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A C K N O W L E D G E M E N T S

No man is an island,
Entire of itself,
Every man is a piece of the continent,
A part of the main.

John Donne

What Donne says so elegantly in four short lines takes years to
realise. As a youngster, I too had thought that I could do everything
alone, by myself, without ever having to ask another soul for assistance.
The more I live and see, the more I am convinced that this is not true.
One simply cannot disassociate themself from ‘the main’.

I have come to understand that a great many people have taken on
the role of potters at different times in my life to shape it to what it is
today. It is therefore, with great affection that I take this opportunity
to thank them for I shall forever be indebted to them.

I must begin with my immediate family. I could not have wished
for better parents, Dr Kalpana Sinha and Dr Sanjay Kumar Sinha.
They have always been there to guide me towards the right and away
from wrong. They, both being doctors, have showed me the beauty
of nature and the human body from a young age. They, knowing the
importance of education and exposure to the world, have made many
sacrifices to ensure that I got the best education possible. They, being
people of science, have taught me the importance of the truth. It is
through their lives that I have learned the importance of knowledge
and hard work. They continue to guide me today and I do not know
what I would do without them.

My sibling, Dr Rati Sinha, has always lead the way for me. Despite
the expected tiffs and quarrels that all siblings must endure, I know
that I can always count on her unconditional love. I would perhaps
not have gone into research at all had she not lead by doing her
doctorate first. Her advice, whether professional or personal, has
been invaluable to me and will continue to be so in the future. In her
husband, Kunal, I have found the brother that I did not have. His
counsel continues to help me improve every day. In my nieces, Tia, and
Tisha, who have very recently made our lives so much more fulfilling
and enjoyable, I have found even more reason to strive towards being
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a better person. I pine to see them all again, for they have now become
my second home.

Listing all my teachers is a mammoth task, for there are so many
of them that have taught me such a variety of lessons, both academic
and not, over the years. Here, I endeavour to mention ones that I
remember, but this does not imply that the others did not shape me.
It is merely that my memories from the earlier years of my life are not
as vivid as they once were.

My years at Sherwood College, Naini Tal, have probably contributed
most to my character today. The school’s motto—Mereat Quisque
Palman (let each one merit his prize)—set a strong principle for us to
follow from the onset. At Sherwood, I had the fortune of being tutored
by, among others, Ms May Parker, Mr Sharma, and Mr Das in junior
school, and Ms Sharma, Mr Virk, Mr Sah, Mr Pant, Mr Kerr, Mr
Dopaishi, Mr Chatterjee, Mr Pandey, Mr Tripathi, and Mr Choudhuri
in senior school. In their own way, they trained me in subjects as
varied as ethics, academics, sports, co-curricular activities such as
elocution, art, and debating, and life in general. While our principal,
Mr D. R. A. Mountford, did not teach me a subject off the syllabus,
his weekly speeches at assembly gave us all much to think about.
Various seniors, classmates, and juniors at school also contributed to
my character via our constant interactions, and the lessons I learned
at school will always remain with me.

My three years of coaching at Kota were an eye opener. It was the
first time I had stepped out of the rather protected environment of
school to compete with students from the whole of India. Studying
with the best brains in the country made me realise how being one of
the better ones in class at ones school was simply not good enough.
Standards outside were higher, as they are in the global research
community too. This exposure to higher standards of study and a
more complex curriculum of science and maths helped me build solid
foundations crucial to my research work.

It was at university that I finally started to learn computer science.
I cannot thank my lecturers, Ms Shenoy, Ms Archana Kumar, Ms
Shanti, Dr Dinesh Acharya, Dr Harish S. V., Dr Sudhakara, Mr Kumar
Abhishek, and others enough. It was all the effort that they put in
everyday that has ensured that I learned the skills necessary for a
career that requires computer science.

During my undergraduate education, it was my two internships
at the Indian Institute of Science under the supervision of Dr K. V.
Raghavan where I was first introduced to the world of research. I am
most grateful to him for taking on an undergraduate student that knew
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nothing about research in programming languages. My interactions
with various research students at the institute, and the workshops
they held for us convinced me of my interest in research. The first
paper I ever read, ‘You and your research’ (Hamming and Kaiser 1986),
was suggested to us at one of these sessions, and I encourage early
researchers to read it too.

It was also during my undergraduate education that I became a
part of the Free software community (Stallman 2002) by joining the
Linux Users’ Group at university. Over the better part of a decade,
apart from a plethora of technical skills, I have learned how to work
in a collaborative environment that consists of people from different
parts of the world, different walks of life, and with different interests.
I continue to work with and learn from my colleagues at the Fedora
project (RedHat 2008). I will continue to work towards furthering
the Free software movement, for it goes hand in hand with the Open
Science movement.

My first formal foray into the world of research began under the
tutelage of Dr Jiangou Wang at the University of Technology, Sydney.
The two years I spent pursuing my Masters (by research) degree taught
me much about research. I am most grateful that as my supervisor
Dr Wang permitted me to explore my research interests. This enabled
me to work on a combination of neuroscience and robotics, and this
paved the way to my switch to computational neuroscience. The high
standards set by the Centre of Autonomous Systems, even on the
football pitch with Dr Shoudong Huang’s group, have given me an
understanding of how a research group works together as a team,
building on each member’s strengths.

Whatever gratitude I show to everyone here at the University of
Hertfordshire is perhaps insufficient. The research degree adminis-
trators, Ms Lorainne Nicholls, Ms Emma Thorougood, Ms Lynette
Spelman, and Ms Michaella Guarnieri have efficiently managed all the
paperwork that we must necessarily navigate. At the Doctoral College,
Ms Kathy Lee, Ms Nicola Carter, Ms Emma King, and Dr Susan Grey
have constantly kept an eye on us to ensure that nothing distracted
us from our research. I am most grateful for the various efforts they
have made to ensure that we make good independent researchers—
grants, conferences, the Three Minute Thesis (3MT) competition. The
teaching staff at the School of Computer Science accepted me as a
Visiting Lecturer and permitted me to learn to be an educator as I
worked with them. The administrators at the school, especially Ms
Jo Horridge and Ms Suzanne Wild, have always been most helpful
whether it be teaching related tasks or research conference bookings.
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Before I thank my supervisors, I must thank the other members of
staff here that have made time to improve me: Dr Yi Sun, Dr Rene te
Boekhoerst, and Dr Bernadette Byrne. I am especially grateful to Pro-
fessor Chrystopher Nehaniv who was my internal assessor throughout
my Ph.D. and provided detailed feedback at my assessments to enable
me to improve all aspects of my research work. The simulations that I
run would not be possible without the UH High Performance Cluster
(UHHPC), and I am most grateful to Professor Martin Hardcastle who,
in spite of his extremely busy schedule, looks after it for us.

I cannot thank my supervision team enough—Professor Volker
Steuber, Dr Christopher Metzner, Professor Rod Adams, Professor
Michael Schmuker, and Dr Neil Davey. At every weekly meeting over
these last few years, they have guided me. They have kept me focussed
on my research question. In moments where I lacked enthusiasm,
they have kept me trudging on. They have curtailed my tendency to
get ahead of myself. They have managed my weaknesses and helped
me develop my strengths. They have been stern when it was needed,
and forgiven my many faults and mistakes. They have taught me the
scientific method. They have taught me how to be a researcher. I hope
that I will make good use of the lessons they have imparted to me in
my future research endeavours.

I have been fortunate enough to have the opportunity to interact
with the research community during my Ph.D. I have learned much
from the members of the NEST initiative, where senior researchers
such as Professor Hans Ekkehard Plesser and Dr Alexander Peyser
have reviewed my work. I would not have been successful in my
modelling of structural plasticity without the work of Sandra Diaz-
Pier, a fellow doctoral candidate who did much of the work on adding
it to the NEST simulator. I hope to continue collaborating with them
all in the future. Other senior researchers such as Dr Benjamin Torben-
Nielsen, who has shown me the beauty of dendrites among other
things, and Dr Borys Wróbel, who taught me bifurcation analysis
over a visit, have helped me immensely. The academic community on
Twitter helps me stay aware of all that is going on in the community
all over the world and I am thankful for their posts.

Finally, the people that keep me in line and help me maintain a
good balance between work and life. Rachel, who reminds me of what
is important in life and helps me be better everyday, I cannot thank
enough. My friends, Ankita and Amitabh, Barbara and Saahil, Nancy
and Alex, Maria and Dimitris, Jean, Marco, Sonia, and the many lab
mates I have shared the office space with—Sam, Ed, Emil, Nathan,
Julia, Ritesh, Yaqoob, Deepak, Ronak, Weam, Rebecca, and others—are
my extended family. Also a part of my extended family are Ketki and
Sheryll, who draw me to Sydney each day.
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I apologise sincerely to those I may have missed. You forever have
my thanks. I am the sum-total of all my experiences, and whether I
consciously remember them them or not, your influence on me shall
forever be a part of me.
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C O M M I T M E N T T O O P E N S C I E N C E

Through my involvement in the Free/Open Source software (FOSS) (Stall-
man 2002) community over the years, I have learned to ‘default to
open’. Openness in the Free/Open source community is ensured by
the Free Software Philosophy that protects, and ensures freedom of
the user. It ensures that the user is able to ‘run, copy, distribute, study,
change, and improve software’ and related resources.

In the short period that I have been a part of the scientific commu-
nity, I have seen the community request similar rights over scientific
resources too. Open Science is necessary for better science. For exam-
ple, the reproduction, replication, and validation of scientific results
is a critical part of the scientific process, and is stifled by the use
of restricted methodologies (Crook, Davison and Plesser 2013). The
complete set of resources related to a scientific study must be openly
available to all—academics and society in general. This includes the
tools used to gather the data, the data itself, the tools used to analyse
the data and present the results, the results, and the accompanying
manuscript that disseminates the contributions of the work to the
body of knowledge. It must all be accessible to everyone, without
exceptions.

It is easy to see that these requirements are very similar to the
requirements laid out by the Free software philosophy. Recently,
researchers from the computational neuroscience community signed
an open letter committing to the use of Open Source software for all
research work (Gleeson et al. 2017). I too have signed this letter, and
here in my dissertation, I reiterate that I have made every effort to
use Free/Open Source software that is available to all, and that all the
tools, data, and results related to my work shall be openly available
for all to run, copy, distribute, study, change, and improve. I hope that
this will enable other researchers to validate, reproduce and replicate,
and improve my work—furthering scientific knowledge as they do so.
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This study relied heavily on FOSS tools. An incomplete list is below:

• NEST, Auryn simulators with MPICH/OpenMPI support,

• Vim with a plethora of plug-ins as the general purpose text
editor,

• various command line utilities such as sed, awk, grep, Ag, rsync,
Git, and OpenSSH for daily and remote work,

• the Python Science Stack and other modules usually with the
Pew virtual environment manager, C++ libraries such as Boost,
the GNU Debugger for investigating bugs in the NEST source
code, bash shell scripts for processing and analysis, with GnuPlot
for plotting,

• LATEX for journaling, along with Overleaf for academic writing;
JabRef for reference management; LibreOffice applications for
non-plain-text writing,

• Inkscape, GIMP, Dia, ImageMagick, and the PGF/TikZ LATEX
packages for image creation and processing; Vimiv for image
viewing,

• Byobu on Tmux for terminal multiplexing,

• Evolution or Neomutt with offlineimap and msmtp for e-mailing,
Weechat/Irssi for communication over IRC and Slack,

• Taskwarrior, Vit, Timewarrior, Gnome-Pomodoro for time and
task management,

• Qutebrowser/Firefox for web-browsing, Newsboat for RSS feed
tracking, Zathura for document viewing,

• Syncthing for data backups and synchronization,

• Virt-manager and Gnome-Boxes for virtualisation,

• all on the GNOME integrated desktop environment,

• on Fedora Linux Operating System.

I am most grateful to the developers of these tools, and the generally
volunteer driven communities that support them.
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A B S T R A C T

Several homeostatic mechanisms enable the brain to maintain desired
levels of neuronal activity. One of these, homeostatic structural plas-
ticity, has been reported to restore activity in networks disrupted
by peripheral lesions by altering their neuronal connectivity. While
multiple lesion experiments have studied the changes in neurite mor-
phology that underlie modifications of synapses in these networks,
the underlying mechanisms that drive these changes and the effects of
the altered connectivity on network function are yet to be explained.

Experimental evidence suggests that neuronal activity modulates
neurite morphology and that it may stimulate neurites to selectively
sprout or retract to restore network activity levels. In this study, a new
spiking network model was developed to investigate these activity
dependent growth regimes of neurites. Simulations of the model accu-
rately reproduce network rewiring after peripheral lesions as reported
in experiments. To ensure that these simulations closely resembled
the behaviour of networks in the brain, a biologically realistic network
model that exhibits low frequency Asynchronous Irregular (AI) activ-
ity as observed in cerebral cortex was deafferented. Furthermore, to
study the functional effects of peripheral lesioning and subsequent
network repair by homeostatic structural plasticity, associative memo-
ries were stored in the network and their recall performances before
deafferentation and after, during the repair process, were compared.

The simulation results indicate that the re-establishment of activity
in neurons both within and outside the deprived region, the Lesion
Projection Zone (LPZ), requires opposite activity dependent growth
rules for excitatory and inhibitory post-synaptic elements. Analysis of
these growth regimes indicates that they also contribute to the main-
tenance of activity levels in individual neurons. In this model, the
directional formation of synapses that is observed in experiments re-
quires that pre-synaptic excitatory and inhibitory elements also follow
opposite growth rules. Furthermore, it was observed that the proposed
model of homeostatic structural plasticity and the inhibitory synap-
tic plasticity mechanism that also balances the AI network are both
necessary for successful rewiring. Next, even though average activity
was restored to deprived neurons, these neurons did not retain their
AI firing characteristics after repair. Finally, the recall performance of
associative memories, which deteriorated after deafferentation, was
not restored after network reorganisation.
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1
I N T R O D U C T I O N

I keep six honest serving men (they
taught me all I knew); their names are
What and Why and When and How
and Where and Who.

Rudyard Kipling

1.1 motivation

Multiple plasticity mechanisms act simultaneously and at differing
time scales on neuronal networks in the brain. Whilst synaptic plas-
ticity is limited to the changes in efficacy of pre-existing synapses,
structural plasticity includes the formation and removal of whole neu-
rites and synapses. Thus, structural plasticity can cause major changes
in network function through alterations in connectivity. Along with
confirmation of structural plasticity in the adult brain (May 2011; A. K.
Majewska, Newton and Sur 2006; Knott, Quairiaux et al. 2002; Lee
et al. 2005), recent work has also shown that axonal boutons and
branches (Stettler et al. 2006; Marik, Yamahachi, McManus et al. 2010;
De Paola et al. 2006; Gogolla, Galimberti and Caroni 2007; Marik,
Yamahachi, Alten Borgloh et al. 2014; J. L. Chen, Lin et al. 2011), and
both inhibitory (J. L. Chen, Villa et al. 2012; Villa et al. 2016) and excita-
tory dendritic structures (Trachtenberg et al. 2002; A. J. G. D. Holtmaat
et al. 2005) are highly dynamic even in physiological networks.

Stability in spite of such continuous plasticity suggests homeostatic
forms of structural plasticity. A multitude of peripheral lesion experi-
ments support the existence of such homeostatic structural plasticity
mechanisms (Rosier et al. 1995; Heinen and Skavenski 1991; Rasmus-
son 1982; Wall and Cusick 1984; Pons et al. 1991; Darian-Smith and
Gilbert 1994; Darian-Smith and Gilbert 1995; Salin et al. 1995; Florence,
Taub and Jon H. Kaas 1998; Rajan et al. 1993; Allard et al. 1991; Sam-
mons and Keck 2015). A common feature observed in these studies
is the substantial network reorganisation that follows deafferentation.
Recent time-lapse imaging studies of neurites in the cortex during the
rewiring process show that both axonal (Yamahachi et al. 2009; Marik,

15



1 introduction 16

Yamahachi, McManus et al. 2010; J. L. Chen, Lin et al. 2011) and den-
dritic structures display increased turnover rates (Keck, Mrsic-Flogel
et al. 2008; Trachtenberg et al. 2002; J. L. Chen, Lin et al. 2011; Hickmott
and Steen 2005) in and around the area deafferented by the peripheral
lesion, the Lesion Projection Zone (LPZ). Specifically, while excitatory
neurons outside the LPZ sprout new axonal collaterals into the LPZ,
inhibitory neurons inside the LPZ extend new axons outwards (Marik,
Yamahachi, McManus et al. 2010). Along with an increased excitatory
dendritic spine gain (Keck, Mrsic-Flogel et al. 2008) and a marked
loss of inhibitory shaft synapses (J. L. Chen, Villa et al. 2012; Keck,
Scheuss et al. 2011) in the LPZ, the rewiring of synapses in the network
successfully restores activity to deprived LPZ neurons in many cases.

Access to such data and recent advances in simulation technology
have enabled computational modelling of activity dependent struc-
tural plasticity (Butz, Van Ooyen and Wörgötter 2009; Deger et al.
2012; Butz and van Ooyen 2013; Butz and van Ooyen 2014; Butz,
Steenbuck and van Ooyen 2014a; Butz, Steenbuck and van Ooyen
2014b; van Ooyen and Butz 2017). In their seminal work, Butz and
van Ooyen introduced the Model of Structural Plasticity (MSP) frame-
work (Butz, Van Ooyen and Wörgötter 2009). It has since been partially
implemented in the NEST simulator (Diaz-Pier et al. 2016) and is an
important tool for the computational modelling of structural plastic-
ity (Gallinaro and Rotter 2018; Lu, Gallinaro and Rotter 2018). Butz
and van Ooyen further demonstrated the utility of the MSP frame-
work by simulating a peripheral lesioning study to explore the activity
dependent growth rules of neurites (Butz and van Ooyen 2013; Butz
and van Ooyen 2014).

Although these experimental and modelling works have added to
our knowledge of structural plasticity, even though it is accepted that
structural plasticity can cause significant changes in the functioning
of brain networks, these changes have not yet been studied.

1.2 aims

The aim of this thesis is to contribute to the understanding of activity-
dependent structural plasticity and its functional effects on injured
networks using computational modelling techniques. Specifically, it
reports the change in the ability of a simplified cortical balanced
spiking network model to recall associative memories stored in it after
the network has undergone deafferentation and subsequent repair by
structural plasticity.

Thus, this thesis addresses the following question:
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How does repair by activity-dependent structural plasticity
affect the function of a neuronal network as an associative
memory store?

However, since this query requires the computational modelling
of peripheral lesioning and activity-dependent structural plasticity, it
must first address:

How can neurites in a cortical network react to changes in
the host neuron’s activity to allow the restoration of stable
activity in a deafferented network?

To address these questions, a balanced cortical spiking network
model, which has been shown to serve as an associative memory
store (Vogels et al. 2011), is deafferented and allowed to reorganise
under the action of activity-dependent structural plasticity. Associative
memories stored in this network in the form of Hebbian assemblies are
recalled with and without network deafferentation and the difference
in the Signal to Noise Ratio (SNR) compared to assess the effect of
network re-organisation on the stored memories.

1.3 results

This dissertation makes the following contributions to the current state
of the art:

• it reports on the capacity of cortical balanced spiking neural
networks as stores of associative memory;

• it describes a novel biologically plausible spiking neural network
model of peripheral lesioning and subsequent repair by activity-
dependent structural plasticity;

• it proposes new activity dependent growth rules for various
neurites;

• it indicates that activity-dependent structural plasticity may act
as a homeostatic mechanism to stabilise individual neurons;

• it suggests that both structural and synaptic homeostatic mech-
anisms may be necessary for successful repair of an injured
network;

• it shows that the recall performance of associative memories
may not necessarily improve after an injured network has been
repaired by homeostatic structural plasticity.
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1.4 overview of the thesis

The thesis is organised into two parts. In Part i, I summarise the
current state of our knowledge on the subject, and the contributions
to the field are reported in Part ii.

In Part i, Chapter 1 documents currently available information on
structural plasticity, with special focus on activity-dependent struc-
tural plasticity. Chapter 2 reviews our knowledge of associative mem-
ory from the perspective of its use as a proxy to study network func-
tion.

In Part ii, I report on the memory capacity of a balanced cortical
spiking neural network model in its physiological state in Chapter 1.
Next, in Chapter 2, I present the new model of peripheral lesioning and
repair by activity-dependent structural plasticity. In Chapter 3, the new
activity dependent growth rules for neurites distilled from the new
model are documented. Chapter 4 records findings on the functioning
of the cortical spiking neural model after peripheral lesioning in repair.
Finally, in Chapter 5, I sum up my findings, detail their scope and
limitations, and state the various avenues for future research that can
be conducted based on my work.



