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Abstract 

This thesis introduces artificial intelligence (AI) predictive modelling techniques 
for evaluating building deconstructability. It is the first research to create a 
deconstructability prediction model that includes variables from technical, 
economic, legal, social, environmental, and scheduling perspectives. The model 
uses advanced AI predictive models such as gradient boosting, artificial neural 
network, support vector machine, and random forest, among others, and can 
provide deconstructability prediction for different building types, including those 
designed for deconstruction (DfD) and those not designed for deconstruction, as 
well as BIM-compliant and non-BIM buildings, nearing or at the end of life. 

The research uses a positivist paradigm, focusing on objectivity and quantitative 
methods. The research employs a systematic literature review to identify 
variables influencing deconstructability. This review aids the development of a 
deconstructability construct-based conceptual framework, guiding the creation 
of a questionnaire. Deconstruction professionals, such as demolition engineers, 
civil/structural engineers and others with deconstruction expertise, complete this 
questionnaire based on a single past deconstruction project.  

After scrutinising all the returned questionnaires, 263 were discovered to be 
relevant. Since each professional responds based on a single past deconstruction 
project, each of the 263 questionnaires is assumed to represent a deconstruction 
project. These questionnaires help form two feature sets: all identified 
variables/features; the feature set is reduced to 22 variables using eight feature 
selection techniques. For consistency, the research experiments with and uses the 
two feature sets to develop twelve AI predictive models. The data is divided into 
75% for training and 25% for testing across all feature sets. 

To address the imbalance in class, the research uses an oversampling technique 
(i.e., the synthetic minority over-sampling technique (SMOTE)) on the training 
data, ensuring a balanced representation of classes for model training across 
different predictive models. Additionally, the research employs a 5-fold Cross-
Validation (CV) to rigorously assess each model’s performance. The research 
trains on the balanced training data and tests on the untouched 25% test set for 
all the AI predictive models. This provided robust and unbiased performance 
estimates. Importantly, this step ensured the oversampling process did not 
artificially inflate the models' performance metrics.  
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The research finds that support vector machines with the polynomial kernel 
(SVM-P) using all features and Artificial neural networks with multilayer 
perceptron (MLP) using the features deducted from the FS techniques are the two 
high-performing models. Among the two, the SVM-P shows the highest predictive 
capabilities because of its higher accuracy and AUC, even as it uses all features. 
These findings made it known that, though researchers have proved the use of FS 
for enhancing predictive capabilities in AI predictive models, their uses and 
advantages may depend on the problem and scenario; as such, their uses may not 
apply to all kinds of issues/scenario where AI predictive model is used. 
Additionally, the predictive modelling performance of SVM-P suggests and 
supports the idea that deconstructability is a multifaceted concept. This is 
evidenced by the fact that the highest performance was achieved when all the 
diverse set of variables was used.  

A significant achievement of this research is the successful implementation of a 
generalisable and explainable AI-deconstructability predictive model that 
assesses building deconstructability. Another achievement is the establishment of 
various variables and perspectives, which provide a holistic view of the 
deconstructability of the building. Lastly, the AI-deconstructability predictive 
model developed in this research is the first AI-predictive model for 
deconstructability applicable to different types of buildings: DfD and non-DfD, 
as well as BIM-compliant and non-BIM buildings nearing or at the end of their 
useful life. 

The findings show that AI enables deconstructability decision-making for 
buildings near or at the end of their useful life, leading to innovative solutions for 
real-world challenges. The research implications are threefold: first, it enriches 
the knowledge base on AI applications for deconstruction, promoting 
collaboration between AI researchers and deconstruction professionals. Second, 
deconstruction professionals leverage AI's predictive capabilities to enhance 
decision-making processes, with potential applications extending to industries 
like manufacturing, thereby contributing to sustainability across multiple 
domains. Finally, the research further emphasises the need to explore AI model 
scalability, incorporating larger samples, diverse data sources and larger 
industrial validation by experts. Additionally, it suggests integrating emerging 
technologies such as IoT and capturing technologies to enhance real-time 
deconstructability predictions. 
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Chapter One 
1.0 Introduction 

 
 
 
 
 
 
 

 

he architectural, engineering, and construction (AEC) industry employs 
approximately 2.4 million individuals, representing 10% of the total 
workforce in the United Kingdom (UK) and 8% globally (see Figure 1.1). 

It also constitutes more than 6% of the country's economic output, amounting to 
£117 billion in 2018 (Rhodes, 2019). Similar substantial economic impacts are 
observed globally, including in China, the United States of America (USA), and 
India (Alaloul et al., 2022).  

 
Figure 1.1: Share of employment by industry in the year 2021 (Adopted from Statista 2021) 

Additionally, the industry promotes social development by improving well-being 
and advancing healthier communities (Altomonte et al., 2020; Chadwick, 2020; 
Younger et al., 2008). 

T 
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Notwithstanding the undeniable positive impacts of the AEC industry on the 
economy and people's well-being, growing arguments highlight its detrimental 
effects on the socio-physical environment, including unsustainable consumption 
of limited natural resources, generation of waste, and atmospheric pollution. 
These issues can be attributed to global growth and development, particularly the 
increasing migration rate over the past few decades, either due to the search for 
better living standards or even in search of safe havens, especially for war victims. 
This migration trend is expected to continue; for example, the urban population 
is estimated to double by 2050 (United Nations, 2018; World Bank, 2020). 
Consequently, the pressure on natural resources for construction is expected to 
intensify. In the UK alone, the construction industry currently consumes around 
100 million tonnes of natural resources (UK Green Building Council, 2018), 
while globally, it accounts for approximately 40% of total natural resource 
consumption (Chen et al., 2022; UNEP, 2020). These resources include water, 
oil, copper, limestone, and wood, to mention but a few (DEFRA, 2020a; TERI, 
2017a).  

Furthermore, the industry generates a significant waste volume, over 37% of the 
total global waste generation (Figure 1.2), primarily from construction and 
demolition activities (UNEP, 2020). Demolition is accountable for producing the 
most significant volume of waste compared to other construction activities 
(Balogun et al., 2022), and this is because demolition renders more than 90% of 
the building waste irrecoverable (Del Río Merino et al., 2010). 

 
Figure 1.2: Global Waste Generation by Industry (Adopted from Statista 2021) 
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According to a report by the Department for Environment, Food, and Rural 
Affairs (DEFRA), demolition processes/activities account for approximately 
62% of the total waste in the UK (DEFRA, 2020). Like the UK, demolition also 
contributes a significant volume to the waste stream in other countries, such as 
China and the USA, among others (Aslam et al., 2020; Z. Wang et al., 2024). 

Furthermore, the waste from demolition activities is usually wreckage. It is 
heterogeneous and may contain bricks, gypsum, concrete, masonry, sand, tiles, 
glass, wood, plastics, asbestos, and metals. These mixtures are usually complex 
to sort and may harm human health. 

The unruly consumption of limited and scarce resources and waste generation 
extends beyond environmental concerns. Disposing of construction and 
demolition waste (CDW) in landfills presents various challenges. For instance, 
densely populated areas may face space limitations. At the same time, when the 
rain falls, particularly in an area where CDW resides, it can cause leaching, 
fermentation, and the penetration of surface water and groundwater, leading to 
contamination of surrounding water sources and leachate issues (Istrate et al., 
2020). The leachate from CDW often contains hazardous substances that can 
infiltrate the soil through physical, chemical, and biological processes, posing 
risks to soil quality. Besides, a significant proportion of CDW today is known to 
contain heavy metals, and the accumulation of these metals in the soil can 
negatively impact soil quality through various biochemical processes (Wu et al., 
2022). 

Furthermore, the decomposition of organic materials in landfills, along with the 
dispersion of waste particles by wind, can release hazardous gases such as CO2, 
H2S, CH4, and NOx, affecting air quality and potentially posing health risks to 
individuals and animals (Siddiqua et al., 2022). In addition, the issue of resource 
scarcity has profound economic implications. Societies heavily reliant on finite 
resources may face the risk of depletion, leading to political instability. Also, 
resource competition among powerful nations can escalate geopolitical tensions 
and contribute to conflicts. These factors highlight the interconnectedness of 
environmental issues in AEC practices with socio-environmental, political, and 
economic dimensions.   

Several published articles have identified deconstruction as one of the most 
efficient and strategic plans to address socio-environmental and socio-economic 
concerns resulting from building construction and their end of life in the AEC 
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industry. Deconstruction has gained popularity as a sustainable building strategy 
in recent years due to its ability to decrease waste and enhance resource 
efficiency. Deconstruction, in contrast to demolition, is the deliberate and non-
destructive taking apart of a building (ISO 20887, 2020) intending to recover and 
reuse the materials and components (Rios et al., 2015a) rather than disposing of 
them in a landfill. 

Deconstruction operation often starts with soft stripping, which removes all non-
structural components, such as carpets, ceilings, tiles, and non-load-bearing 
walls, to facilitate the removal of the building's structural elements. The structural 
components and other components left from the soft stripping are then carefully 
dismantled either by specialised tools or by pieces of machinery, such as 
excavators and cranes. Using machinery is often faster and less labour-intensive, 
which may result in lower material recovery rates. Chapter two of this thesis will 
discuss the deconstruction process in detail. 

When deconstructing buildings, recovered components may be reused nearly in 
their original form without significant alteration or require reform before reuse. 
Aside from reuse, recovered materials through deconstruction can also be 
recycled. Recycling entails changing the function of a component when its 
original use is no longer economically or ecologically sustainable. Recycling can 
be downcycling or upcycling. Downcycling is demonstrated by the process of 
breaking down recycled concrete into aggregates. Using salvaged glasses to 
replace additives in cement production may be called upcycling. Downcycling is 
well-known as the least environmentally friendly form of recovery (Zhang et al., 
2020). This is because its procedures may require more energy than sustainable 
recovery alternatives. Although it is preferable to reuse recovered components 
without much modification because this implies the component still meets its 
functional requirements, it is worth remembering that components reused over 
time may be subjected to recycling at some point when they no longer serve their 
purpose. After years of usage, recycling becomes unavoidable.  

Overall, deconstruction offers a sustainable and economically viable alternative 
to traditional demolition practices. It can significantly reduce waste, promote 
sustainability, and create economic opportunities. 
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1.1 Deconstruction: Barriers and Benefits 

Advantages of deconstruction include waste reduction and an increase in resource 
recovery. Findings have clarified that deconstruction can result in a high 
proportion of salvaged and reused materials, ranging from 50% to 95%, 
depending on the project and materials involved (United States Environmental 
Protection Agency (EPA), 2018). The reclaimed materials could be sold, thus 
generating revenue while lessening the environmental effect of construction by 
minimising the demand for new materials and the energy necessary to produce 
new materials or components (Geissdoerfer et al., 2017). Similarly, by reuse and 
recycling, the typical cost associated with landfill tax may be reduced and/or 
avoided; as a result, the cost incurred for landfill disposal may be minimised.   

Furthermore, by reusing resources, deconstruction may generate economic 
advantages by creating work opportunities and lowering the cost of new 
construction (Zahir et al., 2016). The construction of structures such as the 
pavilion at Glyndebourne Opera in Sussex (using oyster shells and corks), the 
Villa Welpelloo in the Netherlands (using reclaimed textile machinery and cable 
reels) (Kozminska, 2019), the Brighton waste house (using reclaimed carpet tiles 
and chalky soil) (Baker-Brown, 2016) and the 59-story Montparnasse tower in 
Paris, to mention but a few were partly built using recovered materials from older 
buildings, this possibly generates revenue reclaimed materials owners. Besides, 
many of the used materials were collected using basic equipment. It supposedly 
requires a larger workforce, often involving labour-intensive processes such as 
de-nailing, unscrewing, removing mortar from tiles, and cleaning marbles and 
slabs. As a result, potential jobs were created. Deconstruction additionally offers 
the benefit of preserving built heritage (Baker et al., 2021). Cities can benefit 
economically from retaining their built heritage. For example, Britain's well-
known castles and cathedrals have contributed significantly to the economy and 
helped define Britain’s identity (Anastasiou et al., 2022; England, 2008, 2015). 

Despite its benefits, deconstruction faces several challenges, one of which is the 
higher cost and time required compared to traditional demolition. This is partly 
due to the labour-intensive nature of deconstruction, which requires skilled 
workers to carefully remove materials (Pons-Valladares & Nikolic, 2020). Other 
challenges include coordinating logistics, identifying valuable materials and 
ensuring their safe removal (United States Environmental Protection Agency 
(EPA), 2018). Additionally, technological barriers pose significant challenges; 
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for instance, the need for advanced tools and equipment for efficient material 
recovery can hinder deconstruction efforts. Access to digital platforms for 
tracking and managing materials and insufficient technology integration, such as 
Building Information Modelling (BIM), can limit the ability to plan and execute 
deconstruction effectively. Finally, building deconstruction requires specialised 
knowledge and training, which may not be readily available in some regions. 

Furthermore, various issues, such as professional and governmental legislation, 
building design and assembly, the physical state of the materials and demand, and 
public attitudes often discourage deconstruction. Chapter two delves further into 
the challenges impacting deconstruction. 

1.2 Terms and Concepts 
Demolition 

Thomsen et al. (2011) described demolition as the complete elimination of all 
parts of a building at a specific location and time. In another study by (Zahir et 
al., 2016), demolition was described as an engineered process to knock down 
buildings into debris. Equipment used to tear down buildings includes excavators, 
bulldozers, tearing balls and explosives such as dynamite and Royal demolition 
explosives (RDX) (Khandve, 2014; Pranav et al., 2015).  

Deconstruction 

Deconstruction is carefully knocking down a building into its components to 
rescue its materials for recycling, reuse, and reconstruction reasons (Rios et al., 
2015b). Deconstruction is a means to an end; it exists for the appropriate recovery 
of building elements and materials for reuse in the most cost-effective manner 
(Guy, 2004). More on deconstruction will be discussed better in chapter two of 
this thesis. 

Deconstructability 

Deconstructability is a concept that evaluates the feasibility and practicality of 
deconstructing buildings (Akinadé et al., 2015; Guy, 2001; Guy & Ohlsen, 2003a; 
Kim & Kim, 2022). It extends beyond the physical aspects and considers broader 
implications, including structural, environmental, social, and economic factors. 
Deconstructability aims to determine whether deconstructing a building offers 
advantages over conventional demolition. This assessment involves analysing 
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building materials, construction techniques, and potential reuse opportunities to 
guide decision-making. 

Artificial Intelligence 

Artificial intelligence (AI) is "the science and engineering of making intelligent 
machines" (McCarthy, 2007). Machine learning (ML) is an AI subtype where 
computers learn from sample data (train) to predict unseen data (test/validation) 
(Balogun et al., 2021; Egwim et al., 2021; Olu-Ajayi et al., 2023). With the 
capability of finding unknown patterns in the data, ML can solve various 
problems, such as discovering associations between variables, sorting subjects, 
making predictions based on criteria and identifying objects with similar patterns, 
among others. The applications of AI/ML for deconstruction will be investigated 
further in chapter four of this thesis.   

1.3 Justification of Study 
Every year, tens of thousands of buildings face demolition in the UK and the 
United States, as reported by the Royal Institute of British Architects (RIBA, 
2021) and (The United States Environmental Protection Agency (EPA), 2018). 
This trend extends globally to countries like the USA, China, and various 
European nations (Aslam et al., 2020; Wang et al., 2024). 

Shifting from demolition to deconstruction has significant benefits. By salvaging 
materials rather than sending them to landfills, we can reduce waste and obtain 
sustainable construction materials, thereby conserving resources. For example, 
(Guy, 2006a) argued that for every three-square fts of structural deconstruction, 
approximately one square ft of usable lumber can be reclaimed for future 
construction projects. Building upon this argument, if more buildings were 
deconstructed instead of demolished each year, more reclaimed materials would 
be available to make a substantial number of new homes. 

Despite acknowledging the importance of transitioning from demolition to 
deconstruction, the knowledge and/or resources required to make informed 
decisions about a building's deconstructability are often lacking or prohibitively 
expensive. This knowledge should be made available to guide the decision around 
the deconstructability of buildings and encourage deconstruction. An initiative 
involving the development of a deconstructability predictive model (DPM) to 
help stakeholders identify buildings suitable for deconstruction, enhancing 
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decision-making and encouraging deconstruction implementation has surfaced. 
However, the persistent demolition rates, as argued by (RIBA, 2021), suggest the 
need for a more thorough DPM that considers all variables/factors influencing 
existing building stocks, including those not designed for deconstruction and 
those non-compliant with Building Information Modelling (BIM). 

1.4 Gap in Knowledge 
Existing DPMs primarily concentrate on building's deconstructability prediction 
from perspectives such as technical, e.g., (Akinadé et al., 2015; Basta et al., 
2020a) or economic factors (Rakhshan et al., 2021b; Tatiya et al. 2018a). 
However, this limited approach may not provide a thorough holistic 
understanding necessary for accurately predicting a building's deconstructability. 
Research sources like (Ajayi & Oyedele, 2018; Akinadé, Oyedele, Ajayi, et al., 
2017) highlight the need to broaden the evaluation framework beyond technical 
and economic aspects to encompass various dimensions. Studies advocate for 
incorporating diverse perspectives, including social, environmental, legal, and 
scheduling, to achieve a more holistic system (Akinadé et al. 2017, 2020; Balogun 
et al. 2022). 

Despite the proven benefits of using AI techniques over statistical models in 
various predictive domains such as building energy prediction (Egwim et al., 
2021; Olu-Ajayi et al. 2022b, 2022a), construction project management/delay 
schedules (Egwim et al., 2021), and air-pollution prediction (Balogun, Alaka, & 
Egwim, 2021), only a few studies on deconstructability predictive models (DPM) 
have utilised AI techniques e.g., (Àkànbí et al., 2019; Akinadé et al., 2015). 
Furthermore, these existing studies, for example, (Akanbi et al. 2019; Akinade et 
al. 2015), mainly focus on modern buildings designed for deconstruction and 
compliance with Building Information Modelling (BIM). This focus neglects a 
significant portion of older buildings at or near the end of their useful life, which 
are not BIM-compliant and were not designed for deconstruction. Therefore, 
there is a need for a deconstructability predictive model that addresses both BIM-
compliant and non-BIM-compliant buildings, as well as those intended for 
deconstruction (DfD) and those that are not. 

Given the goal of developing a deconstructability predictive model (DPM) 
relevant for different building types, prioritising the AI-DPM in generalisability 
and interpretability is paramount for promoting DPM’s use for deconstructability 
assessment. In addressing these research gaps, it is essential for DPMs to 
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1. Incorporate extensive variable sets from a broader perspective, including 
technical, environmental, legal, economic, social and schedule. 

2. Target both BIM, non-BIM, DfD and non-DfD buildings. 
3. Be generalisable and interpretable. 

1.5 Aim and Objectives  
This research aims to develop an artificial intelligence-based deconstructability 
predictive model for buildings at their EOL or nearing EOL. To achieve this goal, 
research will focus on the following three objectives. 

1. To identify explanatory variables from all perspectives (i.e., social, 
economic, technical, environmental, schedule, legal) influencing building 
deconstructability through a systematic literature review. 

2. To develop a construct-based deconstructability conceptual framework to 
aid data collection. 

3. To investigate the explanatory variables useful in the development and 
selection of the best AI model with explainability and generalisability for 
deconstructability prediction useful for BIM, non-BIM, DfD and non-DfD 
buildings 

1.6 Research Questions 
The research questions were based on the issues identified in the ‘Gap in 
Knowledge' and ‘Research aim and objectives’ sections. They are as follows: 

1. What are the explanatory variables that influence deconstructability? 
2. What is the significance of each identified explanatory variable? 
3. What AI algorithm produces the best prediction performance on unseen 

datasets without losing its explainability for deconstructability prediction?  

1.7 Unit of Analysis  
Neuman (2003) succinctly defines the unit of analysis as "the type of unit a 
researcher uses when measuring." It represents the entity upon which data are 
collected and becomes the primary focus for analysis and interpretation.  

In this research, the unit of analysis is the building. This decision stemmed from 
the fact that the data collected and analysed predominantly pertained to the 
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deconstructability of buildings, and the conclusions drawn were primarily 
concerned with these entities. 

It's important to note that the unit of analysis is frequently mistaken for the unit 
of observation, which refers to the entity about which data are gathered - 
essentially, the "who" or "what" being studied. As Tainton (1990) aptly puts it, 
the unit of observation is the "entity on which the original measurements are 
made." In this research, data were directly sourced from the deconstructed 
buildings, underscoring their role as the unit of observation. 

1.8 Overview of Methodology 
This research aimed to develop an AI-based deconstructability predictive model 
considering various variables and perspectives relevant to deconstructability. A 
systematic review of academic and industrial reports was conducted to identify 
these variables. Subsequently, identified variables were operationalised to form 
questionnaires, facilitating data collection about deconstruction projects. The 
collected data was subsequently used for the development of an AI-based DPM. 
Employing a quantitative approach, the study involved various procedures to 
achieve its objectives. Key aspects such as sampling, data collection, analysis 
techniques, and the development of the artificial intelligence predictive model for 
DPM were integral components of the study and are therefore briefly discussed. 

Sample 

The population was of the existing building stock in the UK and beyond that have 
reached their end of useful lives or are about to reach the end of useful lives 
considered for deconstruction. The sampling method is purposive and further 
discussed in chapter five. 

Literature Review 

A systematic literature review was conducted to explore existing studies that have 
identified variables influencing deconstructability and deconstruction practices, 
regardless of whether they explicitly focused on developing DPM. The identified 
variables were operationalised and translated into a questionnaire following the 
review.  
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Questionnaires 

A survey tool was developed using the established variables from the systematic 
literature review to collect data. To ensure clarity and appropriateness of the 
survey questions, a rigorous pilot test was conducted among graduate school 
researchers with construction backgrounds. Following this, a purposive random 
sampling strategy was employed to electronically recruit participants possessing 
the requisite knowledge in deconstruction, given the specialised knowledge 
required to respond effectively to the survey questions. More on the questionnaire 
is further discussed in Chapter Five.  

Data Analysis 

The collected data served dual purposes in the research endeavour. Firstly, it was 
subjected to statistical analysis to explore the variables' significance and 
interrelationships. This analytical approach aimed to uncover insights into the 
factors influencing deconstructability, highlighting different perspectives on 
deconstructability. Secondly, the data was crucial in developing an AI-based 
DPM (AI-DPM). The dataset was divided into two subsets for the development 
of the AI-DPM: 75% for model training using cross-validation methods and 25% 
for extra-layer-validation/testing. This partitioning allowed rigorous evaluation 
of the predictive models' performance and generalisation ability. More on the 
analysis is discussed in chapter six.   

1.9 Contribution 
Academic Contribution 

The primary objective of the research was to create an AI-based predictive model 
for assessing the deconstructability of buildings as they reach or near the end of 
their useful life. This effort contributed significantly to academic knowledge in 
several key respects. Notably, it represented a pioneering effort to expand the 
scope of variable consideration beyond technical-like and economic variables, 
aligning with the suggestion of (Akinadé et al., 2020; Akinadé et al., 2017). By 
incorporating additional non-technical/economical perspectives such as 
environmental, legal, schedule, and social into the development of the AI-DPM, 
the research aimed to provide a more comprehensive and nuanced understanding 
of deconstruction processes. 
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One notable contribution of the research was the systematic review to identify the 
diverse variables influencing deconstructability. This thorough examination was 
a novel approach in the field, as previous studies had not taken such a holistic 
perspective. By systematically analysing and synthesising existing literature, the 
research captured a broader spectrum of variables influencing deconstructability, 
enriching the academic understanding of this subject matter. 

Industrial Contribution 

The study underscores the significance of considering non-technical alongside 
technical aspects for achieving successful deconstructability. Professionals, 
house owners, and other stakeholders can understand variables to watch out for 
in buildings nearing or at the end of their useful lives for its deconstructability 
assessment. AI-DPM can offer rapid deconstructability assessment of buildings, 
whether BIM, non-BIM, DfD, or Non-DfD, at no cost. As waste management is 
the responsibility of the house owner/facility manager, AI-DPM can aid in 
understanding the deconstructability of their building nearing or at the end of life 
with little or no construction/deconstruction expertise, thereby setting a pace for 
a thorough pre-demolition/pre-redevelopment audit afterwards. 

1.10 Scope  

This research examines the intersection of AI and deconstruction. The two fields 
are broad and well-established, so defining the research scope by construction 
project type, lifecycle stage, and application is essential. 

Construction projects are typically classified into building, infrastructure, and 
industrial. Buildings include both residential and non-residential structures like 
retail and commercial facilities. Infrastructure covers highways, bridges, and 
utilities, while industrial projects involve refineries and manufacturing plants. 
This study focuses specifically on residential buildings, which form a significant 
portion of the built environment and are key targets for deconstruction aimed at 
reducing waste and improving sustainability. Residential projects are also less 
complex than non-residential or industrial ones, which often require specialised 
handling of hazardous materials and strict regulatory compliance—areas beyond 
the scope of this research. Regarding lifecycle, the focus is on predicting the 
deconstructability of buildings at or near the end of their useful life.  
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In terms of implementation, AI-DPM offers a rapid deconstructability prediction 
and benefits architects, demolition/deconstruction engineers, waste management 
consultants, and other stakeholders in demolition; however, it cannot replace pre-
demolition/development audits usually conducted by experts. 

