: IEEE, pp. 5987-5995.

[124] A. Veit, M. Wilber, and S. Belongie, "Residual networks are exponential ensembles

of relatively shallow networks. arXiv preprint," arXiv preprint arXiv:1605.06431,

vol. 1, no. 2, p. 3, 2016.

[125] M. Abdi and S. Nahavandi, "Multi-residual networks," CoRR, abs/1609.05672, vol.

8, 2016.

[126] X. Zhang, Z. Li, C. C. Loy, and D. Lin, "Polynet: A pursuit of structural diversity

in very deep networks," in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2017: IEEE, pp. 3900-3908.

[127] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale

image recognition," arXiv preprint arXiv:1409.1556, 2014.

[128] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-v4, inception-

resnet and the impact of residual connections on learning," in AAAI, 2017, vol. 4, p.

12.

 School of Engineering and Technology

163

[129] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the

inception architecture for computer vision," in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2818-2826.

[130] A. G. Howard et al., "Mobilenets: Efficient convolutional neural networks for

mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.

[131] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable

architectures for scalable image recognition," arXiv preprint arXiv:1707.07012,

2017.

[132] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2010.

[133] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, "Signature verification

using a" siamese" time delay neural network," in Advances in neural information

processing systems, 1994, pp. 737-744.

[134] S. Chopra, R. Hadsell, and Y. LeCun, "Learning a similarity metric

discriminatively, with application to face verification," in Computer Vision and

Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,

2005, vol. 1: IEEE, pp. 539-546.

[135] G. Koch, R. Zemel, and R. Salakhutdinov, "Siamese neural networks for one-shot

image recognition," in ICML Deep Learning Workshop, 2015, vol. 2.

[136] Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition,"

Neural computation, vol. 1, no. 4, pp. 541-551, 1989.

[137] M. Lagunas and E. Garces, "Transfer Learning for Illustration Classification," arXiv

preprint arXiv:1806.02682, 2018.

[138] Y. Lin et al., "Large-scale image classification: fast feature extraction and svm

training," in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, 2011: IEEE, pp. 1689-1696.

[139] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, "Learning and transferring mid-level

image representations using convolutional neural networks," in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2014, pp. 1717-1724.

 School of Engineering and Technology

164

[140] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-

the-shelf: an astounding baseline for recognition," in Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, 2014, pp. 806-

813.

[141] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng, "Person re-identification by

multi-channel parts-based cnn with improved triplet loss function," in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

1335-1344.

[142] C. Zhang and K. Koishida, "End-to-End Text-Independent Speaker Verification

with Triplet Loss on Short Utterances," in Interspeech, 2017, pp. 1487-1491.

[143] X. Wang. (2016). Tutorial: Triplet Loss Layer Design for CNN [Online].

Available: http://www.cnblogs.com/wangxiaocvpr/p/5452367.html.

[144] J. Daugman, "How iris recognition works," IEEE Transactions on circuits and

systems for video technology, vol. 14, no. 1, pp. 21-30, 2004.

[145] J. Daugman, "Biometric decision landscapes," University of Cambridge, Computer

Laboratory, 2000.

[146] B. Kumar, G. Carneiro, and I. Reid, "Learning local image descriptors with deep

siamese and triplet convolutional networks by minimising global loss functions," in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 5385-5394.

[147] W. Ding, R. Wang, F. Mao, and G. Taylor, "Theano-based large-scale visual

recognition with multiple gpus," arXiv preprint arXiv:1412.2302, 2014.

[148] A. B. Graf and S. Borer, "Normalization in support vector machines," in Joint

Pattern Recognition Symposium, 2001: Springer, pp. 277-282.

[149] BAIR. Caffe: A Deep Learning Framework [Online]. Available:

http://caffe.berkeleyvision.org/.

[150] F. Chollet, "Keras," ed, 2015.

[151] M. U. s. Guide, "The mathworks," Inc., Natick, MA, vol. 5, p. 333, 1998.

[152] A. Paszke, S. Gross, S. Chintala, and G. Chanan, "PyTorch," ed, 2017.

 School of Engineering and Technology

165

[153] M. Abadi et al., "Tensorflow: a system for large-scale machine learning," in OSDI,

2016, vol. 16, pp. 265-283.

[154] J. Bergstra et al., "Theano: Deep learning on gpus with python," in NIPS 2011,

BigLearning Workshop, Granada, Spain, 2011, vol. 3: Citeseer, pp. 1-48.

[155] R. Collobert, S. Bengio, and J. Mariéthoz, "Torch: a modular machine learning

software library," Idiap, 2002.

[156] J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using

sparse coding for image classification," in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, 2009: IEEE, pp. 1794-1801.

[157] H. Zhang, A. C. Berg, M. Maire, and J. Malik, "SVM-KNN: Discriminative nearest

neighbor classification for visual category recognition," in Computer Vision and

Pattern Recognition, 2006 IEEE Computer Society Conference on, 2006, vol. 2:

IEEE, pp. 2126-2136.

[158] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553,

pp. 436-444, 2015.