Part I

C U R R E N T S TAT E O F T H E A RT



1
S T R U C T U R A L P L A S T I C I T Y

Structural plasticity, in general, refers to any changes in the structure
or morphology of neurons in the brain. Given that neurons and the
synapses between them underlie brain function, changes to either may
alter it. This makes structural plasticity an important process that has
received, and continues to merit, much attention.

Structural plasticity is most easily observed during development,
where an initial aggressive period of synaptogenesis is followed by an
equally active period of synaptic pruning in a ‘critical period’ (Wolff
and Missler 1992). However, advances in experimental techniques
have allowed a multitude of investigations to confirm that neurites
constantly form and retract even in the adult brain (May 2011; A. K.
Majewska, Newton and Sur 2006; Knott, Quairiaux et al. 2002; Lee
et al. 2005; Stettler et al. 2006; Marik, Yamahachi, McManus et al. 2010;
De Paola et al. 2006; Gogolla, Galimberti and Caroni 2007; Marik,
Yamahachi, Alten Borgloh et al. 2014; J. L. Chen, Lin et al. 2011; J. L.
Chen, Villa et al. 2012; Villa et al. 2016; Trachtenberg et al. 2002;
A. J. G. D. Holtmaat et al. 2005).

Given the large set of entities that fall under the umbrella of struc-
tural plasticity, it is imperative to define the particular aspect of struc-
tural plasticity that this thesis discusses. First, since the research
documented in this dissertation uses data gathered from peripheral le-
sion experiments in adult brains, the study of structural plasticity here
was also limited to changes caused by peripheral lesions to the mature
brain only. Second, the study focussed on changes in the growth of
neurites due to changes in the activity of the neuron only: activity-
dependent structural plasticity. It does not delve into the plethora
of chemical agents or processes that are involved in the growth of
dendritic (M. Fischer, Kaech, Knutti et al. 1998; Matus 2000; Matus,
Brinkhaus and U. Wagner 2000; Rao and Craig 2000; Krucker, Siggins
and Halpain 2000; M. Fischer, Kaech, U. Wagner et al. 2000; Halpain
2000; Star, Kwiatkowski and Murthy 2002; Brünig et al. 2004; Basu
and Lamprecht 2018) or axonal structures (Gomez and Letourneau
2014; Dickson 2002; Tessier-Lavigne and Goodman 1996; Conti, S. J.
Fischer and Windebank 2004; Rich and Terman 2018; S.-Y. Chen et al.
2018; Blanquie and Bradke 2018; Y. Liu et al. 2018; Gasperini et al.
2017). Finally, as this study investigated the functional consequences

20
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of the reconfiguration of network connectivity by structural plastic-
ity in terms of associative memory using a spiking neural network
model, structural plasticity here is further limited to the formation
and removal of neurites and the accompanying alterations in network
structure only.

This chapter summarises information on activity-dependent struc-
tural plasticity currently available in the literature and computational
modelling that has been used to investigate it.

1.1 experimental evidence

Improvements in imaging technology now allow researchers to image
microscopic neuronal structures in the brain. Structural plasticity,
however, was detected indirectly in peripheral lesioning experiments
long before these new tools came into being. Since peripheral lesions
do not injure the brain itself, they provide a suitable paradigm for
studying changes in the brain as a result of modulations in projecting
inputs that affect network activity. This peripheral lesion protocol is
still commonly used today.

To choose a suitable starting point, in 1982, Rasmusson (1982) stud-
ied anaesthetised raccoons at 2, 8, and 16 weeks after normal peripheral
input to a region of the primary somatosensory cortex was removed
by the amputation of the fifth digit. They reported that:

• at 2 weeks post-amputation, there was almost no response to
sensory input in the fifth digit cortical area;

• at 8 weeks, 31 regions in the fifth digit cortical area responded
to stimulations of other regions of the hand with approximately
one third (10 of 31) localised to stimulation of the fourth digit
with normal sized receptive fields;

• at 16 weeks, of 53 responsive regions, 35 had normal sized
receptive fields with 27 responding to stimulations of the fourth
digit.

The responsiveness of regions in the fifth digit cortical area to stim-
ulation of the fourth digit suggested that some reorganisation was
transferring projecting inputs from the fourth digit to these adjacent
brain regions. Rasmusson discussed that the reorganisation could
either result from the ‘unmasking’ of pre-existing connections or by
the formation of new synapses. As both possibilities were supported
by experiments at the time, they concluded by noting that more direct
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investigations would be required to confirm the underlying mecha-
nism.

Studies in a multitude of animals continued to report similar results.
Wall and Cusick (1984) observed the remapping in the somatosensory
cortex from sciatic inputs onto saphenous inputs following transection
of the sciatic nerve in the hind-paws of adult rats. After the surgical
amputation of digit 3, or of both digits 2 and 3 of adult owl monkeys,
Merzenich et al. (1984) observed that the representation of adjacent
digits and palmar surfaces had expanded to occupy most or all of
the cortical territories that had originally responded to the amputated
digits. Similarly, following the amputation of a single exposed digit
on the forelimb in the flying-fox, Calford and Tweedale (1988) also
observed that the neurons originally mapped to the missing digit now
responded to the stimulation of the adjacent regions of the digit, hand,
arm, and wing. In the V1 area of adult monkeys, Heinen and Skavenski
(1991) observed that neurons became visually responsive after normal
sensory input was removed by bilateral lesions.

Gilbert and Wiesel (1992) removed visual input by focal binocular
retinal lesions in monkeys and reported immediate increases in the re-
ceptive field size of neurons whose receptive fields were near the edge
of the retinal scotoma. Since a large region in the lateral geniculate
nucleus (LGN) remained inactive in their study, and the dispersion of
LGN afferents to the cortex was found inadequate to account for the
cortical recovery, the topographic reorganisation in the cortex was sug-
gested to be caused by synaptic changes intrinsic to the cortex. Pons
et al. (1991) observed cortical reorganisation that far exceeded the then
assumed possible spatial extent after deafferentation in adult macaques,
further suggesting axonal sprouting as the underlying mechanism.
Finally, while Rajan et al. (1993) confirmed similar reorganisation in
the primary auditory cortex using cochlear lesions in adult cats, Flo-
rence, Taub and Jon H. Kaas (1998) confirmed that it was the growth
of intracortical, and not thalamocortical, connections that accounted
for the restructuring of sensory maps in the cortex of adult macaques.
It was Darian-Smith and Gilbert (1994) and Darian-Smith and Gilbert
(1995) in 1994, however, who used biocytin (King et al. 1989) labelling
of axonal projections to confirm that axonal sprouting of long-range
laterally projecting neurons into the Lesion Projection Zone (LPZ) ac-
companies topological reorganisation in the visual cortex. This work,
spurred on by further advancements in imaging technology, has been
followed by a number of experiments studying a variety of neurites.

Continuing the use of the peripheral lesioning protocol, Keck, Mrsic-
Flogel et al. (2008) used intrinsic signalling and two-photon microscopy
to study the changes in the circuitry in V1 area of the adult mouse over
a period of months. Coherent with previous reports, they observed
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that the initially unresponsive region regained responsiveness over
a period of 2 months. In the first month following the lesion, there
was a threefold increase in the rate of addition and subtraction of
spines inside the LPZ, which corresponded to an almost complete
replacement (> 90%) of the initial spines. Newly generated spines in
the LPZ were predominantly transient in the first 2 weeks following a
lesion. In contrast, many of the spines formed subsequently persisted
for extended periods of time, indicating that they carry functional
synapses. Overall, the new spines generated inside the LPZ were
more likely to persist until the end of the experimental time period (2
months) than control spines, indicating that these structural changes
may facilitate and stabilise the observed functional changes. Since
Keck, Mrsic-Flogel et al. (2008) focussed on spines, they did not
observe changes in axonal circuitry. Accordingly, they discuss that the
high availability of axonal contacts in the primary visual cortex of the
mouse may be sufficient to enable functional change by alterations in
network circuitry at a local scale—by the turnover of dendritic spines
alone.

Yamahachi et al. (2009) provided complementary information on ax-
onal sprouting using similar imaging techniques to observe the effects
of peripheral lesions in the primary visual cortex in macaques. The
confirmed that a rapid turnover of axons by sprouting and pruning, in
a process similar to that observed during development, was observed
after peripheral lesions in the LPZ. The turnover was most elevated
immediately after the lesion, and reduced in subsequent weeks. They
documented that the resultant increase in density of axonal terminals
in the LPZ correlated with its functional modifications, confirming
that axonal turnover also played a role in the repair process.

In two studies in 2011, J. L. Chen, Lin et al. (2011) and Keck, Scheuss
et al. (2011) investigated the effects of peripheral lesions on inhibition
in the visual cortex. Keck, Scheuss et al. (2011) used similar tech-
niques as in their previous work to study inhibitory neurons in the
adult mouse visual cortex. They report that in the subset of inhibitory
neurons receiving glutamatergic synapses on their dendritic spines,
deafferentation caused a long term loss of these spines. Further, they
also observed a reduction in the number of boutons in inhibitory neu-
rons. These two observations together suggested that after deprivation,
there is a drop in the excitatory input to inhibitory neurons, along
with a reduction in the cell’s synaptic output. This results in a lower
overall inhibitory drive in the cortex which may trigger functional
reorganisation. Chen et al. imaged the dendritic arbours of superficial
L2/3 interneurons following deprivation. They report that deprivation
increases the turnover of dendritic branch tips three fold, even though
net arbour size per cell and average length change per branch tip re-
mained stable due to similar elongations and retractions. Further, they
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support past work suggesting that disinhibition enables structural
plasticity in adult brain networks (Vetencourt et al. 2008) by discussing
that the initial branch tip retractions and the accompanying loss of
inhibitory axonal boutons observed immediately after deprivation
serve to reduce the local inhibition in the region.

Whereas the aforementioned evidence confirms an inward sprouting
of excitatory axons into the LPZ, it was Marik, Yamahachi, McManus
et al. (2010) and Marik, Yamahachi, Alten Borgloh et al. (2014) that
provided proof of the outgrowth of inhibitory axons from the LPZ.
They recorded an increased turnover of inhibitory axons, and although
it increased the reach of axons in the cortical space, it also resulted
in a decrease in overall axonal density. They also observed axonal
growth in the neurons adjacent to the LPZ but in the peri-LPZ, the
rate was much less than that in the LPZ and peri-LPZ axons were not
observed to sprout into the LPZ.

The proof summarised in Table 1 confirms that the brain retains its
capacity for rewiring its circuits from development into adulthood.
However, since this evidence is distilled from peripheral lesion ex-
periments, it could be construed that this capacity of rewiring in the
brain remains latent to be only triggered by large changes in network
activity. To clarify whether this was so, while some peripheral le-
sion experiments also investigated structural changes in the normally
functioning adult brain, other imaging work that focussed only on
normal unlesioned adult brains was also carried out (Trachtenberg
et al. 2002; Grutzendler, Kasthuri and Gan 2002; A. J. G. D. Holtmaat
et al. 2005; De Paola et al. 2006; Stettler et al. 2006; J. L. Chen, Villa
et al. 2012; Villa et al. 2016). They have confirmed that the brain is
not hard-wired. In fact, similar to synaptic plasticity, they report that
the brain continues to tweak its circuits in an experience dependent
manner throughout adulthood. This suggests that structural plasticity
is also likely to have Hebbian and homeostatic components that allow
modification of brain circuits while maintaining stability.

1.2 computational modelling

Models of structural plasticity have been developed at various levels
of detail to investigate the plethora of underlying mechanisms (van
Ooyen 2011). Most recently, in 2013, Butz and van Ooyen proposed the
Model of Structural Plasticity (MSP) framework that allows the mod-
elling of activity-dependent structural plasticity in single compartment
spiking point neurons (Butz and van Ooyen 2013). It is a refinement of
earlier models (Dammasch, G. P. Wagner and Wolff 1986; Dammasch,
G. P. Wagner and Wolff 1988; Butz, Lehmann et al. 2006; Butz and G.
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Table 1: Summary of review of literature on peripheral lesion experiments.

Observation References

Recovery of neural response in
deafferented regions. Inward
restoration of activity in LPZ.

Rasmusson (1982), Merzenich et
al. (1984), Calford and Tweedale
(1988), Heinen and Skavenski
(1991), Gilbert and Wiesel (1992),
Pons et al. (1991), Rajan et al.
(1993) and Florence, Taub and
Jon H. Kaas (1998).

Sprouting of axons into the LPZ. Darian-Smith and Gilbert (1994)
and Darian-Smith and Gilbert
(1995).

Increase in density of dendritic
spines on pyramidal cells in the
LPZ.

Keck, Mrsic-Flogel et al. (2008).

Ingrowth of excitatory axonal
terminals to the LPZ, resulting
in increase in density of axonal
terminals in the region.

Yamahachi et al. (2009).

Loss in dendritic spines on in-
hibitory neurons receiving gluta-
matergic inputs in LPZ.

Keck, Scheuss et al. (2011).

Reduction in inhibitory boutons
in LPZ.

Keck, Scheuss et al. (2011).

Disinhibition in LPZ after deaf-
ferentation.

J. L. Chen, Lin et al. (2011) and
Keck, Scheuss et al. (2011).

Outgrowth of inhibitory axons
from the LPZ.

Marik, Yamahachi, McManus et
al. (2010) and Marik, Yamahachi,
Alten Borgloh et al. (2014).

Teuchert-Noodt 2006; Butz, Gertraud Teuchert-Noodt et al. 2008; Butz,
Van Ooyen and Wörgötter 2009) based on the ‘compensation theory’
of synaptogenesis (Wolff and G. P. Wagner 1983). The compensation
theory stated that neurons may react to deviations in their membrane
potential either via electrophysiological responses, action potentials if
the membrane threshold potential is crossed, or by slower morpho-
genetic responses which were suggested to include the ‘formation,
stabilisation or degradation of presynaptic and postsynaptic “contact
offers”’ (Wolff and G. P. Wagner 1983).

Based on this, in MSP, each neuron may possess sets of neurites, the
growth of which are dependent on the time averaged activity of the
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Figure 1: The rate of growth of neurites, dz/dt, is defined as a Gaussian
function of the neuron’s [Ca2+] (average activity) in MSP. Parameters η, ε
and ν define the Gaussian curve, and ψ is the optimal activity required by
the neuron.

neuron. This is modelled as the concentration of calcium in neurons,
[Ca2+], and is based on two observations:

• [Ca2+] is strongly linked to the growth of neurites (Kater et al.
1988; Al-Mohanna, Cave and Bolsover 1992; Lohmann and Wong
2005; Wong and Ghosh 2002; Brünig et al. 2004; Gasperini et al.
2017; Mikhaylova et al. 2018; Oertner and Matus 2005; Lohmann,
Finski and Bonhoeffer 2005);

• [Ca2+] correlates with the average activity of the neuron.

Though the framework is not limited to spiking neurons only—any
average measure of activity may be used—for spiking neurons, the
[Ca2+] is calculated from neuronal spiking:

[Ca2+] = [Ca2+] +β, for each spike (1)

d[Ca2+]

dt
= −

[Ca2+]

τ[Ca2+]

, otherwise. (2)

Here, τ[Ca2+] is the time constant with which the [Ca2+] decays in the
absence of a spike, and β is the constant increase in [Ca2+] caused by
each spike.

A Gaussian growth curve describes the rate of growth for each type
of neurite (Figure 1), dz/dt, which is defined as:

dz

dt
= ν

2 exp
−

(
[Ca2+]−ξ

ζ

)2
−1


ξ =

η+ ε

2
, (3)

ζ =
η− ε

2
√
− ln (1/2)
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Figure 2: Excitatory (Red) and inhibitory (Blue) neurons are evenly dis-
tributed in a two-dimensional sheet in the model developed by Butz and
van Ooyen (2013). All neurons receive recurrent inputs from the network,
and external inputs. The removal of external inputs to a part of the network
results in the formation of the LPZ. (Taken from Butz and van Ooyen (2013),
published under a CC-BY license)

Here, ν is a scaling factor, and ξ and ζ together (in terms of η and ε)
define the width and location of the Gaussian curve on the x-axis. At
η and ε, dz/dt = 0. As documented in later sections, this constraint is
used to derive families of growth curves for different neurites.

The formation or removal of synapses depends on the total numbers
of ‘partner’ neurites. Consider an excitatory neuron with two sets of
neurites:

• excitatory post-synaptic dendritic neurites: zpost,

• and excitatory pre-synaptic axonal neurites: zpre.

If, in a network of such neurons, the neuronal activity dictates that
two neurons have ‘free’ pre- and post-synaptic neurites respectively,
these free elements may combine to form new synapses. Similarly, if
a neuron has zconn neurites of a type engaged in synapses but must
retract N of these on account of its activity, it will break N synapses.
Free elements borne by neurites, even if released by the breakage of
synapses in partner neurons, may immediately form new synapses
with new partners. If they remain unconnected, however, they decay
over time with the time constant τfree:

dzfree
dt

= −
zfree
τfree

(4)

In the paper, Butz and van Ooyen also demonstrated the use of MSP
to propose growth rules for sets of neurites by modelling a peripheral
lesion experiment (Figure 2). In this model, each neuron, whether exci-
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(a)

(b)

Figure 3: Restoration of activity to neurons and the accompanying reorgani-
sation of synapses in the LPZ in Butz and van Ooyen (Butz and van Ooyen
2013): (a) shows the connectivity in the network. Synapses formed after
deafferentation that project on to the LPZ are colour labelled. Pre-existing
and other connections in grey cover most of the background. Connections
from the peri-LPZ are in green, from the border of the LPZ yellow, and from
the centre blue. (b) shows the [Ca2+] of neurons in the network. Depending
on the size of the LPZ, activity may not be restored to all neurons in it.
(Taken from Butz and van Ooyen (Butz and van Ooyen 2013), published
under a CC-BY license)

tatory or inhibitory, bore both excitatory (zEpost) and (zIpost) dendritic
neurites. Both sets of dendritic neurites on both sets of neurons shared
identical Gaussian growth rules. Similarly, for axonal neurites as well,
while excitatory and inhibitory neurons only bore excitatory (zEpre)
and inhibitory (zIpre) axonal neurites respectively, these still shared
identical Gaussian growth rules.

To set up the growth curves, an arbitrary optimal activity level was
chosen for the whole population of neurons (ψ). Next, the value of ε
was set as a ‘stable fixed point’ by setting its value also to ψ. In this
scenario, if a neuron has more activity than necessary, it will retract all
neurites to reduce its activity. If it has less activity than required (but
more than a minimal amount, η), on the other hand, the neuron will
sprout all neurites in an attempt to increase its activity. The formation
of new synapses between free elements occurs in a distance dependent
manner: neurons closer to each other are more likely to form synapses.
The selection of synapses for removal, however, is done randomly.
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Figure 4: Growth curves for neurites as proposed by Butz and van Ooyen
(2013). Green: post-synaptic neurites; Blue: pre-synaptic neurites. Since
all neurons had the same preset optimal [Ca2+], ψ, ε = ψ for both growth
curves. Butz and van Ooyen (2013) proposed that for activity to be restored
to the neurons in the LPZ inwards, from its border to its centre, post-synaptic
elements must be formed before, at a lower activity level than, pre-synaptic
elements (ηpost < ηpre).

A network with 320 excitatory and 80 inhibitory unconnected neu-
rons spread out in a two-dimensional sheet is initialised in the presence
of an external stimulus, and is observed to ‘grow’ to a stable network.
In this state, the network is deafferented to form a LPZ and allowed
to repair under the action of the structural plasticity mechanism. As
Figure 3 shows, the activity flows into the LPZ due to the ingrowth
of axonal projections into the LPZ as documented in experiments.
The simulations suggested that these experimental observations could
only be reproduced if post-synaptic elements formed before their
pre-synaptic counterparts: ηpost < ηpre (Figure 4).

Table 2 summarises the experimental observations reproduced by
Butz and van Ooyen (2013). The simulations of this model do exhibit
the ingrowth of excitatory axons to the LPZ. However, because iden-
tical growth curves were used for all pre-synaptic neurites, it also
exhibits an ingrowth of inhibitory axons unlike reports from experi-
ments. Similarly, because the growth of all post-synaptic neurites on
all neuron sets was modulated by identical growth curves, neurons
in the LPZ also gained inhibitory dendritic neurites along with exci-
tatory ones contrary to experimental observations. Moreover, since
the investigation did not intend to study structural plasticity in any
specific brain region or network, the stable network was not derived
from experimental data. It, therefore, does not model the adult cortical
brain network that this thesis focuses on.
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Table 2: Summary of experimental observations reproduced in the model
proposed by Butz and van Ooyen (2013).

Experimental observation Reproduced

Gradual inward restoration of ac-
tivity in LPZ.

Yes.

Sprouting of axons into the LPZ. Yes.