1.10 Thesis Outline 
This thesis comprises eight chapters, as shown in Fig 1.3. The summaries of the 
chapters are as follows. Chapter 2 reviews key concepts relevant to the research, 
including the deconstruction process. It also explores the theoretical frameworks 
associated with deconstructability.  

Chapter 3 presents a systematic literature review of academic and non-academic 
sources that establishes the variables influencing deconstructability. It introduces 
a conceptual framework derived from these variables, which aids in formulating 
questions for the questionnaire survey. Chapter 4 details the systematic literature 
review of AI and machine learning in the deconstruction landscape. It discusses 
the current state of AI and its subtypes, identifying potential opportunities in 
underexplored deconstruction areas. The chapter concludes with an analysis of 
the challenges affecting the implementation of AI in deconstruction activities. 

Chapter 5 describes the study's methodology, outlining the options for research 
philosophy, ontology, epistemology, paradigms, strategies, and approaches. It 
justifies the selected research philosophy and approaches, highlighting their 
relevance to the research questions. Additionally, the chapter discusses data 
collection, sampling, ethics, the unit of analysis, and the object of analysis. 

Chapter 6 presents the study's statistical analysis, including descriptive statistics 
that provide insights into the collected data and exploratory factor analysis. This 
chapter aims to identify potential variables useful for developing the AI-DPM. 
Chapter 7 discusses the development of the AI-DPM, detailing preprocessing 
methods such as encoding, imputation, feature selection, and handling class 
imbalance. It also reviews the metrics and AI algorithms used. It concludes with 
the complete flow of the AI-DPM, including experimentation and the selection 
of the generalisable and explainable AI algorithm. 

Chapter 8 concludes the research with a synopsis and its main findings, outlining 
its contributions. This chapter also addresses the study’s limitations and proposes 
potential directions for future research. The thesis concludes with references and 
appendices.  
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Figure 1.3: Research Thesis Structure (Created by Author) 
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1.11 Chapter Summary 

This chapter introduced and discussed the background of the research. The 
chapter provided a brief on the advantages (e.g., economy, health, job creation 
and so on) and challenges (e.g., waste generation, pollution and more) of the 
architectural, engineering and construction (AEC) industry, especially at building 
end-of-life. At the same time, the background underscored the relevance of 
deconstruction over demolition and how it can turn most of the AEC challenges 
into opportunities and/or reduce the AEC’s challenges. Additionally, the benefits 
and barriers to deconstruction were discussed herein. Subsequently, the chapter 
defined key concepts such as deconstruction, carefully dismantling a building at 
its end of useful life or nearing the end of life into components for 
reuse/repurpose. Other concepts defined in this chapter included demolition, 
deconstructability and artificial intelligence. Demolition was a waste-generating 
procedure, rendering nearly all building materials waste. Deconstructability was 
defined as a concept for determining the suitability of a building for 
deconstruction. Artificial intelligence was defined as the act of making intelligent 
machines. 

The gap in knowledge and research questions was presented, and it exposed the 
need to develop a robust AI-based deconstructability considering variables from 
technical, economic, and other perspectives, which is the aim of the research. 

A brief methodology section was presented, emphasising the utilisation of 
various quantitative techniques. It underscored the application of statistical 
methods and the development of an AI-based predictive model, drawing on a 
variety of variables. The section also clarified the unit of analysis and unit of 
observation as the building and the scope of the research were limited to 
residential buildings. Still, on scope, the AI-DPM only offers a rapid evaluation. 
However, it cannot replace the typical thorough pre-demolition audit usually 
carried out by experts. Lastly, the structure of the thesis was presented, having a 
total of eight chapters.   

Chapter two contains a review of concepts and theoretical frameworks related to 
deconstructability. 
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Chapter Two 
2.0 Concept & Theory Review   

 
 
 
 
 
 
 
 
 

he concept of deconstruction, also referred to as disassembly has emerged 
as an alternative to conventional demolition. It has gained the attention of 
many professionals, academicians, and the public with sustainability 
interest in building end-of-life. Numerous definitions of deconstruction 
have emerged in published articles. Among these definitions, only a few 
have been notable for their thorough viewpoint. One such notable 

definition was provided by Rios et al. (2015c), who characterised deconstruction 
as the meticulous dismantling of a building into its constituent parts to salvage its 
materials for recycling, reusing, and reconstruction. Other definitions include.  

“Means to an end, and it exists for the appropriate recovery of components, 
sub-components for either reuse or recycling in the most cost-effective manner” 

– (Guy, 2004) 

“Construction process in reverse”. – (Greer, 2004)  

“Systematic disassembly of a building to maximise recovered materials reuse 
and recycling” – (Chini & Bruening, 2003)  

Among these various definitions, much emphasis on materials and components' 
recoverability was loud. In essence, deconstruction offers a pathway to extend the 
life of materials and components from the building near or at the end of useful 
lives, rather than simply sending them to landfills.  

T 

 
This chapter covers & reviews. 

- Deconstruction vs demolition  

- Deconstruction processes and procedures 

- Design for deconstruction (DfD) and layer theory 

- Deconstructability & Related Frameworks  
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Meanwhile, demolition knocks down the entire building, eliminating and 
rendering all components and sub-components as waste (Thomsen et al., 2011; 
Zahir et al., 2016). Equipment used to tear down buildings includes excavators, 
bulldozers, tearing balls and explosives (Khandve, 2014; Pranav et al., 2015).  

Overall, deconstruction is an engineering process of carefully dismantling 
materials and components that make a building for reuse or repurpose. To better 
understand deconstruction, its comparison with demolition is presented in Table 
2.1. 

Table 2.1: Demolition vs Deconstruction (Created by Author) 
Characteristic Demolition Deconstruction 
Definition Tearing down building into 

waste. 
Systematic disassembling of building for 
maximum material recovery. 

Environmental 
Impact 

Wastage of resources and 
disposal of waste  
 

Encourages natural resource conservation 
and reduces waste disposal. 

Community 
Employment 

Not socially beneficial to 
communities, as it is mainly 
machinery dependent  

The intensiveness of labour help in job 
creation. 

Cost and Time 
 

Swiftly implemented, with 
low labour cost as it often 
involves machines and less 
human labour 

The economic benefit associated with the 
resale of recovered components makes it 
cost-efficient, though it takes longer. 

Tools and 
Equipment 

Heavy and big machines are 
mostly used 

Small tools are often used 

Labour Less labour intensive, 
depending on heavy 
machine operations. 

Highly labour-intensive operation 

Material 
 

Materials are inseparable 
and mostly sent to landfill 

Material is separated into different 
categories, detached, prepared for 
reuse/recycling. 

Material 
Disposal 

A tipping fee is higher due 
to waste generated 

Reduce the tipping fee as most of the 
waste is being repurposed  

Structures 
Suitability 

A typical building is built 
for demolition 

Not all building is deconstructible. 

Pollution Generates much noise, dust, 
and additional waste during 
site clearance.  

Generate less dust and noise. 

2.1 Deconstruction Process 

Deconstruction processes may vary depending on the deconstruction crew. 
However, selected processes were identified to be significant. Moreover, these 
processes are often likened to demolition, as illustrated in Figure 2.1. 
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Figure 2.1: Deconstruction process (Adapted from Abdullah and Anumba, 2003 p.57; Rebekka 2017 p. 36) 
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The contractor kicks off the deconstruction process by soliciting bids. This 
involves a mandatory desk study (documentation research) and field survey in the 
UK, as outlined in section 7 of the UK Code of Practice, BS6187:2011. While 
specifically referencing the UK, similar practices were observed globally; for 
example, Germany follows a comparable approach. 

The documentation research entails thoroughly reviewing available building 
records (e.g., design plans, documentation of use, inspection reports, permits, and 
certification, among others). It is typically conducted before/in conjunction with 
field surveys. It aids in estimating materials, their quantities, and any hazards they 
may have. Moreover, it provides insights into structural types, building ages, and 
details about the surrounding area, site access, and proximity to waste 
management facilities and salvage yards (Figure 2.2). All information from the 
research guides/support field survey and the extent of research may vary.  

 
Figure 2.2: Brief on Desk Study; Field Study (Adapted from Wahlström et al., 2019) 

Field surveys include steps aimed at thoroughly assessing buildings. It involves 
visual inspections (i.e., site visits and general analysis) to evaluate the building's 
condition, identify material types present and prepare necessary equipment for 
subsequent steps. It also involved measurements and on-site scanning to compile 
a comprehensive material inventory and waste declaration. Furthermore, it may 
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involve sampling or lab tests to ascertain the quality, contamination, and level of 
deterioration of materials (Wahlström et al., 2019) 

Contractors prepare an inventory and conduct risk assessments upon completing 
surveys and research. These assessments are crucial for identifying/managing 
potential on/off-site risks (NAHB Research Centre, 2001a; Wahlström et al., 
2019). Finally, management recommendations are presented based on inventory 
and risk assessments. This recommendation usually includes the 
deconstructability of the building. This research focuses more on this phase.  

Once a building has been deemed suitable for deconstruction, a comprehensive 
statement addressing the site's requirements, detailed sequences, and plans is 
prepared and submitted to the client. Subsequently, this statement is submitted as 
the tender document, and upon the client's approval, the contractor proceeds to 
the implementation (Baker et al., 2021; Margareta et al., 2019; Guy, 2006). The 
implementation encompasses activities such as site preparation, establishing on-
site office and security, and welfare facilities. As part of the site clearance 
process, precautions are taken to ensure that trenches, pits, contaminants, and site 
drainage systems are managed in a manner that causes no hazards to health or the 
environment (Rebekka, 2017). Also, during this phase, the disconnection of 
electrical power, the capping of gas and sewer lines, the abatement of hazardous 
materials such as asbestos and lead, and site inspection by the building authority 
are carried out. Furthermore, permission must be obtained from relevant 
authorities, which may vary based on geographical locations. These permissions 
typically involve obtaining formal notification of intent, among others, from the 
government/council.  

Subsequently, the decommissioning and soft stripping, which entails the removal 
of non-structural components such as the doors, frames, windows, and ceilings, 
among others, begins. Followed by the disassembly of the structural elements of 
the building. Here, careful consideration is given to the impact of removing these 
elements on the remaining structure and the safety of site workers and nearby 
individuals. Non-structural and structural elements that are retrieved are sorted, 
cleaned, and prepared for reuse and recycling. Items like windows and furniture 
can be easily reused, while materials like metal and concrete are commonly 
targeted for recycling. The final step involves the clearance of the site following 
the actual deconstruction implementation. All retrieved elements are stored or 
sold on-site to secondary material users at this stage (Margareta et al., 2019).  
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For clarity’s sake, a deconstruction process from (Guy, 2006) was presented: It 
started with extensive site investigations for each building. The investigations 
involve a visual survey and qualitative assessment of each building in the defence 
facility, aiming to assess the condition and identify materials used. Additionally, 
intrusive inspections were performed to uncover hidden material layers and 
determine structural elements' dimensions and layout. This involved making 
small openings in walls and ceilings, examining chases and plenum spaces, and 
inspecting beneath wooden floors. Detailed measurements were also taken for 
every exterior elevation, interior wall, floor, and ceiling surface. The data 
collected during investigations were used to create a comprehensive materials 
inventory, listing the type and quantity of each material found in the buildings. 

2.2 Design for Deconstruction 
The idea of design for deconstruction or disassembly (DfD) has emerged as a 
significant design development in the AEC industry, aligning with the principles 
of deconstruction and circular economy (CE). DfD involves designing buildings 
to ease future changes and disassembly, enabling component recovery (Crowther, 
2005). This approach guarantees that the building components are reusable or 
recyclable(Guy & Ciarimboli, 2008a). 

DfD recognises that most buildings have a limited lifespan and emphasises the 
importance of redirecting their resources away from landfills and back into the 
"reuse and recycle" loop. DfD aims to address the industry's high resource 
consumption and low recycling and reuse rates by understanding the complete 
lifecycle of a structure and incorporating provisions for reuse (Guy, 2001, 2004, 
2006c; Guy & Mclendon, 2003; C. Kibert, 2003a; Obi et al., 2021).  

Crowther (2005) outlined a set of recurring principles that form the foundation of 
the DfD approach, categorised based on their relevance to reuse (Figure 2.3). By 
applying these principles during the design process, the recovery and 
reintroduction of materials into the built environment can be facilitated. Whether 
applied during the design development stage or in assessing existing structures 
(regardless of whether they were initially designed with DfD principles), these 
practices aim to minimise the need for demolition, reduce CDW generation, and 
enhance material recovery.   
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Figure 2.3: Principles of design for disassembly (Adapted from Crowther, 2005) 

Developing a thorough deconstruction plan that includes disassembly instructions 
and an assessment of building components and materials to determine their 
potential for reuse or recovery is necessary (Crowther , 2005). It forms an integral 
aspect of DfD, enabling extensive research into construction materials to identify 
non-toxic ones, high quality (with durability over time), and significant potential 
for reuse or recycling. Similarly, it helps in material selection, as it helps answer 
critical questions: What happens to a component at the end of its life? Can it be 
reused or returned to the supplier? 

Another crucial principle of DfD is the provision of accessible connections and 
the use of appropriate joinery techniques. This principle facilitates disassembly 
without the need for heavy equipment or excessive tools; as such, mechanical 
joints, such as screws, bolts, and nails, should be prioritised over chemical 
couplings, such as glues, welding, or binders, which make it more challenging to 
separate and reuse materials (Crowther, 2005). 

In summary, DfD is for new construction with a deconstruction agenda, and the 
identified principles outlined in Figure 2.2 are very useful in promoting the 
recovery of materials and components. Though the guidelines were for new 
buildings, the principles could also benefit existing ones irrespective of whether 
they were initially designed using the DfD approach.  

Like the deconstruction of existing buildings, DfD also has its challenges and 
barriers, some of which have been identified in the literature. Akinade et al. 
(2017a) identified the main obstacles to adopting DfD practices, specifically in 
the UK industry, through a series of focus groups and a literature review. Their 
findings are shown in Table 2.2.  
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Table 2.2: Barriers to DfD adoption (Adapted from Akinade et al., 2017) 
Group  Identified barriers  
Absence of detailed regulation for DfD  

  
 

- Irregularities in legislative policies.  
- Design codes mostly do not favour reuse  
- Lack or little reward for DfD  

Inadequate building design information    
  

- Insufficient data on the recoverable materials  
- Absence of comprehensive disassembly data. 
- Insufficient knowledge regarding cost-effective 

techniques for material separation  
Absence of large enough market for 
recovered components.  

 
 
 
 
 
 

- Absence of a standardised classification and 
grading system for reclaimed materials 

- Perceived perception and risks associated with 
reclaimed materials.  

- Limited or inadequate performance assurances 
for reclaimed materials 

- Diminished visual appeal of reclaimed materials.  
- Damage or contamination of materials during 

recovery.  
- Storage consideration for recovered materials.  
- Transportation considerations for recovered 

materials.  
- No information exchange system for salvaged 

materials.  
- Cost of product re-certification.  

Difficulty in developing a business case for 
DfD.  

 
 
 
 

- Insurance constraints and legal warranties of 
reclaimed materials. 

- Changing industry standards and construction 
methodology.  

- Believe that DfD could compromise building 
aesthetics and safety.  

- Overall benefit of DfD may not happen after a 
long time.  

Absence of effective DfD tools    
 
 
 
 

- Lack of DfD analysis methodologies.  
- Existing DfD tools are not BIM compliant.  
- No tools for identifying and classifying 

salvaged materials at the end-of-life.  
- Performance analysis tools for end-of-life 

scenarios are lacking.  
- Limited visualisation capability for DfD.  

Although Table 2.2 considered DfD challenges in practice, particularly in the UK, 
an imaginably similar challenge is faced in other parts of the world. At the same 
time, it is safe to assume that similar challenge is facing existing buildings at their 
end-of-life.  



 

 
 
24 
 

Aside from the principles, DfD also builds upon the theory of layers proposed by 
Duffy and subsequently expanded upon by Brand. This theory views a building 
not as a singular entity but as a collection of layers, each with defined functions 
and expected service life. According to this conceptualisation, the interfaces 
between these layers serve as primary points of deconstruction (Crowther, 2000) 
and should be designed to facilitate proper disassembly.  

2.2.1  Layered Theory  

The Second World War caused significant damage to the communities, leaving 
behind destroyed homes/properties. This crisis spurred the interest of many 
European researchers, including the renowned Dutch architect, John Habraken. 
In 1962, Habraken published the book "De dragers en de Mensen," later 
translated to English as "Support: An Alternative to Mass Housing." Habraken's 
ground-breaking research called for the fundamental reimagining of residential 
architecture, advocating for the active participation of dwellers in the design of 
their built environment. His proposal introduced the concept of the house as a 
process rather than a finished consumer product. 

Habraken envisioned a housing structure with two levels of control: community-
level control and individual-level control. The individually controlled communal 
parts, such as internal partitions, closets, kitchens, bathrooms, and detachable 
components, offer adaptability to meet the specific needs of occupants. 
Conversely, the community manages the base building and adheres to rules, 
regulations, and construction standards. This differentiation led to Habraken's 
building classification into changeable interiors and permanent bases (Habraken, 
1962). 

Expanding on Habraken's work, Frank Duffy introduced a more comprehensive 
framework around 1994, dividing the building into four layers. Duffy's layers 
included shell, services, scenery, and set. Like Habraken, Duffy recognised that 
each layer has a varying lifespan. The shell comprises the structure and façade, 
which play a crucial role in defining the longevity of a building. It is designed to 
withstand the test of time and maintain its functionality. Services encompass all 
installations and fittings within the building, while scenery refers to the interior 
plans. The set includes the components that undergo regular changes daily, 
weekly, or monthly. 

In 1994, Stewart Brand built upon the research of Duffy and Habraken to propose 
six layers, known as the 6S model: site, structure, skin, services, space plan 
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(Brand, 1994). The site layer represents the permanent aspects of the building, 
while the structure lasts 30 to 300 years. The skin layer, including the building 
envelope, has an expected lifespan of approximately 20 years. Services 
encompass numerous installations within the building, with a lifespan ranging 
from 7 to 15 years. The space plan refers to the arrangement and layout of interior 
spaces, with an expected lifespan of 3 to 40 years. Lastly, the stuff layer 
represents the movable furniture and elements that adapt to daily activities 
(Figure 2.4). 

This progression from Habraken to Duffy and to Brand demonstrates the evolving 
understanding of the building's composition as a series of layers with distinct 
functions and varying lifespans. By recognising these layers and their different 
rates of change, designers can develop strategies to extend a building's service 
life, adapt its components, and ultimately contribute to sustainable construction 
practices. 

  

Figure 2.4: Building layers (Adapted from Brand 1994) 

Understanding the makeup of a building makes deconstruction easier; however, 
beyond design and structural makeup, other variables need to be understood for 
the success of deconstruction in the built environment.  

Site (Eternal)

Structure (30 to 
300 years)

Skin (12 to 65 
years)

Services (7 to 
15 years)

Space plan 
(3 to 40 years)

Stuff 
(Daily)

Site: the geographical setting 
the ground on which the 
building sits 

 
Structure: the foundation and 
load bearing components of the 
building 

 
Skin: the claddings and roofing 
system 

 
Services: the electrical, HVAC 
Hydraulic, and data systems 

 
Space plan: the internal 
partitioning system 
the finishes and the furniture 

 
Stuff: the arrangements of 
movable items that the users 
move freely 
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2.3  Theoretical Framework  
Existing academic literature on deconstructability usually focuses on technical, 
economic, or both aspects (Balogun et al., 2021). Nonetheless, it is essential to 
explore deconstructability through other lenses beyond technical factors (Ajayi 
& Oyedele, 2018; Akinadé et al., 2017). As a result, this section aims to introduce 
theoretical perspectives and connect them to building deconstructability. 

2.3.1  Triple Bottom Line (TBL) 

The triple bottom line (TBL) theory, introduced by John Elkington in the mid-
90s, integrates environmental and social dimensions into traditional financial 
performance measurements (Elkington, 1998). Also known as the 3Ps (people, 
planet, and profits), TBL grew to service the sustainable development paradigm, 
illustrated in Figure 2.5, emphasising balance among economics, environment, 
and society. It promotes the production of goods and services through non-
polluting, resource-conserving, economically viable, and safe processes for 
employees, communities, and consumers (Krajnc & Glavič, 2005).  

In summary, TBL aligns with sustainable development principles and offers a 
better approach to deconstructability. Considering economic, environmental, and 
social dimensions ensures a balanced approach that minimises harm and 
generates positive value. Embracing this theory enables stakeholders to make 
informed decisions that prioritise sustainability and contribute to a resilient built 
environment. 

                                    

Figure 2.5: Sustainability development pillars (Adapted from Elkington, 1998) 

Environmental 
Natural resources use

Environmental management 
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Economic
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It is important to note that scholars have recognised the applicability of TBL in 
deconstructability. For instance, Ding (2022) applied TBL to analyse the 
deconstructability of new green buildings in China, considering engineering, 
environmental, social, and economic factors. Similarly, other researchers such as 
(Ding, 2022; Ibrahim et al., 2023; Wit & Pylak, 2020) have advocated for TBL in 
deconstruction and sustainable construction. However, challenges remain, 
including the lack of standardised reporting methods and the difficulty of 
accurately quantifying and evaluating all three dimensions, particularly the 
environmental and social aspects (Goh et al., 2020). Despite these criticisms, it is 
justifiable that TBL is a valuable framework for deconstructability. However, 
some modifications may be required to address specific concerns and enhance its 
applicability. 

2.3.2  Life Cycle Assessment (LCA) 

LCA is an analytical framework that comprehensively evaluates the 
environmental impacts associated with all stages of a building's life, spanning 
from material extraction to end-of-life management. Originating in the early 
1990s, LCA has gained recognition as a robust methodology for systematically 
analysing potential environmental consequences of the process. The LCA process 
entails four primary steps: goal and scope definition, life cycle inventory analysis, 
life cycle impact assessment, and interpretation (Muralikrishna & Manickam, 
2017), as illustrated in Figure 2.6 

      Life Cycle Assessment Framework 
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Figure 2.6. LCA Phases (Based on ISO14040) 
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Deconstruction, an end-of-life construction activity, requires careful 
consideration of environmental implications. It plays a significant role in 
assessing environmental impacts associated with dismantling and the material 
recovery processes involved in deconstruction. It offers valuable insights into 
environmental burdens arising from deconstruction and aids in making informed 
decisions. 

The application of LCA to deconstructability involves several key steps. Firstly, 
the goal and scope of the deconstruction are clearly defined, establishing specific 
objectives and system boundaries. This step ensures a focused assessment. Next, 
the inventory analysis is conducted, which entails gathering comprehensive data 
on energy consumption, emissions, and resource utilisation across each stage of 
the deconstruction process. This data forms the basis for the subsequent life cycle 
impact assessment, where environmental impacts such as greenhouse gas 
emissions, air pollution, and energy consumption are quantified and evaluated. 
Finally, the assessment results are analysed in the interpretation step, and 
conclusions are drawn regarding the environmental performance of various 
deconstruction approaches. 

By integrating LCA into deconstructability, decision-makers gain a deeper 
understanding of environmental consequences. This knowledge empowers them 
to make informed choices that reduce the environmental footprint of 
deconstruction projects. LCA serves as a valuable tool for identifying areas of 
improvement, optimising resource usage, and selecting strategies that maximise 
environmental benefits. 

2.3.3  Cost-Benefit Analysis (CBA) 

The cost-benefit analysis (CBA) framework initially emerged in Europe, and it 
application as an environmental economic theory has since spread to countries 
like the US, Canada, and the UK. Today, CBA is a well-established theory 
extensively employed by governmental and private organisations. 

Harberger & Jenkins (2002) referred to CBA as a set of tools used to guide 
decisions regarding project implementation. It is a technique for comprehensively 
evaluating cost and benefit using appropriate measurement methods. Carcoba 
(2004) referred to CBA as a method that measures the costs and benefits of a 
project to determine its feasibility and evaluate its social implications. CBA is 
typically utilised to decide whether to undertake a specific course of action or 
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select the best option among multiple competing alternatives (Harberger & 
Jenkins, 2002).  

CBA has been applied in different domains, for example, disassembly sequence 
planning (Smith et al., 2016), recyclability assessment (Chen et al., 1994), and 
waste management planning (Ding et al., 2022), among others and can be applied 
to deconstructability. It can support the decision to implement a deconstruction 
project that would outweigh its costs. In terms of benefits, deconstruction can 
offer various advantages, such as valuable materials recovery, reduced CDW, 
financial incentives, and job creation. Additionally, deconstruction helps 
environmental sustainability by minimising resource consumption. 