Increase in density of dendritic
spines on pyramidal cells in the
LPZ.

Yes.

Ingrowth of excitatory axonal
terminals to the LPZ, resulting
in increase in density of axonal
terminals in the region.

Yes.

Loss in dendritic spines on in-
hibitory neurons receiving gluta-
matergic inputs in LPZ.

No—increase of all synaptic ele-
ments in neurons of LPZ.

Reduction in inhibitory boutons
in LPZ.

No—increase in inhibitory ax-
onal contacts also.

Disinhibition in LPZ after deaf-
ferentation.

No.

Outgrowth of inhibitory axons
from the LPZ.

No—ingrowth of inhibitory ax-
ons also.

As the core of the model, the use of ψ = ε to set up a ‘stable fixed
point’ in the growth curves merits some discussion. Even though
it may be intuitive that a neuron should sprout dendritic (input) el-
ements when it requires more activity (more input), this assumes
that the activity of neurons is mediated by their excitatory inputs
only. However, it is now established that the activity of individual
neurons and their networks is a fine balance of excitation and inhibi-
tion (Michael Okun and Ilan Lampl 2008; M. Okun and I. Lampl 2009).
Therefore, a neuron can gain activity by gaining excitatory inputs
or losing inhibitory ones. Conversely, a neuron can lose activity by
retracting excitatory inputs or gaining inhibitory ones. This balance
between excitation and inhibition (E-I balance) is not reflected in the
growth curves proposed by Butz and van Ooyen (2013). To add to
the limitations of this hypothesis, it does not apply to pre-synaptic
neurites which may not affect the activity of the neuron they belong
to. The only constraint one may apply to the growth curves is that at
the optimal activity level, ψ, the rate of growth of all neurites, dz/dt,
should be 0. As we see from the growth curves derived by the novel
model of peripheral lesioning described in Part ii, both η = ψ and
ε = ψ satisfy this constraint.
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Similar models based on MSP have also been used to study other
effects of structural plasticity, such as its effects on the connectivity
characteristics of the deafferented network (Butz and van Ooyen 2014;
Butz, Steenbuck and van Ooyen 2014a; Butz, Steenbuck and van Ooyen
2014b). The NEST simulator (Diesmann and Gewaltig 2001) now
includes a partial implementation of MSP (Diaz-Pier et al. 2016)—it
allows for neurons to bear neurites, and it allows for the formation and
removal of synapses albeit using random selection only. Unfortunately,
since the source code for the work described in Butz and van Ooyen
(2013) or subsequent work (Butz and van Ooyen 2014; Butz, Steenbuck
and van Ooyen 2014a; Butz, Steenbuck and van Ooyen 2014b) was not
based on NEST and has not been made openly available, it has also
not yet been replicated.

1.3 chapter conclusions

As imaging studies continue to investigate the brain at the microscopic
scale, more and more information on its structural plasticity continues
to be generated. It is now clear that neurites in the adult brain are
continuously formed and removed but the mechanisms underlying
this turnover are still being explored. Peripheral lesion experiments
provide an appropriate protocol for exploring the effects of sensory
deprivation on brain networks. This chapter summarised experimen-
tal evidence from a selection of sensory deprivation studies in its
first section. By going through the evidence in chronological order,
it provided an overview of how the field went from observing struc-
tural plasticity indirectly to confirming the formation and removal of
neurites and their accompanying synapses.

In the latter half, the chapter provided a overview of the MSP
computational modelling framework that was developed to model
activity-dependent structural plasticity. Further, it focussed on the
most recent model of peripheral lesioning that used this framework
to propose activity dependent growth rules for neurites. While the
model did provide testable predictions, these were incomplete. This
chapter enumerated limitations of the model that made it unsuitable
for use in this thesis to justify the development of the novel model
documented in Part ii.



2
M E A S U R I N G N E T W O R K F U N C T I O N : A S S O C I AT I V E
M E M O RY

Memory is defined as the record of experience represented in the
brain (Eichenbaum 2008). Even though this definition of memory
is general enough, studies over the years have classified it based on
different criteria: by awareness of remembrance and recall, by its term
or duration, and by underlying processes (Figure 5).

As introduced in Chapter 1, the goal of this study was to explore the
effects that homeostatic structural plasticity based repair has on the
function of a cortical network that had been deafferented. Associative
memory has been relatively well understood and modelled over the
years, and was thus chosen as a convenient network function to
investigate.

Associative memory can be broadly defined to include ‘any mem-
ory about the relationship between two or more items’ (Suzuki and
Eichenbaum 2006), and studies in fields of psychology and in neuro-
science have indicated that multiple regions of the brain are involved
in memory storage, consolidation, and recall (Eichenbaum 2008; Co-
hen et al. 1999; Suzuki and Baxter 2009; Suzuki and Eichenbaum 2006).
A detailed discussion of the state of memory research, however, is
beyond the scope of this chapter.

The mechanisms underpinning learning, or association, in the brain
were first postulated by Hebb:

When an axon of cell A is near enough to excite B and re-
peatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is
increased (Hebb (1949))

Such a Hebbian mechanism, Long-Term Potentiation (LTP), was con-
firmed in experiments by Bliss and Lømo (1973) in the hippocampus
(and later in the cortex by Artola and Singer (1987)) and stimulated
the research of plasticity in the brain. Knowledge that brain networks
are plastic and undergo alterations gave rise to further questions re-
garding the stability of these networks (Abraham and Robins 2005).
This resulted in the creation of a separate sub-field of plasticity re-

32
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Figure 5: General categorisation of memory in literature. Please see Eichen-
baum (2008) for a review.
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search dedicated to homeostatic plasticity (Turrigiano 1999). Whilst
these studies are generally limited to synaptic plasticity, the subject
of this study, structural plasticity, is also gradually gaining research
focus (van Ooyen and Butz 2017).

Although a number of associative memory models were developed,
it was the Associative Net, also commonly called the Willshaw Net, a
model of non-holographic distributed associative memory (Willshaw,
Buneman and Longuet-Higgins 1969; Willshaw 1971), that served
as a starting point for the modelling of associative memory stores.
Associative memory was defined in terms of the concept of Classical
Conditioning by David Willshaw in his PhD thesis:

Consider a system in which the event X is causally related
to the event Y which follows it. If the event Z occurs co-
incidentally with X and a mechanism operates, such that
subsequently Z on its own will cause Y, then Classical
Conditioning is said to have taken place. We employ this
analogy by considering the special case when X and Y are
identical. Then information has been stored by the mech-
anism of Classical Conditioning when the information to
be stored (Y) and the address to locate it (Z) are together
input to the store, so that subsequently the address alone
will locate the stored information. This is an associative
store. (Willshaw (1971))

In this early model of associative memory, neurons and synapses
were both binary, i.e., they could take values of 0 or 1. A simple
clipped Hebbian learning rule changed connection weights from 0

to 1 if the input and output units (neurons) were both active for the
same input and output pattern pair. The model allowed a myriad of
investigations into associative memory, its capacity, connectivity, and
performance (Buckingham and Willshaw 1992; Graham and Willshaw
1997; Graham and Willshaw 1999; Graham and Willshaw 1995; Dayan
and Willshaw 1991).

Another well known model of associative memory is the Hopfield
Network (Hopfield 1982) where synaptic connections are also updated
by a Hebbian rule such that ‘memory vectors’ form the local minima of
an energy function. Thus, on the presentation of a partial memory, the
system converges to the attractor to recall the stored memory (Hopfield
2007).

Modifications and derivations of these two seminal models have led
to much work on associative memory (Palm 1980; Amit and A. Treves
1989; N. Davey and R. Adams 2004; N. Davey, Hunt and R. Adams
2004; N. Davey, Calcraft and R. Adams 2006; Bohland and Minai
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Figure 6: Overview of synapses in Vogels et al. (2011): Excitatory (E) and
Inhibitory (I) neurons (NE = 4NI (see Table 4)) are initially connected via
synapses with a connection probability of (p = 0.02). All synapses (EE, EI,
II), other than IE synapses, which are modulated by inhibitory spike-timing
dependent plasticity, are static with conductances gEE,gEI,gII, respectively.
External Poisson spike stimuli are provided to all excitatory and inhibitory
neurons via static synapses with conductances gEext and gIInh, respectively.

2001; Lansner 2009) also in spiking neuronal networks (Anishchenko
and Alessandro Treves 2006; W. Chen et al. 2011; Hiratani, Teramae
and Fukai 2013), and on neuromorphic hardware (Stöckel et al. 2017).
Recently, when investigating a new Spike Timing Dependent Plasticity
(STDP) rule for inhibitory synapses, Vogels et al. (2011) demonstrated
that their inhibition balanced network exhibited cortical low frequency
Asynchronous Irregular (AI) (Brunel 2000) firing and could be used as
a store for attractor-less associative memories. The biological plausibil-
ity of this network model, and the novel implementation of associative
memory it proposed made it a good fit for use in this study. The
next section includes a brief description of this model of associative
memory. The chapter then concludes with a description of the Sig-
nal to Noise Ratio (SNR) metric as a measure of associative memory
performance and a short discussion.

2.1 vogels-sprekeler model of attractor-less associa-
tive memory

The primary aim of Vogels et al. (2011) was to present a new home-
ostatic STDP model for inhibitory synapses, based on experimental
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Figure 7: (a): A neuron (green) receives direct excitation and indirect inhi-
bition (red). The inhibitory synapse is modulated by the inhibitory STDP
rule such that excitatory and inhibitory post-synaptic currents are balanced.
(b): Schematic of the symmetric inhibitory STDP rule developed by Vogels
et al. (2011). Irrespective of the order of the pre and post-synaptic spikes,
their co-incidence facilitates the synapse. Each pre-synaptic spike, however,
causes a constant depression. (∆W is the change in synaptic weight, tpre
and tpost are spike times for the pre and post-synaptic neuron respectively.)

observations made by Woodin, Ganguly and Poo (2003). In this model,
co-incident pre- an post-synaptic spiking results in the strengthening
of the involved synapse (Figure 7). Notably, unlike the asymmetric
learning rule that governs STDP in excitatory synapses (Bi and Poo
1998; Sjöström and Gerstner 2010), this learning rule is symmetric—
the synapse is strengthened irrespective of the order of the pre- and
post-synaptic spikes. A constant depression caused by spiking of only
the pre-synaptic neuron weakens the synapse.

Formally, to calculate the change in the synaptic weight Wij for a
synapse projecting from neuron j to neuron i, each neuron is assigned
a synaptic trace x, such that the synaptic trace increases with each
spike, x = x+ 1, and decays otherwise with the time constant τSTDP:

τSTDP
dx

dt
= −x (1)

Wij is then updated for every pre- and post-synaptic event such that:

Wij =

Wij + η(xi −α) for pre-synaptic spikes at time tj

Wij + ηxj for post-synaptic spikes at time ti
(2)

where η is the learning rate, α = 2×ρ0× τSTDP is the constant depres-
sion factor, ti and tj are times when neuron i and j spike respectively,
and ρ0 is a constant parameter. Using simulations and mathematical
analysis, Vogels et al. (2011) show that the post-synaptic firing rate
depends linearly on the strength ρ0 of the synaptic depression, and in
cases where spike-spike correlations may be neglected, the firing rate
of the post-synaptic neuron approximates to ρ0 itself. Thus, the learn-
ing rule implements a form of homeostatic plasticity that stabilises the
post-synaptic neuron to a target firing rate.
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Figure 8: The inhibitory STDP rule developed by Vogels et al. (2011) strength-
ens inhibitory synapses in the network to maintain it in a low frequency AI
regime that is observed in the cortex. (In this and following figures: 100× 100
grid shows a snapshot of the firing rate of 10000 neurons in the network.
Left: excitatory population of 8000 neurons; Right: inhibitory population of
2000 neurons)

Using single neuron simulations where the neuron receives exci-
tatory and inhibitory inputs, Vogels et al. (2011) showed that the
STDP rule strengthens inhibitory synapses until the excitatory and
inhibitory post-synaptic membrane currents became approximately
balanced. Further, using network simulations (Figure 6), they showed
that the inhibitory plasticity mechanism balances a cortical network
and maintains it in a low firing AI firing regime. Figure 8 shows a
two dimensional top view of the network of neurons in this steady
state. The excitatory and inhibitory sets of neurons can be seen on
the left and right respectively. Please note that the neurons do not
have any spatial relationships in this model—they are placed in this
arrangement solely for visualisation purposes.

This network, which is balanced by homeostatic inhibition, was then
demonstrated to serve as a store for attractor-less associative memories.
Associative memories were stored in the network by strengthening
the synapses between a set of excitatory neurons. Although this
resulted in an increase in activity of the excitatory neurons forming
the associative memory, the inhibitory STDP mechanism increased the
efficacy of inhibitory neurons projecting onto these neurons to return
the network to its balanced state. Since the strengthened excitatory
synapses in the associative memories remain unaffected, these can be
recalled by stimulating a subset of the neurons of the stored associative
memories. When the recall stimulus is withdrawn, the network returns
to its balanced state. This can be observed in Figures 9a and 9b.
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Figure 9: A spiking network balanced by homeostatic inhibitory plasticity
serves as a store for attractor-less associative memory (Vogels et al. 2011). (a):
Two associative memories are stored in the network by strengthening the
excitatory synapses between sets of excitatory neurons. Inhibitory synapses
are strengthened by the homeostatic inhibitory STDP mechanism to restore
the network to its balanced AI firing regime. When an external recall stimulus
is provided to a subset of neurons forming one of the stored associative
memories, the lateral excitation enables its recall. (b): Under the action of the
homeostatic inhibitory STDP mechanism, the network returns to its balanced
AI steady state when the external recall stimulus is withdrawn.

The inhibitory STDP rule proposed by Vogels et al. (2011) has been
noted to not accurately depict the experimental observations made
by Woodin, Ganguly and Poo (2003) (Vogels et al. 2012). Woodin,
Ganguly and Poo (2003) identified the underlying mechanism for the
increase in synaptic efficacy to be the shift in the reversal potential
of post-synaptic GABAergic currents (EGPSC) to more positive values
for co-incident pre- and post-synaptic activity. Vogels et al. (2011),
however, model the increase in synaptic efficacy as an increase in
synaptic conductance. On the other hand, the learning rule does
correctly model the constant reduction in synaptic conductance, which
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was only observed for repetitive pre-synaptic activity in the absence
of post-synaptic activity (Woodin, Ganguly and Poo 2003).

In spite of this observation, the inhibitory STDP rule and the novel
model of a cortical balanced network are both important contribu-
tions to the field. Even though inhibition has traditionally been rel-
egated to a homeostatic role in the brain, much work needs to be
done to improve our understanding of its various mechanisms and
effects (Isaacson and Scanziani 2011; Sprekeler 2017). Vogels et al.
(2011) also provided the complete set of parameters that were used
in the study which enabled the re-implementation of the network
model first in the Auryn (Zenke and Gerstner 2014) and later in the
NEST (Gewaltig and Diesmann 2007) simulators and verification of
their results. The figures used in this chapter were generated from the
Auryn implementation made in the initial stages of this study.

2.2 signal to noise ratio as a measure of associative

memory capacity

Having selected a model of associative memory, it was required to
select appropriate metrics to measure its performance in the study.
As Graham and Willshaw (1997) document, the performance of a
distributed memory store can be described in terms of capacity and
information efficiency. The capacity of a memory store is the number
of memories that can be stored and recalled at some allowable error
rate. The information efficiency is the ratio of the amount of infor-
mation that can be retrieved from the store to the amount of storage
available.

Dayan and Willshaw (1991) suggested the use of the SNR of the as-
sociative memory being recalled as the metric to measure the memory
capacity of the network. The SNR for an associative memory being
recalled is given by:

S/N =
(µp − µb)

2

0.5(σ2p + σ2b)
(1)

Here, µp and σp are the mean and standard deviation of the firing
rates of the neurons forming the associative memory being recalled
(the signal); and µb and σb are the mean and standard deviation of
the firing rates of the neurons not belonging to the associative memory,
therefore forming the background (the noise).

Consider two inputs that are given to a single unit that must dis-
tinguish between them—‘lows’ and ‘highs’—based on the ‘dendritic
sum’ it receives. The dendritic sums translate proportionately to the
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Figure 10: Distributions of ‘low’ and ‘high’ dendritic sums.

population firing rates received by the unit and are assumed to exhibit
Gaussian distributions. The ‘lows’ correspond to the background
inputs, while the ‘highs’ correspond to the pattern inputs. The distri-
butions of dendritic sums for the two inputs are both approximately
Gaussian—G(µb,σb) and G(µp,σp) respectively, as illustrated in Fig-
ure 10. Then, it will be easy to distinguish between these two signals
if:

1. the peaks of the Gaussians are far apart, i.e., (µp − µb) is large,
and/or

2. the peaks of the Gaussians are narrow, i.e., the noise in these
two signals—σp and σb—are small.

The formula for the SNR, Equation (1), incorporates both these effects
and maximising it should, therefore, enhance separability.

It is non-trivial to say what value of SNR would be sufficient for
pattern separation in the brain. Since this study focusses on the change
in the SNR as a result of deafferentation and network repair, the base
value of SNR is chosen to be one that clearly shows the recall of
the stored associative memories in the normally functioning network
upon visual inspection, for example, in Figure 9.
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2.3 chapter conclusions

This chapter explains the selection of the storage and recall of associa-
tive memories as an appropriate network function for investigation
during repair by structural plasticity in this study. A brief overview of
memory was given, with focus on associative memory. Next, the use
of the new model of a balanced cortical network exhibiting low fre-
quency AI firing characteristics under the action of a novel inhibitory
STDP rule (Vogels et al. 2011) was discussed. This model served as
a suitable starting point for the study. Additionally, the simulation
protocol used in (Vogels et al. 2011) also aided the design of simulation
protocols used in the study. Finally, SNR was described as a metric to
measure the performance of associative memory stores.

This chapter concludes the description of the current state of the art.
The next part of this thesis will document the use of the information
gathered here to carry out the study.



Part II

C O N T R I B U T I O N S T O T H E F I E L D



1
P E R F O R M A N C E O F B A L A N C E D N E T W O R K S A S
A S S O C I AT I V E M E M O RY S T O R E S

To investigate the performance of associative memory after deprivation
and repair in this study, it was required to first establish the perfor-
mance of associative memory in a physiological network model, one
that has not experienced sensory deprivation by peripheral lesions.

In this chapter, the performance of the balanced cortical network
model proposed by Vogels et al. (2011) as an associative memory store
is described. The model was first replicated and verified (as discussed
in Part i). Next, where Vogels et al. (2011) limited their discussion to
the storage and recall of a pair of overlapping associative memories
only, in this study, the performance of the network as an associative
memory store was quantified using the Signal to Noise Ratio (SNR)
metric (Equation (1)). Additionally, the capacity of the network was
also investigated by storing multiple associative memories in it.

The work detailed in this chapter was disseminated as a poster at
CNS*2015:

• Ankur Sinha, Neil Davey et al. (2015). ‘Structural plasticity and
associative memory in balanced neural networks with spike-time
dependent inhibitory plasticity’. In: BMC Neuroscience 16.1, p. 1.
url: http://www.biomedcentral.com/1471-2202/16/S1/P235.

1.1 simulation protocol

Since the Auryn simulator (Zenke and Gerstner 2014) was used by
Vogels et al. (2011) in their work, it was also used for this stage of
the study. Using the same simulation protocol as Vogels et al. (2011)
(Figure 11), the network was allowed to stabilise to its Asynchronous
Irregular (AI) state after which the excitatory synapses between a
randomly selected set of excitatory neurons were strengthened to gpat
by a potentiation factor χ to form the Hebbian assembly:

gpat = χ× gEE (1)

where gEE is the synaptic conductance of the excitatory synapse as set
up initially in the model.
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Figure 11: Simulation protocol for associative memory performance simu-
lations: the network is set up with its initial connectivity and allowed to
stabilise to its AI regime. Then, at t1store, an associative memory is stored
by strengthening the synapses between a randomly selected set of neurons.
The network is again allowed to re-stabilise to its AI state. If needed, more
patterns are stored in the network in this way. When the last associative
memory has been stored and the network returned to its balanced state a
snapshot of the network is saved. Then, the stored associative memories
are recalled by providing stimulus to a subset of the neurons forming each
pattern. The firing rates of the neurons in the associative memory, forming
the pattern, and the rest of the neurons of the population, which form the
background, allow the calculation of the SNR. After an associative memory
has been recalled at t = tirecall, the network snapshot is restored before the
next one is recalled at ti+1recall to ensure that the recalling of an associative
memory does not affect future recalls.

The strengthening of lateral excitatory synapses causes an increase
in the activity of the network. Therefore, inhibitory synaptic plasticity
was allowed to re-establish the AI state of the network before an
external stimulus was provided to a randomly selected subset of
neurons forming the associative memory for a 1 s period to recall it.
The SNR of the associative memory was calculated from the spike
data recorded from the network at this time—for the neurons forming
the memory, the pattern neurons, and neurons not included in the
memory, the background neurons.

Multiple associative memories were also successively stored in the
network to investigate its capacity in this study. After the last as-
sociative memory had been stored and the network returned to its
AI state, each associative memory was recalled and network activity
recorded. To ensure that the recall of an associative memory did not
affect the subsequent recalls of other associative memories in any
way, a snapshot of the network was taken after all associative mem-
ories were stored and the network had been restored to its AI state.
Each time after an associative memory was recalled and its activity
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recorded, the network was reset to its pre-recall state by loading the
snapshot. Additionally, during the recall of each pattern, all plasticity
was disabled in the network to prevent pattern recall from affecting
the network in any way.

1.2 results

The primary parameter that affects the recall performance of associa-
tive memories in the network is the potentiation factor (χ) by which the
synapses that are part of a stored associative memory are strengthened.
The SNR of stored associative memories during recall for different val-
ues of χ depends on the activity of the neurons forming the associative
memory (the pattern signal) and that of the remaining neurons in the
network (the background signal) (Equation (1)). The activity of these
neuronal sets, in turn, is modulated by the magnitudes of inhibition
and excitation they receive. As more associative memories are stored
in the network, the strengthening of involved excitatory synapses
increases lateral excitation in the network. This is constantly balanced
by the strengthening of corresponding inhibitory projections by the
inhibitory Spike Timing Dependent Plasticity (STDP) mechanism to
maintain the network in its low frequency AI firing state.

In the case of multiple associative memories that may overlap with
each other, two methods of augmenting associative memory synapses
can be used that would also affect the performance of the network. In
the first ‘clipped’ method, it is assumed that the maximum possible
synaptic strength of synapses involved in associative memories is
already attained on the storage of the first associative memory. These
synapses, therefore, are not strengthened repeatedly on the storage of
later associative memories. In the other ‘cumulative’ method, on the
other hand, this assumption is not made. Thus, in this system, each
time an associative memory is stored, all its synapses are reinforced
again.

To compare the difference in performance when associative mem-
ories are stored using these two methods, a number of associative
memories were stored in the network, recalled, and the SNR calcu-
lated for χ = 5 (as used in Vogels et al. (2011)). Figure 12a shows
the percentage of the excitatory neuron population of 8000 neurons
that were recruited by associative memories of 800 neurons each as
each pattern is selected, while Figure 12b shows the SNR for the two
storage methods as a function of the number of associative memories
stored in the network. As expected, the SNR for a lone associative
memory was found to be the same in both storage methods. We note
this SNR, which was the baseline value that the performance of a
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Figure 12: (a): When multiple associative memories consisting of 800 neurons
selected randomly from a population of 8000 neurons are repeatedly stored
in the network, when the associative memories are allowed to overlap,
approximately 40 are sufficient to cover the whole network. At this stage,
almost all synapses in the network have been strengthened. (b): SNR vs
number of associative memories (χ = 5). For both storage methods, as more
associative memories are stored the inhibition in the network also increases
to match the increased lateral excitation resulting in a decrease in SNR. Since
the conductances of synapses shared between multiple associative memories
are higher in the cumulative storage method than the clipped storage method,
the SNR was initially observed to be higher in this regime. However, as
more associative memories are stored and the overlap increases, the network
configuration reaches a state where the coupling between synapses in the
pattern and background neurons is large enough to result in a lesser SNR
for cumulative storage than clipped storage.
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deprived network was compared to in later stages of the study. In
general, as more associative memories are stored, the SNR deteriorates.
This can be explained by analysing the activities of the pattern and
background neurons in each case.

Associative memories that do not overlap also do not affect each
other’s recall performance. When one is recalled, the activity of the
other memories remains at baseline levels as part of the background
signal. When associative memories overlap, however, the coupling
between them may affect their recall performance. The storage of
each new associative memory activates previously stored associative
memories that it overlaps with, for example, also increasing the inhi-
bition they receive. The increased inhibition hampers their activity
during recall. This can be seen in Figures 13a and 14a where, as more
associative memories were stored in the network, the firing rates of
pattern neurons during recall decreased. On the other hand, the stim-
ulation of an associative memory during recall will also activate the
associative memories that it overlaps with—increasing the background
activity. This can be observed in Figures 13b and 14b. For higher
values of χ, which results in more excitation for each new associative
memory stored in the network, the activity of the background neurons
also decreases eventually because of the corresponding increase in
stabilising inhibition—similar to the pattern neurons.

When associative memories are stored using the cumulative method,
overlap among associative memories repeatedly strengthens synapses
common to the involved memories. For the storage of the first few
associative memories, where there is less overlap, the increased lateral
excitation dominates pattern dynamics. Thus, an increase in the
pattern activity is observed during recall (Figure 14a). This also
translates to a marginally improved SNR (Figure 15b). Thereafter,
inhibition dominates to reduce the pattern activity during recall as
discussed above. This feature is not observed in the clipped storage
case, since synapses common to multiple associative memories are not
strengthened repeatedly there.

Given that the excitatory synapses that belong to multiple associa-
tive memories have higher conductances in the cumulative storage
method than in the clipped one, it is also expected that the SNR for
patterns stored using the former will be higher than for patterns stored
using the latter. At some stage, however, a lower SNR is observed for
cumulative storage than clipped storage (at N = 40 patterns in Fig-
ure 12b). This is also ascribed to lower firing rates for pattern neurons
in the cumulative storage case for the same number of patterns stored
using the same value of χ (χ = 5 for N = 40 patterns in Figure 13a vs
Figure 14a). Because the cumulative storage method results in higher
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Figure 13: Mean firing rates for neurons during recall with different values of
χ, using the clipped learning method. (a): pattern neurons; (b): background
neurons. For χ = 8, when more than 40 patterns are stored in the network,
all neurons in the network, the pattern and the background neurons, are
activated maximally by the recall stimulus as a result of increased excitatory
recurrent connectivity in the network. This represents the limit of the capacity
of the network as an associative memory store since in this configuration,
the patterns stored in the network cannot be separated from the background
activity upon recall.
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Figure 14: Mean firing rates for neurons during recall with different values
of χ, using the cumulative learning method. (a): pattern neurons; (b):
background neurons. Similar to the previous case where clipped storage was
used, for χ = 6 here, when more than ~45 patterns are stored in the network,
all neurons in the network are activated maximally by the recall stimulus
as a result of increased excitatory recurrent connectivity in the network. In
this case also, since patterns stored in the network can not be separated from
the background activity upon recall, this serves as the storage limit of the
network as an associative memory store.
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levels of excitation for the storage of the same number of patterns, the
magnitude of stabilising inhibition here is also higher.

Having established the differing effects of the different systems of
storing multiple associative memory patterns in the network, the effect
of the potentiation factor on network performance was studied. The
same simulation protocol was repeated with different values of χ. In
general, a higher potentiation factor would be expected to increase the
SNR of a pattern. This was confirmed for both clipped and cumulative
storage (Figures 15a and 15b). As can also be seen, for all values of χ,
the trend of SNR remained the same as more patterns were stored in
the network.

A notable observation in both Figures 15a and 15b is that the SNR
drops to 0 as a high number of patterns is stored in the network. The
firing rates of pattern and background neurons during recall explain
this phenomenon (Figures 13a, 13b, 14a and 14b). As the figures
show, during recall, all neurons in the network fire at high firing rates
close to their maximum (200Hz) indicating that the lateral excitatory
connectivity in the excitatory neurons of the network is high enough
to cause them all to fire when the recall stimulus is applied. Thus,
stored associative memories can no longer be recalled in the network.
Therefore, though a higher value of χ may result in a higher SNR
with fewer patterns, it results in worse performance as the number
of patterns increases and it also limits the capacity of the network to
recall stored patterns.

Furthermore, as larger values of χ result in more recurrent exci-
tation in the network, the re-establishment of its AI state after the
storage of new associative memories also requires larger increases in
conductances of its IE synapses by the inhibitory STDP mechanism. If
IE synapses have attained their maximum value (the maximum value
for IE conductances is a free parameter that can be set in the model) no
corresponding increase in inhibition will occur to settle the network
back into its AI firing regime when more associative memories are
stored in it. The upper limit for the value of χ that may be used,
therefore, depends on the maximum value of IE synapse conductance
permitted in the network, and represents the storage limit of the net-
work. This storage limit, a function of χ and the maximum possible IE
conductance value, was not tested in the study. Instead, the scope of
the study was limited to regimes where the network could be restored
to the AI state after the storage of a new associative memory.
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Figure 15: SNR vs number of patterns for different potentiation factors. (a):
using the clipped method; (b): the cumulative method.
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1.3 chapter conclusions

This chapter described the initial stages of this study where the perfor-
mance of associative memories in a normal, undeafferented network
was quantified. It documented the SNR of recalling an associative
memory stored in the balanced cortical network model. It also in-
cluded information suggesting that the storage of multiple associative
memories in a network where they may overlap with each other results
in a deterioration of their performance. Lastly, it explored the effect
that the magnitude of augmentation of synapses to form associative
memories may have on its recall.

The simulations here, however, represent only a very limited, sim-
plified version of a brain network, sufficient for this study, and the
results generated here, therefore, must be limited to this scope. The
brain, of course, is far more complex and its neurons are capable of
functioning as a store for associative memories without performance
degradation over extended periods of time—years if not complete
lifetimes.



2
M O D E L L I N G P O S T- D E A F F E R E N TAT I O N R E PA I R I N
B A L A N C E D N E T W O R K S

The previous chapter established the capacity of the cortical Asyn-
chronous Irregular (AI) network to store and recall associative memo-
ries. To investigate how sensory deprivation and subsequent repair
affects this function, a model of peripheral lesioning and structural
plasticity mediated network reorganisation was required. As dis-
cussed in Chapter 1, whereas the Model of Structural Plasticity (MSP)
framework does allow for modelling structural plasticity, a model of
peripheral lesioning and subsequent repair adequate for this study
was unavailable. Thus, a novel model of network repair after pe-
ripheral lesioning was developed. This chapter documents the new
model.

Until this juncture, the study had used the Auryn simulator (Zenke
and Gerstner 2014). However, Auryn, which uses a traditional connec-
tion matrix data structure to implement synaptic connections, did not
include the necessary features required to model structural plasticity
using the MSP. Specifically, the formation and removal of synapses
during simulation was not trivial. At the same time, features required
to implement the MSP framework were being added to the NEST
simulator (Diaz-Pier et al. 2016; Kunkel, Morrison et al. 2017) which
uses more flexible data structures that allow for connectivity changes
during simulation (Kunkel, Potjans et al. 2011; Kunkel, Schmidt et
al. 2014). Thus, it was decided to migrate the model to the NEST
simulator.

The work documented in this chapter was disseminated in the
following:

• Ankur Sinha, Christoph Metzner, Neil Davey et al. (2019b).
‘Growth Rules for the Repair of Asynchronous Irregular Neu-
ronal Networks after Peripheral Lesions’. In: bioRxiv. doi:
10.1101/810846. eprint: https://www.biorxiv.org/content/
early/2019/10/21/810846.full.pdf. url: https://www.

biorxiv.org/content/early/2019/10/21/810846

• Ankur Sinha, Christoph Metzner, Neil Davey et al. (2019a).
‘Growth rules for repair of asynchronous irregular network mod-
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https://doi.org/10.1101/810846
https://www.biorxiv.org/content/early/2019/10/21/810846.full.pdf
https://www.biorxiv.org/content/early/2019/10/21/810846.full.pdf
https://www.biorxiv.org/content/early/2019/10/21/810846
https://www.biorxiv.org/content/early/2019/10/21/810846
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Table 3: Neuronal parameters.

Parameter Symbol Value

LIF parameters

Refractory period tref 5ms

Reset potential Vreset −60mV

Threshold potential Vth −50mV

Capacitance C 200pF

Leak conductance gL 10nS

Leak reversal potential EL −60mV

Inhibitory reversal potential Einh −80mV

Excitatory reversal potential Eexc 0mV

Excitatory time constant τexc 5ms

Inhibitory time constant τinh 10ms

[Ca2+] increase per spike β 0.1

[Ca2+] decay time constant τ[Ca2+] 50 s

External inputs

Poisson spike input to all neurons rext 10Hz

External projections to E neurons gEext 8nS

External projections to I neurons gIext 12nS

els following peripheral lesions’. In: BMC Neuroscience 20. issn:
1471-2202

2.1 extended neuron model for structural plasticity

Neurons are modelled as leaky integrate and fire (LIF) conductance
based point neurons with exponential conductances (Meffin, Burkitt
and Grayden 2004), the membrane potentials of which are governed
by:

C
dV

dt
= −gL(V − EL) − gexc(V − Eexc) − ginh(V − Einh) + Ie (1)

where C is the membrane capacitance, V is the membrane potential,
gL is the leak conductance, gexc is the excitatory conductance, ginh is
the inhibitory conductance, EL is the leak reversal potential, Eexc is the
excitatory reversal potential, Einh is the inhibitory reversal potential,
and Ie is an external input current. Incoming spikes induce a post-
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Figure 16: Gaussian growth curves modulate the rate of turnover of synaptic
elements (dzdt ) in a neuron as a function of its [Ca2+]: (a) Excitatory: Blue;
Inhibitory: Red; All neurons possess excitatory and inhibitory post-synaptic
elements (zEpost, z

I
post) but excitatory and inhibitory neurons can only bear

excitatory and inhibitory pre-synaptic elements, respectively (zEpre, zIpre); (b)
and (c): Example Gaussian growth curves (growth curves for all neurites are
derived in Chapter 3). Constants η and ε control the width and positioning
of the growth curve on the x-axis. ω (see Equation 1) controls the positioning
of the growth curve on the y-axis. ν (see Equation 1) is a scaling factor. ψ
is the optimal [Ca2+] for the neuron. The minimum and maximum values
of dz/dt can be analytically deduced to be −νω and ν(2−ω) respectively
(See Methods). The relationship between η, ε, and ψ regulates the activity
dependent dynamics of neurites.
(b) ψ = η = 5.0, ε = 15.0,ν = 1.0,ω = 1.0,−νω = −1.0,ν(2−ω) = 1.0. Here,
new neurites are formed when the neuronal activity exceeds the required
level and removed when it falls below it. (c) η = 5.0,ψ = ε = 15.0,ν =

1.0,ω = 0.001,−νω = −0.001,ν(2−ω) = 1.999. Here, the growth curve is
shifted up along the y-axis by decreasing the value of ω. New neurites are
formed when the neuronal activity is less than the homeostatic level and
removed (at a very low rate) when it exceeds it.
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synaptic change of conductance that is modelled by an exponential
waveform following the equation:

g(t) = ḡ exp
(
−
t− ts
τg

)
(2)

where τg is the decay time constant and ḡ is the maximum conduc-
tance as the result of a spike at time ts. Table 3 enumerates the
constants related to the neuron model.

Both Auryn (Zenke and Gerstner 2014) and NEST (Jordan, Mørk
et al. 2019) include implementations of the LIF neuron model, but
they vary in their underlying architecture and implementation. Auryn
uses the simple forward Euler integration method, whereas NEST
makes use of the Runge-Kutta-Fehlberg integration method via the
GNU Scientific Library (GSL) (Galassi et al. 2002). The integration
time step (dt) for each simulator can be set during the compilation of
the simulator and is documented in Table 4.

As shown in Figure 16a, following the MSP framework, each neuron
in the model possesses sets of both pre- and post-synaptic synaptic
elements, the total numbers of which are represented by (zpre) and
(zpost) respectively. Excitatory and inhibitory neurons only possess ex-
citatory (zEpre) and inhibitory axonal elements (zIpre) respectively, but
they can each host both excitatory and inhibitory dendritic elements
(zpost,E, zpost,I) (since the number of neurites must be a non-negative
integer, the floor value of the continuous variable is used for connec-
tivity updates). Similarly, the rate of change of each type of synaptic
element, (dz/dt), is modelled as a Gaussian function of the neuron’s
‘Calcium concentration’ ([Ca2+]). The Gaussian function was gener-
alised by including a new parameter ω:

dz

dt
= ν

2 exp
−

(
[Ca2+]−ξ

ζ

)2
−ω


ξ =

η+ ε

2
, (3)

ζ =
η− ε

2
√
− ln (ω/2)

Here, ν is a scaling factor, ξ and ζ (in terms of η and ε) define the width
and location of the Gaussian curve on the x-axis, while ω controls the
location of the curve on the y-axis (0 < ν, 0 < η < ε, 0 < ω < 2).

The [Ca2+] represents the time averaged activity of the neuron, and
is given by:

[Ca2+] = [Ca2+] +β, if V > Vth (4)

d[Ca2+]

dt
= −

[Ca2+]

τ[Ca2+]

, otherwise. (5)

https://github.com/fzenke/auryn/blob/master/src/auryn/AIFGroup.cpp#L137
https://github.com/nest/nest-simulator/blob/master/models/iaf_cond_exp.cpp#L297
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Here, τ[Ca2+] is the time constant with which the [Ca2+] decays in the
absence of a spike, and β is the constant increase in [Ca2+] caused by
each spike.

Given that ([Ca2+] > 0), (dz/dt) is bound as:

min
(
dz

dt

)
= −νω for

(
[Ca2+]→∞)

max
(
dz

dt

)
= ν(2−ω) for

(
[Ca2+] =

(
η+ ε

2

))
(6)

Using (ω = 1) generates the growth curves proposed by the MSP
where the maximum and minimum values of dz/dt are equal in
magnitude to ν. This implies that the maximum rates of formation
(dz/dt > 0) and retraction (dz/dt < 0) are equal. Varying ω removes
this constraint. Neurites may now be modelled with different maximal
rates of formation and retraction.

Within these bounds, as shown in the example Gaussian curves in
Figures 16b and 16c, (dz/dt) is:

> 0 for η < [Ca2+] < ε

= 0 for [Ca2+] = {η, ε} (7)

< 0 for [Ca2+] < η ∪ [Ca2+] > ε

If, based on its activity, a neuron has more synaptic elements of a par-
ticular type (z) than are currently engaged in synapses (zconnected),
the free elements (zfree) can participate in the formation of new
synapses at the next connectivity update step:

zfree = b(z− zconnected)c (8)

However, if they remain unconnected, they decay at each integration
time step with a constant rate τfree:

dzfree
dt

= −τfreezfree (9)

On the other hand, a neuron will lose zloss synaptic connections if
the number of a synaptic element type calculated by the growth rules
(z) is less than the number of connected synaptic elements of the same
type (zconnected):

zloss = b(zconnected − z)c (10)

Growth curves for all neurites are derived in the next chapter, Chap-
ter 3.
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Figure 17: Overview of the model: (a) Excitatory (E) and Inhibitory (I) neu-
rons (NE = 4NI (see Table 4)) are initially connected via synapses with a
connection probability of (p = 0.02). All synapses (EE, EI, II), other than
IE synapses, which are modulated by inhibitory spike-timing dependent
plasticity, are static with conductances gEE,gEI,gII, respectively. All synapse
sets are modifiable by the structural plasticity mechanism. External Pois-
son spike stimuli are provided to all excitatory and inhibitory neurons via
static synapses with conductances gEext and gIInh, respectively. To simulate
deafferentation, the subset of these synapses that project onto neurons in the
Lesion Projection Zone (LPZ) (represented by dashed lines in the figure) are
disconnected. (b) Spatial classification of neurons in relation to the LPZ: LPZ
C (centre of LPZ) consists of 2.5% of the neuronal population; LPZ B (inner
border of LPZ) consists of 2.5% of the neuronal population; Peri-LPZ (outer
border of LPZ) consists of 5% of the neuronal population; Other neurons
consist of the remaining 90% of the neuronal population. (Figure not to
scale)

2.2 network model and simulation protocol

The cortical network model, when used only as an associative mem-
ory store, did not require neurons to be distributed in space. The
connectivity of the network was generated from the probability of
connection formation (p) that was constant for each neuron. However,
since the peripheral lesion experiments this study relies on deprivation
of sets of neurons that are spatially close to each other, the cortical
model was extended to distribute its neurons in a two-dimensional
grid (Figure 17b).

Each neuron is placed using a Gaussian distribution centred at
its calculated grid location (col, row) that is obtained from its ‘id’ i
(NEST assigns neurons in a population of N neurons ids incrementally:
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t = 0 t = t1 t = t2 t = tend

A: Network setup

synaptic

plasticity
only

structural &

synaptic
plasticity

B: Repair after deafferentation

I: structural plasticity only

II: structural &
synaptic plasticity

III: synaptic plasticity only

Figure 18: The simulation runs in 2 phases. Initially, the setup phase (0 s <
t < t2) is run to set the network up to the balanced AI state. At (t = t2), a
subset of the neuronal population is deafferented to simulate a peripheral
lesion and the network is allowed to organise under the action of homeostatic
mechanisms until the end of the simulation at (t = tend). Each homeostatic
mechanism can be enabled in a subset of neurons to analyse its effects on
the network after deafferentation.