Conversely, there are costs for deconstruction project implementation, including 
labour, equipment, transportation, and potential delays in project timelines. 
Additionally, market demand for salvaged materials may impact the financial 
viability of the deconstruction project. By conducting a CBA, stakeholders can 
evaluate the overall economic impact of deconstruction. This analysis allows 
decision-makers to compare expected costs and benefits, assisting in predicting 
the deconstructability of the building. 

2.3.4  Stakeholder Theory    

The term stakeholder refers to “groups and individuals who can affect or be 
affected” (Freeman, 1999, 2010). Stakeholder theory aids in visualising 
interactions between individuals/groups. Stakeholder theory assumes that 
organisations have relationships with multiple groups, and these relationships 
influence both the company and stakeholders.  

The theory contributes to the development of stakeholder management and helps 
organisations recognise and address the needs of individuals/groups influencing 
or being influenced. Stakeholder theory involves identifying stakeholders and 
understanding their needs and interests. It can be highly valuable in assessing 
deconstructability.  

Stakeholder theory can assist in several ways: 

- Identifying and engaging stakeholders: It stresses the importance of 
identifying all relevant deconstruction stakeholders. This may include 
homeowners, government agencies, construction firms, waste management 
organisations, environmental groups, and potential buyers of salvaged 
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materials. Engaging these stakeholders early allows for a comprehensive 
understanding of their concerns, needs, and expectations. 

- Understanding stakeholder interests and goals: It encourages analysis of 
stakeholders' interests, goals, and potential conflicts. It helps identify diverse 
views, ranging from environmental sustainability to economic viability and 
social equity to job creation. Understanding these interests, decision-makers 
can address concerns and find common ground for collaborative decision-
making. 

- Assessing impact on stakeholders: Deconstruction can have various effects 
on stakeholders, both positive and negative. Stakeholder theory facilitates 
the assessment of these impacts across economic, environmental, and social 
dimensions. This assessment includes economic development, waste 
reduction and cultural heritage preservation.  

- Balancing stakeholder needs: Through effective communication, 
consultation, and collaboration, decision-makers can include stakeholder 
input in shaping deconstruction processes, addressing concerns, and 
optimising benefits for all parties involved. This helps build trust, enhance 
project acceptance, and create a sense of stakeholder ownership. 

Overall, decision-makers can navigate complex deconstruction project dynamics, 
ensure transparency, and make informed choices that align with the interests and 
goals of all relevant stakeholders.  

2.4  Implications of Theories on Deconstructability 

The discussed theories have various implications for deconstructability (see 
Table 2.3). The triple bottom line theory balances financial gain, social aspects 
and environment. Cost-benefit analysis prompts deconstructability studies to 
adopt a relative perspective, aiming for better financial competitive advantage. 
Life cycle analysis directs deconstructability to focus on methods and 
understanding environmental impacts. Stakeholder theory aims to improve 
stakeholder relationships, potentially increasing the likelihood of successful 
deconstruction. Table 2.3 presents the basis for the possible questions on 
deconstructability, and it facilitates the creation of a questionnaire survey later in 
this research. For example, the ‘people’ component from ‘TBL’ provides the 
basis for social factors influencing deconstructability, and it can suggest 
questions like ‘Would the deconstruction of the building result in an increase in 
job creation for the local community dwellers?’   
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Table 2.3: Theoretical frameworks and how they relate to deconstructability (created by author)  
Theory Theory components Implications 
TBL People - Would the deconstruction process provide job 

for locals? 
Planet - Are there significant number of materials that are 

recoverable? 
Profit - Are there any specific materials from the building that 

have a high demand in the market? 
- Are there potential customers already identified for 

the deconstructed materials? 
- Are there materials within the building that have a 

high intrinsic or market value? 
CBA Benefit identification - Are there economical gains from resale values and 

recovery? 
Cost identification - What is the cost associated with labour, transport, 

storage, hauling and landfill? 
LCA Lifecycle inventory 

analysis 
- What are the energy and carbon footprint of the 

building prior to deconstruction  
Output assessment - How much of carbon is emitted during dismantling 

and transportation? 
- How much of the materials were irrecoverable? (i.e., 

end up as waste) 
- How many materials are salvageable and reusable? 

Stakeholder Identification - Who have the final say regarding the deconstruction 
of the building (building owner, contractor, or local 
community)? 

Interest and objective - What is the greatest motivation behind 
deconstruction? (Financial gain, social responsibility, 
or environment) 

Collaboration and 
partnership 

- Are there collaborative efforts and partnership 
established among stakeholders to enhance 
deconstruction? 

- Are there policies encouraging deconstruction? 
- Are there positive attitude towards reuse of salvage 

materials by the community? 

2.5 Chapter Summary 
This chapter served as a foundational introduction to key concepts relevant to the 
study, establishing a strong basis for the research. The chapter provided different 
theoretical frameworks relevant to deconstructability.  

The chapter introduced the design concept for deconstruction (DfD) as a 
sustainable architectural approach that stresses the principles of reuse and 



 

 
 
32 
 

recycling. Likewise, the chapter highlighted the significance of considering the 
end-of-life phase of a building and the necessity for efficient deconstruction 
processes to minimise waste and promote material reuse. 

The chapter further outlined key principles of DfD, such as using non-chemical 
connections (e.g., bolt, nut, among others) and modular designs. The chapter also 
introduced/discussed layers theory as it helped understand typical building 
formation and components. The Brand's six building layers were site, structure, 
skin, service, space plan, etc. The layer was particularly useful as it can help 
identify different components in a building and possible properties of 
components. Also, layer theory explains layering in building design and how the 
intentional separation of various layers (structural, enclosure, services, and 
finishes) can assist the deconstruction process. The chapter emphasised the 
critical role of considering these layers.  

Furthermore, the chapter explored various deconstruction processes. It covered 
planning, deconstruction implementation, and post-implementation. The chapter 
investigated the decision-making stage as a critical area of research. This stage 
holds significant importance as the primary decision to proceed with 
deconstruction is made during this phase.  

Lastly, the chapter looked at four key theories associated with deconstructability 
and their implication: the triple bottom line (TBL), cost-benefit analysis (CBA), 
life cycle assessment (LCA), and stakeholder theory. TBL ensures a balance 
among economic, social, and environmental impacts. CBA evaluates economic 
viability by comparing costs to benefits, including socio-economic factors. LCA 
quantifies environmental impacts. Stakeholder theory emphasises considering all 
relevant parties' interests, addressing social and economic concerns, and 
incorporating community values into deconstructability. 

Individually, most theories have only focused on one or more concerns, which 
may not provide a comprehensive framework for deconstructability. Also, several 
writers have strongly contested the claims of some of the theories in recent years. 
Despite the criticisms, there are still valid points from each theory that could be 
relevant for deconstructability. The four theories partially inform and facilitate 
the development of the questionnaire survey on deconstructability. The questions, 
variables and conceptual frameworks for deconstructability are discussed in the 
next chapter. 
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Chapter Three 

3.0 Variables Influencing Deconstructability 

 
 
 
 
 
 
 
 
 

ssessing the deconstructability of a building, which is a feasibility 
assessment and practicality of deconstructing buildings when at or 
nearing the end of their useful lifecycle, is never an easy task. The 
building design, connection type, building condition, and component 
value would need to be assessed to make an informed decision regarding 

deconstructability, deciding whether deconstructing a building offers advantages 
over conventional demolition.  

The push for a circular economy and stringent legislative frameworks becoming 
apparent makes deconstructability a requirement for most buildings at or near 
their end-of-life (EOL). For example, the circular economy statement encourages 
deconstructability assessment of buildings at their EOL alongside the pre-
deconstruction/pre-redevelopment audit. Additionally, sustainability recognition, 
e.g., the Building Research Establishment Environmental Assessment Method 
(BREEAM), is another reason for deconstructability. Lastly, deconstructability 
alongside audit can shape the project’s site waste management plan, which aligns 
with the environmental, social and governance (ESG) goals.   

Deconstructability is mainly carried out using some checklist that can be likened 
to variables. These variables are checked during an assessment and form the basis 
for the perspectives from which deconstructability can be viewed. Laying on the 
foundation for the need to expand and look beyond technical and economic sides 
to deconstructability, there is a need to explore other possible variables.  

A 

 
This chapter covers. 

- Systematic literature reviews of variables influencing 

deconstructability. 

- Development of deconstructability conceptual framework 

- Development of questions/variables useful for questionnaire survey  

-  
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The answer to this question will be illustrated by identifying variables that impact 
deconstructability through a review of existing literature. Afterwards, a construct-
based conceptual framework for deconstructability will be developed, following 
the variables established through the literature review. 

This study holds the potential to contribute substantially to existing knowledge 
by identifying variables that aid in the assessment of deconstructability, 
regardless of the material composition of the buildings. Moreover, it can enhance 
efficiency in evaluating existing buildings while raising awareness about 
variables that facilitate deconstruction during the design stage. It is important to 
note that this chapter is limited in identifying relevant variables and developing a 
construct-based conceptual framework for assessing the deconstructability of 
buildings. 

3.1 Systematic literature review of variables influencing 
deconstructability 
The typical literature review types are traditional and systematic. Traditional 
literature reviews are often faster to complete, making them a frequent first 
choice. However, their significant limitations lie in a lack of transparency and 
repeatability, which can compromise reliability. Systematic literature reviews, 
although more time-consuming, are comprehensive and reproducible, offering 
greater rigour and validity (Tawfik et al., 2019). In this case, a systematic 
literature review (SLR) would be essential to examine all relevant literature, 
identify variables affecting deconstructability, and construct a framework based 
on these findings. This approach ensures that the process is transparent and can 
be replicated by other researchers. 

SLR is a widely accepted approach to research synthesis, offering a structured 
and unbiased method for locating relevant studies about the research questions 
(Higgins & Green, 2008). With well-defined inclusion and exclusion criteria and 
thorough quality assessment of studies. SLR provides a reliable and transparent 
pipeline to extract valuable information (Aromataris & Pearson, 2014).  

To achieve a reproducible report of the complete process, the Preferred Reporting 
Items for Systematic Review and Meta-analysis (PRISMA) checklist (Moher et 
al., 2010; Page et al., 2021), one of the widely used in research fields like 
construction and waste management (Charef, et al., 2021; Shahruddin & Zairul, 
2020) was employed to document the entire SLR process. 
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SLR involves a comprehensive literature search across databases. Following the 
approach of Rakhshan et al. (2020a), a recent article on building deconstruction, 
the Scopus database was used. Scopus provides research from around the world, 
minimising geographical biases. Additionally, Google Scholar, another widely 
accepted database, was used with the keyword 'deconstructability,' resulting in 31 
relevant articles, which will be added to the sources from Scopus. However, the 
search on Google Scholar was limited to titles only to manage the number of 
records, as automated filtering was not feasible. 

Comprehensive searching helps reduce the risk of missing essential studies 
(Collaboration for Environmental Evidence, 2013; Kugley et al., 2017). A pilot 
search was conducted on the Google search engine and the search framework on 
Scopus to identify appropriate keywords, reduce search bias, and establish a 
framework for retrieving relevant articles. The pilot search revealed that the terms 
'deconstruction' and 'disassembly' are used interchangeably, while terms like 
'assessment,' 'feasibility,' 'potential,' 'estimation,' 'appraisal,' and 'evaluation' were 
used in conjunction. To capture a broad range of research sources, ensure 
repeatability, and maintain consistency throughout the process, the search 
framework ((‘deconstruct*’ OR ‘disassembly*’) AND (‘assessment’ OR 
‘feasibility’ OR ‘potential’ OR ‘estimation’ OR ‘appraisal’ OR ‘Evaluation’) 
AND (‘building’)) was employed, looping through 'title/abstract/keywords' of 
each journal. 

The exclusion criteria for this research included articles written in languages other 
than English, mainly due to resource limitations for translation services. 
However, it is essential to note that excluding articles based on language is 
generally not encouraged in an SLR. Articles excluded in this study due to 
language include (Caparrós & Astarloa, 2017; Schwede & Störl, 2017), written 
in German and Spanish, respectively. Other articles, such as conference papers, 
trade journals, and book chapters, were not considered due to the focus on high-
quality peer-reviewed articles (Alaka et al., 2017; Comfort & Park, 2018; 
Rakhshan et al., 2020a).  

Applying exclusion criteria, a total of 190 articles were excluded: six were 
duplicates, and 184 were non-English and non-peer reviewed. After initial 
screening, the decision to include an article was predominantly based on its title; 
however, in some cases, the abstract, introduction, and conclusion were also 
reviewed to ensure the relevance of the selected papers.  
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As a result, 321 articles were excluded. Of the remaining articles, fifty showed 
promise and were further scrutinised. After careful review, eighteen studies were 
excluded: two were not readily available, and sixteen were out of scope. Overall, 
thirty-two studies were included in the next stage of full-text analysis.   

Following the approach of Alaka et al. (2018), an additional six relevant articles 
were found through references and citations of the previously identified articles. 
These included three peer-reviewed journal articles and three reputable industry 
reports. 38 relevant articles were obtained to achieve the research aim and 
objectives (see Figure 3.1). 

 
Figure 3.1: Systematic Literature Review Flow Diagram (Created by author based on 

PRISMA) 
Following the identification of the sources, outcomes such as the source details 
(e.g., authors, publication year), variables, and description of the study were 
retrieved and summarised in Table 3. 
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Table 3.1: Summary Synthesis from Literature Sources 
S/N Author variables Identified Building type Material Research method Country 
 
1 

(Bertino et al., 
2021a) 

- Design and plans  
- Underdevelopment of tools and 

techniques 
- Type & age of building  
- Connections 
- Materials and its type used in the 

building  
- Government policy 
- Construction techniques 
- Building complexity – number of 

components 
- Database for identification of materials 

& components (Documentation) 

Residential All Qualitative Undefined 

 
2 

(Cottafava & 
Ritzen, 2021a) 

- Documentation  
- Material and type  
- Supply chain for the recovered 
- Design 

Residential All  Mixed method  Undefined 

 
3 

(Basta et al., 
2020b) 

- Use of BIM for drawings, 
- Identification of components, &  
- Provision of deconstruction plan 
- Different types of materials 
- Toxic materials 
- Composite and floor systems 
- Secondary finishes 
- Design 
- Access to components 
- Connections 
- Use of insitu 
- As-built plan 
- Standard structural grid 

Residential  All Mixed method Undefined 
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S/N Author variables Identified Building type Material Research method Country 
4 (Akanbi et al., 

2019b) 
- Design  
- Material specification 
- Material information  

Residential  All Quantitative UK 

5 (Hradil et al., 
2019a) 

- Building material  
- Complexity of the component 
- Market  

Industrial  Steel Quantitative Finland 

6 (Marzouk et al., 
2019) 

- Time  
- Cost 
- Undocumented building condition 
- Salvaged material logistics -buying & 

selling  

Undefined All Quantitative Undefined 

7 (Kanters, 2018) - Design  
- Materials & connections 
- Construction & deconstruction phase 
- Communication, competence & 

knowledge 
- Reuse potential & regulation 

Undefined All  SLR Undefined 

8 (Tatiya et al., 
2018b) 

- Component separation/connect 
- Low quality of recoveries 
- Supply chain for recoveries 
- Design 

Residential All Quantitative USA 

9 (Akinade et al., 
2017b) 

- Government policy 
- Design – connection, assemblies, etc 
- Material related drivers – material type, 

quality, quantity  
- Site worker – cost, skill, availability  

Residential All Mixed method UK 

10 (Machado et al., 
2018b) 

- material/component/connection 
durability  

- toxic material 
- reusability/recyclability of the material 
- damage 
- material separation 

Undefined All Review (Literature) Undefined 
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S/N Author variables Identified Building type Material Research method Country 
- space for equipment and manoeuvring  
- storage  
- risk assessments 
- as built drawings 
- standardisation of the 

component/materials/connections 
- tools/machinery 
- accessibility of connections 
- identification of material/information 

system 
- quality of the component/materials 

before deconstruction (conservation 
time) and damage during deconstruction 

- repair for reuse 
- cost 

11 (Akinade et al., 
2015b) 

- Prefabricated assemblies/demountable 
connections 

- Design 
- Set and type of 

materials/connections/component  
- Reusability & recyclability of 

material/component 
- Connection type 
- Toxic material & secondary finishes 
- Weight of the component/material 

Residential All Quantitative UK 

12 (Huuhka et al., 
2015) 

- Connections 
- Material & types 
- Cost 
- High labour 
- Material condition & damage after 

deconstruction 

Residential  concrete Quantitative Finland 
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S/N Author variables Identified Building type Material Research method Country 
13 (Akbarnezhad et 

al., 2014a) 
- Price of the material 
- Energy embodiment of the component 
- The travelling distances 
- Energy use associated with the 

recycling processes 
- Inflation rate and cost of designing the 

components for reusability 
- Cost associated with the recycling 

process 
- connection 
- Lack of information  

Residential  concrete Quantitative Singapore  

14 (J. Couto & 
Couto, 2010a) 

- Fixed price for salvage material 
- Landfill tax 
- Material specification  
- Development of Suitable tool 
- Cost  
- Time & safety 
- Location & safety 
- Market value of the recovery 
- People/client perception 
- Codes & standards  

Undefined All Qualitative Undefined 

15 (Paduart et al., 
2008a) 

- Design 
- Connection 

Undefined All Qualitative Undefined 

16 (Leigh & 
Patterson, 2006a) 

- Technical know how 
- Cost and market  
- Logistics of the recovery 
- Separation and storage 
- Time 
- Undefined law/policy 

Undefined All Review (Literature USA 

17 (Guy, 2006d) - Design e.g., DfD 
- Toxic material e.g., asbestos 
- Types of building material 

Barack 
building 

Timber Quantitative   USA 
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S/N Author variables Identified Building type Material Research method Country 
- Number of building components 
- Type of connectors 
- Reusability of the material 
- Toxic & hazardous materials e.g., 

asbestos, mercury switches, leads etc 
- Materials recyclable 

18 (Crowther, 
2005b) 

- Design, e.g., DfD  
- Toxic material e.g., asbestos 
- Deconstruction purpose, e.g., relocation 

of building 
- Material and component reusable and 

recyclable  
- Connection type i.e., bolt/nut, glue 
- Composite material during design 
- Number of building components 
- Available building components 
- Toxic & hazardous materials 
- Secondary finishes 
- Deconstruction purpose 

Residential All  Review (Literature Undefined 

19 (Blengini & Di 
Carlo, 2010) 

- Building Information/documentation Residential All Quantitative Italy 

20 (C. Kibert, 
2003b) 

- Deconstruction purpose & design Residential All Review (Literature) USA 

21 (Warszawski, 
1999) 
 

- Design – connection, key indicators for 
DfD, methodologies (building construct 
based conceptual framework) 

Residential All Mixed method UK 

24 (Densley Tingley 
& Davison, 
2012a) 

- Material durability 
- Building technique e.g., volumetric 

construction, precast flat panel modules, 
tunnel formwork system, flat slabbing 
technology, precast foundation, hybrid 
concrete etc. 

Residential  Quantitative  
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S/N Author variables Identified Building type Material Research method Country 
- Site condition, - access, transportation, 

waste disposal, handling and storage of 
materials, availability and quality of 
electric power, water, etc.,  

- Design  

 
 

25 (Guy & 
Ciarimboli, 
2008b) 
 

- Secondary finishes 
- Prefabricated assemblies 
- Composite material  
- Number of building components 

Residential All Mixed method  

26 (A. R. Chini & 
Balachandran, 
2002) 
 

- Connection type i.e., bolt/nut, glue 
- Type of building components 
- Time, Cost & Policy 

Residential Timber Review (Literature) USA 

27 (Webster & 
Costello, 2006a) 

- Connection type i.e., bolt/nut, glue 
- Material reusable 
- Composite material during design 
- Number of building components 

Residential All Review (Literature) USA 

28 (Andi & Minato, 
2003) 

- Design documentation Residential All Review (Literature) USA 

29 (A. Chini & 
Bruening, 2003) 

- Materials recyclable 
- Design  

Residential Timber Review (Literature) USA 

30 (Guy & Ohlsen, 
2003b) 

- Labour cost  
- Material/Component Damage e.g., 

water damage, fire damage etc 
- Salvage material Market  
- Information regarding the building  
- Lack of skilled labour 
- Design i.e., DfD or not  
- Age of the building 
- Disposal fee (local tipping) 
- Building Material type e.g., wood, 

concrete, masonry etc., 

Residential All Undefined Germany 
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S/N Author variables Identified Building type Material Research method Country 
- Complexity/size of the building e.g., no 

of floors 
- Number of stores/onsite storage 

available e.g.., one, two or more 
- Scheduling/time to deconstruct e.g., 

month, 1-6months etc 
- Kind of building i.e., historic or in a 

historic district 
- Kind of regulatory agency to seek 

deconstruction permit 
- Time and cost to seek/get 

deconstruction permit 
- Public policy e.g., policy that 

encourages deconstruction  
31 (Gorgolewski, 

2006) 
- Market for recycling component 
- Damage & Cost 
- Negative attitude of the public towards 

recovered components 

Undefined Steel Review (Literature)  Canada 

32 (Srour et al., 
2012a) 

- Market for recycled components 
- The regional recycling capacity 
- The total energy used to recycle & the 

transportation energy  
- Technical Knowledge 
- Distance from the recycling facility and 

the project sites  
- Regional purchasing habits 

Residential All Quantitative  USA 

33 (Rios et al., 
2015a) 

- Inaccurate quantity assessment of the 
recovered components 

- Lack of quality grading system 
- Lack of rules and policy encouraging 

the practice 

Residential All Mixed method USA 
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S/N Author variables Identified Building type Material Research method Country 
- Lack of technical know/skilled 

personnel may  
- Negative perception of the use of 

recovered components 
34 (Nakajima & 

Russel, 2014a) 
- Low demand for the recovered 

components 
- Damages to the recovered components 
- The design of the building 
- Lack of suitable equipment for 

deconstruction  
- Sorting time 
- Uncertain cost factors for 

deconstruction 
- Time to deconstruct 
- composite materials 
- Lack of political initiative supporting 

deconstruction 

Residential  Timber  Mixed method Japan 

35 (Shami, 2008a) - Market 
- Incentives 
- Materials  
- Toxic materials 
- Quality of the salvaged material 
- Grading of the salvaged material 

Residential All Quantitative USA 

36 (C. J. Kibert & 
Languell, 2000) 
 

- Deconstruction cost 
- Industry/public attitude 
- Deconstruction project time 
- Identifying material quality & quantity 
- Market/resale Location e.g., onsite, or 

offsite 
- Material damage i.e., estimated amount 

of damage the material has  

Residential All Mixed method USA 
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S/N Author variables Identified Building type Material Research method Country 
- Labour cost/availability of labour & 

Skill level of the labour crew  
- Size & type of the structure i.e., number 

of floors, rooms etc., 
- Ease of removing/separating materials 
- Storage facility  
- Transportation cost  
- Resale    
- Structures containing old/rare wood 

species 
- Brick building built before 1933 
- Presence of interesting/old/rare 

architectural features/hardwood floors 
- secondary finishes, e.g., presence of 

unpainted woods 
- Age of structure 
- Design 
- Availability of recycling option  
- Type and condition of the materials in 

the structure 
- Presence of the as built/original plan of 

the structure 
- Presence of Hazardous materials,  
- Cost for hazardous material handler - 

asbestos abatement contractor  
- Time of the year – depending on 

geographic location 
- Jobsite preparation – preparing site for 

access for transportation, dumpster 
locations, Time scheduling 

37 (NAHB Research 
Centre, 2001b) 

- Project time  
- Code issues 

Undefined Undefined Undefined USA 
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S/N Author variables Identified Building type Material Research method Country 
- Market for the salvaged materials 
- Housing preservation 
- Toxic materials 
- Market perception of the salvaged 

building materials 
- Alternative use for the salvaged 

materials 
38 (NAHB Research 

Centre, 2000a) 
- Documentation 
- Material type e.g., Wood framed with 

heavy timbers and beams,  
- Rare features e.g., unique woods such 

as Douglas, unique doors, or 
plumbing/electrical fixtures. 

 
- Constructed with high quality materials 

e.g., brick laid with 
- low-quality mortar (to allow relatively 

easy break-up and cleaning) 
 

- Structurally sound, i.e., generally 
weather-tight 

- Equipment  
 

Undefined Undefined Undefined USA 
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A few insights were presented to discuss the relevant literature (Table 3.1). 

3.1.1  Insights from the identified literature sources 

- Project Location 

The study extracted data from the sources to investigate global trends in 
deconstruction. Results revealed a concentration of deconstruction projects in 
Europe (UK, Germany, Finland, Norway, France) and North America (USA, 
Canada), comprising over 60% of reported projects. Fewer projects were noted 
in other continents, though they were less pronounced. These findings illuminate 
the global distribution of deconstruction practices and sustainability initiatives, 
emphasising the prevailing focus in certain regions while acknowledging efforts 
elsewhere. They suggest a global exploration of sustainable deconstruction 
practices, albeit with varying prevalence across continents. 

- Data 

Most deconstruction projects sought relevant information about the building by 
employing direct observation and measurements. This implies that in a building 
deconstruction project, the primary data would likely be derived from the 
information gathered during the deconstruction process. This may include records 
of procedures followed and details about the recovered materials. Interviews with 
professionals and questionnaires constituted another significant method, drawing 
on professionals’ expertise to supplement observational data, especially in the 
absence of access to site/other valuable documents.  

- Article Focus 

A wide range of perspectives explored across various sources were uncovered, 
offering valuable insights into deconstructability. One key focus was on the 
economic aspect, which involved analysing the financial elements, including 
costs, benefits, and potential economic impacts (e.g., Dantata et al., 2005b; Guy, 
2006; Huuhka & Hakanen, 2015; Laefer & Manke, 2008; Tatiya et al., 2018). 
Understanding the economic viability of deconstruction is crucial for decision-
makers and stakeholders in the deconstruction sector. 

Another significant viewpoint considered the deconstruction from an 
environmental impact. Researchers examined ecological consequences such as 
waste reduction, resource efficiency, and overall environmental sustainability 
compared to traditional demolition methods (e.g., Ansah et al., 2021; Cottafava 
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& Ritzen, 2021a; Koc & Okudan, 2021; Lachat et al., 2021). This lens was 
essential for promoting environmentally conscious practices in construction.  

Other focuses include design/technical, legal, and social viewpoints. Technical 
involves technologies and materials to enhance efficiency, safety, and overall 
effectiveness in deconstruction (Crowther, 2005). Legal focus on regulatory 
frameworks, permits, and legal considerations related to deconstruction practices 
to ensure compliance with laws and regulations (Shami, 2006; Nakajima and 
Russel, 2014). Furthermore, the social dimension examined societal impacts such 
as job creation, community engagement, and social benefits associated with 
deconstruction projects (Gorgolewski, 2006). 

3.2 Variables established from systematic literature review  
The research identified variables influencing deconstructability, as argued and 
highlighted across the relevant literature (Table 3.1). The presence of these 
variables varies significantly in the literature. For instance, labour was cited in 
only four out of thirty-eight sources, indicating a recognised but somewhat 
limited impact. In contrast, design appeared in nearly half of the literature, 
reflecting a broader consensus on its influence. This variation emphasises the 
complex nature of deconstructability, with variables differing in perceived 
importance across literature. Given the objective to compile all possible variables, 
the research presents a comprehensive selection, which is discussed below. 

-  Labour and Equipment 

Labour and equipment play pivotal roles in deconstruction. Skilled and efficient 
labour can significantly reduce time and effort, saving costs (van den Berg et al., 
2020). The availability of experienced workers is paramount to prevent delays or 
escalated labour expenses. Labour costs, encompassing wages and benefits, form 
a substantial portion of deconstruction expenditures (Guy, 2006). Complex 
structures may necessitate specialised labour or equipment, thereby impacting 
overall costs. Thus, considering variables such as labour efficiency, availability, 
and expenses is essential for deconstructability (Dantata et al., 2005). 

-  Transportation 

Transportation exerts influence on deconstructability. Its impact encompasses 
various aspects, including logistics, financial considerations, and environmental 
implications, rendering it indispensable in planning deconstruction projects. A 
critical aspect impacted by transportation is an on-site market for trading 
recovered materials (Srour et al., 2012b). In cases where such markets are absent, 
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transportation assumes paramount importance, moving salvaged materials to 
appropriate off-site locations where they can be reused, recycled, or made 
available for sale.  

Furthermore, the geographical proximity of recycling facilities assumes 
considerable importance (Kibert & Languell, 2000). The distance to these centres 
directly affects transportation costs and operational efficiency, making strategic 
planning to minimise transportation distances imperative for cost savings and 
overall project viability. Achieving efficient transportation practices is pivotal for 
ensuring seamless operations during deconstruction. The smooth movement of 
equipment, materials, and salvaged components necessitates optimising 
transportation routes, utilising fuel-efficient vehicles, and exploring local 
recycling or reuse options to enhance cost-effectiveness and overall project 
success.  

Beyond finance, the environmental ramifications of transportation must not be 
overlooked (Akbarnezhad et al., 2014). The distances covered, fuel consumption, 
and resulting emissions from transportation activities can significantly impact the 
environment. Hence, a concerted effort to reduce transportation distances, adopt 
eco-friendly vehicles, and prioritise local recycling facilities can effectively 
curtail the environmental footprint of deconstruction projects. 

Furthermore, adequate access to the deconstruction site and navigational 
considerations in urban areas are indispensable logistical factors. Ensuring proper 
site access facilitates seamless transportation of equipment and materials, while 
meticulous planning to navigate urban settings helps mitigate traffic disruptions 
and environmental impacts. 

-  Storage 

The absence of a readily available materials market often requires utilising 
storage facilities, which provide advantages for material organisation, protection, 
and accessibility. Proper storage streamlines operations, safeguards against 
damage, and enhances efficiency (Tingley & Davison, 2012). However, it is 
crucial to consider storage costs and balance space requirements and economic 
gain (Kibert & Languell, 2000). Additionally, planning the duration of storage is 
important to manage expenses and ensure material preservation effectively. By 
implementing effective storage management, deconstruction projects can be 
optimised, and the value of resources can be maximised (Machado et al., 2018c). 

-  Demand and Supply 
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Demand refers to the consumer need for salvaged materials, while supply pertains 
to the availability of these materials. Factors such as market trends, sustainability 
practices, and buyer preferences, among others, impact demand. Furthermore, the 
demand for recovery may be communicated through various means, including 
documents and established working practices. Builders may make specific 
requests indicating their intention to salvage structural and non-structural 
elements. Moreover, deconstruction contractors deeply understand the 
profitability of recovery practices, enabling them to identify which materials are 
more likely to have market value and be economically viable for reuse or 
recycling based on their experience and knowledge (Nakajima, 2014).  

On the other hand, supply is influenced by the number of buildings being 
deconstructed, the types of materials used, and salvage operations, among others. 
When demand exceeds supply, it creates market opportunities and drives up 
prices, making deconstruction economically viable. Conversely, low demand or 
surplus supply can hinder deconstructability.  

-  Value  

The market value of salvaged materials determines the project's financial viability 
(Couto & Couto, 2010; Couto & Couto, 2007). Valuable items like reclaimed 
wood, vintage fixtures, or architectural elements enhance economic feasibility by 
offsetting costs or generating revenue through resale.  

In addition to monetary value, preserving architectural significance or historical 
value adds value beyond financial considerations. Reusing architectural elements 
and culturally significant components contributes to heritage preservation, 
architectural diversity, and regional context (C. J. Kibert, 2000a; C. J. Kibert & 
Languell, 2000). Balancing monetary and non-monetary value is crucial in 
determining the deconstructability of a building. 

-  Quantity and Quality 

Quantity refers to the available number of salvageable materials in a building. 
The more materials that can be recovered and reused, the greater the potential for 
cost savings and revenue generation. Larger quantities of salvaged materials help 
offset expenses, making the deconstruction project financially viable (Machado 
et al., 2018c). Quality is equally important, as high-quality materials in good 
condition that can be easily reused or resold have higher market value (NAHB 
Research Center, 2000; NAHB Research Centre, 2001a). 
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Finding the right balance between quantity and quality is crucial. While more 
materials are desirable, ensuring they meet marketable and valuable quality 
standards is essential (C. J. Kibert & Languell, 2000; Shami, 2006, 2008b). 
Striking this balance ensures reasonable cost savings or revenue generation. 

-  Landfill Tax and Incentives 

Financial incentives, such as grants, tax credits, or subsidies, can offset the costs 
associated with deconstruction. These incentives make deconstruction more 
attractive and feasible by reducing upfront expenses or providing financial 
rewards for salvaged materials (J. Couto & Couto, 2010b; J. P. Couto & Couto, 
2007; Shami, 2006). They encourage project owners and developers to choose 
deconstruction over traditional demolition methods. A good example is the 
landfill tax, a government-imposed levy on waste disposed of in landfills. It is a 
financial mechanism to discourage landfilling and incentivise alternative waste 
management approaches such as recycling and reuse (Shami, 2006). 

-  Remaining Service Life 

When assessing building deconstructability, it is crucial to consider the durability 
of the recovered materials. These materials should have a remaining lifecycle 
equal to or longer than the desired lifecycle of a new material. (Basta et al., 2020a; 
van den Berg et al., 2018, 2020a) emphasised the significance of this variable, as 
materials with shorter lifecycles may result in increased environmental impacts. 
If the construction material obtained through deconstruction needs to be replaced 
before the new building reaches the end of its lifecycle, it can lead to financial 
and environmental losses. Hence, evaluating the remaining service life of the 
recovered materials is essential. 

-  Toxicity and Hazardousness 

Ensuring that toxic and hazardous construction materials are avoided when 
assessing deconstructability. One key reason is that it helps reduce the potential 
contamination of materials earmarked for reuse or recycling (Crowther, 2009). 
By preventing harmful substances, the risk of introducing pollutants into the 
environment during the deconstruction process can be minimised (NAHB 
Research Center, 2000; NAHB Research Centre, 2001a). 

Furthermore, avoiding hazardous materials also plays a crucial role in mitigating 
risks to the health and safety of workers involved in the disassembly process. 
Materials such as asbestos and lead can pose significant health and environmental 
risks (C. J. Kibert, 2000b; C. J. Kibert et al., 2001; C. J. Kibert & Languell, 2000). 
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Therefore, it is vital to prioritise excluding these materials from construction 
materials intended for re-utilisation. 

When such materials cannot be avoided, it is important to ensure their removal is 
easy and safe (NAHB Research Center, 2000). This entails establishing 
appropriate protocols and procedures for handling and disposing of these 
materials. Special treatment and worker protection measures may be necessary to 
guarantee safe handling and disposal. 

-  Material Reusability and Recyclability  

Deconstructability relies on reusable materials, particularly those that can be 
reused without significant alterations (Akinade et al., 2015c; Basta et al., 2020c; 
Dams et al., 2021). Deconstructing buildings with substantial quantities of 
reusable materials has tremendous potential for reducing environmental impacts. 
This is primarily because the reuse of materials eliminates the need for resource-
intensive reprocessing.  

-  Damages and Deterioration 

Damages and deterioration during the dismantling of a building can render 
materials or connections unsuitable for reuse, posing a significant challenge to 
deconstruction (Huuhka, 2014; C. J. Kibert, 2000b; Nakajima, 2014). Prolonged 
deterioration can weaken materials or connections, making them more 
susceptible to damage. Moreover, certain connection types, particularly chemical 
connections, can hinder separation, leading to damage (Gorgolewski et al., 2006). 
When repairs to the damaged materials or connection are difficult or impractical, 
the viability of deconstruction is further compromised. 

In an ideal scenario, connections should remain intact during deconstruction. 
Evaluating the necessity of connections and their potential for easy repair or 
replacement is essential to ensure successful reuse without compromising the 
feasibility of deconstruction. If connections cannot be preserved or repaired 
effectively, the possibility of reuse is undermined. Therefore, this affects the 
overall success of the deconstruction process. 

-  Space for Equipment and Manoeuvring 

Deconstruction requires a systematic and meticulous approach to handling and 
manipulating materials, including de-nailing and separation (Machado et al., 
2018c). However, many sites lack adequate space to accommodate these 
activities.   
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As a result, the deconstruction zone layout, building shape, and equipment size 
must be analysed to ensure deconstruction feasibility. This assessment considers 
components' size, weight, and volume to enable proper manoeuvring and 
removal. Additionally, controlling the built environment and space around the 
building is vital to ensure sufficient access to equipment. However, access to 
careful dismantling may sometimes be impossible, impeding the process and 
compromising material integrity and operation safety (Machado et al., 2018c). 

-  Plans/Documentation  

A comprehensive deconstruction plan significantly enhances the feasibility of the 
deconstruction process (C. Liu et al., 2004). This plan, which includes technical 
procedures and safety measures, is vital in ensuring the smooth and safe execution 
of deconstruction operations.  

An example is the as-built drawings, which aid in identifying specific parts and 
developing safe and efficient disassembly procedures, particularly when 
determining the order of disassembly and understanding the nature of 
installations and materials used in the building. In cases where as-built drawings 
are non-existent or outdated, it is necessary to conduct an architectural or 
structural design update to define disassembly procedures effectively (Rebekka, 
2015). 

-  Standardisation and Pre-Fabrication 

The presence of standardised and prefabricated components in a building 
improves deconstruction feasibility (NAHB Research Centre, 2000b). It enables 
better quality control and efficient replacement of components, reducing the time 
and procedures required for deconstruction (Crowther, 2000, 2005a, 2009). 
Additionally, it simplifies sorting removed materials, accelerating the 
deconstruction process and reducing transportation to various recycling sites. 
Moreover, using similar components and materials facilitates reutilisation, 
contributing to the overall success of deconstruction (Guy, 2001). 

-  Accessibility to Parts and Connections 

Accessibility to parts and connections is crucial for deconstruction feasibility. It 
influences the process in various ways. Firstly, it enhances effective dismantling, 
resulting in quicker deconstruction. Secondly, it facilitates the extraction of 
valuable materials without excessive damage, thus reducing waste and 
maximising reuse. Moreover, accessibility improves safety by providing proper 
access to critical areas, minimising the risk of accidents or injuries (Crowther, 
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2000, 2009; Guy, 2006e). Lastly, accessibility affects cost and time, as complex 
access may necessitate specialised equipment or more labour-intensive methods, 
leading to increased deconstruction expenses and duration. 

-  Number of Connections and Their Ease of Removal 

The number of connections in a building impacts deconstruction feasibility 
(Crowther, 2000, 2009), particularly the time, as fewer connections generally lead 
to a faster separation process. However, it is important to note that the ease of 
removing a single connection can vary depending on its type, accessibility, tools, 
and technologies. In some cases, a single connection might be more challenging 
to remove than multiple connections of easily removable types (Guy 2006). 
Therefore, the influence of this variable is relative. 

-  Material Identification  

The efficient identification of components during deconstruction is crucial for its 
feasibility (Guy and Ohlsen 2003; Warszawski 1999; Crowther 2005). Various 
methods, such as tagging or other definitive identification techniques, can be 
employed to mark the parts. Implementing a marking system and definitively 
identifying the parts streamline the deconstruction process by aiding in the 
recognition and quantification of components based on their type, size, weight, 
and function. This organisation ensures that the disassembled parts can be easily 
separated and prepared for reuse or recycling, contributing to the overall 
efficiency and success of the deconstruction project (Crowther, 2000, 2009; Guy, 
2006e). 

-  Material Inventory 

A comprehensive file listing materials and components, their specifications, and 
essential information is highly recommended for evaluating deconstructability 
(Andi and Minato, 2003; Bertino et al., 2021; Basta et al., 2020). This file includes 
details such as lifecycle, reutilisation potential, manufacture date, resistance 
characteristics, special handling instructions, preservation methods, and more 
(NAHB 2000). It would enable informed decision-making on deconstructability, 
identifying opportunities for reuse. 

-  Building Complexity and Structural Integrity 

The complexity of a design and its structural integrity can impact the ease and 
efficiency of deconstruction (Bertino et al., 2021). Buildings with intricate 
designs, unconventional materials, or complex structural systems may pose 
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challenges, potentially affecting deconstruction feasibility. Assessing the 
technical aspects of the building, such as load-bearing capacities, material 
composition, and stability, is crucial in determining the feasibility of 
deconstruction. 

-  Equipment and Tool 

The availability and suitability of equipment and tools for deconstruction tasks 
are important technical considerations (Couto and Couto, 2010). The right 
equipment and tools, such as cutting tools, material separation machinery, or 
lifting equipment, contribute to the efficiency and safety of the deconstruction 
process. Assessing the adequacy and compatibility of available equipment and 
tools is essential for determining the technical feasibility of deconstruction 
(Machado et al., 2018). 

-  Expertise and Skills 

A skilled workforce with the necessary expertise and knowledge also influences 
the feasibility of deconstruction (Guy and Ohlsen, 2003; Akinade et al., 2017). 
Experts with the necessary skills may help dismantle material carefully without 
damage (Rios et al., 2015). Generally, it takes more time to deconstruct; however, 
with expertise and skills, the time may be reduced owing to past experiences and 
skills (Dantata et al., 2005; Srour et al., 2012). Assessing the availability of 
qualified personnel, including deconstruction or demolition engineers, structural 
engineers, and hazardous material experts, is crucial for determining the technical 
feasibility of the deconstruction. The expertise and skills of the workforce 
contribute to the efficiency, safety, and successful and timely completion of the 
deconstruction process. 

-  Health and Safety Risk  

Reducing, controlling, and, when possible, eliminating the risks involved in 
dismantling a building must be a priority to preserve workers and individuals 
moving around the deconstruction area and material goods, including properties 
near the building. The risks of the process must be identified according to the 
activities planned, and adequate means of control must be implemented (Couto 
and Couto 2010).  

-  Codes, Regulations and Compliance 

Deconstruction must comply with regulations and standards. These regulations 
may include hazardous material handling, waste disposal, air quality, and water 
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management requirements. Ensuring compliance with these regulations is crucial 
for the feasibility of deconstruction (Kanter 2018). Failure to comply can result 
in legal and financial consequences and reputational damage. 

-  Community Engagement and Support 

The local community's support and engagement can influence the deconstruction 
projects' feasibility. Positive community relationships, involvement, and 
collaboration can contribute to project acceptance, reduce potential conflicts, and 
facilitate the necessary permits and approvals (Kibert and Languell, 2000; 
Gorgolewski, 2006). Engaging stakeholders, including community members, 
residents, and local organisations, fosters a sense of ownership and can enhance 
the feasibility of deconstruction initiatives. 

-  Perception and Awareness 

Public perception and awareness of deconstruction as a sustainable and 
environmentally friendly practice can affect feasibility (Zabek et al., 2017). 
Educating the public about the benefits of deconstruction, including waste 
reduction, resource conservation, and the creation of local employment 
opportunities, can foster acceptance and support for such projects. Building 
awareness and positive perception can contribute to deconstruction initiatives by 
garnering public support and minimising resistance (Gorgolewski, 2006). 

-  Permits and Approvals 

Obtaining necessary permits and approvals is a legal requirement. These permits 
may include demolition permits, environmental permits, waste disposal permits, 
and other relevant authorisations (Nakajima and Russel 2014). The feasibility of 
deconstruction is influenced by the ability to obtain these permits and approvals 
on time and comply with the associated requirements (Rios et al. 2015). 

-  Project Schedule 

The project schedule, including deadlines and time constraints, influences 
deconstruction feasibility (Leigh and Patterson 2006; Couto and Couto 2010; 
Marzouk et al. 2019). Projects with tight timelines may require expedited 
deconstruction processes, affecting the availability of resources, labour, and 
equipment. Obtaining necessary permits and complying with regulatory 
requirements can impact the timeline of deconstruction projects. Delays in 
securing permits or navigating complex regulations can prolong the duration of 
the deconstruction process and affect project feasibility. 
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-  Region/Seasonal Considerations 

Weather conditions and seasonal variations can impact deconstruction feasibility 
(Kibert and Languell 2000; Couto and Couto 2010). Extreme weather, such as 
heavy rain or snow, can hinder the progress of deconstruction activities and lead 
to delays. Planning deconstruction projects around favourable weather conditions 
is important to ensure efficient and timely completion. 

-  Site Conditions 

The condition of the site, including the presence of hazardous materials, structural 
stability, and accessibility, can affect the deconstruction timeline (Basta et al., 
2020). Additional time may be required for site preparation, remediation, or 
addressing unforeseen challenges (Tingley and Davison 2012). 

3.3 Deconstructability Conceptual Framework  
Inferring from identified literature sources, this research proposed a construct: 
bringing together interrelated variables. Subsequently, the constructs were 
utilised to develop a construct-based conceptual framework. The framework 
would be used by deconstruction experts and other stakeholders interested in 
reducing CDW. The framework herein aims to help generate questions and gather 
data to develop the AI-DPM.  

The development of the conceptual framework was guided by TELOS (technical, 
economic, legal, operational and schedule) – a well-known feasibility framework. 
Additionally, the position of this study is that environmental construct replaces 
operation while social forms the sixth construct to form TELESS, and it was 
because there have been variables identified as social constructs from the SLR. 
The construct-based conceptual framework is thus presented in Figure 3.3.  

Questions were derived from the variables identified in the systematic literature 
review and the conceptual framework (see Table 3.2). These questions are a 
foundational part of the questionnaire survey and checklist to assess building 
deconstructability. While they may undergo refinement following pilot testing in 
Chapter 5, each question is closely aligned with key variables. For instance, the 
variable skill and labour prompted the question, “How expensive is hiring skilled 
labour?” All questions in Table 3.2 were generated using this strategy to ensure 
a clear link between variables. 
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 Figure 3.3: Conceptual framework for deconstructability (Created by author based on retrieved literature review) 
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Table 3.2: Questions formed from the variables and constructs (Created by the author based on the variables identified from literature). 

Construct Variable Possible question Authors 
Economy Labour & 

equipment 
1. How expensive is it to hire skilled labour? 
2. What is the cost associated with acquiring or renting or 

maintaining the necessary equipment? 

(Bertino et al., 2021b; Da Rocha & Sattler, 2009; 
Dantata et al., 2005a; Guy, 2006e; Koc & Okudan, 
2021; Leigh & Patterson, 2006b; Machado et al., 
2018c; Sanchez et al., 2020a; Tatiya et al., 2018c; 
van den Berg et al., 2020b; Zaman et al., 2018) 

Transport 3. what is the distance between the site and nearest 
market/recycling facility? 

4. Are there any logistic challenges (e.g., road access, 
congestion, or restrictions)? 

5. How expensive is transport cost? 

(Akbarnezhad et al., 2014b; Bertino et al., 2021c; 
da Rocha & Sattler, 2009; Dantata et al., 2005a; 
Lachat et al., 2021; Leigh & Patterson, 2006b; 
Pantini & Rigamonti, 2020) 

Storage 6. How expensive is it to acquire or rent a storage facility?  
7. Are there other factors that could impact storage cost 

(e.g., materials insurance, security)? 

(Akbarnezhad et al., 2014b; Bertino et al., 2021b; 
Da Rocha & Sattler, 2009; Densley Tingley et al., 
2017; NAHB Research Centre, 2000b; Zaman et 
al., 2018) 

Demand &  
Supply 

8. Are there any specific materials from the building that 
have a high demand in the market? 

9. Are there any restrictions or limitations on the 
availability of certain materials due to environmental 
regulations or building codes? 

10. Are there potential challenges or risks associated with the 
supply of materials, such as the presence of hazardous 
substances or contamination? 

(Da Rocha & Sattler, 2009; Densley Tingley et al., 
2017; Hradil et al., 2019b; Koc & Okudan, 2021; 
Nakajima, 2014; van den Berg et al., 2020b) 

Value 11. Are there any specific components or materials within the 
building that have a high intrinsic or market/cultural 
value? 

(Da Rocha & Sattler, 2009; Dantata et al., 2005a; 
Guy, 2006; Hradil et al., 2019a; Kibert, 2000; 
NAHB Research Centre, 2000; Pantini & 
Rigamonti, 2020; Tatiya et al., 2018; van den Berg 
et al., 2020b; Zaman et al., 2018) 

Quantity & 
Quality 

12. Are there any specific materials or components within the 
building that have a significant quantity and can be 
recovered during the deconstruction process? 

(Akanbi et al., 2019a; da Rocha & Sattler, 2009; 
Hradil et al., 2019c; Koc & Okudan, 2021) 
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Construct Variable Possible question Authors 
13. Are there any high-quality or specialty materials within 

the building that have a higher market value? 
14. Are there industry-standard classifications for grading 

salvaged materials? 
15. What quantity of non-structural materials (walls, ceilings, 

roof, windows, and doors) and services are available for 
salvage or reuse? 

Landfill tax 16. Are there any specific waste materials that are subject to 
higher landfill tax? 

17. How expensive is landfill tax? 
 

(Akbarnezhad et al., 2014c; Akinade et al., 
2015d, 2017c; Basta et al., 2020d; C. J. Kibert, 
2000b; Tatiya et al., 2018c; van den Berg et al., 
2020b) 

Incentive 
 

18. Are there any government grants or subsidies or 
incentives or credit for deconstruction? 

(Leigh & Patterson, 2006a; Nakajima, 2014; 
Nakajima & Russel, 2014; Tatiya et al., 2018; 
Zaman et al., 2018) 

Technical Remaining service 
life 

19. Are there significant number of materials with shorter 
remaining service life? 

20. Are there significant number of materials with structural 
integrity concerns? 

21. How old is the building? 

(Akbarnezhad et al., 2014c; Akinade et al., 
2015d; Ansah et al., 2021; Basta et al., 2020d; 
Bertino et al., 2021c; C. J. Kibert, 2000b; 
Tatiya et al., 2018c; van den Berg et al., 2020b) 

Toxicity 22. Are there any (materials now regarded as toxic or 
hazardous) in the building? 