(I, I+ 1, . . . , I+ (N− 1))). Thus for a neuron with id i in a population
starting at I:

row = b(i− I)/Ncolsc (1)

col = (i− I)%Nrows (2)

y = G(row ∗ µd,σd) (3)

x = G(col ∗ µd,σd) (4)

where b. . .c denotes the floor value, % denotes the modulo function,
Nrows and Ncols are the number of rows and columns in the grid,
and G(µ,σ) is the Gaussian distribution with mean µ and standard
deviation σ. µd = µEd is the mean distance between two adjacent
excitatory neurons, and σd = σEd is the standard deviation used for G.
Inhibitory neurons are similarly scattered such that they are evenly
dispersed among the excitatory neurons. To prevent any edge effects
from affecting the simulation, the plane is wrapped around to form
a toroid. Table 4 summarises the parameters used to arrange the
neurons.

Since neurons are now spatially distributed, the cortical network
model was further extended such that neurons nearer to each other are
more likely to form synapses. This was done by choosing the initial set
of partners for neurons based on a probability of synapse formation,
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pform, which is a Gaussian function of the distance between the pair,
d:

pform = p̂ exp−(d/(wµEd))
2

(5)

Here, p̂ ∈ {p̂E, p̂I} is the maximum probability, µEd is the mean dis-
tance between two adjacent excitatory neurons, and w ∈ {wE,wI} is a
multiplier that controls the spatial extent of new synaptic connections.

Previous research indicates that lateral connections in the primary
visual cortex are organised in a ‘Mexican hat’ pattern. Whereas
experimental work does support the presence of the ‘Mexican hat’
pattern (B.-h. Liu et al. 2011; Haider, Häusser and Carandini 2013),
anatomical research suggests that inhibitory connections are more
localised than excitatory ones, contradicting the traditional use of
shorter excitatory and longer inhibitory connections in computer mod-
els (Stepanyants et al. 2009). Analysis of the local cortical circuit of
the primary visual cortex suggests that the ‘Mexican hat’ pattern can
either be generated by narrow but fast inhibition, or broad and slower
inhibition that may be provided by longer axons of GABAergic bas-
ket cells (Kang, Shelley and Sompolinsky 2003; Rudiger et al. 2013).
Investigations into the maintenance of the ‘Mexican hat’ pattern are
beyond the scope of this study. Therefore, this study was limited to
the traditional model of longer inhibitory connections and shorter
local excitatory connections by using a larger multiplier for inhibitory
synapses, wI, than for excitatory synapses, wE, (wE < wI).

After the neurons and connectivity of the network model had been
initialised, the simulation was divided into multiple phases, as shown
in Figure 18.

2.2.1 Initial network stabilisation to physiological state

The network is first permitted to stabilise to its balanced AI state
(t = t2 in Figure 18). In this iteration of the model, this phase consists
of two simulation regimes. Initially, only inhibitory synaptic plasticity
is activated to stabilise the network (t < t1 in Figure 18). As this state
is considered the normal physiological state of our network model,
the network parameters obtained at this point are set as the steady
state parameters of neurons and synapses in the network. The optimal
activity of each neuron, ψ, is set to the activity achieved by the neuron
at this point, and its growth curves are initialised in relation to it.
The mean conductance for new IE synapses is also set as the mean
conductance of the IE synapses obtained at this stage.
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The homeostatic structural plasticity mechanism is then activated
in the network at this point (t = t1 in Figure 18) to verify that the
network continues to remain in its balanced AI state in the presence
of both homeostatic mechanisms.

2.2.2 Simulation of peripheral lesion

Next (at t = t2 in Figure 18), the external Poisson spike train inputs
are disconnected from excitatory and inhibitory neurons that fall in
the Lesion Projection Zone (LPZ) to simulate a peripheral lesion in
the network. For analysis, the neuronal plane is classified into four
regions:

• LPZ C: the centre of the LPZ (Red in Figure 17b).

• LPZ B: the inner border of the LPZ (Yellow in Figure 17b).

• P LPZ: peri-LPZ, the outer border of the LPZ (Green in Fig-
ure 17b).

• Other neurons: neurons further away from the LPZ (Grey in
Figure 17b).

2.2.3 Network reorganisation

The deafferented network is permitted to reorganise itself under the
action of the active homeostatic mechanisms until the end of the
simulation (t = tend in Figure 18). By selectively activating the two
homeostatic mechanisms in different simulation runs, the model also
allows the investigation of their effects on the network in isolation.

All synapses in the network, except the connections that project
the external stimulus onto the neuronal population, are subject to
structural plasticity (Figure 17a). Free excitatory pre-synaptic and
excitatory post-synaptic elements can combine to form excitatory
synapses (EE, EI). Analogously, inhibitory pre-synaptic and inhibitory
post-synaptic elements can plug together to form inhibitory synapses
(II, IE). The set of possible partners for a neuron, therefore, comprises
of all other neurons in the network that have free synaptic elements
of the required type. The probability of forming a synapse, pform,
is calculated for all possible partners as reported in Equation (5)—
partners closer to the neuron have higher values of pform, and are
more likely to be chosen for synapse formation. Partners are chosen
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stochastically based on their pform values until either all prospective
partners have been exhausted or if zfree partners have been picked.

New synapses that are added to the network are initialised with
conductances similar to that of existing synapses in the balanced net-
work. Their conductance values are taken from a Gaussian distribution
centred at the mean conductance for that synapse type. Since new
synapses can, therefore, be weaker or stronger than existing ones,
this prevents the same set of synapses from being modified in each
connectivity update.

In spite of them being plastic, the same method is also used for IE
synapses. IE synapses are initialised with zero conductances at the
start of the simulation and modify their strengths based on STDP (Vo-
gels et al. 2011). When the network has achieved the balanced AI state,
these conductances also settle at higher values. If new IE synapses
formed after this point by structural plasticity were to be initialised
to zero conductances, they would be most likely to be selected for
deletion repeatedly as the weakest ones. STDP does not modulate
inactive synapses either—synapses between pairs of neurons that have
both been rendered inactive by deafferentation will not be weakened,
and may not be lost. Therefore, to ensure the turnover of a diverse
set of IE synapses also, new connections of this type are supplied
with conductances similar to that of existing stable IE synapses in the
balanced network.

Experiments suggest that the stability of synapses is proportional
to their efficacy (Knott, A. Holtmaat et al. 2006; Trachtenberg et al.
2002). Taking this into account, as another extension, the probability
of deletion of a synapse, pdel, was calculated as a function of its
conductance g:

pdel = exp−
(

g
(2gth)

)2
(6)

Here, gth is a threshold conductance value calculated during the
simulation, synapses stronger than which are considered immune to
activity dependent changes in stability. They are removed from the
list of options from which synapses are considered for deletion and
are therefore, not considered for deletion at all. The probability of
deletion, pdel, is calculated for the remaining synapses. From this
remaining set, synapses are stochastically selected for deletion based
on their pdel values until either all prospective synapses have been
tested or if zloss synapses have been obtained.

For simplicity, for static excitatory synapses that all have similar
conductances (EI, EE), this method of deletion is not used. Instead,
for these, zloss connections are randomly selected for deletion from
the set of available candidates. Whereas II synapses are also static,
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the deletion of an inhibitory synapse by the loss of an inhibitory post-
synaptic element can occur by the removal of either an IE or an II
synapse. Therefore, to permit competition between II and IE synapses
for removal, weight based deletion is applied to both these synapse
sets.

The numbers of synaptic elements are updated at every simulator
integration time step internally in NEST. Connectivity updates to the
network, however, require updates to internal NEST data structures
and can only be made when the simulation is paused. Since this
increases the computational cost of the simulation, these updates are
only made at 1 s intervals. Gathering data on conductances, connec-
tivity, and neuronal variables like [Ca2+] also require explicit NEST
function calls while the simulation is paused. Therefore, the required
data is written to files only at regular intervals. Table 5 summarises
the various synaptic parameters used in the simulation.

2.3 chapter conclusions

This chapter documented the new model of peripheral lesioning that
was developed for the purpose of this study. It extends the MSP
framework to permit the use of a more general set of Gaussian growth
curves for neurites. Other additions, such as the synaptic weight
dependent deletion of synapses, and the use of a cortical balanced
AI network model as the physiological initial state, also lend more
biological plausibility to it.

As a simplified representation, however, this model necessarily
suffers from various limitations. For example, although the use of
simple conductance based point neurons (Meffin, Burkitt and Grayden
2004) is sufficient for this network study, perhaps even necessary for
its tractability (Izhikevich 2004), it also limits it. Unlike in the brain
where calcium is compartmentalised in neurons (Yuste, A. Majewska
and Holthoff 2000), a single compartment point neuron model only
allows one value of [Ca2+] for all neurites in a neuron. Thus, each of
the neurons in this MSP based model can only either sprout or retract
a type of neurite at a point in time. This is not the case in biology
where different parts of the neuron can undergo structural changes
independently of each other. Point neurons also lack morphology,
and this model is therefore unable to explicitly include the directional
formation or removal of synapses. Axonal and dendritic arbors are
also not explicitly modelled and the directional turnover of synapses
that represents axonal sprouting emerges merely from the numbers of
connecting partner neurites. Additionally, whereas it was enough for
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neurons in the model to be distributed in a two dimensional grid to
include a spatial component, this is clearly not true for the brain.

Computational modelling of structural plasticity in general, is lim-
ited by the lack of supporting simulation tools. Most current simula-
tors are designed for network modelling of synaptic plasticity, where
synaptic efficacy changes while connectivity remains constant, but
not structural plasticity. Even the NEST simulator (Jordan, Mørk et al.
2019), where the internal data structures are sufficiently flexible to
allow for modification of synapses during simulation (Jordan, Ippen
et al. 2018), currently includes a limited implementation of the MSP
algorithm (Diaz-Pier et al. 2016). To incorporate the missing pieces—
spatial information and different network connectivity modification
strategies, for example—it was required to repeatedly pause simula-
tions to make connectivity updates. This is far less efficient than NEST
handling these changes in connectivity internally during continuous
simulation runs and added a large overhead to the computational costs
of our simulations. The development of companion tools for modelling
structural plasticity is however, gradually gaining traction (Nowke
et al. 2018) with discussions to allow NEST to communicate with stand
alone structural plasticity tools via interfaces such as Connection Set
Algebra (Djurfeldt 2012) ongoing.

However, for the purposes of this thesis, the model presented in
this chapter represents something that is much better than anything
that has gone previously. The ability to model structural plasticity,
albeit with considerable computational cost, is facilitated and allows
the investigation reported in the next chapter.
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Table 4: Network simulation parameters.

Parameter Symbol Value

Simulation parameters

Integration time step dt 0.1 s

Structural plasticity update
interval

1 s

Network parameters

Number of E neurons NE 8000

Number of I neurons NI 2000

Dimension of 2D E neuron
lattice

100× 80

Dimension of 2D I neuron lat-
tice

50× 40

Mean distance between E
neurons

µEd 150µm

STD of position for E neurons σEd 15µm

Mean distance between I neu-
rons

µId 300µm

STD of position for I neurons σId 15µm

Neurons in LPZ C 2.5%

Neurons in LPZ B 2.5%

Neurons in P LPZ 5%

Remaining neurons 90%

Initial network sparsity p 0.02

Initial out-degree nout p× total possible targets

Simulation stages

Synaptic plasticity only 1500 s

Synaptic and structural plas-
ticity

500 s

Network deafferented at 2000 s
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Table 5: Synapse parameters.

Parameter Symbol Value

Unit conductance ḡ 0.5nS

EE synapse conductance gEE ḡ

EI synapse conductance gEI ḡ

II synapse conductance gII 10ḡ

IE synapse conductance gIE Vogels-Sprekeler STDP

STDP rule time constant τSTDP 20ms

Target constant αSTDP 0.12

STDP learning rate ηSTDP 0.05

Width multiplier: excitatory
synapses

wE 8

Width multiplier: inhibitory
synapses

wI 24

Maximum probability of for-
mation: excitatory synapses

p̂E 0.8

Maximum probability of for-
mation: inhibitory synapses

p̂I 0.3

Conductance threshold for
deletion: inhibitory synapses

gth



3
A C T I V I T Y D E P E N D E N T S T R U C T U R A L D Y N A M I C S
O F S Y N A P T I C E L E M E N T S

The previous chapter was limited to the description of the new model
of peripheral lesioning developed as part of this study. In the current
chapter, the use of this model to investigate the activity dependent
growth rules of various neurites is documented.

The investigation was carried out in multiple stages. First, the effects
of deafferentation on the network were investigated—in a scenario
where structural plasticity is disabled so that the network does not
undergo any repair. Next, different growth curves were tested for the
various neurites in the network to enable structural plasticity. The
characteristics of the resulting simulations were compared to the time
course of repair reported in experiments (Table 1).

The work documented in this chapter was disseminated in the
following:

• Ankur Sinha, Christoph Metzner, Neil Davey et al. (2019b).
‘Growth Rules for the Repair of Asynchronous Irregular Neu-
ronal Networks after Peripheral Lesions’. In: bioRxiv. doi:
10.1101/810846. eprint: https://www.biorxiv.org/content/
early/2019/10/21/810846.full.pdf. url: https://www.

biorxiv.org/content/early/2019/10/21/810846

• Ankur Sinha, Christoph Metzner, Neil Davey et al. (2019a).
‘Growth rules for repair of asynchronous irregular network mod-
els following peripheral lesions’. In: BMC Neuroscience 20. issn:
1471-2202

3.1 effects of deafferentation on the balanced corti-
cal network

Before activating structural plasticity in the model, the effects of
deafferentation on the cortical balanced Asynchronous Irregular (AI)
network, which is already stabilised by the inhibitory homeostatic
synaptic plasticity mechanism, were investigated. Figure 19 shows
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https://doi.org/10.1101/810846
https://www.biorxiv.org/content/early/2019/10/21/810846.full.pdf
https://www.biorxiv.org/content/early/2019/10/21/810846.full.pdf
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Figure 19: Network spiking rates after deafferentation without structural
plasticity: (Mean firing rates of neurons are calculated over a 2500ms win-
dow): (a) shows the firing rates of the whole excitatory population at
t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}. These time-points are marked
by dashed lines in the next graphs. (b) shows mean firing rate of neurons
in centre of the Lesion Projection Zone (LPZ) (LPZ-C); (c) shows mean fir-
ing rate of neurons in outer periphery of the LPZ (peri-LPZ); (d) shows
spike times of neurons in the LPZ C and peri-LPZ over a 1 s period at
t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}.
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the mean firing rates of the network over time in the presence of
homeostatic inhibitory synaptic plasticity only.

The expected effect of deafferentation on the network—removal
of external excitatory inputs—was a loss in activity. Although this
was the case for neurons in the LPZ, a slight increase in activity was
observed in neurons outside the LPZ (Figures 19b and 19c). This sug-
gests that in this inhibition dominated network model, deafferentation
results in a net loss of excitation in neurons of the LPZ but a net loss of
inhibition is experienced by neurons outside it. Thus, for the neurons
of the network to return to their pre-deprivation activity levels, while
neurons in the LPZ must gain net excitation, neurons outside the LPZ
must gain net inhibition. As the next sections will document, this
has important implications on the activity dependent growth rules of
various neurites.

As can also be seen in Figure 19, synaptic plasticity alone is unable
to restore activity to deprived neurons in the LPZ. In this regime,
where there are no changes in network connectivity, the neurons in the
LPZ remain inactive in normal functioning of the network. Neurons
outside the LPZ continue to fire. In essence, the LPZ is lost to the
network, which continues to function without it.

3.2 activity dependent growth curves for post-synaptic

structures

Having established that the homeostatic synaptic plasticity mechanism
in the network is insufficient to restore activity to neurons of the
LPZ, structural plasticity was activated in the subsequent simulations.
The activity dependent growth curves for dendritic (post-synaptic)
structures were investigated first since these form the input elements
that accept neuronal inputs to modulate the activity of neurons.

All neurons in the LPZ, excitatory and inhibitory, show near zero
activity after deafferentation due to a net loss in excitatory input
(Figure 19). As summarised in Table 1, experimental studies report
that these neurons gain excitatory synapses on newly formed den-
dritic spines (Keck, Mrsic-Flogel et al. 2008) and lose inhibitory shaft
synapses (J. L. Chen, Villa et al. 2012) to restore activity after depri-
vation. The increase in lateral excitatory projections to these neurons
requires them to gain excitatory dendritic elements to serve as contact
points for excitatory axonal collaterals. At the same time, inhibitory
synapses can be lost by the retraction of inhibitory dendritic elements.
This suggests that new excitatory post-synaptic elements should be
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ψzEpost zIpost

0

[Ca2+]

dz
dt

Figure 20: Activity-dependent dynamics of post-synaptic elements (dz/dt) as
functions of a neuron’s time averaged activity ([Ca2+]): The balance between
excitation and inhibition (E-I balance) received by a neuron may be disturbed
by a change in either of the two types of input. Post-synaptic elements
of a neuron react to deviations in activity from the optimal level (ψ) by
countering the changes in excitatory or inhibitory inputs to restore the E-I
balance. For both excitatory and inhibitory neurons, excitatory post-synaptic
elements sprout when the neuron experiences a reduction in its activity, and
retract when the neuron has received extra activity. Inhibitory post-synaptic
elements for all neurons follow the opposite rule: they sprout when the
neuron has extra activity and retract when the neuron is deprived of activity.

formed and inhibitory ones removed when neuronal activity is less
than its optimal level (([Ca2+] < ψ) in Figure 20):

dzEpost

dt
> 0 for [Ca2+] < ψ

dzIpost

dt
< 0 for [Ca2+] < ψ (1)

Unlike neurons in the LPZ that suffered a net loss of excitation,
neurons outside it appeared to suffer a net loss of inhibition, which
indicates that they must gain inhibitory and lose excitatory inputs to
return to their balanced state. Hence, the formation of new inhibitory
dendritic elements and the removal of their excitatory counterparts oc-
curs in a regime where neuronal activity exceeds the required amount
(([Ca2+] > ψ) in Figure 20):

dzEpost

dt
< 0 for [Ca2+] > ψ

dzIpost

dt
> 0 for [Ca2+] > ψ (2)
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The constraints described by Equations (1) and (2) can be satisfied by
Gaussian growth rules for excitatory and inhibitory dendritic elements,
with εEpost = ψ and ηIpost = ψ, respectively (Figure 20). Given the
distinct characteristics of excitation and inhibition, the two growth
rules were treated independently and the parameters governing them
were tuned iteratively over multiple simulation runs. For example,
sufficiently high values for the rate of formation of inhibitory dendritic
elements had to be selected for excitatory neurons to prevent the build
up of excessive excitation (Table 7).

3.2.1 Selected post-synaptic growth curves stabilise individual neurons

Experiments suggest that not just networks, but also individual neu-
rons in the brain maintain a finely tuned balance between excitation
and inhibition (Michael Okun and Ilan Lampl 2008; M. Okun and
I. Lampl 2009; Isaacson and Scanziani 2011). This raised the question
whether the complementary nature of the selected excitatory and in-
hibitory post-synaptic growth rules is sufficient to ensure stability at
the level of single neurons.