(Akanbi et al., 2019c; Akinade et al., 2015d; Basta 
et al., 2020d; Guy, 2006e; C. J. Kibert, 2000b; 
Tatiya et al., 2018c; Webster & Costello, 2006b) 

Reusability & 
Recyclability 

23. Are there materials with significant reuse potential? 
24. Are there materials with significant recycling potential? 

(Akanbi et al., 2019a; Akbarnezhad et al., 2014a; 
Akinade et al., 2015a; Basta et al., 2020a; Dams et 
al., 2021; Guy, 2006; Kibert, 2000; Tatiya et al., 
2018; van den Berg et al., 2020b; Webster & 
Costello, 2006) 

Damages & 
Deterioration 

25. Are there significant number of materials that have been 
damaged? 

(Akbarnezhad et al., 2014c; Akinade et al., 2017c; 
Laefer & Manke, 2008; Tatiya et al., 2018c) 

Space for tools & 
manoeuvring 

26. Are there any specific spatial constraints that may impact 
use of tools or the manoeuvrability of workers? 

(Akinade et al., 2017c; Cottafava & Ritzen, 2021c; 
Machado et al., 2018a; Tatiya et al., 2018c) 
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Construct Variable Possible question Authors 
27. Are there any site-specific considerations such as narrow 

access point, low overhead, restricted areas that may 
impact tools and manoeuvring? 

Data (i.e., 
disassembly plan, 
as built drawing, 
material 
inventory) 

28. Has a detailed disassembly plan been developed?  
29. Are as-built drawings available for building to be 

deconstructed? 
30. Has a comprehensive inventory of the building materials 

been created for the deconstruction project? 

(Ansah et al., 2021; Bertin et al., 2020; da Rocha & 
Sattler, 2009; Knoth et al., 2022; Laefer & Manke, 
2008; Leigh & Patterson, 2006b; NAHB Research 
Centre, 2000b; Sanchez et al., 2020b; Volk et al., 
2018) 

Accessibility to  
Parts & 
Connections 

31. How accessible are the building material and 
connections? 

32. Are there specific areas or materials that may pose 
challenge in terms of accessibility? 

(Cottafava & Ritzen, 2021c; Machado et al., 2018a; 
Tatiya et al., 2018c) 

Connection and 
ease of removal 

33. Are there significant number of different connection 
types? 

34. Are the connections standardised or uniform? 
35. What is the construction method? 

(Akanbi et al., 2019c; Akbarnezhad et al., 2014c; 
Akinade et al., 2015d, 2017c; Basta et al., 2020d; 
Cottafava & Ritzen, 2021c; Dams et al., 2021; Guy, 
2006e; Huuhka & Hakanen, 2015; C. J. Kibert, 
2000b; Machado et al., 2018a; Melella et al., 2021; 
Paduart et al., 2008b; Tatiya et al., 2018c; Webster 
& Costello, 2006b) 

Building 
characteristics 

36. What are the primary material types used in the building? 
37. What type of foundation does the building have? 
38. What is the average floor space of the building? 
39. Are there significant composite materials in the building? 
40. What is the type of framework used in the building? 
41. Are there significant secondary finishes in the building? 

(Akanbi et al., 2019c; Ansah et al., 2021; Bertino et 
al., 2021c; Diyamandoglu & Fortuna, 2015; C. J. 
Kibert, 2000b; Laefer & Manke, 2008) 

Material 
identification 

42. Are there standardised classifications for identifying 
materials? 

(Densley Tingley et al., 2017; Webster & Costello, 
2006b) 

Building 
complexity & 
Structural 
integrity 

43. Are there significant structural challenges that need to be 
addressed during deconstruction? 

44. Are there specific architectural or design features that 
contribute to complexity of building? 

(Akanbi et al., 2019c; Akbarnezhad et al., 
2014c; Bertino et al., 2021c; Hradil et al., 
2019c; Sanchez et al., 2020b; Tatiya et al., 
2018c) 

Tools 45. Is there need for specialised or industry specific tools for 
certain tasks? 

(Akbarnezhad et al., 2014c; Guy, 2006e; 
Machado et al., 2018a) 
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Construct Variable Possible question Authors 
Expertise & skills 46. Do the team members possess the necessary knowledge 

and skills? 
(Guy, 2006e; van den Berg et al., 2020b) 

Environment Health & safety 
risk 

47. Are there any risk or potential safety hazards associated 
with building structural condition? 

48. Have asbestos and other hazardous materials been 
identified within the building? 

(Akinade et al., 2017; Koc & Okudan, 2021) 
 

Social Community 
engagement 

49. Is the public familiar and interested in deconstruction?  (Cruz Rios et al., 2021; da Rocha & Sattler, 2009; 
Huuhka & Hakanen, 2015; Knoth et al., 2022; 
Leigh & Patterson, 2006b; Nakajima & Russel, 
2014b; Volk et al., 2019; Zaman et al., 2018) 

Perception & 
attitude 

50. How receptive is the public towards reuse and 
deconstruction? 
 

Job creation 51. Are there gaps in skills set that deconstruction projects 
can help address through training & employment 
opportunities? 

Social equity 52. Can deconstruction contribute to creating affordable 
housing option & promoting community redevelopment? 

Cultural heritage 53. Does the building or the materials hold cultural or 
historical significance? 

(Da Rocha & Sattler, 2009; Guy, 2006; Hradil et 
al., 2019a; Kibert, 2000; van den Berg et al., 2020b; 
Zaman et al., 2018) 

Legal Building codes 54. Is the building subjected to any specific building codes, 
permits or regulations that need to be considered during 
deconstruction? 

55. What permits are necessary and which authorities issues 
them? 

 
Permits & 
approval 

Contractual 56. Was there contractual agreement?  
Liability & 
insurance 

57. Does the project owner insurance policy cover all 
deconstruction activities or does additional coverage need 
to be obtained?  

 

Environmental 58. Are there restrictions on working hours or noise levels by 
the local regulations? 

59. Are there any environmental policy that may impact 
deconstruction? 

(Condotta & Zatta, 2021; Cruz Rios et al., 2021; 
Hradil et al., 2019c; Knoth et al., 2022; Leigh & 
Patterson, 2006b; Nakajima & Russel, 2014b; Volk 
et al., 2019; Zaman et al., 2018) 
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Construct Variable Possible question Authors 
Time Project schedule 60. What is the proposed timeline for the deconstruction 

project? 
(Cruz Rios et al., 2021; da Rocha & Sattler, 2009; 
Dantata et al., 2005b; Guy, 2006e; Leigh & 
Patterson, 2006b; Nakajima & Russel, 2014b; 
Sanchez et al., 2020b) 

Seasonal 61. Are there any seasonal factor that could impact 
deconstruction (e.g., extreme weather, or local events)? 

Permit 62. How long does it take to get all necessary permits? 
Availability of 
skilled labour 

63. Are all required labour/expertise readily available? 

Tools 64. Are all tools and equipment readily available? 
Site condition 65. How long would it take to get the site in right order for 

deconstruction? 
Coordination 66. How will the project adapt to changing circumstance to 

minimise disruptions and ensure progress? 



   
 

   
 
64 

3.4 Chapter Summary 
This chapter systematically reviewed literature (i.e., academic and non-
academic). Scopus and Google Scholar databases were searched, and following 
the PRISMA framework, 38 articles were discovered that were relevant and used 
to identify variables influencing the deconstructability of buildings. From the 
retrieved literature sources, outcomes such as the source details (e.g., authors, 
publication year), variables, description of the study (i.e., building type and the 
location of the building) and nature of the dataset used were summarised.  

The chapter further discussed the variables influencing deconstructability. These 
variables were later grouped under technical, economic, legal, environmental, 
social, and scheduling constructs following the widely accepted TELOS 
framework. These constructs facilitate the development of a deconstructability 
framework and questions for the questionnaire survey.  

Examples of variables established in this chapter include labour and equipment, 
transportation, storage, demand and supply, value, landfill tax, and incentives. 
The chapter highlighted the importance of labour efficiency, availability, and 
costs regarding deconstructability. Other variables discussed in the chapter 
include transportation considerations (such as logistics and costs), storage, the 
economic potential of salvaged materials (including quality and market value), 
Incentives (such as grants and tax credits), toxicity and hazardousness, material 
reusability and recyclability, and damages and deterioration among others.  

This chapter concludes by establishing key questions derived from variables 
identified in the systematic literature review and conceptual framework (Table 
3.2). These questions form the basis of the questionnaire survey and a checklist 
for assessing deconstructability. For example, the variable cultural heritage led 
to the question, “Does the building or its materials hold cultural or historical 
significance?” this strategy ensures a clear alignment between variables and 
questions, which will be central to the data collection methodology in Chapter 5. 

Chapter 4 will review artificial intelligence and its application to deconstruction, 
covering current uses, challenges, opportunities, and future directions. This 
review will provide the foundation for developing the AI predictive model, which 
will be explored later in this research. 
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Chapter Four 

4.0 Artificial Intelligence for Deconstruction 

 
 
 

 

 

 

rtificial intelligence and its subfields, such as machine/deep learning, 
robotics, optimisation, and reality capture technologies, have brought 
remarkable advancements and transformative changes to various 
industries, including the deconstruction industry. Acknowledging AI's 
benefits for deconstruction, this chapter investigates AI applications and 

aims to pinpoint the opportunities and challenges associated with AI adoption for 
deconstruction. A review of existing literature focused on AI applications for 
planning, implementation, and post-implementation activities within the context 
of deconstruction was carried out. Furthermore, this chapter aims to identify and 
present the opportunities and challenges arising from AI for deconstruction. This 
chapter paves the way for realising AI's potential benefits for this sector by 
offering insights into key AI applications specific to deconstruction.  

In recent years, the global shift towards digitisation has witnessed a rise in data-
driven technologies, with artificial intelligence (AI) emerging as a key player, 
especially in deconstruction. With its subfields like machine learning (ML), 
robotics, and optimisation, AI has been instrumental in streamlining complex 
processes in this field. For instance, deep learning techniques have enabled the 
categorisation and organisation of construction end-of-life waste (Na et al., 
2022), while ML predictive models have been applied to various aspects such as 
deconstruction cost prediction (Tatiya et al., 2018d), analysing the deconstruction 
process (Àkànbí et al., 2019), assessing the technical reusability of building 
components (Rakhshan et al., 2021c), and estimating end-of-life waste (Akanbi 
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- Systematic Literature Reviews of AI applications in deconstruction 

- Challenges facing the adoption of AI for deconstruction 
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- Future trends and research gaps for AI in deconstruction 
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et al., 2020a). Robotics has demonstrated effectiveness in tasks like component 
finish partitioning and removal, insulation partitioning and removal, and adhesion 
removal (Lublasser et al., 2017a), while optimisation techniques have enhanced 
deconstruction process planning (Sanchez et al., 2019a; Sanchez & Haas, 2018), 
scheduling (Rebekka, 2015; Volk, 2017), and salvage material logistics 
(Akbarpour et al., 2021). 

AI can revolutionise decision-making and productivity in the deconstruction 
industry, unlocking insights from vast datasets previously archived for future 
reference. Data collected from smart devices, cameras, building information 
modelling (BIM), and other sources can be analysed by AI to optimise 
deconstruction implementation and promote sustainability. In line with this, 
(Oluleye et al., 2023) pointed out AI’s role in automating design for disassembly, 
material strength prediction, and reverse logistics, among the many benefits it can 
offer. 

Owing to these benefits, AI has garnered significant attention from researchers in 
the field of deconstruction, leading to a surge in research works and publications. 
However, this proliferation of studies makes it challenging to grasp the current 
state of knowledge. To address this, a comprehensive review is essential to 
consolidate the latest advancements. Consequently, this chapter aims to 
summarise the current state-of-the-art AI applications in deconstruction, focusing 
on (a) critically reviewing existing literature on AI in deconstruction, (b) 
identifying and discussing the application and challenges of AI in deconstruction, 
and (c) identifying and discussing opportunities for AI in deconstruction.  

While some related review studies in this area (Abioye et al., 2021; Akinosho et 
al., 2020; Baduge et al., 2022; Darko et al., 2020; Oluleye et al., 2023; Pan & 
Zhang, 2021; Regona et al., 2022; Saka et al., 2023; Xu et al., 2021)  have made 
valuable contributions, it's essential to note that these studies offer a 
comprehensive overview from a broader viewpoint. None of them, however, have 
undertaken an exhaustive examination of AI applications, particularly within the 
context of deconstruction, which is one of the significant end-of-life activities 
with many benefits within the construction industry (Charef, 2022; Charef, 
Ganjian, et al., 2021; Charef, Morel, et al., 2021; Rakhshan et al., 2020b). This is 
crucial, as deconstruction presents unique challenges such as material audit, 
hazardous waste handling, and structural integrity assessment, which may differ 
significantly from broader construction contexts.  
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By focusing explicitly on the application of AI in deconstruction, this chapter 
offers insight into the current state of AI in deconstruction, challenges, and 
opportunities. It presents research directions for both industry professionals and 
researchers.  

For clarification, within this systematic review context, 'deconstruction' 
encompasses all sustainable end-of-life activities, including selective demolition, 
partial demolition, and soft-stripping. Consequently, academic literature that 
focuses on these activities using AI will be deemed relevant to this systematic 
literature review. 

Also, the categorisation of literature was established based on its alignment with 
one of three key phases: planning, implementation, and post-implementation. 
These stages were framed through a comprehensive review of the literature by 
the authors, considering the specific activities each piece of literature highlights. 
These stages collectively serve as a framework for classifying the literature and 
were inspired by the works of (Poschmann et al., 2020; Volk, 2017).  

The planning phase encompasses critical activities such as tactical and strategic 
decision-making, planning, and inspection. The implementation involves the 
actual implementation, encompassing activities such as separation, grasping, 
handling and more. The post-implementation concerns the activities after a 
successful implementation, including activities like sorting, transportation to sites 
and recycling facilities and more.  

4.1 Systematic Review Literature 

Section 3.1 of this thesis outlines two types of literature reviews: traditional and 
systematic. Systematic literature reviews, unlike traditional, provide a transparent 
and reliable approach (Aromataris and Pearson, 2014). Since this chapter aims to 
thoroughly examine AI applications in deconstruction and derive insights from 
existing literature that other researchers can validate and replicate, a systematic 
review is suitable and can be used. 

To investigate the use of AI for deconstruction, a systematic literature review 
following the PRISMA guidelines was used, owing to its established credibility 
and widespread (Abioye et al., 2021; Balogun et al., 2022b; Egwim et al., 2022; 
Khallaf & Khallaf, 2021). Figure 4 shows the transparent and methodical process 
as depicted in the PRISMA flow charts
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Figure 4.1: Relevant article Identification, screening, and selection (Created by the author 
based on PRISMA)  

Figure 4.1 shows that while Chapters 3 and 4 employed systematic literature 
reviews, the number of databases searched increased from two in Chapter 3 to 
five in Chapter 4. This expansion reflects the broader scope of Chapter 4, which 
examines the intersection of artificial intelligence and deconstruction—a 
significantly broader focus than Chapter 3, which concentrated solely on 
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variables influencing deconstruction/deconstructability. Therefore, expanding 
the database search in Chapter 4 is necessary and expected, given its broader 
research aims. 

From Figure 4.1, several renowned databases, including Scopus, Association for 
Computing Machinery (ACM), IEEEXplore, ScienceDirect, and Google Scholar, 
were queried to retrieve relevant articles published until 2022. This timeframe 
was selected to gain insights into AI adoption's historical progression in 
deconstruction and identify associated challenges and opportunities.  

The choice to utilise the Scopus database stemmed from its reputation as the most 
prominent academic database encompassing a wide range of scholarly topics. 
Scopus is renowned for indexing high-quality articles (Thelwall & Sud, 2022), 
which is another compelling reason for its inclusion in this chapter. However, 
relying solely on Scopus could lead to omitting relevant articles. 

Consequently, additional databases such as ACM, IEEE Xplore, ScienceDirect, 
and Google Scholar were also searched. This deliberate search strategy aimed to 
mitigate the risk of overlooking pertinent articles by expanding the scope beyond 
Scopus. By employing a multi-database approach, this chapter aimed to gather a 
comprehensive collection of literature on AI applications in deconstruction, 
thereby ensuring a robust examination of the subject matter. Additionally, 
exploring multiple databases is fast becoming a norm, as seen in prominent 
literature reviews, e.g., (Abioye et al., 2021; Bilal et al., 2016) within the AEC 
domain.  

Five databases were searched comprehensively to identify pertinent articles for 
inclusion in this review. The search strategy was around three distinct collections 
of keywords, a methodology inspired by (Meng et al., 2022). The design of these 
keyword clusters was methodically crafted to ensure a thorough search process. 

a. Keyword Cluster 1 (KC1) comprises building, components, and materials. 
Other keywords, such as built structure and built environment, were 
unveiled as synonymous with building through a preliminary search on the 
internet.  

b. Keyword Cluster 2 (KC2) incorporates keywords linked to deconstruction 
and sustainable recoveries, such as disassembly, dismantling, recovery, 
reuse, recycling, and demolition.  
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c. Keyword Cluster 3 (KC3) includes the elements of AI techniques. It 
involves general and specific keywords. Generic words such as artificial 
intelligence, machine learning, deep learning, intelligence, robotics, and big 
data, and specific terms such as neural network, reinforcement learning, 
model, algorithm, metaheuristics, SVM, clustering, optimisation, supervised 
learning, unsupervised learning, image recognition, object detection, 
semantic segmentation, computer vision and video analytics were all 
incorporated into KC3.   

The search criteria KC1 & KC2 & KC3 were applied to the databases, combining 
keywords within each cluster with "OR." However, the overwhelming number of 
results and filter tool limitations within Google Scholar led to the end of the 
search as it was already reaching a point where further search appeared redundant. 
As a result, there is the possibility of missing articles in Google Scholar. 
However, searching other databases may offset biases that may be present in the 
Google Scholar search, and that was why other databases were explored. 

The predetermined article inclusion criteria comprise (1) articles involving the 
application of AI or any AI subfield for deconstruction and (2) articles involving 
the development or integration of AI or its subfield for activities synonymous 
with deconstruction or closely related. Conversely, articles were excluded based 
on the criteria: (1) not utilising AI or its subfield for deconstruction or closely 
related activities, (2) non-English studies, and (3) non-peer-reviewed journal 
articles, conference articles, and textbooks. 

Non-English language articles were excluded due to limitations in translation 
services, which could hinder the accurate comprehension and analysis of the 
research findings (Balogun et al., 2022b; Egwim et al., 2022). The decision to 
exclude other kinds of articles was based on the rationale that peer-reviewed and 
conference articles and textbooks undergo a rigorous evaluation process by 
experts in the field (Alaka et al., 2016). By focusing solely on English-language 
peer-reviewed articles, this review sought to uphold rigorous standards and 
minimise the risk of including potentially less reliable or lower-quality sources. 

Following the refined search, the results were recorded in an Excel spreadsheet, 
including details such as author name, article title, and abstract. Duplicate entries 
were removed, and further reviews involving the examination of each article's 
topic and, in some cases, the abstract, introduction, and conclusion were 
considered to determine relevance. An Excel column for "include" or "exclude" 
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was added along with an additional column to provide reasons for each decision. 
Independent reviews were performed twice for this step, and Cohen's Kappa was 
calculated as (0.92) and used to assess inter-rater reliability (Belur et al., 2018). 
In cases of disagreement between reviews, further scrutiny and readings of the 
articles were carried out until a consensus was reached. Also, only articles that 
were readily accessible were considered. 

Additionally, a thorough investigation of the reference lists of the previously 
identified articles was conducted. This step was taken to uncover more articles 
following similar studies potentially (Balogun et al., 2022a; Egwim, Alaka, 
Toriola-Coker, Balogun, Ajayi, et al., 2021a; Egwim et al., 2022). As a result, 8 
more articles were retrieved and found relevant, totalling 75 articles used for this 
review.  

4.2 Exploratory Analysis  
The exploratory analysis used a combination of thematic analysis and visual 
mapping, making it easier to derive actionable insights. Exploratory analysis of 
the identified literature aims to evaluate the selected articles and create a map of 
the current research landscape in AI for deconstruction. Consequently, the 
following perspectives: articles across different years, types of publications, the 
utilisation of AI and its subfields, the deconstruction undertakings using AI, and 
the geographical distribution (I.e., first or corresponding author's affiliation) were 
analysed. The time horizon for this analysis was set until 2022, corresponding to 
the period during which the review was conducted.  

Figure 4.2 presents the publication types and their year of publication, and we 
can see that an average of seven publications per year was consistently 
maintained from 2015 onwards, with a minor decline noted in 2016. The year 
2022 had the highest number of publications, underscoring the recent emergence 
of artificial intelligence integration for deconstruction. Similarly, this observation 
aligns with integrating digital technology to transform the AEC industry into a 
circular economy. 
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Figure 4.2: Publication types against year (Created by the author based on a literature review) 

Figure 4.3 presents a Sankey Diagram created with (https://sankeymatic.com/) 
that visualises 75 publications on "AI for deconstruction," showing connections 
across publication types, years, AI technologies, deconstruction stages, and 
author countries. Flow widths represent the number of publications, while colours 
help visually trace connections across categories without specific meanings. This 
layout emphasises trends like the recent increase in publications and the focus on 
AI technologies and stages in deconstruction research. 

Figure 4.3 categorises publications into Conferences (26), Journals (48), and 1 
Book, with a growth trend in publication years, especially from 2018 to 2022. 
Key AI technologies include Optimisation (16), Robot (14), Deep Learning (17), 
and Machine Learning (16).  Among 26 conference articles, 9 focused on building 
inspection using deep learning, forming the largest subset. Another 5 articles 
concentrated on material separation, predominantly leveraging robotics or a 
combination of robotics with other AI subsets. Also, conference articles featured 
a higher representation of separation, indicating its focus on actual deconstruction 
implementation, potentially due to robotics involvement. In 48 journal articles, 
articles focused on inspection and deconstruction scheduling predominated, 
employing deep learning, knowledge-based systems, and robotics. Inventory and 
sorting were also significant areas, predominantly utilising deep learning. 
Overall, AI applications were prevalent in the planning phase (59 out of 75  
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Figure 4.3: Journal types, publication year, AI types, deconstruction stages and country of author/corresponding author (Created by the author)
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identified articles), highlighting planning as the key stage in deconstruction. 
Implementation (9 articles) and post-implementation (8 articles) received fewer 
mentions. 

The top contributing countries are Germany (11), USA (8), China (6), and Korea 
(6). Germany and the United States emerged as the primary frontrunners, 
boasting the highest aggregate of articles. Furthermore, Europe takes the lead in 
this specialised area of research. One plausible explanation could be the European 
Union's proactive strategy to promote circular economy approaches in 2015—a 
strategy that garnered extensive adoption and endorsement through national 
initiatives. This has positioned Europe at the forefront of advancements in AI for 
deconstruction, solidifying its preeminent status in the field 

Figure 4.4 presents the distribution of articles by publishers (i.e., publishers with 
a count above 2 articles). Additionally, the impact factor (Craig et al., 2014; 
Olavarrieta, 2022) and h-index of publishers, which serve as metrics for academic 
article contribution and reputation, were provided. This confirms the quality of 
the articles—they originate from reputable journals and conferences.   
 

 

Figure 4.4: Publication counts per publisher (Created by author based on the literature 
review). 
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The Journal of Automation in Construction leads with 6 publications, boasting an 
impressive impact factor of 10.3 and an h-index of 157. Other significant 
contributors include the Journal of Cleaner Production (3 publications, impact 
factor: 11.1, h-index: 268), Sustainability (2 publications, impact factor: 4.0, h-
index: 136), Buildings (2 publications, impact factor: 3.8, h-index: 45), and 
others, each contributing 2 articles. 

The substantial presence of research literature in the Journal of Automation in 
Construction and other high-impact journals signifies a noteworthy advancement 
in this field, drawing attention to the newness and growing importance of this 
research domain. The fact that a prestigious journal has devoted many articles to 
this area underscores its increasing significance within the academic community. 
The journal's high h-index and impact factor, typically associated with respected 
academic publications, further validate the quality of the literature sources in this 
chapter.  

4.3 AI and Subfields Used for Deconstruction 

Artificial intelligence (AI) is the field of science and engineering dedicated to 
creating intelligent machines that can replicate human intelligence, with its 
origins dating back to 1956. Since its inception, AI has steadily garnered the 
attention of both scholars and the public. This enduring interest results from 
computing power, systems, and techniques advancements. AI has consistently 
played a pivotal role in people's lives, facilitating the automation of previously 
deemed insurmountable activities, especially in architecture, engineering, and 
construction (Abioye et al., 2021; Bilal et al., 2016).  