Since the state of each neuron is tightly coupled to the states of
other neurons in the network, a neuron was modelled in isolation to
investigate how its input connectivity would be affected by changes in
activity as per the selected post-synaptic growth curves (Figure 21a).
The neuron is initialised with an input connectivity similar to a neuron
from the network in its steady state: it has the same number of excita-
tory (zEpost) and inhibitory (zIpost) dendritic elements and receives the
same mean conductances through them (gEE,gIE). Thus, the [Ca2+]

of the neuron in this state represents its optimal activity (ψ = [Ca2+]

at t = 0 s in Figure 21b). In this scenario, the net input conductance
received by the neuron (gnet), which modulates its activity, can be
estimated as the difference of the total excitatory (gEE) and inhibitory
(gIE) input conductances.

gnet = z
E
postgEE − z

I
postgIE (3)

The activity of the neuron is then varied by an external sinusoidal
current stimulus (Figure 21b). In addition, the deviation of the neu-
ron’s excitatory (∆gE), inhibitory (∆gI), and net input conductance
(∆gnet) from baseline levels due to the formation or removal of den-
dritic elements under the action of the growth curves is recorded
(Figure 21c). It was found that modifications of the input connectivity
of the neuron resulted in alterations to its excitatory and inhibitory
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Figure 21: Input conductances in single neuron simulations show the home-
ostatic effect of the post-synaptic growth rules: (a) A neuron in its steady
state receives excitatory (gE) and inhibitory (gI) conductance inputs through
its excitatory (zEpost) and inhibitory (zIpost) dendritic elements, respectively,
such that its activity ([Ca2+]) is maintained at its optimal level (ψ) by its net
input conductance (gnet). (b) An external sinusoidal current stimulus (Iext)
is applied to the neuron to vary its activity from the optimal level. (c) Under
the action of the selected post-synaptic growth curves, the neuron modifies
its dendritic elements to change its excitatory (∆gE) and inhibitory (∆gI)
conductance inputs such that the net change in its input conductance (∆gnet)
counteracts the change in its activity: an increase in [Ca2+] due to the exter-
nal stimulus is followed by a decrease in net input conductance through the
post-synaptic elements and vice versa (dashed lines in Figures 21b and 21c).
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ψzIpre zEpre

0

[Ca2+]

dz
dt

Figure 22: Activity-dependent dynamics of pre-synaptic elements (dz/dt) as
functions of a neuron’s time averaged activity ([Ca2+]): In excitatory neurons,
axonal sprouting is stimulated by extra activity. In inhibitory neurons, on
the other hand, deprivation in activity stimulates axonal sprouting. Synaptic
elements that do not find corresponding partners to form synapses (free
synaptic elements) decay exponentially with time. These graphs are for
illustration only. Please refer to Table 7 for parameter values.

input such that the net change in its input conductance counteracts
changes in its activity: an increase in [Ca2+] due to the external stim-
ulus is followed by a decrease in net input conductance through the
post-synaptic elements and vice versa (dashed lines in Figures 21b
and 21c). These simulation results show that even though the activity
dependent growth rules of excitatory and inhibitory post-synaptic
elements are derived from data gathered from network studies, they
also serve a homeostatic function in single neurons.

3.3 activity dependent growth curves for pre-synaptic

structures

While the activity dependent formation and degradation of post-
synaptic elements provides a homeostatic mechanism for the stabili-
sation of activity in single neurons and the network, the increase in
excitatory or inhibitory input received by a neuron also relies on the
availability of pre-synaptic counterparts. Activity dependent growth
rules for excitatory (zEpre) and inhibitory (zIpre) pre-synaptic ele-
ments were initially derived using the same methods that were used
for post-synaptic elements.
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Within the LPZ, the increase in excitation requires a corresponding
increase in the supply of excitatory pre-synaptic elements. Yamahachi
et al. (2009) report a sizeable increase in the formation and removal
of axonal structures in and around the LPZ, while Marik, Yamahachi,
McManus et al. (2010) document a marked addition of lateral pro-
jections from neurons outside the LPZ into it. Whereas an increase
in post-synaptic elements within the LPZ may contribute to repair,
an inflow of activity from the periphery of the LPZ to its centre has
been observed in multiple experiments (Darian-Smith and Gilbert
1994; Keck, Mrsic-Flogel et al. 2008; Marik, Yamahachi, McManus et al.
2010), pointing to the inwards sprouting of excitatory axonal projec-
tions from outside the LPZ as the major driver of homeostatic rewiring.
For this sprouting of excitatory projections from the non-deafferented
area into the LPZ, the increase in activity in neurons outside the LPZ
must stimulate the formation of their excitatory axonal elements:

dzEpre

dt
> 0 for [Ca2+] > ψ (1)

Conversely, neurons outside the LPZ with increased activity need
access to inhibitory pre-synaptic elements in order to receive the re-
quired additional inhibitory input. Deafferentation studies in mouse
somatosensory cortex (Marik, Yamahachi, McManus et al. 2010) re-
port more than a 2.5 fold increase in the lengths of inhibitory axons
projecting out from inhibitory neurons in the LPZ two days after the
peripheral lesion. This outgrowth of inhibitory projections preceded
and was faster than the ingrowth of their excitatory analogues (Marik,
Yamahachi, McManus et al. 2010; Marik, Yamahachi, Alten Borgloh
et al. 2014). In the model, the experimentally observed outward pro-
trusion of inhibitory axons from the LPZ requires that the formation
of inhibitory pre-synaptic elements is driven by reduced neuronal
activity:

dzIpre

dt
> 0 for [Ca2+] < ψ (2)

To validate the derived pre-synaptic growth curves, shown in Fig-
ure 22, the complete set of possible pre-synaptic growth curves was
tested. These are labelled G0, G1, G2, G3, G4, and G5 and illustrated
in Figure 23:

• G0: control case where there are no growth curves, achieved by
setting ν = 0,

• G1: both inhibitory and excitatory neurites sprout when activity
is more than required,

• G2: (selected growth curves shown in Figure 22 fall in this
family) inhibitory neurites sprout when activity is less than
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optimal, but excitatory neurites sprout when activity is more
than required,

• G3: excitatory neurites sprout when activity is less than opti-
mal, but inhibitory neurites sprout when activity is more than
required,

• G4: both excitatory and inhibitory neurites sprout at optimal
activity, and

• G5: both inhibitory and excitatory neurites sprout when activity
is less than optimal.

As summarised in Table 6, only the derived pre-synaptic growth
curves reproduce all experimentally reported features of the repair
process. Although a few other pre-synaptic growth curves did allow
simulations to show an increase in activity in the LPZ and a loss of
activity outside it, the networks in these simulations did not re-balance
to a stable state.

Similar to the post-synaptic growth rules, the pre-synaptic growth
rules for excitatory and inhibitory neurons were also treated separately
and their parameters were tuned iteratively over repeated simulations.
Since inhibitory neurons form only one-fifth of the neuronal popula-
tion, and only a small number of these fall into the LPZ, in this study,
simulations require the growth rates of inhibitory axonal elements to
be high enough to stabilise the large number of hyperactive neurons
outside the LPZ (Table 7).

Figures 28a and 28b show the rewiring of axonal projections from
an excitatory neuron in the peri-LPZ and an inhibitory neuron in the
centre of the LPZ, respectively. Following the growth functions derived
above, our simulations correctly reproduce the inward sprouting of
excitatory axons into the LPZ and the outward sprouting of inhibitory
axons from the LPZ that is observed during the repair process.

3.4 a new model of recovery in simplified cortical ai

networks after peripheral lesions

Figures 24 and 25 provide an overview of the activity in the network
observed in simulations using the derived activity dependent growth
curves. The network is initially balanced by the homeostatic inhibitory
Spike Timing Dependent Plasticity (STDP) mechanism, which results
in establishing its physiological state where it displays low frequency
AI firing similar to cortical neurons (Vogels et al. 2011) (t < 1500 s
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Figure 23: Axonal growth curves investigated in the study. (Where applicable,
Red: inhibitory, Blue: excitatory)
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G0 G1 G2 G3 G4 G5

Initially remains stable Y Y Y Y N Y

LPZ gains activity Y Y Y N NA N

Outside LPZ loses activity Y Y Y NA NA NA

Returns to balanced state N N Y NA NA NA

LPZ B restores before LPZ C NA NA Y NA NA NA

Ingrowth of excitatory projec-
tions

NA NA Y NA NA NA

Outgrowth of inhibitory projec-
tions

NA NA Y NA NA NA

Disinhibition in LPZ NA NA Y NA NA NA

Table 6: Summary of axonal growth curve hypotheses tested in the model.
Each row represents a feature that is observed in experiments:
1. Initially remains stable: the network should remain stable without
deafferentation; 2. LPZ gains activity: increase in activity of LPZ neurons
to pre-deafferentation levels; 3. Outside LPZ loses activity: decrease in
activity of neurons outside the LPZ to pre-deafferentation levels; 4. Returns
to balanced state: the network should return to its balanced stable state after
activity of all neurons has been restored to pre-deafferentation levels; 5. LPZ
B restores before LPZ C: activity should be restored to the LPZ B neurons
before the LPZ C neurons; 6. Ingrowth of axonal projections: there should
be ingrowth of excitatory axons to the LPZ; 7. Outgrowth of inhibitory
projections: outgrowth of inhibitory axons from the LPZ should stabilise
neurons outside the LPZ; 8. Disinhibition in LPZ: disinhibition should be
observed in the LPZ neurons.
Each column represents a set of growth curves (illustrated in Figure 23):
G0: no growth curves (no sprouting or retraction); G1: both inhibitory
and excitatory neurites sprout when activity is more than required; G2:
inhibitory neurites sprout when activity is less than optimal, but excitatory
neurites sprout when activity is more than required; G3: excitatory neurites
sprout when activity is less than optimal, but inhibitory neurites sprout when
activity is more than required; G4: both excitatory and inhibitory neurites
sprout at optimal activity. G5: both inhibitory and excitatory neurites sprout
when activity is less than optimal;
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Figure 24: Recovery of activity over time (mean firing rates): (Mean
firing rates of neurons are calculated over a 2500ms window): (a)
shows the firing rates of the whole excitatory population at t =

{1500 s, 2001.5 s, 4000 s, and 18 000 s}. These are marked by dashed lines
in the next graphs. (b) shows mean firing rate of neurons in LPZ-C; (c)
shows mean firing rate of neurons in peri-LPZ; The network is permitted to
achieve its balanced AI low frequency firing regime under the action of in-
hibitory synaptic plasticity (t 6 1500 s). The structural plasticity mechanism
is then activated to confirm that the network remains in its balanced AI state
(panel 1 in Figure 24a). At (t = 2000 s), neurons in the LPZ are deafferented
(panel 2 in Figures 24a and 25b are at t = 2001.5 s) and the network allowed
to repair itself under the action of the structural plasticity mechanism (panels
3 (t = 4000 s) and 4 (t = 18 000 s) in Figures 24a and 25b).
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Figure 25: Recovery of activity over time (firing characteristics): (Mean firing
rates of neurons are calculated over a 2500ms window): (a) shows the coeffi-
cient of variation (CV) of the inter-spike intervals of neurons in the LPZ-C
and peri-LPZ. The graph is discontinuous because ISI CV is undefined in the
absence of spikes in the LPZ C; (b) shows spike times of neurons in the LPZ
C and peri-LPZ over a 1 s period at t = {1500 s, 2001.5 s, 4000 s, and 18 000 s}.
The network is permitted to achieve its balanced AI low frequency firing
regime under the action of inhibitory synaptic plasticity (t 6 1500 s). The
structural plasticity mechanism is then activated to confirm that the network
remains in its balanced AI state (panel 1 in Figure 24a). At (t = 2000 s),
neurons in the LPZ are deafferented (panel 2 in Figures 24a and 25b are at
t = 2001.5 s) and the network allowed to repair itself under the action of the
structural plasticity mechanism (panels 3 (t = 4000 s) and 4 (t = 18 000 s) in
Figures 24a and 25b).

in Figures 24b, 24c and 25a, and panel 1 in Figures 24a and 25b).
Once this AI state is achieved, homeostatic structural plasticity is
enabled, and it is confirmed that the network maintains its balanced
state under the combined action of the two homeostatic mechanisms
(1500 s < t < 2000 s in Figures 24b, 24c and 25a). At (t = 2000 s), the
network is deafferented by removing external inputs to neurons in the
LPZ.

In line with experimental findings, the immediate result of deaf-
ferentation is the loss of activity in neurons of the LPZ. Neurons
outside the LPZ, on the other hand, show an increase in activity
(t = 2000 s in Figure 24c). The change in activity caused by deaf-
ferentation stimulates neurite turnover in neurons of the network
in accordance with the proposed activity dependent growth rules
(t > 2000 s). Over time, activity is gradually restored in the network
to pre-deafferentation levels (t = 18 000 s in Figures 24b and 24c, and
panel 4 in Figures 24a and 25b).
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Even though the mean activity of neurons within and outside the
LPZ returns to pre-deprivation levels, the network reorganization by
structural plasticity leads to synchronous spiking in neurons in the
LPZ, instead of the AI firing observed during the pre-deprivation
stages in simulations (t > 4000 s in Figure 25a, and panels 3 and 4 in
Figure 25b). This predicted effect of network rewiring on the temporal
characteristics of neural activity should be an interesting subject for
future experimental studies. Furthermore, the observed lack of AI
activity in the LPZ is expected to have functional implications; this is
another promising topic for future theoretical work.

Figure 26 shows the time course of rewiring of excitatory and
inhibitory connections to excitatory neurons in the centre of the LPZ
that result from these growth curves in simulation runs. As described
in experimental studies, the loss of activity by neurons in the LPZ is
followed by an increase in excitatory input connections and a transient
reduction in inhibitory input connections. Specifically, as also found
in these experiments, the increase in excitatory inputs is dominated by
an ingrowth of lateral projections from outside the LPZ. Both of these
features can be seen in Figures 26a and 26b. As shown in Figure 27,
neurons directly outside the LPZ lose excitatory and gain inhibitory
input connections to reduce their activity back to their optimal values.
Furthermore, in line with experimental observations, a significant
contribution to the new inhibitory inputs to these neurons is provided
by new inhibitory projections from within the LPZ. Given the small
number of inhibitory neurons in the LPZ, however, their inhibitory
projections were found to be insufficient to stabilise the large number
of neurons outside the LPZ in simulations runs. Hence, inhibitory
projections are also recruited from inhibitory neurons outside the LPZ.

Figures 28a and 28b show the rewiring of axonal projections from
an excitatory neuron in the peri-LPZ and an inhibitory neuron in the
centre of the LPZ, respectively. Following the growth functions de-
rived above, simulations correctly reproduce the inward sprouting of
excitatory axons into the LPZ and the outward sprouting of inhibitory
axons from the LPZ that is observed during the repair process.

3.5 synaptic and structural plasticity are both neces-
sary for repair

In my model, network rewiring after deafferentation of the LPZ oc-
curred in the presence of both activity-dependent structural plasticity
and inhibitory synaptic plasticity. These results show that both types
of homeostatic plasticity can co-exist during successful network repair,
but they do not indicate their respective contributions to restoring ac-
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Figure 26: Input connectivity of excitatory neurons in the centre of the
LPZ: (a) and (c) show incoming excitatory and inhibitory projections to
the same randomly chosen neuron in the centre of the LPZ at different
stages of the simulations. From left to right: t = 2000 s, t = 4000 s, and
t = 18 000 s. (b) and (d) show total numbers of incoming excitatory and
inhibitory projections to these neurons from different regions at different
points in time. Following the proposed growth rules for post-synaptic
elements and consistent with experimental reports, the deprived neurons in
the LPZ C gain lateral excitatory inputs from neurons outside the LPZ. Also
in line with biological observations, they temporarily experience disinhibition
after deafferentation. However, as these neurons gain activity from their new
lateral excitatory inputs, the number of their inhibitory input connections
increases again in order to restore the E-I balance.
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Figure 27: Input connectivity of excitatory neurons in the peri-LPZ: (a) and
(c) show the incoming excitatory and inhibitory projections to the same
randomly chosen neuron in the peri-LPZ at different stages in the simulation.
From left to right: t = 2000 s, t = 4000 s, and t = 18 000 s. (b) and (d)
show total numbers of incoming excitatory and inhibitory projections to
these neurons from different regions at different points in time. In contrast
to neurons in the LPZ, neurons outside the LPZ experience an increase in
activity in these simulations. As a result of the growth rules, these neurons
lose excitatory inputs and gain inhibitory ones so that their activity is reduced
back to pre-lesion levels.
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Figure 28: Outgoing neuronal projections: (a) shows the outgoing (axonal)
projections of an excitatory neuron in the peri-LPZ. (b) shows the outgoing
(axonal) projections of an inhibitory neuron in the LPZ C. From left to right:
t = 2000 s, t = 4000 s, and t = 18 000 s. As per the suggested growth rules
for pre-synaptic elements, excitatory neurons produce new pre-synaptic
elements and sprout axonal projections when they experience extra activity,
while inhibitory neurons form new pre-synaptic elements and grow axons
when they are deprived of activity. As a consequence and in line with
experimental data, following deafferentation of the LPZ, excitatory neurons
in the peri-LPZ sprout new outgoing projections that help transfer excitatory
activity to neurons in the LPZ. Also in accordance with experimental work,
inhibitory neurons inside the LPZ form new outgoing connections that
transmit inhibition to neurons outside the LPZ.

tivity in the network. Section 3.1 documented that inhibitory synaptic
plasticity alone, although able to re-balance neurons outside the LPZ
by increasing the strength of their inhibitory inputs, fails to restore
activity in the deprived neurons in the LPZ even after small peripheral
lesions (Figures 29a and 29d). Although the homeostatic inhibitory
synaptic plasticity on its own leads to a reduction in conductances
of the inhibitory synapses projecting onto neurons in the LPZ, this is
not sufficient to reactivate them. The stabilisation of activity in the
neurons outside the LPZ, however, is successful due to the strength-
ening of IE synapses by STDP. In the absence of network rewiring by
structural plasticity, this leads to a network where the neurons outside
the LPZ retain their functionality while the LPZ is effectively lost.
This indicates that the larger deviations from the desired activity that
result from deafferentation in the balanced network model require
the reconfiguration of network connectivity by structural plasticity to
re-establish a functional balance.
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Figure 29: Both structural and synaptic plasticity are required for restoration
of activity after deafferentation: (a), (b), (c) show firing rate snapshots of
neurons at t = 1500 s, 2001.5 s, 4000 s, 18 000 s. (a) Synaptic plasticity only:
after the network has settled in its physiological state by means of synaptic
plasticity, structural plasticity is not enabled. With only synaptic plasticity
present, the network is unable to restore activity to neurons in the LPZ.
Neurons outside the LPZ return to their balanced state, but the neurons in
the LPZ are effectively lost to the network. (b) Both structural and synaptic
plasticity are enabled: neurons in the LPZ regain their low firing rate as
before deafferentation. (c) Structural plasticity only: after the network has
settled in its physiological state by means of synaptic plasticity, homeostatic
synaptic plasticity is turned off and only structural plasticity is enabled.
With only structural plasticity present, activity returns to neurons in the LPZ
but does not stabilise in a low firing rate regime. The firing rate of these
neurons continues to increase and, as a result, these neurons continue to
turn over synaptic elements. This cascades into increased activity in neurons
outside the LPZ, further causing undesired changes in network connectivity.
(d) shows the mean population firing rates of neurons in the centre of the
LPZ for the three simulation configurations. (Panel 1 is identical in all three
simulation configurations because the same parameters are used to initialise
all simulations.)



3 activity dependent structural dynamics of synaptic elements 85

Simulations where homeostatic synaptic plasticity was disabled, on
the other hand, also failed to re-establish the balanced state of the
network before the peripheral lesion (Figures 29c and 29d). Though
the activity of the deprived neurons in the LPZ initially increased back
to pre-lesion levels, under the action of structural plasticity only, the
network eventually started exhibiting abnormally high firing rates
instead of settling in the desired low firing rate regime. These results
suggest that inhibitory synaptic plasticity is required to finely tune
inputs to neurons so that the network can achieve its balanced state.

Thus, the simulations run in this study predict that both homeostatic
processes are required for successful repair—structural plasticity for
larger changes in network connectivity and synaptic plasticity for
the fine tuning of conductances that establishes stable activity in
the network. These results support the idea that multiple plasticity
mechanisms work in harmony to sustain functional brain networks at
varying time scales.

3.6 chapter conclusions

This chapter documented the derivation of activity dependent growth
curves of various neurites using simulations of the newly developed
model of peripheral lesioning that was reported in Chapter 2.

First, simulations of the new model suggest that deafferentation
does not necessarily result in the loss or even a decrease of activity in
all neurons of the network. Neurons outside the LPZ experienced a
gain in activity because of a net loss in inhibition in these simulations.
This prediction should be tested in future experiments that investigate
neuronal activity just outside the LPZ.

Secondly, simulation results suggest that although the network may
restore its mean activity, the temporal fine structure of the activity,
and in particular the AI firing characteristic of the network are perma-
nently disturbed by deafferentation. This change in firing patterns of
the network also merits experimental validation, especially given its
implications for network function. Synchronous firing in the network
may not be evident in studies of the mapping between peripheral
inputs and network activity. However, in combination with the change
in network connectivity, it can affect network function, such as the
storage and recall of associative memory. Given that the inhibitory
STDP mechanism is unable to maintain the network in its AI regime
following repair by structural plasticity, the deviation from the AI
firing regime is likely caused by the alteration of network connectivity
during the repair process. Indeed, as Figure 26b shows, neurons in the
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LPZ C region gain a significant number of lateral excitatory connec-
tions from neurons outside the LPZ (< 1× 104 before deafferentation
at t = 2000s vs 3× 104 at the end of the repair process at t = 18000s)
greatly increasing their excitatory input connectivity. This is in line
with previous work that indicates that synchronisation may occur in
networks of excitatory and inhibitory neurons when the number of
inputs being received by neurons is more than a critical value (Börgers
and Kopell 2003; Brunel 2000; Qu et al. 2013; Golomb and Hansel 2000;
Nowotny and Huerta 2003; Papadopoulou et al. 2011). The precise
relationship between network sparsity and population firing dynamics
in a network balanced by the inhibitory STDP mechanism used here,
however, does not appear to have been ascertained yet.

Thirdly, the results from simulations suggest different growth rules
for different types of neurite (Figures 20 and 22). In spite of being
derived from network lesion experiments that were not aimed at
studying the relation between activity and neurite turnover (Marik,
Yamahachi, McManus et al. 2010; J. L. Chen, Lin et al. 2011; Yamahachi
et al. 2009; Hickmott and Steen 2005; Keck, Mrsic-Flogel et al. 2008;
Keck, Scheuss et al. 2011; Trachtenberg et al. 2002; Marik, Yamahachi,
Alten Borgloh et al. 2014), other work seems to support these propos-
als. The growth rule for excitatory dendritic elements is coherent with
results from an experimental study in hippocampal slice cultures. In
their study, Richards et al. (2005) note that reduced neuronal activity
resulted in the extension of glutamate receptor-dependent processes
from dendritic spines of CA1 pyramidal neurons. Furthermore, the
predicted growth function for inhibitory dendritic elements is sup-
ported by a study by Knott, Quairiaux et al. (2002), which reports an
increase in inhibitory inputs to spines in adult mice after their activity
was increased by whisker stimulation.

On the pre-synaptic side, axonal turnover and guidance has been
investigated in much detail, and is known to be a highly complex
process incorporating multiple biochemical pathways (Goodhill 2013;
Lowery and Van Vactor 2009). The hypothesis regarding excitatory
pre-synaptic structures is supported by a report by Perez et al. (1996)
who find that CA1 pyramidal cells, which become hyper-excitable fol-
lowing hippocampal kainate lesions, sprout excitatory axons that may
contribute to the epileptiform activity in the region. For inhibitory
pre-synaptic elements, Schuemann et al. (2013) report that enhanced
network activity reduced the number of persistent inhibitory boutons
over short periods of time (30 minutes) in organotypic hippocam-
pal slice cultures. However, these experiments also found that pro-
longed blockade of activity (over seven days) did not affect inhibitory
synapses, contrary to the reports from peripheral lesion studies (J. L.
Chen, Villa et al. 2012; Keck, Scheuss et al. 2011).
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Indirect evidence on the temporal evolution of inhibitory projections
to neurons in the LPZ further supports the inhibitory growth rules
suggested in this chapter (Figure 26d). Whereas an initial disinhibition
aids recovery in these deprived neurons, as activity is restored, a
subsequent increase in inhibition is seen to re-establish the E-I balance
in the deafferented region in the simulations. This is in line with obser-
vations that the pharmacological reduction of inhibition re-activates
structural plasticity in the visual cortex (Vetencourt et al. 2008). These
simulations, therefore, support the proposed role of inhibition as con-
trol mechanism for the critical window for structural plasticity (Rosier
et al. 1995; Massie et al. 2003; Garraghty, LaChica and J H Kaas 1991;
Hensch 2005; Fagiolini and Hensch 2000; Versendaal et al. 2012).

Finally, these simulation results indicate that the suggested growth
rules, despite being derived from network simulations, can contribute
to the stability of activity in individual neurons (Figure 21). Since
structural plasticity and synaptic plasticity are not independent pro-
cesses in the brain, this is not a wholly surprising result. Structural
plasticity of the volumes of spines and boutons underlies the mod-
ulation of synaptic efficacy by synaptic plasticity. Thus, given that
synaptic plasticity mechanisms can stabilise the firing of individual
neurons (Turrigiano 2008; Keck, Keller et al. 2013), it follows that struc-
tural plasticity mechanisms could also be involved. Further, extending
from the functional coupling of synaptic and structural plasticity, these
simulations also required both structural and synaptic plasticity for
successful network repair (Figure 29). Thus, the results obtained here
lend further support to the notion that multiple plasticity mechanisms
function in a cooperative manner in the brain.

These proposals are limited by the various shortcomings, assump-
tions, and constraints that apply to the model that were discussed
in the previous chapter. In addition, whereas simulations were suffi-
cient to indicate the families of growth curves that apply to neurites,
an exhaustive exploration of the parameter space of growth curves
for individual neurites was hindered by the computational costs of
simulation. Where simulations without structural plasticity merely
took hours on 128 processing cores on the UH High Performance
Cluster, the activation of structural plasticity increased the computing
time to the maximum available—a full week. This required addi-
tional constraints to be included to reduce the parameter space to be
explored.

These simulation results do not imply that these are the only activity
dependent growth rules that can underlie the turnover of neurites.
Given the variety of neurons in the brain, many families of growth
rules may apply to neurons. For example, as discussed previously,
Butz and van Ooyen (2013) proposed a different set of growth rules
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using a model of peripheral lesioning in fast spiking neurons that did
not investigate the low firing AI state. Different growth rules could
therefore apply to brain regions with different neuronal types and
firing characteristics.
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Table 7: Growth rule parameters.

Parameter Symbol Value

Optimal [Ca2+] ψ

Excitatory neurons

Scaling factor: pre-synaptic struc-
tures (zEpre)

νEpre 15× 10−4

Vertical shift ωEpre 1× 10−2

X-axis parameters (ηEpre, εEpre) (ψ, 1.75×ψ)
Decay rate τEpre,free 0.01

Scaling factor: excitatory post-
synaptic structures (zEpost,E)

νEpost,E 3× 10−5

Vertical shift ωEpost,E 4× 10−1

X-axis parameters (ηEpost,E, εEpost,E) (0.25×ψ,ψ)

Decay rate τEpost,E,free 0.01

Scaling factor: inhibitory post-
synaptic structures (zEpost,I)

νEpost,I 3× 10−4

Vertical shift ωEpost,I 4× 10−2

X-axis parameters (ηEpost,I, ε
E
post,I) (ψ, 3.5×ψ)

Decay rate τEpost,I,free 0.01

Inhibitory neurons

Scaling factor: pre-synaptic struc-
tures (zIpre)

νIpre 3× 10−2

Vertical shift ωIpre 4× 10−4

X-axis parameters (ηIpre, εIpre) (0.25×ψ,ψ)

Decay rate τIpre,free 0.01

Scaling factor: excitatory post-
synaptic structures (zIpost,E)

νIpost,E 3× 10−5

Vertical shift ωIpost,E 4× 10−1

X-axis parameters (ηIpost,E, εIpost,E) (0.25×ψ,ψ)

Decay rate τIpost,E,free 0.01

Scaling factor: inhibitory post-
synaptic structures (zIpost,I)

νIpost,I 3× 10−5

Vertical shift ωIpost,I 4× 10−1

X-axis parameters (ηIpost,I, ε
I
post,I) (ψ, 3.5×ψ)

Decay rate τIpost,I,free 0.01



4
N E T W O R K R E O R G A N I S AT I O N A N D A S S O C I AT I V E
M E M O RY

The novel model of peripheral lesioning discussed in the previous
chapter allowed for the investigation of the primary research question
outlined at the start of the study: how does network repair affect the
storage and recall of associative memory stored in the network?

The simulation protocol used in this stage of the study was similar
to previous protocols (Figure 30). Initially, the network is allowed to
stabilise to its balanced Asynchronous Irregular (AI) state under the
action of only homeostatic synaptic plasticity. When this steady state
has been achieved, an associative memory is stored in the network
by strengthening the lateral excitatory synapses between a randomly
selected set of excitatory neurons. This normally functioning network
is then subjected to a peripheral lesion by deafferenting neurons in
a region to form the Lesion Projection Zone (LPZ). As the network
undergoes repair using the activity dependent growth curves derived
in the previous chapter, the recall performance of the associative
memory is measured.

To quantify the effect of the deafferentation and repair, the anal-
ysis was divided into three stages. First, the recall performance of
associative memories stored in a normally functioning network was
established. Next, the recall performance of the associative memories
after deafferentation but without repair was quantified to investigate
the effects of sensory deprivation. Finally, the recall performance of
the associative memories during the repair process was noted.

The proportion of the associative memory that is deafferented is
also expected to affect its recall performance. If more neurons of the
associative memory fall in the LPZ, fewer neurons are available to
receive projections that may recall the stored memory. This effect of
the overlap between LPZ and neurons of the associative memory was
also tested.

The work documented in this chapter has been submitted to CNS*2020

for consideration.
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Figure 30: The simulations in 2 phases. Initially, the setup phase (0 s < t < td)
is run to set the network up to the balanced AI state. Here, the network
is allowed to stabilise to its AI state under the action of synaptic plasticity
only. Then, at (t = ts), an associative memory is stored in the network
by strengthening the excitatory synapses between a randomly selected set
of excitatory neurons. The network is again allowed to stabilise to its AI
state under the action of synaptic plasticity only (t = t1). This represents
the physiological state of the network. Neuronal parameters obtained at
this point are used as the steady-state/homeostatic parameters for neurons.
Structural plasticity is then enabled to verify that the network remains in its
stable balanced AI state. At (t = td), a subset of the neuronal population
is deafferented to simulate a peripheral lesion and the network is allowed
to repair under the action of homeostatic mechanisms. At regular intervals
(t = {tr1, tr2, tr3, . . . }), the stored associative memory is recalled by providing
external stimulus to a randomly selected set of neurons that form it. While
neurons from the pattern that fall in the LPZ may be selected for this stimulus,
given that they have been deafferented, they will not receive any. During
each recall, both plasticity mechanisms are disabled to prevent changes in
network connectivity. They are re-enabled a short period after each recall
when the network has returned to its steady state.

4.1 revisiting recall performance without deafferenta-
tion

Although the recall performance of stored associative memories in
a physiological network was already established in Chapter 1, the
extensions made to the cortical network model necessitated a reconfir-
mation of these metrics. Specifically, in the new implementation of the
model in NEST, neurons are spatially distributed and connectivity is
distance dependent—neurons closer to each other are now more likely
to form synapses. If more associative memory neurons are selected
from the region that would form the LPZ, a higher proportion of asso-
ciative memory neurons would be closer to each other. As a result, the
associative memory would include more lateral excitatory synapses
that would be strengthened to store it. This section documents results
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Figure 31: Recall performance for different proportions of the associative
memory falling in the LPZ without deafferentation (the % of overlap is the
% of neurons of the associative memory that fall in the LPZ): In the absence
of deafferentation, during recall: (a) firing rates of neurons forming the
associative memory inside and out of the LPZ remained similar for different
proportions of the associative memory falling in the LPZ. The overall firing
rates of the neurons forming the pattern and background also remained
similar. (b) as a result, the Signal to Noise Ratio (SNR) obtained also did not
vary too much. (Here, the mean and standard deviation were calculated over
n = 5 simulations for each level of overlap.)
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from simulations that explored the effects of selecting different num-
bers of associative memory neurons from the pre-selected central LPZ
region on the recall performance of the associative memory.

As shown in Figure 17b, 5% of the total population of neurons in the
network at the centre of the grid are pre-selected for deafferentation
to form the LPZ. Using the same configuration as Vogels et al. (2011),
the associative memories stored in the network consist of 10% of the
excitatory population. This sets the upper limit for the proportion
of associative memory neurons that could fall in the LPZ at 50%. At
this value, all excitatory neurons of the LPZ would be included in
the associative memory. However, in simulations of the normally
functioning network where more than 30% of associative memory
neurons were selected from the LPZ, the firing of these associative
memory neurons in the LPZ was not re-stabilised to the balanced state
by the homeostatic inhibitory plasticity mechanism. Because of this,
the upper limit of neurons selected from the LPZ for inclusion in the
associative memory was reduced to 30%.

After the network had stabilised to its balanced AI state, whereas
the firing rates of associative memory neurons in the LPZ were initially
found to be slightly higher than those outside the LPZ, during recall,
when the network had re-stabilised, the mean firing rates of the
associative memory neurons both in and outside the LPZ and the
background neurons remained in the same range (Figure 31a). Similar
to earlier simulations, this is attributed to the homeostatic inhibitory
plasticity mechanism that strengthens inhibitory projections on to
the neurons of the associative memory to match their excitation and
balance their activity. As a result, the SNR during recall was also not
observed to be affected significantly by different spatial organisation
and connectivity of the associative memory neurons (Figure 31b).

4.2 effect of deafferentation on recall performance

In this section we deafferent neurons that fall in the pre-selected LPZ,
but do not activate the repair process. Although the selection of more
neurons for the associative memory from the LPZ did not affect the
recall performance without the peripheral lesion, after deafferenta-
tion, an observable deterioration in recall performance was observed
(Figure 32). Neurons of the associative memory that fall in the LPZ
do not receive any recall stimulus. Their contribution to the recall of
the associative memory, therefore, will be less than that in a normally
functioning network. This effect can be seen in Figure 32a. As more
associative memory neurons are selected from the LPZ, the activity of
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Figure 32: Recall performance for different proportions of the associative
memory falling in the LPZ after deafferentation but before repair (the %
of overlap is the % of neurons of the associative memory that fall in the
LPZ): When the network is deafferented, neurons that are included in the
associative memory from the LPZ do not receive the recall stimulus. As more
neurons from the associative memory are selected from the LPZ, less stimulus
is projected on the associative memory during recall. Thus: (a) the firing rates
of these neurons reduces, also reducing the mean firing rate of the associative
memory; the firing rates of associative memory neurons outside the LPZ
remains largely unaffected. (b) as the background firing rate also remains
unaffected by the peripheral lesion, the SNR of the recalled associative
memory drops. (Student’s independent two sample t-test, SNR before vs
after deafferentation: 5% overlap: P = 0.312; 10% overlap: P = 0.0118; 20%
overlap: P = 4.6 exp(−7); 30% overlap: P = 3.42 exp(−5)) (Statistics were
calculated over n = 5 simulations for each level of overlap. The Shapiro-Wilk
test was used to test for normality, and Levene’s test was used to analyse the
variance of samples.)
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Figure 33: Recall performance during repair with 5% and 30% of the associa-
tive memory falling in the LPZ. The network is deafferented at t = 4000 s. B:
before deafferentation; A: after deafferentation but before repair. Even though
activity in the network is restored, the SNR of the stored associative memory
during recall does not return to pre-deprivation levels. (Student’s indepen-
dent two-sample t-test, SNR before deafferentation vs SNR at t = 22500s: 5%
overlap: P = 1.59 exp(−7); 30% overlap: P = 1.98 exp(−5)) (Statistics were
calculated over n = 5 simulations for each level of overlap. The Shapiro-Wilk
test was used to test for normality, and Levene’s test was used to analyse the
variance of samples.)

these neurons when the associative memory is recalled is less, and so
is the resulting mean firing rate of the complete associative memory.

The firing rate of associative memory neurons outside the LPZ re-
mains stable in the range of parameters tested here. This indicates
that these neurons receive sufficient stimulus to maintain their recall
performance. Similarly, the mean firing rate of neurons forming the
background network also appears to be unaffected by the deafferenta-
tion. The combined result of the unaffected background activity and
the fall in mean firing rate of the associative memory neurons due to
a loss of recall stimulus to the subset of neurons falling in the LPZ
results in a reduction of the recall performance (Figure 32b).

4.3 effect of network repair on recall performance

Having established the recall performance of stored associative mem-
ories in a normal network and a deafferented network, the final stage
of the analysis studied recall performance during repair by structural
plasticity (Figures 33 and 34). The associative memory is stored in the
network at t = 1500 s and the network is deafferented at t = 4000 s.
At regular intervals in the simulation, plasticity was disabled and the
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Figure 34: Mean firing rates of associative memory and background neurons
in an example simulation (5% of associative memory overlaps with the LPZ):
(a) associative memory neurons in the LPZ; (b) associative memory neurons
outside the LPZ; (c) all associative memory neurons; (d) all background
neurons. Arrow indicates time in simulation when network was deafferented.
Yellow horizontal lines: mean firing rate during recall in a normal network;
Blue horizontal lines: mean firing rate during recall after deafferentation
before repair; Where they overlap or were close together, the blue line has
been omitted for clarity. The first spike in activity shows the storage of
the associative memory. Subsequent spikes show recall of the associative
memory. In the absence of deprivation, the activity levels of associative
memory neurons in and outside the LPZ are similar during recall (Figure 31a).
As can be seen here, however, after deprivation, the activity of associative
memory neurons in the LPZ does not recover.
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associative memory recalled. The spikes in firing rates after t = 4000 s
in Figure 34 are as a result of these recalls.

As Figure 33 shows, the recall performance of the stored associative
memory does not return to pre-deprivation levels. For networks with
less overlap between the associative memory and the LPZ (5%), the
recall performance continues to deteriorate as the network undergoes
repair. In this case, the associative memory is recalled better in the
absence of structural plasticity based repair (point A vs t = 22500s).
For networks with more overlap (30%), where the recall performance
is already low after deafferentation, recall performance remains similar
during repair. In neither case was the recall performance improved
after repair.

Since the lateral excitatory synapses between neurons forming the
associative memory have higher conductances than the synapses con-
necting the background neurons, in the model, they are less likely to
be removed. Thus, it is likely that the associative memory still exists in
the network and the recall stimulus that is still received by the neurons
of the associative memory outside the LPZ can be transferred to other
neurons of the associative memory in the LPZ. However, as Figure 34

shows, the firing rates of associative memory neurons outside the
LPZ are also reduced during recall, along with the firing rates of the
neurons forming the background. This decrease could result from
the large increase in inhibition in the network as the repair process
proceeds (discussed in Chapter 3). The drastic drop in the firing rates
of the associative memory neurons inside the LPZ suggests that the
transfer of excitation laterally, from the now less active associative
memory neurons outside the LPZ, to them does not compensate for
the loss in projecting recall stimulus. Thus, whereas alterations in lat-
eral connectivity by the repair process may restore activity to neurons
of the LPZ, changes in connectivity related to the stored associative
memories result in reduced activity in associative memory neurons in
and outside the LPZ, which results in reduced recall performance.

Although deafferentation was localised in this study to model a
peripheral lesion, neurons forming the associative memory were ran-
domly selected to model distributed associative memories both in and
outside the LPZ. The spatial configuration of the neurons forming
the associative memory, however, can affect its recall performance in
multiple ways. First, as documented in this chapter, the proportion
of associative memory neurons falling in the LPZ affects its recall
performance. Next, in this model where connectivity is dependent
on the distances between neurons, the spatial clustering of associative
memory neurons influences the lateral connectivity of the Hebbian
assembly. If the neurons forming the associative memory are clustered
close together, the lateral excitatory connectivity between them will
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be higher. To investigate this second factor, different magnitudes of
clustering must be analysed for different proportions of associative
memory neurons falling in the LPZ, expanding the exploration space
to two dimensions. Given the computational costs of simulating the
model, the scope of the current study was limited to investigating the
effects of varying amounts of randomly selected associative memory
neurons falling in the LPZ only. A more complete analysis of the
spatial characteristics of stored associative memories and their role in
mediating recall performance is noted here as future work.

It is also noteworthy that in a normally functioning brain network,
the characteristics of the recall stimulus would be expected to be simi-
lar to the general input the network receives. Thus, if the associative
memory neurons and their recall stimulus are distributed over the net-
work, the effects of the deafferentation would also perhaps be similarly
distributed. Since the model is based on peripheral focal lesion experi-
ments, the deafferentation was also modelled here as a localised loss
of external input. At this level of abstraction, the background external
input that is modelled here using simple feed-forward projections may
be interpreted as a combination of input projections from different
sources. The deafferented input in this interpretation may represent a
localised projection perhaps from one of the sources that experiences
a lesion whereas the recall stimulus may be understood to consist of
inputs from other uninjured sources. The effects of such input regimes
on the network repair and associative memory recall performance
were beyond the scope of this study. Nevertheless, these research
questions can be studied by making minor extensions to the model de-
veloped in this study. Multiple input projections may be modelled by
splitting the external input into different populations combinations of
which may be lesioned to model a variety of deafferentation regimes.
Furthermore, the spatial characteristics of deafferentation may also
be explored by varying the clustering of neurons that are selected for
deprivation.

Finally, another factor that may affect the performance of the stored
associative memories in the network, with and without deafferentation,
is the method used to store them in the network. Here, associative
memories were stored by a ‘one shot’ learning process where the
synapses of the associative memory were strengthened together to
form the Hebbian assemblies. In the brain, however, such associations
would be formed via plasticity mechanisms. The inclusion of plasticity
in the excitatory neuron population along with the structural and
homeostatic synaptic plasticity mechanism considerably increases the
complexity of the model and the accompanying analysis necessary
to isolate their individual effects. In general, the addition of more
plasticity and other mechanisms to bring the model closer to biology
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is also noted here as future work that may be undertaken using the
model as a starting point.