There are many AI models and techniques. However, this section summarises the 
dominant AI techniques and models for deconstruction outlined within the 
selected articles, which were structured into subfields in line with (Abioye et al., 
2021) categorisation. As a result, five prominent subfields stand out: Machine 
Learning (ML), Robotics, Optimisation, Knowledge-based systems, and Reality 
capture & extended reality, as illustrated in Figure 4.5.  
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Figure 4.5: Artificial intelligence and its subfields (Adapted from Abioye et al., 2021) 

Machine Learning 

Machine learning (ML) involves the application of computer systems to learn 
from past data and make predictions on new - unseen data. ML can be classified 
in several ways (Figure 4.5). One way is to classify it based on the model's 
learning process, resulting in supervised, unsupervised, or reinforcement 
learning. Another classification criterion for ML is based on the complexity of 
the model, which can be either classical or deep learning (Xu et al., 2021). 

1. Supervised learning necessitates labelled input data for training, making it 
suitable for solving regression or classification problems, depending on 
whether the labels are discrete or continuous values (Spathis et al., 2022). 

2. On the other hand, unsupervised learning operates without any labelled data, 
focusing on finding patterns within the data autonomously. Some well-
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known unsupervised learning techniques are clustering, association rule, and 
dimensionality reduction.  

3. Reinforcement learning, the third category, involves a learning system, 
referred to as the agent, which interacts with the environment and receives 
rewards for its actions. Through this feedback mechanism, the agent learns 
to make decisions that maximise rewards (Uc-Cetina et al., 2022). Some 
well-known reinforcement techniques include value-based, model-based, 
multi-agent, and policy-based based, among others. 

Additionally, ML may be classical ML or deep learning. In classical ML, experts 
manually engineer features or attributes, which are then fed into the model. As a 
result, the model learns from the data and makes predictions. Examples of 
classical ML techniques include support vector machines, decision trees, and 
ensemble methods, to mention but a few. The effectiveness of classical ML 
models largely depends on the quality of the hand-engineered features (Alaka et 
al., 2018; Balogun et al., 2021; Olu-Ajayi et al., 2022b, 2023).  

Conversely, deep learning represents a specialised subfield of ML that centres 
around artificial neural networks. Neural networks are constructed with 
interconnected nodes, forming layers of neurons. Unlike classical ML, deep 
learning automatically learns feature representations directly from the data, 
eliminating manual feature engineering. This capability is one of the primary 
advantages of deep learning and has contributed to its widespread adoption in 
tackling intricate tasks across diverse domains. Classical and deep learning may 
still be formulated as supervised or unsupervised or reinforcement learning, 
depending on the problem scoping and objectives. 

Robotics 

Robotics, another significant subfield of AI, concentrates on designing and 
constructing robots capable of emulating human activities in the real world. 
These robots are engineered to carry out highly specialised tasks that might pose 
challenges for humans, and they come in diverse shapes and forms. Based on 
the functionalities, robots can be autonomous or teleoperated.  

1. Autonomous robots operate independently, making decisions using 
intelligence gathered through their sensors and programming without direct 
human interventions.  
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2. Teleoperated robots are controlled by humans from a remote location or 
using some remote controls. This will be most useful in carrying out 
complex assignments in hazardous environments or situations where direct 
human presence is not feasible.  

Knowledge-Based 

As inferential decision-making engines, knowledge-based systems (KBS) draw 
upon expert knowledge or historical data to make informed decisions. KBS can 
be: 

1. Case-based reasoning (CBR) learns by leveraging preceding problem-
specific knowledge to solve new instances (Chen et al., 2022).  

2. The expert system (ES) learns by amalgamating expert knowledge to devise 
evaluation rules for effective problem-solving (Ye et al., 2022). 

Optimisation 

Optimisation involves achieving the best possible outcomes while adhering to 
constraints (Kulkarni et al., 2017). It focuses on maximising or minimising a 
specific value or criterion by efficiently utilising available resources. It can be 
deterministic or stochastic (heuristics).  

1. Deterministic refers to the systematic technique that guarantees finding 
optimal solutions for a given task, provided certain criteria are met. It 
follows a predefined set of rules and steps to search through the solution 
space and converges to the best possible solution. Some renowned examples 
of deterministic optimisation include gradient descent, linear programming, 
and integer programming, to mention but a few.  

2. Conversely, stochastic (heuristic) methods are probabilistic methods that do 
not guarantee finding the global optimum. Instead, they attempt to find 
satisfactory solutions in a reasonable amount of time, especially for complex 
tasks where finding the global optimum might be computationally 
infeasible. Examples of methods include genetic algorithms, simulated 
annealing, and particle swarm optimisation, to mention but a few. 

Reality Capture & Extended Reality 

Reality capture technologies include the techniques and tools used to collect and 
generate digital representations of an object, building inclusive. Within these 
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technologies, laser scanners, unmanned aerial vehicles (UAVs), LiDAR (Light 
detection and ranging), photogrammetry, videogrammetry, and digital cameras 
are prominent. They gather images, videos, or 3D point cloud data. Furthermore, 
the extension of the reality captured refers to the extended reality (XR). XR can 
be Virtual reality (VR), Augmented reality (AR), Mixed reality (MR) and similar 
reality-altering technologies that immerse users in altered realities (Al-Adhami et 
al., 2019; Alizadehsalehi et al., 2020; Trindade et al., 2023). 

a. VR offers an immersive experience, replacing the real world with a 
completely simulated or virtual environment.  

b. AR augments reality with computer-generated content. In AR, digital 
content is overlaid onto the user's real-world surroundings, allowing users 
to see both the real world and the additional content provided by the AR 
device (Wang et al., 2013). 

c. MR resembles AR but facilitates deeper engagement between the virtual and 
the actual environment, offering users a heightened sense of realism.  In MR, 
users get a fusion of computer-generated content within their real 
surroundings while also being able to actively engage with this content 
(Trindade et al., 2023).  

To better understand these subfields, some benefits and limitations of the 
identified AI subfields for deconstruction were presented (Table 4.1). limitations 
of these AI subfields for deconstruction include data accessibility and quality, 
ethical concerns, essential AI proficiency tailored for deconstruction purposes 
and seamless integration into practical applications, potential issues with 
generalisation, and the criticality of validation, among other pertinent constraints. 
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Table 4.1: AI subfields, their benefits to deconstruction and limitations (created by author based on literature review) 
Subfield Benefits to deconstruction Limitations Articles 
Machine Learning  
 

- Accurate predictive models 
- Enhanced resource management 
- Precision in dismantling techniques 
- Optimised material auditing 
- Streamlined planning. 
- Improved efficiency 
- Easy integration with other technology 

1. Data availability and quality 
2. Explainability/interpretability 
3. Generalisation and validation 
4. Computational complexity 
5. Human expertise and integration 
6. Ethical considerations 

(Akanbi et al., 2020b; 
Ekanayake et al., 2022; 
Rakhshan et al., 2021b; 

Tatiya et al., 2018d) 

Robotics - Adaptability to various task 
- Enhance productivity. 
- Improve safety. 
- Precision and consistency 
- Handling heavy loads 
- Easy integration with other technology 

1. Complexity of environment 
2. Cost and scalability 
3. Manipulation of variable materials 

 

(Biggs et al., 2011; Corucci & 
Ruffaldi, 2015; Cruz-Ramírez et 

al., 2010; Leea et al., 2022) 

Knowledge based - Explainability 
- Adaptability to varied structures. 
- Documentation and knowledge sharing 
- Easy integration with other technology 

1. Dependency on expert knowledge 
2. Ethical and bias considerations 
3. Inability to handle uncertainty 

(Fenves & Ibarra-Anaya, 1989; 
Sadek & Swailem, n.d.) 

Optimisation - Enhanced planning and decision making 
- Resource efficiency 
- Cost reduction 
- Adaptability to varied scenarios. 
- Optimal material recovery 
- Increased time efficiency 

1. Computational Complexity  
2. Data availability and quality 
3. Trade-offs and conflicting objectives 

(Queheille et al., 2019c, 2019a; 
Sanchez et al., 2019b; Sanchez 

& Haas, 2018) 

Reality capture  
& Extended reality 

- Accurate documentation 
- Enhanced visualisation 
- Improved planning 
- Onsite assistance and support 

1. Compatibility and interoperability  (Banfi & Mandelli, 2021; Croce 
et al., 2021; Hu et al., 2022; 
Shon et al., 2022; Wei et al., 

2019) 
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4.4 AI Application for Deconstruction 
This section discusses the identified activities where AI application is employed in 
deconstruction, organised according to the framework from Section 4.0: planning, 
implementation, and post-implementation.  

Figure 4.6 presents various AI applications in deconstruction processes, segmented 
into key areas such as Planning, Implementation, and Post-Implementation. Each 
branch explores specific AI techniques and algorithms tailored for distinct tasks 
within these stages, like inventory management, structural assessment, sorting, 
handling, and grading materials. Common AI techniques from Figure 4.6 are.  

- You Only Look Once (YOLO) is a real-time object detection algorithm  
- Convolutional Neural Networks (CNN): Image classification algorithm. 
- Autoencoder: Often used for anomaly detection by learning compressed data 

representations.  
- Support Vector Machines (SVM): Effective for classification tasks. 
- Random Forest: A robust ensemble method for classification  
- Logistic Regression, KNN, Decision Trees (DT), and Naive Bayes (NB) are 

fundamental classification algorithms. 
- Analytic Hierarchy Process (AHP): A decision-making tool mostly suitable for 

project planning. 
- Simultaneous Weighted Optimisation: Balances constraints like cost and time 

for optimal project scheduling. 
- Path Planners: compute optimal paths for robotic navigation. 
 
4.4.1  AI Application in Deconstruction Planning 

The planning phase encompasses many activities, including inspection, project 
planning and scheduling, feasibility assessments, estimation of recovery rates, and 
thorough cost-benefit analyses (see Figure 4.6).
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Figure 4.6. Summary of the AI application for deconstruction (Created by author)



   
 

   
 
83 

1. Data Collection/Audit/Inventory 

Deconstruction is a complex engineering process, like construction, but more 
challenging due to insufficient documentation. Comprehensive documentation 
should encompass a building's historical records, modifications, maintenance 
activities, and inventories over its years of existence. Examples of documents 
relevant to deconstruction include ownership and plot boundary documents, 
approval documents (e.g., permits and regulatory clearances), and strip plans of 
media lines and pipes (e.g., utility layouts) (Volk, 2017). Facility management, 
retrofits, inspections, and sampling documents offer historical facility data, aiding 
in maintenance understanding. Specific exposure documents are critical for 
safety, containing information on hazardous materials. Lastly, documentation of 
neighbouring buildings helps assess potential impacts on adjacent structures. 
These documents collectively support safe, efficient, and compliant building 
deconstruction processes. 

Unfortunately, many existing buildings do not have this information, and thus, 
they suffer from incomplete, outdated, or fragmented building information, 
resulting in partially unknown or uncertain details. Furthermore, building 
information is frequently stored in an unstructured fashion, often devoid of 
modern formats like computer-aided design (CAD) or building information 
modelling (BIM), and occasionally even in non-digital formats. This absence of 
structured data makes it challenging to process building information directly. 
Consequently, material and components audits are manually possible, which 
implies manual measurements and examination of the existing building. A typical 
measurement and examination include measuring tape, torchlight, and a camera 
for photographs or videos.  

To tackle these inventory, material audit and documentation challenges, there has 
been a rise in the use of reality-capturing technologies like photogrammetry, 
videogrammetry, laser scanning, or combinations thereof to semi-automatically 
or automatically capture and process building information. However, findings 
from this chapter posited that many of these reality-capturing technologies 
function more effectively when integrated with other subfields of artificial 
intelligence, such as machine learning and deep learning (Bassier et al., 2017; 
Kaplan et al., 2022) and expert systems (Doukari & Greenwood, 2020). ANN-
based models were among the prominent models mostly used to augment material 
recognition (Brilakis et al., 2010) and data extraction (Shon et al., 2022). SVM 
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and random forest were the other machine learning models discovered herein that 
are useful for data collection and material auditing in partnership with reality 
capture technologies such as 3D survey data, photogrammetry, and unmanned 
aerial vehicles, amongst others (Banfi & Mandelli, 2021; Bassier et al., 2017; 
Croce et al., 2021).  

Despite the breakthroughs in machine learning and deep learning for recognition, 
detection and segmentation, its use, particularly for material audit and inventory, 
is still hindered by challenges, including the characteristics of the materials and 
components, typically inconsistent dimensions and standards, high similarity, and 
low variability (e.g., floor, ceiling, tiles and so on) (Brilakis et al., 2010). Also, 
insufficient training data, particularly for classes that form the minority, may 
yield poor performances for such classes (Bassier et al., 2017). Collecting more 
data and or augmenting the available data may be a solution to these challenges. 
Another challenge is the technical skills to annotate and prepare data correctly 
and the angle from which the data is captured (Raghu et al., 2022; Shon et al., 
2022). Overcoming these challenges could facilitate utilising reality-capture 
technology, robotics, machine learning and even extended and immersive reality 
for material inventory and auditing in deconstruction.  

2. Deconstruction Feasibility  

Evaluating a building's deconstruction potential, termed the deconstruction 
feasibility at the end of its useful life, represents a pivotal activity in the planning 
phase. It revolves around the decision-making process of whether to proceed with 
deconstruction. This determination can be intricate and non-linear, particularly 
for existing and conventional buildings not originally designed with 
deconstruction.  

As part of the solution to this challenge, Abdullah et al. (2003) proposed an 
intelligent decision support system using expert knowledge to select the most 
appropriate building end-of-life techniques, which include deconstruction, using 
criteria such as structural characteristics, site conditions, costs, experience, 
reusability, and time. Anumba et al. (2008) extended the work of Abdulla et al. 
(2003) by subjecting the different criteria to a quantitative evaluation in terms of 
cost. The outcome was a ranking of overall deconstruction feasibility based on 
their cost-effectiveness. Notably, both studies include social criteria like the 
health and safety of on-site workers and public acceptance. Additionally, workers' 
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skills and prior experiences were considered factors that contributed to the 
economic criteria.  

Similar literature surfaced afterwards, though they explored deconstruction 
feasibility from different points using different AI subfields. For example, 
deconstruction feasibility with a focus on economic gain and time optimisation 
(Aidonis, 2019), economic reuse potential prediction (Rakhshan et al., 2021) and 
technical reuse potential of components (Rakhshan et al., 2021a), among others.  

Drawing from the reviewed articles, deconstruction feasibility assessment is 
possible using different subfields, mainly depending on the problem formulation 
and criteria. It is possible to use optimisation algorithms (Aidonis, 2019), expert 
systems (Abdullah et al., 2003; Sari et al., 2019), and machine learning (Rakhshan 
et al., 2021, 2021a). However, the multifaceted nature of deconstruction makes 
state-of-the-art feasibility assessment almost impractical, and this is because no 
known model has developed a holistic view of the criteria that influence 
deconstruction (Balogun et al., 2022). Based on this, an AI-driven predictive 
model considering all significant criteria from different standpoints may provide 
a realistic and practical feasibility assessment for deconstruction.  

3. Project Planning 

Effective planning is fundamental for all deconstruction activities and crucial in 
attaining specific project objectives. These objectives may involve cost reduction, 
material recovery maximisation, or both. The precise goals will vary and be 
influenced by factors like the building's type, urgency, stakeholder preferences, 
etc. Given the unique characteristics of each deconstruction project, personalised 
planning approaches are indispensable to address each building's distinct 
requirements comprehensively. 

Deconstruction project planning consists of finding an optimal and feasible path 
for deconstruction under given constraints (Sanchez & Haas, 2018); as a result, it 
is often framed as an optimisation challenge and is typically categorised into two 
dimensions: strategic and operational (Hübner et al., 2017). Strategic planning 
delivers decision support for the entire project, considering time, cost, quality, 
resources, risk, etc. In contrast, operational planning predominantly concentrates 
on individual project activities, and its key objective is often to shorten the 
project's duration, which is commonly addressed as a resource-constrained 
project scheduling problem (RCPSP). Common heuristics and algorithms used 



   
 

   
 
86 

for planning, generating sequences and scheduling include search techniques, 
optimisation techniques and genetic algorithms. 

Despite the progress and utility of the optimisation techniques presented in these 
sources, some limitations have been observed, including limited real-life 
validation and a lack of automated learning of deconstruction knowledge from 
existing records without extensive human involvement (Queheille et al., 2019b, 
2019d; Sanchez & Haas, 2018). 

4. Structure and Material Inspection 

The challenge of manually inspecting buildings, especially considering structural 
and non-structural components, has drawn attention due to safety concerns and 
potential damage caused by natural disasters (Roeslin et al., 2020). Despite the 
difficulty, these inspections are crucial for stakeholders. The exploration of AI 
applications in this domain has gained traction among researchers. Some have 
focused on AI-driven inspections of structural (Feng et al., 2020; Mangalathu & 
Jeon, 2018) and non-structural components (Yadhunath et al., 2022), while others 
covered both aspects (Rafiei & Adeli, 2017a). 

Various AI subfields, notably machine learning, have been utilised, especially for 
image recognition and segmentation, often in integration with robotics and expert 
systems. For instance, Liu et al. (2017a) proposed an autonomous robot system 
employing recurrent neural networks for real-time visual defect detection. 

Robotics has also played a pivotal role in inspection. Balaguer et al. (2002) 
introduced a teleoperated robot for high-rise metallic structure inspection, while 
Inoue et al. (2018) employed robots for wall inspection and deterioration 
estimation. Several studies have introduced expert systems for defect prediction 
(Terenchuk et al., 2018) and utilised machine learning models for seismic 
vulnerability assessments (Morfidis & Kostinakis, 2018; Y. Xu et al., 2022) 

The classification problems retrieved from the articles were predominantly 
tackled, except for strength and capacity predictions (Mangalathu & Jeon, 2018). 
Convolutional neural networks (CNNs) were the primary choice for image 
detection and recognition. The most prevalent robot types used for inspections 
were teleoperated and semi-autonomous systems. 

5. Cost-Benefit Estimate 
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Cost estimation is often a complex task, primarily due to uncertainties associated 
with the building's condition and the availability of comprehensive information 
regarding material states and values. This inherent complexity has led to adopting 
artificial intelligence (AI) techniques. Subfields of AI, such as machine learning 
and deep learning, have proven valuable for analysing historical project data and 
various variables to generate highly accurate estimates of material yields, costs, 
and benefits. Utilising AI in this manner helps reduce the likelihood of unforeseen 
expenses during the deconstruction process. 

Within this context, studies have demonstrated the relevance and accuracy of 
artificial neural networks and case-based reasoning in cost estimation (Tatiya et 
al., 2018d). Additionally, the precise valuation of materials through artificial 
intelligence has been proposed (Haifeng & Baoming, 2021a). Among the 
predictive models employed for cost and benefit estimation, artificial neural 
networks with built-in layers emerged as the most used. This preference is 
attributed to the complexity of the variables involved. Furthermore, deep learning 
techniques like artificial neural networks are advantageous because they 
automatically extract features from the input data without requiring manual 
feature selection. 

6. Recovery Rate Estimate 

Accurately predicting the rates of salvageable and waste materials presents a 
considerable challenge, as the decision to proceed with deconstruction often 
hinges on the assessed value, quality, and quantity of recoverable materials within 
the building slated for deconstruction. In response to this challenge, AI has been 
increasingly explored to predict waste and salvageable material quantities 
precisely before commencing the deconstruction process. 

As identified, Akanbi et al. (2020), Cha et al. (2022a), and Cha et al. (2020) have 
delved into the realm of AI, specifically employing supervised deep learning and 
ensemble machine learning algorithms to achieve accurate predictions of waste 
and recoverable material quantities. Deep neural networks and ANN logistic 
models were used to estimate waste quantities.  

Table 4.2 summarises AI subfields in planning phase activities and sub-activities, 
alongside the potential opportunities. Noteworthy opportunities include 
leveraging robotics and deep learning algorithms to streamline material audits 
and optimise building material recovery.  
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   Table 4.2: The State-of-the-art AI applications for deconstruction planning activities, sub-activities, subfields, and opportunities (Created by author) 
S/N Activity - Sub activities ML RB KBS OP RC/XR Opportunities 
1 Inventory - As-built recognition (Brilakis et al., 2010; 

Ekanayake et al., 2022; Rebekka, 2015)   
- Digital data generation (Doukari & Greenwood, 

2020; Hu et al., 2022)  
- Data collection and material audit (Kaplan et 

al., 2022; Shon et al., 2022) 

X    X 1. Robotics and Deep learning 
streamlined material audit 
   X  X 

X    X 

2 Feasibility 
assessment 

- Decision making (Abdullah et al., 2003b; Sari 
et al., 2019) 

- Reuse potential assessment (Rakhshan et al., 
2021a, 2021c) 

X  X X  1. Predictive model for feasibility 
assessment  

2. Virtual feasibility assessment and 
material potential 

X     

3 Project 
planning 

- Schedule planning (Hübner & Schultmann, 2015; 
Schultmann, 2003) 

- Strategic planning (Xanthopoulos et al., 2012a) 

   X  1. AI-driven insights for strategic 
planning and task prioritization  

   X  
4 Inspection - Structural damage assessment (Harirchian et 

al., 2020; Hwang et al., 2021; Mousavi et al., 
2022; Y. Xu et al., 2022) 

- Physical damage assessment (Ekanayake, 2022; 
Rafiei & Adeli, 2017b) 

X X X   1. XR-enabled building inspection 
 

X     

5 Cost-benefit 
estimate 

- Value prediction (Haifeng & Baoming, 2021b) 
- Cost estimate (Tatiya et al., 2018e) 

X     1. AI and XR high-value material 
recognition 

2. Knowledge-based market demand 
estimate 

X  X   

6 Recovery 
rate estimate 

- Waste generation estimate (Akanbi et al., 
2020d; Cha et al., 2022b) 

X     1. Deep learning for the material 
recovery rate  

ML - Machine learning and this includes deep learning, RB – robotics, KBS-knowledge based systems, OP-Optimisation 
and RC/XR – reality capture technology and extended reality.
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From Table 4.2, the prospect of a predictive model for assessing deconstruction 
feasibility using multidimensional criteria and applying extended and immersive 
reality for virtual feasibility assessments and material potential identification 
stands out.  

Furthermore, Table 4.2 shows the limited utilisation of robotics in planning 
activities, primarily attributed to cost and expertise constraints (Abioye et al., 
2021). Additionally, while reality capturing exhibits substantial benefits within 
inventory activities, its integration and use with extended reality still need to be 
explored, showcasing its untapped potential in enhancing deconstruction 
planning activities. Thus, robotics integrated with machine learning, deep 
learning, digital technologies like IoT, and extended reality should be more 
utilised in deconstruction planning activities. This underscores a critical gap in 
harnessing these advanced technologies to their full potential within 
deconstruction planning activities. 

4.4.2  AI Application for Implementation 

Robotics plays a pivotal role across various deconstruction implementation 
activities. It is instrumental in separation, dismantling, handling, and grasping 
tasks, as well as sub-activities like de-nailing and cutting, as illustrated in Figure 
4.6. This is due to the inherent physical nature of typical deconstruction tasks. 

Robots have been developed for dismantling interior components, such as ceiling 
panels (Cruz-Ramirez et al., 2008; Cruz-Ramírez et al., 2010), ceiling beams 
(Biggs et al., 2011) and partition removal (Lublasser et al., 2017b). Conversely, 
robots designed for dismantling structural components, like walls, have also been 
developed (Leea et al., 2022). They have also been explored for multitasking 
purposes (Lee et al., 2015), aiming to maximise productivity and reduce 
deconstruction operation times. 

The integration of robots with other subfields, particularly machine learning, deep 
learning, reality-capturing technology, and expert systems, is evident in most of 
these studies. For instance, Leea et al. (2022) introduced an autonomous 
deconstruction robot equipped with a vision system capable of collecting 
environmental feedback. While considering hardware capabilities and human 
expert inputs, this system can automatically and precisely cut concrete walls. 
Additionally, it includes a grasping module to ensure safe wall cutting without 
damaging other building elements. Similarly, Biggs et al. (2011) developed a 
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teleoperated robot designed explicitly for unscrewing suspended ceiling beams. 
This robot utilises laser scanning and clustering techniques to locate beams and 
features a motion control module for navigating between screws. While the robot 
performed admirably, occasional issues with skipped screws were encountered. 

The findings from this chapter underscore that most developed robots for various 
deconstruction activities largely remain in their experimental stages, posing a 
challenge in evaluating their practicality for real-world deconstruction practices. 
Furthermore, while these robots hold promising potential applications, their 
deployment on actual deconstruction sites faces hurdles due to the inherent 
unstructured nature of building end-of-life scenarios (Lublasser et al., 2016). 
Despite the potential for reinforcement learning to address these challenges, its 
exploration in this domain still needs to be explored. 

4.4.3  AI Application for Post-Implementation  

The aftermath of deconstruction implementation presents several challenges, 
some of which can be strenuous, dangerous, or technically demanding. Post-
implementation involves sorting and grading salvageable materials to separate 
reusable items from waste, picking and loading, planning logistics for the 
recovered materials, and more, as illustrated in Figure 4.6. 