4.4 chapter conclusions

This chapter documented the final stage of the study where the newly
developed model was used to investigate the effects of network repair
by structural plasticity on associative memory stored in the network.
The simulations indicate that though the associative memory may
remain in the network, their recall performance is not retained after
injury. Indeed, they suggest that associative memories that have
only a small proportion of neurons falling in the LPZ may continue to
perform better if the network were not modified by structural plasticity
at all. Further work is needed to explore if there are methods, such as
recall or retraining of associative memories as discussed in the next
chapter, that may maintain or improve the recall performance.

The prohibitive computational costs of running simulations of the
model make the investigation of the effects of repair on overlapping
associative memories intractable. However, as reported in Chapter 1,
increased overlap between associative memories also caused a loss
in performance. Therefore, it is unlikely that the storage of multiple
overlapping associative memories would aid performance.

In the next, final chapter of the dissertation, the contributions to
knowledge, the results, the limitations, and a plethora of open ques-
tions that could not be investigated are discussed.
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C O N C L U S I O N S A N D F U T U R E W O R K

An expert is a man who has made all
the mistakes which can be made, in a
narrow field.

Niels Bohr

The aim of this thesis was to contribute to a better understanding
of functional changes in brain regions that undergo re-organization
by homeostatic structural plasticity after experiencing peripheral le-
sioning. Specifically, this thesis focussed on the recall performance of
associative memories stored in adult cortical networks during repair
after sensory deprivation by a focal peripheral lesion. The following
questions were addressed:

How does repair by activity-dependent structural plasticity
affect the function of a neuronal network as an associative
memory store?

How can neurites in a cortical network react to changes in
the host neuron’s activity to allow the restoration of stable
activity in a deafferented network?

To address these questions, a novel spiking network model of pe-
ripheral lesioning and repair was developed. This model was then
used to investigate the recall performance of associative memory in
the network. The development of the model, the results obtained from
its simulations, their limitations, and directions for future research
will be summarised in this chapter.

5.1 contributions to the field

The initial research for the study, summarised in Part i, identified
relevant information from a review of published literature. Since the
information on the repair of networks after focal peripheral lesions was
gathered from experiments that reported on network characteristics,

100
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two existing computational spiking network models were chosen to
form the foundation of this study:

• the model of a balanced Asynchronous Irregular (AI) spiking
cortical network which was demonstrated to act as a store for
attractor-less associative memories (Vogels et al. 2011),

• the Model of Structural Plasticity (MSP) framework that allows
for the modelling of structural plasticity in spiking neuronal
models, demonstrated by the reproduction of a peripheral le-
sioning study (Butz, Van Ooyen and Wörgötter 2009; Butz and
van Ooyen 2013).

These models dictated the choice of tools that were to be used in the
study. Initially, the Auryn simulator (Zenke and Gerstner 2014), and
later the NEST simulator (Kunkel, Morrison et al. 2017; Diesmann and
Gewaltig 2001; Peyser et al. 2017; Linssen et al. 2018; Jordan, Mørk
et al. 2019) were chosen as appropriate modelling software that would
enable the modelling of a peripheral lesioning experiment. As part
of the study, contributions were made to both these tools. Notably,
the symmetric inhibitory Spike Timing Dependent Plasticity (STDP)
rule used in Vogels et al. (2011) was added to the NEST simulator, and
improvements were made to NEST’s implementation of the MSP in
collaboration with the NEST development team. These contributions
resulted in my inclusion as a co-author in scientific publications for
these NEST releases:

• Susanne Kunkel, Abigail Morrison et al. (2017). NEST 2.12.0.
doi: 10.5281/zenodo.259534

• Alexander Peyser et al. (2017). NEST 2.14.0. doi: 10.5281/

zenodo.882971

• Charl Linssen et al. (2018). NEST 2.16.0. doi: 10.5281/zenodo.
1400175

• Jakob Jordan, Håkon Mørk et al. (2019). NEST 2.18.0. doi:
10.5281/zenodo.2605422. url: https://doi.org/10.5281/

zenodo.2605422

As detailed in the chapters in Part ii, the study was divided into
multiple stages. In the first stage of the study, reported in Part ii:
Chapter 1, it was established that a normally functioning balanced
cortical network is capable of storing multiple overlapping patterns
that can then later be recalled. It was observed that the recall per-
formance of the associative memories reduces as more and more of
them are stored in the network. It was also noted that the network
has a finite capacity to store associative memories. Depending on
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the magnitude by which synapses that were part of an associative
memory were strengthened, after a number of memories were stored,
the homeostatic inhibitory synaptic plasticity mechanism was unable
to balance the increased excitation.

The next stage of the study involved the use of a model of periph-
eral lesioning to study the effects of deafferentation and repair on
the recall performance of associative memory. Here, whereas the
MSP framework was found the be sufficient, the model of peripheral
lesioning developed by Butz and van Ooyen (2013) was not. The
limitations of their model were discussed in Part i: Chapter 1. A
novel model of peripheral lesioning was, therefore, developed that
correctly simulates the time course of repair observed in experimental
work (Part ii: Chapters 2 and 3). The development of this model
required the investigation of the activity dependent growth of neurites
by structural plasticity. Results from simulations suggest that for both
pre- and post-synaptic neurites, excitatory and inhibitory neurites
have to react to changes in activity in opposite ways for activity to be
restored to the Lesion Projection Zone (LPZ) by the experimentally
observed ingrowth of excitatory and outgrowth of inhibitory projec-
tions. Further, in spite of these growth rules being obtained from
the reproduction of network level changes, single neuron simulations
indicate that the growth rules for post-synaptic neurites also stabilise
individual neurons by countering changes in the balance between
excitation and inhibition (E-I balance).

The final stage of the study, detailed in Part ii: Chapter 4, used the
novel model of peripheral lesioning and repair to investigate the recall
performance of associative memories during the repair process. Here,
simulations suggest that even though activity is restored to the deaffer-
ented neurons of the LPZ, the performance of the associative memory
is not maintained. The recall performance of the stored associative
memory continues to deteriorate throughout the repair process. In
contrast, the simulations suggest that the recall performance of the
associative memory is better if no structural plasticity based repair
takes place at all.

The research from these stages of the study was disseminated in the
following publications:

• Ankur Sinha, Neil Davey et al. (2015). ‘Structural plasticity and
associative memory in balanced neural networks with spike-time
dependent inhibitory plasticity’. In: BMC Neuroscience 16.1, p. 1.
url: http://www.biomedcentral.com/1471-2202/16/S1/P235

• Ankur Sinha, C. Metzner et al. (2017). ‘The effect of homeostatic
structural plasticity on associative memory in a network with

http://www.biomedcentral.com/1471-2202/16/S1/P235
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spike-time dependent inhibitory synaptic plasticity.’ In: BMC
Neuroscience, 18(Suppl.1). doi: 10.1186/s12868-017-0370-3

• Ankur Sinha, Christoph Metzner, Roderick Adams et al. (2018).
‘The combined effect of homeostatic structural and inhibitory
synaptic plasticity during the repair of balanced networks fol-
lowing deafferentation’. In: BMC Neuroscience 19.2, pp. 129–130.
issn: 1471-2202. doi: 10.1186/s12868-018-0451-y

• Ankur Sinha, Christoph Metzner, Neil Davey et al. (2019a).
‘Growth rules for repair of asynchronous irregular network mod-
els following peripheral lesions’. In: BMC Neuroscience 20. issn:
1471-2202

• Ankur Sinha, Christoph Metzner, Neil Davey et al. (2019b).
‘Growth Rules for the Repair of Asynchronous Irregular Neu-
ronal Networks after Peripheral Lesions’. In: bioRxiv. doi:
10.1101/810846. eprint: https://www.biorxiv.org/content/
early/2019/10/21/810846.full.pdf. url: https://www.

biorxiv.org/content/early/2019/10/21/810846 (Manuscript
has been submitted for peer review).

An abstract detailing the final stages of the study has also been sub-
mitted to CNS*2020 for consideration.

Although not directly related to the study, the complexity of tools
used in computational neuroscience also encouraged me to resurrect
the NeuroFedora initiative. It is a volunteer driven initiative to pro-
vide a Free/Open Source (FOSS) Fedora Linux (RedHat 2008) based
Operating System for use in Computational Neuroscience. It includes
a plethora of commonly used simulators and analysis tools that can
be easily installed using the default Fedora package manager. A
downloadable, ready to use ISO installation image is also available.
NeuroFedora was presented to the research community as a poster at
CNS*2019:

• Ankur Sinha, Luis Bazan et al. (2019). ‘NeuroFedora: a ready
to use Free/Open Source platform for Neuroscientists’. In:
BMC Neuroscience 20. issn: 1471-2202. url: https://neuro.

fedoraproject.org

An abstract reporting on the progress that has been made in NeuroFe-
dora the past year has been submitted to CNS*2020 for consideration.
NeuroFedora was also presented by a team member to the Free/Open
Source community at the Open Research Tools and Technologies Dev-
room at FOSDEM.
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5.2 discussion and future work

Whereas the study did answer the intended research question, a
number of open questions remain that present avenues for future
research. In addition, various limitations that arise from the research
method and other practical considerations also present avenues for
improvements. In this section I will attempt to outline these for each
stage of the study.

In a computational modelling study, it is paramount to choose the
right level of abstraction for the model. A number of factors suggested
that the use of simple single compartment point neurons was suffi-
cient here. First, the experimental evidence that this study relies on
primarily provides network metrics on the growth of neurites during
the repair process. The MSP framework also uses similar sources of
evidence to allow modelling of neurite growth in simplified spiking
neuron models only. In addition, the investigation of associative mem-
ory as network function also implied that a network model rather
than a detailed neuron model was to be used. Thus, the model of
associative memory developed by Vogels et al. (2011) provided an ap-
propriate starting point. Not only did it model a biologically plausible
cortical network, it was also demonstrated to function as an associa-
tive memory store. Even though different point neuron models were
investigated, no clear advantage was seen in using a more featured
neuron model, such as the Adaptive Exponential Integrate and Fire
neuron model (Brette and Gerstner 2005) or Izhikevich (Izhikevich
and Desai 2003) model, that would add to the computational cost of
simulation instead of the simple leaky integrate and fire model used
by Vogels et al. (2011).

The first stage of the study, where the performance of a normal
network as an associative memory store was investigated, presented a
few technical challenges. The Auryn simulator that was used by Vo-
gels et al. (2011) allows the user to make snapshots of the network that
may be loaded to continue simulations. This was particularly useful
in simulations where multiple overlapping associative memories were
stored and recalled in succession so that their recall performance may
be analysed. The design of the simulator, however, does not lend itself
to the implementation of the MSP framework or connectivity changes
during simulation. On the other hand, whereas the NEST simulator
does permit implementation of the MSP framework and updates in
network connectivity during simulation, it is not currently possible
to make snapshots of simulations. In later stages of the simulation, a
workaround for NEST was to disable plasticity, both structural and
synaptic, when associative memories were recalled during repair, and
to let the network re-stabilise to its balanced state. Although this
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ensured that neither the connectivity nor the inhibitory synaptic plas-
ticity based synapses were affected by the recall of memories, various
changes in the internal states of simulation variables would still occur.
Thus, the addition of the ability to make complete snapshots of simu-
lations in the NEST simulator remains an open research question. As
we will see, NEST also presented other challenges in later stages of
the study.

As the storage of associative memory was only used as a proxy
to study network function, even at its first stage, the study did not
delve into the details of the storage of associative memory in cortical
networks. As an example, whereas the role of inhibitory neurons is tra-
ditionally limited to a homeostatic one, preliminary analysis showed
that storage of associative memories in the excitatory population also
resulted in changes in activity in inhibitory neurons. With inhibitory
plasticity recently gaining research focus (Sprekeler 2017), perhaps
investigating the effects of the inclusion of excitatory neurons and
their inhibitory counterparts to store associative memories would be
an interesting study. Of course, in general, more faithful modelling of
cortical networks by the inclusion of heterogeneous neuronal popula-
tions, multiple plasticity mechanisms, and other biological realities as
they are discovered remains an open research field (Zenke, Agnes and
Gerstner 2015).

Similarly, the inhibitory STDP rule that was developed by Vogels
et al. (2011) was also not investigated in detail. It has since been
noted that whereas the changes in the synaptic efficacies of inhibitory
synapses by the rule are correct, the rule does not model the correct
mechanisms responsible for this change (Vogels et al. 2012). The
experimental results that reported STDP in GABAergic synapses, that
the mathematical model was meant to be based on, identified the
underlying mechanism for increase in synaptic efficacy to be the
shift in the reversal potential of post-synaptic GABAergic currents
(EGPSC) to more positive values for co-incident pre- and post-synaptic
activity, but a reduction in synaptic conductance was only observed
for repetitive pre-synaptic activity in the absence of post-synaptic
activity (Woodin, Ganguly and Poo 2003).

In the next stage of the study, structural plasticity was to be added
to the model. As discussed in Part ii: Chapter 2, the use of a single
compartment point neuron model introduced certain constraints on
the study. The development of a multi compartment version of the
MSP framework to remove these constraints, however, is not a trivial
undertaking and was deemed beyond the scope of the study. Thus, it
is an area yet to be explored. The development of companion tools
to improve the simulation of structural plasticity using the current
version of the MSP also remains a potential undertaking. In its cur-
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rent form, NEST only includes a partial implementation of the MSP.
Due to the design of the NEST simulator, for example, one cannot
introduce distance dependent connectivity updates in simulations.
As a workaround, neurons in the model were provided with spatial
information explicitly in the Python simulation code. Further, since
the efficient routines for connection updates provided in the NEST
kernel could not be used, it was required to extract information for
each neuron from the paused simulation, calculate the necessary con-
nection updates in native Python, and push these changes back to the
simulation before its resumption. The additional routine calls here
greatly increase the computation cost. Additionally, the increased data
transfer cost of repeatedly explicitly synchronising the information
between the computing nodes using the Message Passing Interface
(MPI) was a bottle neck that could not be circumvented.

This stage of the study concluded with the development of a novel
model of peripheral lesioning. To the best of my knowledge, whereas
models of peripheral lesioning do exist, most notably models devel-
oped by Butz and van Ooyen using the MSP framework, this model is
the first spiking network model of peripheral lesioning and subsequent
repair in an adult cortical balanced network. Various features were in-
cluded in the model to increase its biological plausibility. Though new
synapses are formed between neurons based on the distance between
them in the MSP already, as explained earlier, this is not currently
included in the NEST implementation. Apart from re-implementing
this feature, the new model also takes into account the relationship
between synaptic stability and synaptic efficacy—stronger synapses
are less likely to be lost (Knott, A. Holtmaat et al. 2006; Trachtenberg
et al. 2002)—and removes synapses based on their synaptic weights.
Further, changes to the MSP were also made to permit the use of more
general families of Gaussian growth curves.

As reported in Part ii: Chapter 3, the development of the new model
included the investigation of the activity dependent growth rules
for various types of neurites. Although the high computational costs
prevented the use of a complete grid search to ascertain the parameters
governing the growth rules, a systematic heuristic based exploration
revealed growth curves that do seem to be supported by existing
research work (Richards et al. 2005; Knott, Quairiaux et al. 2002; Perez
et al. 1996; Schuemann et al. 2013). The multiple hypotheses suggested
by this study, however, remain to be experimentally verified. An
important future study would be to explore if the activity dependent
growth rules of neurites vary between the adult brain, as derived by
our model, and the developing brain which has been the subject of
much experimental research.
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Along with the growth curves, simulations also exhibited features
that lead to more open questions. First, simulation results suggested
that focal peripheral lesions may affect the activity of neurons in dif-
ferent ways depending on the location of the neuron in relation to the
LPZ. Where neurons in the LPZ would lose their external stimulus
and suffer a loss in excitation, neurons on the outer periphery were
noted to show increased activity—because of a net loss of inhibition.
Whereas similar ‘edge effects’ have been documented in other stud-
ies in the context of thalamocortical dysrhythmia that may underlie
tinnitus (Llinás et al. 2005; De Ridder et al. 2007), to the best of my
knowledge, this observation has not yet been studied directly in pe-
ripheral lesion experiments. Second, the time course of inhibition in
the simulations matches indications from experiments that suggest
its role in structural plasticity. The LPZ experiences disinhibition
after deafferentation and as activity returns to its neurons, inhibition
increases to re-stabilise their activity. This is in line with experiments
that suggest that disinhibition enables changes in synaptic connec-
tivity (Vetencourt et al. 2008; Rosier et al. 1995; Massie et al. 2003;
Garraghty, LaChica and J H Kaas 1991; Hensch 2005; Fagiolini and
Hensch 2000; Versendaal et al. 2012). Finally, also coherent with the
current state of the art that suggests that multiple homeostatic mech-
anisms are required to stabilise brain networks at different scales of
time and space (Zenke and Gerstner 2017), neither the homeostatic
inhibitory synaptic plasticity mechanism nor the homeostatic struc-
tural plasticity mechanism were found to be sufficient for repair in
isolation.

An important observation in the simulations was the state of the
network after repair. Although average activity is returned to the
neurons of the LPZ, it is not in an AI state as before. Although the
particular brain function chosen for the study, the recall of stored
associative memory, was not affected by this change, synchronicity
may affect other cortical functions. The model developed here is
general enough for use in investigations of other network functions
also. To ensure that it can be easily used by the research community,
the source code for the model, the modified version of NEST, and the
various tools and scripts used to analyse simulation data are all freely
available under a Free Software license. The data generated by the
multiple runs of the simulation is also publicly available and may be
used to further study aspects of the repair process that could not be
included here, such as the connectivity characteristics during repair.
For example, Butz, Steenbuck and van Ooyen (2014b) found that the
homeostatic structural plasticity process that preferred short term
connections led to the formation of efficient small world networks
common in the brain (Watts and Strogatz 1998; Sporns and Zwi 2004;
Bullmore and Sporns 2009).
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The final stage of the study used the developed model to study
the recall performance of associative memory during repair after
sensory deprivation. The results obtained here suggest that the recall
performance deteriorates after deafferentation. Since the weights
of synapses forming the associative memories are stronger than the
rest of the excitatory connections in the network, the memory itself
continues to exist the network. However, the changes in network
connectivity by structural plasticity hamper its recall. A number of
follow up questions arise from this result:

Can the deterioration of recall performance be prevented?

Since the recall performance of memories was also found to be better
without structural plasticity repair, this question includes exploration
of how structural plasticity can be controlled, and perhaps disabled in
certain scenarios. In the brain, recall of stored memories is thought to
play an important role in their reconsolidation (Tronson and Taylor
2007). Thus, a question related to therapy would be:

Does retraining of the memory by recall mechanisms dur-
ing the repair process maintain its recall performance?

This would require certain modifications of the model since in its
current state, efforts were made to keep the stored memory and the
network unaffected by memory recall. Additionally, alterations to
memory by activity would require the use of plastic synapses. This
may have other effects on the balance of the network. Finally, if
previous brain function cannot be protected:

Does the new connectivity of the network lend itself to the
storage of new associative memories and other network
functions?

Although at this stage, there are few practical applications of this
work, it is hoped that it provides a foundation for future multi-
disciplinary research that will add to our understanding of struc-
tural plasticity in the brain and perhaps aid in the development of
treatments related to peripheral lesioning of the brain.
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L I S T O F T E R M S

AdEx neuron model A general point neuron model using an exponential
function that can be used to model various spiking
characteristics by modifying its free parameters. 104

AI Asynchronous Irregular. 9, 35, 37, 38, 41, 43–45, 50,
53, 60, 61, 63, 67, 75, 78–80, 85, 88, 90, 91, 93, 101, 107

E-I balance balance between excitation and inhibition. 30, 70, 71,
81, 87, 102

LGN lateral geniculate nucleus. 22

LPZ Region of network that has lost projections on ac-
count of deafferentation. 9, 12, 13, 16, 22–25, 27–30,
61, 68–70, 74, 75, 78–87, 90–99, 102, 107

LTP A temporally asymmetric form of Hebbian learn-
ing in which near co-incident spiking of the post-
synaptic neuron after the pre-synaptic neuron results
in strengthening of the synapse between them (Bliss
and Lømo 1973) 32

memory Record of experience represented in the brain. 32

MPI a message-passing library interface specification. 106

MSP Model of Structural Plasticity. 12, 16, 24–27, 31, 53,
56, 57, 63, 64, 101, 102, 104–106

SNR Signal to Noise Ratio. 17, 35, 39–41, 43–47, 50, 52,
92–95

STDP Spike Timing Dependent Plasticity. 12, 35–39, 41, 45,
50, 75, 83, 85, 86, 101, 105

structural plasticity The formation and deletion of axonal boutons and
dendritic spines in neurons that may lead to forma-
tion of new synapses or removal of existing ones
20

synaptogenesis formation of synapses between neurons in the ner-
vous system. 20
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