Studies in this field have explored the use of AI, including machine learning, deep 
learning models and robotics, to address these challenges. Table 4.3 summarises 
the subfields used for post-implementation (created by the author). 

Table 4.3.  Summary of subfields used for post-implementation activities and sub-activities.  

Activities Sub-activities ML RB KBS OP RC/XR Opportunities 

Sorting  Grading 
(Dao et al., 2019) 

X   X  Sorting and 
grading automation 
through adaptive 
learning 

Material 
classification 
(Xiao et al., 
2020) 

X X    

Supply 
chain 

Reverse logistics 
 (Xanthopoulos & 
Iakovou, 2009) 

   X  AI-driven Reverse 
logistics  

Fleet route  
(Xanthopoulos & 
Iakovou, 2009) 

   X  
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Findings in this chapter revealed the use of AI subfields, such as optimisation for 
post-implementation activities. For instance, Xanthopoulos et al. (2012b) 
proposed and formulated the supply chain task for recovered materials as an 
optimisation problem. Also, Duan et al. (2021) investigated the prediction of 
compressive strength in recycled aggregate using meta-heuristic search 
techniques (ICA) and Xgboost. They developed a hybrid model called ICA-
Xgboost, which was argued to outperform other models such as ICA-ANN, ICA-
SVR, and ICA-ANFIS. 

Additionally, studies have explored machine learning and deep learning with 
robotics for sorting and classifying salvageable materials. Examples include real-
time waste classification and sorting systems using deep learning techniques like 
YOLACT and ResNet-50 (Na et al., 2022). In a similar study, Wang et al. (2019) 
introduced a robot capable of identifying materials, picking them up, and loading 
them. This robot utilised a Recurrent Convolutional Neural Network (CNN) for 
object detection and employed deep learning techniques for path planning and 
motion control. Several other studies, such as those by (Ku et al., 2021; Z. Wang 
et al., 2020; Xiao et al., 2020), adopted a similar approach involving robots, deep 
learning, and image-based technologies. Convolutional Neural Networks (CNN) 
and its variants, including Faster CNN, Recurrent CNN, Region-based CNN, and 
Masked RCNN, were among these studies that commonly used deep learning 
models for image recognition. While these proposed solutions demonstrate 
relevance, it's important to note that most are still in their experimental stages and 
may require further refinement for practical on-site use. 

4.5 Challenges Facing AI for Deconstruction 
So far, this chapter has pinpointed potential prospects and upcoming patterns in 
using AI for deconstruction. Recognising and deliberating on the leading 
obstacles is crucial to deepen our understanding in this domain. Figure 4.7 
presents the opportunities, challenges, directions for future research, and evolving 
trends from the literature review. Five notable challenges affecting the utilisation 
of AI for deconstruction from the literature review are presented below.   
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Figure 4.7: AI for deconstruction: opportunities, challenges, trends, and future directions (Created by the author based on a literature review)
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1. Data Availability and Quality  

This review uncovered a significant issue: a need for publicly available real-life 
datasets suitable for training AI in deconstruction. Most of the existing data used 
for developing AI in this field is privately owned.  

This scarcity of accessible data has hindered the adoption of AI in deconstruction, 
as AI heavily rely on ample data (Balogun, Alaka, & Egwim, 2021; Balogun, 
Alaka, Egwim, et al., 2021b, 2021a; Egwim, Alaka, Toriola-Coker, Balogun, & 
Sunmola, 2021; Olu-Ajayi et al., 2023). Furthermore, there needs to be more 
focus on sustainable end-of-life and limited data availability specifically tailored 
for deconstruction (Akbarieh et al., 2020). Although some studies utilised a few 
open-source datasets, especially for waste classification and sorting, many 
needed more quality (Na et al., 2022). Other efforts have been made to collect 
datasets from the internet, but these often need to represent real-world 
deconstruction sites (Ekanayake, 2022).  

Furthermore, using transfer learning and pre-trained models streamlines AI 
model training, particularly in machine and deep learning, and minimises data 
requirements by leveraging existing knowledge for new tasks. Adapting prior 
model learning to related tasks or domains is beneficial, especially for activities 
like material sorting (L. Liu et al., 2017b; Na et al., 2022). However, despite these 
advantages, the data quality problem still needs to be solved (Sun & Gu, 2022).  

Overall, the absence of a tailored dataset for deconstruction poses a significant 
challenge in leveraging AI for deconstruction. If this challenge still needs to be 
addressed, it could stagnate the evolution of digital deconstruction. To overcome 
this obstacle, we recommend establishing a secure data-sharing platform to 
encourage developing and validating more AI solutions tailored for 
deconstruction. Additionally, data challenges may be tackled shortly with the rise 
in the use and integration of reality-capturing technologies, including unmanned 
aerial vehicles (UAV), sensors, laser scanners and others.  

2. Cost and Scalability 

The undeniable benefits of AI in deconstruction are offset by substantial initial 
expenses, dissuading smaller firms and subcontractors, significant players in the 
industry (Aguilar-Fernández & Otegi-Olaso, 2018; Low et al., 2020). This leaves 
firms with the trade-off between AI adoption's return on investment and 
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associated expenses. Additionally, ensuring AI's adaptability to diverse 
deconstruction workflows and project sizes is pivotal for broad acceptance. 
However, integrating these AI applications smoothly across different projects and 
firms poses a scalability challenge, adding complexity to their widespread 
application. 

3. Human Expertise and Explainability 

Deconstruction, a specialised field, makes it challenging to find individuals 
proficient in deconstruction and AI development. AI's intricate nature and 
subfields create a barrier as their inner workings are often hard to interpret, 
hindering adoption. This lack of transparency may lead deconstruction 
professionals to hesitate to trust AI solutions without understanding how they 
arrive at conclusions. Addressing this requires developing AI models that are not 
just effective but also transparent and interpretable. 

Collaborations between AI experts and deconstruction industry professionals can 
bridge these gaps by fostering innovation tailored to the unique needs of 
deconstruction. Such collaborations aim to create models offering insights into 
decision-making processes, fostering trust among deconstruction stakeholders 
and potentially accelerating AI adoption in the industry. 

4. Complicated Site Conditions and Uncertainties in Buildings  

Over time, buildings naturally deteriorate due to weather and accidents, rendering 
their conditions uncertain. Furthermore, typical sites are primarily complex and 
complicated (Xu et al., 2021). These challenges significantly impact the 
feasibility and effectiveness of adopting AI for deconstruction. The unpredictable 
state of buildings complicates the use of AI solutions, which rely on accurate data 
for decision-making. The uncertainties hinder the AI's ability to predict and assess 
salvageable materials and optimise strategies effectively, among other 
possibilities. 

To boost AI adoption in deconstruction, it's vital to tackle uncertainties and 
complex site conditions. Leveraging advanced technologies like IoT, sensors, and 
adaptive and reinforcement learning for autonomous decision-making and 
accurate building assessments can mitigate these challenges.  

5. Compatibility and Interoperability 
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Deconstruction is a specialised domain within construction, and like construction, 
professionals within deconstruction are conventional in their ways, so ensuring 
AI solutions seamlessly integrate with existing tools and systems used in the 
deconstruction process is essential. Challenges arise when AI solutions need help 
to fit into current workflows or lack efficient data exchange with other on-site 
tools. 

Addressing these challenges involves tailoring AI applications for easy 
integration within the industry's infrastructure. This aims to have AI systems 
complement and enhance, rather than disrupt, established practices. For instance, 
when AI tools seamlessly communicate with inventory management or structural 
analysis systems, they optimise decision-making during deconstruction. 
Ultimately, prioritising compatibility and interoperability not only streamline 
operations but also significantly boosts efficiency in deconstruction activities. 

4.6. Opportunities and Future Direction  
The chapter's findings suggest the need for further research to explore AI's 
potential in deconstruction fully. Therefore, some opportunities and future 
research directions are outlined below (See Figure 4.7).  

1. Robotics & Deep Reinforcement Learning for Audit 

Integrating deep reinforcement learning (DRL) for material audit during 
deconstruction can revolutionise how robots identify, classify, and handle various 
building materials. By utilising DRL, robots equipped with sensors and cameras 
can learn to classify materials which are typically difficult to distinguish 
accurately (Brilakis et al., 2010). This technology allows the robots to 
continuously improve their material recognition abilities over time, enhancing the 
precision and efficiency of material audits. Additionally, DRL empowers these 
robots to develop optimised sorting strategies, learning to prioritise materials for 
recycling, reuse, or specific processing based on their properties. This approach 
not only streamlines the material audit process but also maximises resource 
recovery and promotes a circular economy. 

2. XR-Driven Feasibility Assessment and Material Reuse Potential 

Exploring extended reality (XR) in assessing material reuse potential and 
evaluating deconstruction feasibility is a significant opportunity for future 
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research. By leveraging XR technologies like augmented reality (AR) and virtual 
reality (VR), researchers can create immersive mock-ups that analyse and 
visualise potential salvageable material for reuse or recycling from buildings. 
These simulations could provide valuable insights into recovered materials’ 
condition, usability, and suitability for repurposing. Additionally, XR-driven 
feasibility assessments can virtually simulate and evaluate the deconstruction 
process, allowing stakeholders to assess challenges, optimise methodologies, and 
make informed decisions before physically undertaking the deconstruction. This 
innovative approach streamlines decision-making processes and contributes to 
more efficient, cost-effective, and sustainable practices within the deconstruction 
industry.  

3. AI-Driven Reverse Logistics 

Integrating AI subfields like robotics, optimisation, reality-capturing systems, 
and machine learning models presents a transformative opportunity for reverse 
logistics. By deploying these innovations, the intelligent screening of recovered 
materials at collection points can be readily automated. Furthermore, the 
advanced capabilities in optimisation algorithms can help solve complex tasks as 
intricate as path and route optimisation. This streamlines the redirection of the 
retrieved materials to locations suitable for repurposing or further processing. 
Leveraging this innovative approach to select the most efficient routes would 
reduce transportation time while maximising opportunities for material recovery. 
This convergence of AI-driven technologies would significantly contribute 
towards more efficient, sustainable, and streamlined materials management in 
reverse logistics operations within deconstruction.   

4.7 Chapter Summary  
The potential impact of AI on various industries, particularly in tackling and 
enhancing overall productivity, is undeniable. The deconstruction sector, facing 
productivity issues and numerous hurdles, stands to benefit significantly from 
AI’s transformative capabilities. With the rapid evolution of digital technologies, 
AI has the potential to synergise and magnify the effects of these technological 
advancements within the deconstruction process. 

This chapter thoroughly investigates the application of AI for deconstruction, 
encompassing an analysis of recent and relevant studies covering various uses of 
AI within deconstruction. This chapter aims to gauge the extent to which AI has 



 

   
 
97 

been employed for deconstruction processes, exploring its utilisation across 
diverse activities. We provided an overview covering AI concepts, types, and 
subfields, revealing their uses within deconstruction. Furthermore, we outlined 
the limitations and benefits of each AI subfield, offering a summary of their 
contributions to the field of deconstruction. 

Several well-known databases, including Scopus, Association for Computing 
Machinery (ACM), IEEEXplore, ScienceDirect, and Google Scholar, were 
searched to retrieve relevant articles published until 2022. This decision was 
reached to have a comprehensive collection of studies on AI applications for 
deconstruction, ensuring a robust examination of the subject.  

Based on the gathered data, we categorised AI subfields into five: machine 
learning, robotics, optimisation, knowledge-based systems, reality-capture 
technologies, and extended reality. Additionally, we organised the applications 
of these subfields within the context of deconstruction into three phases: 
planning, implementation, and post-implementation. This structuring allows for 
a comprehensive understanding of how these AI subfields are utilised at different 
stages of the deconstruction process, from initial planning to the actual 
implementation and subsequent post-implementation activities. 

The chapter's findings underscored that machine learning, deep learning, 
optimisation, and knowledge-based systems emerged as prominent AI subfields 
extensively employed in deconstruction activities. Conversely, the exploration 
and utilisation of robotics, reinforcement learning, and extended reality remained 
comparatively limited within the AI literature dedicated to deconstruction. 
Furthermore, despite generative AI’s advancement and hype in other studies 
(Saka et al., 2024), their potential contributions to deconstruction processes 
remain largely unexplored and underutilised.  

The chapter highlights that AI integration in deconstruction is gaining momentum 
owing to emerging trends like reality-capturing technologies and BIM. However, 
many are still in their conceptual or laboratory phases. Moreover, we identified 
challenges impeding the adoption of AI for deconstruction and provided 
actionable recommendations to overcome these hurdles. Overall, this chapter is a 
valuable resource for researchers and industry practitioners, offering insights into 
relevant AI uses and ongoing research within deconstruction.  
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Furthermore, this chapter provides an overview of what already exists (i.e., the 
AI application areas and the subfields employed) and some challenges from the 
existing literature affecting AI for deconstruction. Also, this chapter suggested 
possible areas in which deconstruction professionals can exploit AI for efficiency 
and productivity (see Figure 4.7). This chapter highlights areas yet to be explored 
and open for research. This will help and serve as a starting point for 
deconstruction practitioners and academics in ways that support the AI skill force 
without deconstruction domain expertise to understand areas where AI can be 
used for deconstruction purposes. Also, the chapter will help deconstruction 
practitioners just starting on AI adoption to note subfields and methods that are 
possibly relevant/feasible for deconstruction activities. 

Despite its contributions, it is essential to acknowledge the limitations of this 
chapter. The chapter focused solely on journals, conferences, and textbooks, 
possibly neglecting valuable insights from other literature types. Consequently, 
the research findings may present a partial overview of the available literature on 
AI for deconstruction. Furthermore, the chapter primarily examined the 
methodologies employed in the articles rather than focusing on their results. This 
narrow focus may have limited this discussion and hindered the thorough 
validation of the methods used. 

These limitations highlight areas for future research. Subsequent studies could 
address these shortcomings by incorporating data from various sources, 
evaluating the results, and validating methods employed in the literature. The 
next chapter is the research methodology, discussing the data collection, 
sampling, and ethics, among others, necessary for this research.   
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Chapter Five 
5.0 Methodology 

 

 

 
 

 
 

 

his chapter discusses the choice of methodology to develop an AI-based 
deconstructability predictive model (AI-DPM). The chapter presents the 
philosophical assumptions, theoretical approach, enquiry methods, and 

strategy, among others, with justifications. An overview of the research 
methodology is given in Table 5.1.  

Table 5.1: Methodologies summary (Adapted from Saunders et al., 2019) 
Realm of choice Available choices Adopted choice 
Philosophy positivism, critical realism, interpretivism, and 

pragmatism 
Positivism  

Ontology Realist, relativist   Realist 
Epistemology Objectivist, subjectivist, constructionist Objectivist 
Theoretical 
approach 

Deduction, induction, abduction Deduction 

Method of 
enquiry 

Quantitative, qualitative, and mixed methods Quantitative 

Strategy Experiments, surveys, archival, 
documentary, case studies, ethnography, action 
research, grounded theory, narrative inquiry 

Survey 

Data collection 
method 

Interviews, observations, artefacts, 
questionnaires, focus groups 

Questionnaire 

Data analysis 
methods 

Various techniques Reliability analysis, 
Exploratory Factor 
analysis 

Unit of Analysis  Building 

T 

 
This chapter covers. 

- Methodology choices including philosophy, ontology, epistemology, 

approach, enquiry, strategy, unit of observation & analysis 

- Data collection, ethics, sampling and data analysis 

- Data quality and reliability   

-   
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5.1  Research Philosophy  
Research philosophy refers to assumptions developed, either deliberately or 
unconsciously, at the various stages of research, all of which inexorably shape 
methods and research findings (Crotty 1998). These assumptions are mainly of 
ontological, epistemological, and axiological. Ontology concerns assumptions 
about the nature and reality of things. It involves the researcher's interpretation of 
the study object and phenomena and how he perceives and approaches the object. 
Epistemology refers to acceptable, valid, reliable, and legitimate knowledge. 
Lastly, axiology refers to the researcher's role and value and how that impacts the 
research process. Additionally, these assumptions can either be objective or 
subjective. For example, the ontological perspective can either be objectivism 
which ‘holds that social entities exist external to and independent from social 
actors’ or subjectivism ‘which holds that social phenomena are created through 
the language, perceptions, and consequent actions of social actors’ (Saunders et 
al., 2019, p.159). These assumptions, together with the subjectivism and 
objectivism standpoints give rise to varying philosophies including positivism, 
critical realism, interpretivism, and pragmatism.  

a. Positivism 

It is the philosophical position of natural and physical scientists born from the 
works of the Vienna circles, Francis Bacon, and Auguste Comte (Saunders et al., 
2019). Positivism sees social entities as physical objects: real, observable, and 
measurable, mostly quantitative and could draw on law-like generalisations (i.e., 
theory) which can be tested and confirmed through highly structured 
methodologies. Positivism might hypothetically test and confirm the existing 
theory and could deduct knowledge (deduction) or may follow an inductive 
approach, developing new theories and hypotheses, which can be tested and 
confirmed (Saunders et al., 2019). Positivism centres on empiricist methods 
designed to yield accurate data and findings uninfluenced by human bias and 
values.  

b. Critical realism 

It is concerned with understanding what we see and feel in terms of the underlying 
reality structures that affect visible occurrences and was born from the work of 
Bhaskar, in the late twentieth century (Saunders et al., 2019). Its ontological 
standpoint is subjectivism, and that is the same for epistemological and axiology 
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standpoints. It sees reality as independent and external, not accessible through 
observation and knowledge as done in positivism. It embraces epistemological 
relativism which recognizes that knowledge is a social construct and does not 
exist independently (Bhaskar 2008), and lastly, axiologically, critical realism 
emphasises values of sociocultural backgrounds and experiences (Saunders et al., 
2019).  

c. Interpretivism 

It is a subjectivist philosophy born from the work of French, German and English 
researchers (Saunders et al., 2019). It emphasises that human beings are different 
from physical phenomena because they create meanings. Interpretivists study 
meanings to create new, richer understandings of organisational realities. 
Empirically, interpretivism focuses on individuals’ lived experiences and cultural 
artefacts and seeks to include their participants as well as their interpretations in 
their research. 

d. Pragmatism  

It employs a diverse set of research methodologies, the selection of which is 
influenced by the nature of the research issues. It was developed from the work 
of Charles Pierce, William James, and John Dewey (Saunders et al., 2019). It tries 
to integrate objectivism with subjectivism, facts and values, and contextualised 
experience. It accomplishes this by considering the functions that theories, 
conceptions, ideas, and hypotheses play as tools for action. 

5.1.1  Research Philosophy Adopted 

This study adopts positivism, aligning with a hypothetico-deductive model that 
builds on verifying a priori hypothesis and experimentation by operationalising 
variables and measures; results from hypothesis testing are used to help inform 
theory and contribute to the literature (Park et al., 2020). Studies aligned with 
positivism generally focus on identifying explanatory associations or causal 
relationships through quantitative approaches, where empirically based findings 
from large sample sizes are favoured—in this regard, generalisable inferences, 
replication of findings, and controlled experimentation have been principles 
guiding positivism (Creswell and Creswell, 2018; Robson and McCartan, 2016). 
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5.2 Research Approaches  
Deduction, induction, and abduction are prominent research approaches that play 
crucial roles in theory formation. Deduction involves testing theoretical claims 
and typically begins by establishing causal relationships between variables 
(Saunders et al., 2015). This approach encompasses five key steps: formulating a 
research question based on an existing theory, transforming the question into 
hypotheses, collecting data to test the hypotheses, analysing data, and verifying 
or modifying the original theory based on the findings (Saunders et al., 2019). 

On the other hand, induction involves the development of theories based on the 
analysis of gathered data. This approach derives hypotheses from previously 
collected evidence (Saunders et al., 2015). Lastly, abduction combines elements 
of both deduction and induction, moving back and forth between theory and data. 
Abduction starts with the observation of an unexpected event and aims to 
generate a plausible explanation for its occurrence. According to Van Maanen et 
al. (2007), certain theories may effectively explain observed phenomena more 
than others, and these theories can facilitate the discovery of further unexpected 
observations throughout the research process. 

5.2.1  Approach Adopted 

The deductive research approach was chosen for this study due to its ability to 
explain variable relationships. By operationalising the established variables into 
quantifiable facts, the deductive approach is justified as it enables a systematic 
examination of these relationships. Moreover, the predominantly quantitative 
nature of the research data and the need for a structured methodology that allows 
for replication further validate the suitability of the deductive approach. 

Another noteworthy characteristic of deduction that aligns with this research is 
its capacity for generalisation. By utilising a sample of sufficient size, it becomes 
possible to draw inferences about the broader deconstructability, extrapolating 
from the findings of the sample. This allows for broader implications and insights 
to be derived from the research. 

Moreover, the deductive approach aligns with the positivist philosophy, which 
emphasise the importance of structure, quantification, generalisability, and 
testable hypotheses. By adhering to these principles, the deductive approach 
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provides a solid foundation for conducting scientific research, further supporting 
its appropriateness in this study (Saunders et al., 2019). 

5.3 Research Strategies 
A research strategy can be defined as a plan outlining how a researcher intends 
to address research questions. It serves as the methodological bridge between the 
researcher's philosophical standpoint and the subsequent selection of data 
collection and analysis methods (Denzin and Lincoln, 2018). Consequently, the 
choice of research strategy is primarily guided by the research questions and 
objectives at hand. 

Several research strategies have been identified in the literature, including 
experiments, surveys, archival and documentary analysis, case studies, 
ethnography, action research, grounded theory, and narrative inquiry. Among 
these strategies, the first two—experiments and surveys—are primarily or 
exclusively associated with a quantitative research design. The subsequent two 
strategies—archival and documentary analysis, and case studies—may 
incorporate elements of both quantitative and qualitative research or adopt a 
mixed design that combines the strengths of both approaches. Finally, the last 
four strategies—ethnography, action research, grounded theory, and narrative 
inquiry—are primarily or exclusively linked to a qualitative research design. 

5.3.1  Strategies adopted. 

The study used a survey strategy. The decision to utilise a survey strategy in this 
study aligns with the common understanding that surveys are often associated 
with a deductive research approach. Additionally, the chosen strategy is well-
suited to address research questions that seek to explore the "what," "where," and 
"how," aspects of the variables influencing deconstructability. By employing a 
survey, the study aims to provide valuable exploratory and descriptive insights, 
allowing for a comprehensive examination of deconstructability. The survey 
strategy offers the opportunity to collect data from a large sample size, enabling 
the generation of statistically significant findings and facilitating a broader 
understanding of deconstructability. 

5.4 Research Methods 
There are three primary research methods: quantitative, qualitative, and mixed 
methods (Saunders et al., 2019). Quantitative research relies on numerical data, 
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utilising techniques like questionnaires and statistical analysis to gather and 
interpret information. In contrast, qualitative research focuses on non-numeric 
data, using methods such as interviews and data categorisation to capture rich 
descriptions and understandings.  

Lastly, the mixed method combines elements of quantitative and qualitative 
methods. It is common for studies to integrate these methods, leveraging their 
strengths to address research objectives effectively. For example, a research 
design may incorporate a structured questionnaire supplemented with open-ended 
questions to capture nuanced perspectives that extend beyond pre-defined 
response options. Additionally, follow-up interviews may be conducted to gain 
deeper insights based on questionnaire findings. In some cases, qualitative 
research data can also be subject to quantitative analysis or inform the design of 
subsequent questionnaires. 

Furthermore, these three methods were further divided into two sub-types each. 
The mono-methods refer to the use of one single data collection technique and 
corresponding analytical procedure. Multi-method refers to the use of more than 
one data collection technique and more than one analytical procedure.  

5.4.1  Research method adopted. 

The utilisation of quantitative research designs is commonly associated with 
positivism, particularly when employing predetermined and highly structured 
data collection techniques. However, it is important to note that it is now widely 
recognised as a misrepresentation to suggest an exclusive connection between 
positivism, deduction, and quantitative research design (Bryman, 1988; Walsh et 
al., 2015). As argued by Saunders et al. (2019), quantitative research designs can 
also be conducted within the realms of realist and pragmatist philosophies. 
Considering the quantitative nature of data collection, the adoption of a deduction 
approach, and the positivist philosophy, the chosen research methodology for this 
study is quantitative. 

Quantitative research primarily focuses on examining relationships between 
variables, which are measured using numerical scales and analysed through a 
variety of statistical and graphical techniques. It often incorporates measures to 
ensure analytics validity, like an experimental design. Additionally, the data 
analysis will involve a mixture of analytical techniques, including conventional 
statistical approaches and machine learning techniques. This comprehensive 
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approach facilitates a thorough exploration of the research questions and 
contributes to robust and evidence-based findings. 

5.5 Data Collection Methods 
Data collection methods are generally categorised into two types: primary and 
secondary. Primary data is firsthand information that has not been altered or 
published. Researchers gather primary data directly, making it specific to their 
study and tricky to substitute with secondary sources. This specificity is essential 
for research requiring precise, unbiased information, such as positivism. While 
primary data improves research quality, it is resource-intensive, requiring careful 
design/planning. Primary data sources include experiments, surveys, interviews, 
and questionnaires (Taherdoost, 2021). 

In contrast, secondary data is pre-collected and published, gathered by others for 
different purposes. This type of data, commonly found in literature reviews, 
provides background information and aids in designing studies or comparing 
results with primary data.  

5.5.1  Justification for using a questionnaire. 

The survey approach often involves using questionnaires, which rely on 
structured, close-ended questions like multiple-choice and Likert-scale formats. 
Due to a lack of data from the deconstruction project, as discussed in Chapters 3 
and 4, a questionnaire survey was chosen for this research. No publicly available 
deconstruction database existed, and the study aimed to develop an AI-DPM, 
which is difficult to achieve through secondary data. Additionally, data privacy 
restrictions and general unavailability hindered accessing essential documents 
like building plans and inventories. These factors necessitated using a 
questionnaire for data collection. 

5.5.2  Advantages and Disadvantages of the Questionnaire 

The questionnaire ensures uniform exposure to questions and options for all 
respondents, minimising potential bias and oversight. This helps to avoid bias in 
the questioning method. It also ensures respondents can address all queries, 
knowing their anonymity and the building's identity are protected. Additionally, 
it offers cost-effective data collection, particularly by utilising online distribution 
methods.   
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However, disadvantages include the inability of respondents to seek clarifications 
on unclear questions, restricting their ability to express their views fully. Closed-
end questions may also limit respondents' capacity to share unique or nuanced 
experiences. Lastly, electronically distributed questionnaires may encounter low 
response rates (Holtom et al., 2022). 

5.5.3  Pilot Questionnaire 

The variables identified from the systematic literature review in section 3.1 were 
utilised to construct a preliminary questionnaire. This questionnaire was piloted 
with over ten professionals and academics specialising in construction and 
deconstruction. The primary objective of the pilot study was to ensure the clarity, 
organisation, simplicity, length, and relevance of the survey questions before 
broader distribution. 

Feedback from the pilot study emphasised the need to organise questions into 
sections and to refine/rephrase specific questions for precision and conciseness. 
Additionally, unnecessary questions were identified and subsequently removed 
based on this feedback. All suggestions and feedback were carefully integrated 
into the final questionnaire (see Appendix A for a comprehensive/final sample of 
the questionnaire)  

5.5.4  Ethics Approval 

Following the pilot study, the finalised questionnaire was submitted to the 
university’s research ethics committee for review and received approval under 
reference number cBUS/PGR/UH/05259. This ethics approval ensures 
compliance with strict standards for data security, participant confidentiality, and 
overall safety. All collected data is securely stored on encrypted systems, 
accessible only to the researcher. Participants were fully informed of their rights, 
including anonymity, confidentiality, voluntary participation, and the option to 
withdraw at any time without consequence. These measures safeguard participant 
welfare and ensure ethical compliance throughout the study. 

5.6 Unit of Analysis 
The unit of analysis refers to the person or object from which data is gathered, 
answering the questions of 'what' and 'who' is being studied, representing the 
entirety of the subject under investigation (Trochim 2006). This concept is often 
confused with the unit of observation, which pertains to the entity where 
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measurements are taken (Tainton 1990). While the unit of observation deals with 
data collection, the unit of analysis guides the analysis, interpretation, and 
conclusion (Kumar 2018). So, in most cases, both are the same, but not always.  

This research gathers data from construction experts with experience in 
deconstruction projects, focusing specifically on buildings at their end-of-life 
stage. The research centres on these buildings as the unit of observation and the 
unit of analysis, with the experts providing data based on projects they have been 
directly involved in. 

5.7  Sampling  
In this research, non-probability sampling methods, purposive and snowballing, 
were utilised. The link to the survey questionnaire was distributed/directed at 
deconstruction experts and professionals. These professionals were identified by 
exploring various reputable professional bodies, groups, forums, and renowned 
companies operating within and beyond the United Kingdom (UK). Prominent 
organisations and entities, including the Institute of Demolition Engineers (IDE), 
the Chartered Institute of Builders (CIOB), and the Royal Institute of British 
Architects (RIBA), among numerous others, were contacted to ensure the 
broadest possible reach.  

A panoply of communication channels, including but not limited to widely 
recognised professional networking platforms like LinkedIn, were adroitly 
harnessed to establish fruitful and meaningful connections with these esteemed 
professionals (Kayam & Hirsch, 2012; Koranteng & Wiafe, 2019). Additionally, 
conventional means of communication, such as emails, were effectively utilised 
to reach these highly regarded experts. The data collection phase spanned an 
extended period from November 2021 to June 2022, allowing for an exhaustive 
gathering of vital information. 

647 deconstruction professionals were contacted (via emails, phone, and physical 
visits to deconstruction/demolition companies/sites) with several back-and-forth 
reminders. Additionally, Google Ads and other channels such as LinkedIn and 
Twitter saw that the total number of questionnaire survey link clicks reached 
2831, which is the total number of respondents reached out to. Of the total 
respondents, 301 responded and completed the survey (i.e., 10.6% return rate). 
However, because the research is interested in deconstruction projects, a total of 
263 professionals were confirmed to have worked on at least one deconstruction 
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project in the past. This represents the valid data retrieved – indicating 263 
deconstruction projects (i.e., 87% valid rate). While it’s possible that some 
respondents may have worked on the same project, this figure reflects substantial 
firsthand expertise in deconstruction, which supports the research objectives even 
if there is some overlap in project experience. 

The data recovered is relatively small but sufficient and satisfactory for analysis, 
following the central limit theorem requirement of 30 samples (King et al., 2018; 
Zhang et al., 2022). In addition, the samples considered in this research exceed 
the 36 used in similar research (Nunes et al., 2019) or even 90 used (Rakhshan et 
al., 2021a, 2021c).  

5.7.1 Data Quality and Reliability 

The survey questionnaire was divided into sections. Section A embarked on the 
inquiry into the professional's deconstruction expertise, specifically probing their 
involvement in leading or participating in previous deconstruction projects. In the 
event of a negative response, the subsequent questions were rendered redundant, 
effectively terminating the survey. Conversely, an affirmative response would 
prompt the professionals to provide additional insights into their roles, including 
their job titles and the number of years of experience amassed in the field of 
deconstruction. This strategic addition of supplementary details was conceived to 
augment the quality of the collected data.  

Furthermore, respondents were instructed to confine their responses to a single 
deconstruction project they had previously worked on, instilling a sense of 
coherence and focused analysis within the collected dataset.  

5.8 Descriptive Analysis 
Data collected through a questionnaire survey were quickly explored. This was 
to understand the dataset's structure. A descriptive analysis involving a visual 
summary of the retrieved data was carried out. This foundational step is essential 
as it sets the stage for more advanced analysis (i.e., statistical/AI modelling) and 
understanding of overall data; few visual summaries are presented; see Figures 
5.1 to Figure 5.6. 
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Figure 5.1: Distribution of the profession of the deconstruction experts (created by author)  

Figure 5.1 presents the title distribution of the respondents. The profession with 
the most significant proportion was architect/developer/manager. The Client 
occupies smaller portions. Figure 6.1 emphasises the prominent representation of 
higher-level managerial/technical roles, further validating data quality. 

 
Figure 5.2: Locations of projects each questionnaire represents (created by author) 

Figure 5.2 shows the geographical distribution of the deconstruction projects. The 
figure was segmented into five sections, each corresponding to a different project 
location: China, France, Others, the UK, and the USA. The largest, labelled 
"Others," occupies a significant portion, indicating that many deconstruction 
projects were in countries not explicitly listed. This distribution highlights the 
global nature of deconstruction projects and suggests a diverse set of project 
locations among the survey respondents.  
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Figure 5.3: Deconstructability distribution of the completed projects (Created by author) 

Figure 5.3 presents the distribution of deconstructability. The ‘D’ indicates 
deconstructible, and ‘ND’ indicates non-deconstructible. The proportion of the 
deconstructible building was smaller than the non-deconstructible.   

 
Figure 5.4: Building Methods (Created by author) 

Figure 5.4 shows the building methods distribution. The traditional, usually built 
using non-separable connections, was considered the most common. This 
explains the reason for less deconstructible buildings, as seen in Figure 5.3.  



 

   
 
111 

 
Figure 5.5: Security of the building project during deconstruction (Created by author) 

Figure 5.5 illustrates the security of the deconstruction project site during the 
deconstruction. The majority were partly secure or not secure at all. This will 
arguably mean a high cost to insure recoverable materials.  

 
Figure 5.6: Distribution of rooms in the deconstructed projects (Created by author) 

Figure 5.6 shows the distribution of rooms in the deconstruction projects. 
The three-bedroom and one-bedroom apartments were the most frequently 
deconstructed of all other properties. 
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5.8 Chapter Summary 
The methodology chapter outlines a systematic approach to developing the AI-
DPM model framed within a positivist paradigm. This approach is characterised 
by a realist ontology and an objectivist epistemology, emphasising that 
knowledge can be gained through unbiased observation. 

A deductive theoretical approach was employed to align with the research aim, 
starting with established hypotheses regarding the identified explanatory 
variables. A quantitative method of inquiry was used, involving numerical data, 
statistical analysis, and the development of AI/ML predictive models. A survey 
strategy targeted deconstruction expert, focusing on buildings at their end-of-life 
stage as both the unit of analysis and observation. Respondents, including 
demolition engineers and contractors, were selected through random sampling, 
with outreach extended via Google Ads and snowballing techniques. 

The questionnaire was informed by a thorough literature review, piloted, and 
received ethical approval. Of 2,831 deconstruction professionals contacted, 301 
completed the survey, resulting in 263 valid responses. 

Respondents without prior experience in deconstruction projects were filtered out 
to ensure data quality. Those with relevant experience were encouraged to 
provide detailed insights about their roles, enhancing the dataset's depth and 
accuracy. Respondents were instructed to focus their answers on a single 
deconstruction project, improving the collected data's coherence and relevance. 

Throughout the research process, strict ethical standards were maintained, 
including obtaining informed consent from participants and ensuring the 
confidentiality of the data collected. As part of the methodology, the research 
carried out an initial step involving descriptive analysis to understand dataset (see 
Figure 5.1-Figure 5.6) providing a visual summary of the retrieved data, which is 
essential for setting the stage for more advanced statistical and AI modelling. The 
figures offered insights such as professions of respondents, geographical 
distribution of projects. 

This methodological approach not only bolsters the study's validity but also 
ensures that it makes a significant and reliable contribution to the field of 
deconstruction. Chapter 6 will present the AI-DPM model development using the 
collected data. 
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Chapter Six 
6.0 Development of Artificial Intelligence Predictive 
Deconstructability Model  

 

 
 
 
 
 
 
 
 
 

achine learning, a subset of AI, encompasses unsupervised, 
supervised, and reinforcement learning. The primary distinction 
among these types lies in the prior knowledge of the expected model 

output for a given input (see Chapter 4 for more on AI and machine learning). 
Given the data’s characteristics and the previous chapters' discussion on 
deconstructability, this study falls under supervised learning, specifically binary 
classification, as deconstructability is categorised as either deconstructible or 
non-deconstructible. 

The workflow for supervised machine learning is divided into two main stages: 
training and testing. These stages can be iterative, allowing for continuous model 
refinement. Figure 6.1 shows this workflow. A training set is utilised to develop 
the classification model during the training phase. This involves selecting 
relevant features, choosing an appropriate algorithm and/or tuning 
hyperparameters to achieve optimal performance. Once the model is trained, it is 
evaluated using a test set. The test set, which consists of data unseen by the trained 
model, is essential for assessing the model's performance and generalisability. 
This evaluation helps identify potential overfitting and ensures the model 
performs well on unseen/new data. Adjustments can be made to improve the 
model's accuracy and robustness by iterating between training and testing.

M 

 
This chapter covers. 

- Data preprocessing including encoding, missingness, imbalance class. 

- Model development including training and validation 

- Experiments, and model results 

- Model explainability and generalisability 

- Selection of best AI-DPM Model  

-  
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Figure 6.1: Supervised learning workflow (Created by author)
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6.1 Data preprocess 
The data preprocess involves transforming questionnaire survey data into an 
artificial intelligence and machine learning predictive model-ready state. This 
preprocess involves handling missing value, scaling, discretisation, and feature 
engineering (i.e., feature selection, feature extraction/dimensionality reduction) 
(Obaid et al., 2019). Subsequent sections will discuss data encoding, missing 
data, and feature selection in detail.  

6.1.1  Data Encoding  

AI/ML models are mainly designed for numerical inputs; as a result, efficiently 
encoding categorical features is a significant step in data preprocessing. Data 
encoding techniques are either target-agnostic or target-based (Pargent et al., 
2022). Target agnostic refers to techniques that do not rely on information about 
the target variable; examples include one-hot encoding, ordinal (Integer), 
frequency encoding and more. Target-based techniques try to incorporate 
information about the target values associated with a given level, and examples 
include leaf, impact, and regularised impact techniques. Readers interested in 
encoding techniques are referred to (Pargent et al., 2022). 

Among the various techniques available, one-hot encoding—a target-agnostic 
method—has been established as a standard approach for handling categorical 
variables (Gnat, 2021; Hancock & Khoshgoftaar, 2020). However, it is not 
without its drawbacks, particularly the issue of the curse of dimensionality, which 
becomes pronounced with increased cardinality (Tokuyama et al., 2020). High 
cardinality can lead to very high-dimensional vector representations, which can 
cause significant memory and computability concerns for machine learning 
models. In this research, the maximum cardinality of any variable is 5, and there 
are 96 total variables. Consequently, the resulting dimensionality is manageable 
and should not lead to excessively high-dimensional representations that pose 
substantial memory or computational challenges.   

6.1.2  Missing Data 

Data availability, quality, and completeness are common challenges in real-life 
AI/ML model development. The same challenge was faced in this study. Data for 
building deconstruction projects is not readily available, making the survey opt 
for data from professionals working on past deconstruction projects. The data 
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collected between November 2021 and June 2022 is not free from missing values. 
305 missing out of 96* 263, i.e., 1.21% of the total data were discovered missing.  

Missing data can cause several issues in supervised learning modelling. Firstly, 
it reduces the available information, weakening the model's learning power. 
Secondly, it can bias parameter estimates, leading to inaccurate results. Thirdly, 
missing data reduces sample representativeness, making findings less 
generalisable. Lastly, it complicates model implementation, requiring additional 
preprocessing steps. These issues can jeopardise the model’s performance 
validity and lead to incorrect outcomes. 

There are several ways to deal with missing data; they can, however, be classified 
into two types. The first is completely ignoring the missing data (Silva & Zárate, 
2014), and the second is imputing a value to compensate for it. The former is 
straightforward yet ineffective, notably when a sizeable part of the dataset is 
missing. Furthermore, if carried out improperly, it may result in skewed 
compensated values. Only when a tiny quantity of data is absent can the missing 
value be removed; nevertheless, in most real-life situations, datasets have a 
significant amount of missing data. However, because it requires several 
assumptions on the distribution of the dataset, imputation is likewise not an easy 
task. The ability to reconstruct and impute missing values and the potential to 
prevent missing recurrence in the future will be made possible by understanding 
the causes of the high rates of missing values. To understand missing data 
imputation rates in the academic literature, a thorough analysis of the missing 
data types is thus necessary. Missing data can be (a) missing completely at 
random (MCAR), where the missing probability is independent of the value and 
any other observable values; (b) missing at random (MAR), where the 
missingness depends on the observed variables; and (c) missing not at random 
(MNAR), where the missingness depends on both the observed variables and the 
unobserved variables. This study assumes the data are missing completely at 
random. 

It was discovered from existing academic literature that many imputation 
techniques were supplied based on statistics and machine learning techniques 
(Rahman & Davis, 2013; Thomas & Rajabi, 2021). Statistical Imputation is a 
procedure that replaces missing values with estimated values based on statistical 
information in the dataset. The most often used statistical approaches in the 
literature include mean imputation, median imputation, most common value 
imputation, zero imputation and last value imputation (Jerez et al., 2010). All 
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these imputations are helpful as they are assumed to stand for and have statistical 
information about the missing value. In addition to statistical imputations, 
machine learning-inspired imputation methods are based on creating a predictive 
model to estimate absent values from the information in the dataset.  

Different studies have shown the usefulness of ML-based imputation techniques 
for data imputation. The K-Nearest Neighbour (KNN) (Hudak et al., 2008) 
imputation fills missingness with the mean value of k nearest neighbours. 
Multivariate imputation by Chained Equation (MICE) (White et al., 2011) draws 
from the variable's posterior predictive distribution using a sequential regression 
model to impute missingness. MICE handle different variable types. Other 
methods include the clustered-based imputation (Keerin et al., 2012), Decision 
tree-based imputation (Rahman & Islam, 2013), ensemble-based imputation 
(Fountas & Kolomvatsos, 2020), deep belief network-based imputation (Du et 
al., 2018), convolutional neural network-based imputation (Benkraouda et al., 
2020; Zhuang et al., 2019) and recurrent neural network (RNN) based imputation 
(Sangeetha & Kumaran, 2020; Yuan et al., 2018). Of all these ML-based 
imputation methods, the KNN-based method has continuously been the day's talk 
for its outstanding performance (Thomas & Rajabi, 2021). Therefore, the KNN 
imputation is used in this study. We assumed the dataset to be MAR/MCAR. 

6.1.3  Imbalance Class 

Unequal target class distribution is a common problem typically faced in real-life 
situations. This challenge mostly poses a difficulty for learning algorithms, as it 
may make models biased towards a particular target class. Equally, the minority 
class is usually the critical group; for example, this study's deconstructible (D) 
class is the focus, yet with the least samples. This is typically the case for many 
other real-life examples. Therefore, there is a significant concern about 
overcoming such bias during the model development. It is common knowledge 
first to try out training on the actual distribution unless there are concerns; that is 
when techniques to handle imbalanced classes would be necessary. Handling an 
imbalanced class is mainly achieved by under-sampling, oversampling or mixed 
sampling (i.e., hybrid).  

Under-sampling is the sampling of the majority to create a subset consisting of a 
small number of the majority to have a corresponding sample as that of the 
minority samples. Two common ways to achieve these are (i) making the 
boundaries of the different class samples farther and (ii) focusing on the 
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classification rule based on the borderline samples (Runchi et al., 2023). 
Examples of techniques built using the under-sampling concepts include the 
Tomek link.  

Conversely, oversampling is the sampling from the minority samples with or 
without replacement to create a more significant subset of the minority samples 
to have a balanced sample as that of the majority samples. There has been 
growing interest in this area, and more advanced methods have been introduced; 
an example is the Synthetic minority over-sampling technique (SMOTE). 
SMOTE is an oversampling technique that creates new artificial instances using 
the knowledge about neighbours surrounding each sample in the minority class. 
It finds the nearest neighbours of a given minority from the neighbourhood using 
K-nearest neighbour (KNN) (Chawla et al., 2002). SMOTE is widely used for its 
efficiency [238], and this has resulted in various variants, including ADASYN 
(He et al., 2008), KMeans-SMOTE, SVM-SMOTE, Borderline-SMOTE and 
more (Runchi et al., 2023).  

Lastly, hybrid sampling merges the under-sampling and the oversampling ideas. 
It balances the two class samples by excluding some majority samples and 
increasing the minority samples simultaneously. Examples include SMOTE-
Tomek (Sain & Purnami, 2015), which uses SMOTE and Tomek links to 
establish new minority samples and Tomek links to remove noise samples. Other 
examples include SMOTE-ENN (Guan et al., 2021), which uses a weighted, 
nearest-neighbour rule to identify and remove noise after SMOTE is utilised. 

This study employed SMOTE owing to its efficiencies (Runchi et al., 2023) and 
the relatively small data available in this research. See Figure 6.2 for the class 
distribution of the training set before and after implementing the SMOTE 
technique. 
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Figure 6.2: Class distribution before and after SMOTE applied on training set (Created by 

author) 

6.2 Feature Selection  
Conventional and classical supervised learning model’s performance arguably 
depends on the input (i.e., features/variables used in developing the model). 
Research studies such as (Alaka et al., 2015; Balogun et al., 2021; Egwim et 
al., 2021,2023; Olu-Ajayi et al., 2022, 2023) have proved the relevance of 
feature selection and dimensionality reduction in different domains. It selects 
the most impactful features from the original set of features as the new input 
features. Thus, not all features impact prediction, making feature selection 
critical in developing machine-learning predictive models (Reddy et al., 2020).  

Feature selection (FS) is a significant step in implementing machine learning 
algorithms across different domains; it aids in reducing features to a minimum, 
reducing computational cost, and thus improving the learning performance of 
the model. Aside from providing efficiency in the model implementation, FS 
can help eliminate redundant information and enhance data generalisation 
(Tang et al., 2020). FS is categorised as a filter, wrapper, and embedded 
method. See Figure 6.3 for the classification.   
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Figure 6.3: Feature Selection Classification 

The filter method uses the statistical characteristics of the dataset, providing 
feature ranking as output and selecting features regardless of the model. 
Examples of the many standard filter methods can be seen in the research by 
(Jović et al., 2015). Though filter methods are easily employed due to their low 
cost for computation, the wrapper method is better because of their search 
strategy on a modelling algorithm (Jović et al., 2015). Furthermore, wrapper 
methods are designed to evaluate individual feature subsets using learning 
algorithms (Figure 6.4, showing the architectural design of the wrapper FS 
method).  

 
Figure 6.4: Wrapper Feature Selection 

As a plus to the two methods, i.e., filter and wrapper FS methods, embedded 
FS methods select features during the algorithm modelling implementation. 
This method enjoins performance and computational cost advantages from the 
filter and wrapper method. An interested reader of the embedded method is 
referred to (Lei, 2005). 

Overall, all FS methods have their strengths and weaknesses and thus would 
have a different impact on the machine learning model's performance. Inferring 
from this, this study utilised eight FS techniques (3 filter methods, 3 wrapper 
methods and 2 embedded methods).  

Filter methods 

1. Chi-square (CHIS) is a filter method used to test the independence between 
two events. It evaluates the degree of association between two categorical 
variables by measuring the deviation from the expected frequency, 
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assuming that the feature is independent of the class label (Liu & Setiono, 
1995).  

2. Analysis of Variance (ANOVA): This type of univariate filter-based 
technique utilises variance to detect the separability of each feature 
between classes (Ding & Li, 2015).  

3. Mutual Information (MI): Mutual Information (MI) is a filter method that 
evaluates the dependence between two variables. MI quantifies the amount 
of information one random variable contains about another (Bennasar et 
al., 2015). 

Wrapper Methods 

4. Recursive feature elimination (RFE): RFE is a wrapper-style feature 
selection method. It recursively eliminates 0-n features in each iteration, 
selecting the optimal number of features for each model (Mustaqeem et 
al., 2017). The best-performing subset of features is chosen based on the 
cross-validation score. Herein, the random forest was carried out as RFE.  

5. Forward Feature Selector (SFS): Forward selection is an iterative 
technique that begins with no features. Initially, the feature with the best 
performance is added. Then, the next most significant feature that 
improves performance in combination with the previously added feature 
is selected. This process continues until adding a new feature no longer 
enhances the classifier's performance (Aboudi & Benhlima, 2016; 
Mustaqeem et al., 2017). Herein, a random forest classifier was 
employed. 

6. Backward Feature selection (BFS): In backward elimination, the 
algorithm starts with all the features available and discards the most 
insignificant feature from the model recursively. This elimination process 
is repeated until features are removed, which does not enhance the 
model's performance (Chandrashekar & Sahin, 2014; El Aboudi & 
Benhlima, 2016). A logistic regression classifier was utilised as BFS. 

Embedded Methods 

7. Embedded Random Forest: The Random Forest algorithm was used as 
an embedded feature selection method. The significance of each feature 
is calculated by performing random permutations of the features in the 
out-of-bag (OOB) set and measuring the increase in misclassification 
compared to the default state of the OOB set (Liu et al., 2019).  
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8. Embedded LightGBM (ELGBM): LightGBM classifier was utilised as 
an embedded feature selection method in this research due to its 
efficiency (Tang et al., 2020). ELGBM assigns global importance to the 
features in this research by averaging their importance across all trees 
(base learners). The contribution value of each feature is then calculated 
and compared against a threshold. Features with contribution values 
lower than the set threshold are subsequently eliminated. 

The top 45 features and their raw scores for the 8 FS techniques are shown in 
Figures 6.5 to 6.12. The figures display features arranged by their scores for 
each FS technique, with the bars indicating the importance scores assigned to 
each feature by the respective technique. Figures 6.5 to 6.7 present three filter 
FS techniques. Figures 6.8 to 6.10 present three wrapper FS techniques, and 
6.11 to 6.12 present embedded FS. Table 6.1 provides a comprehensive list of 
the features chosen to develop the AI-DPM. Features were selected based on 
their counts and included if their count satisfied at least 3/4 of the eight 
methods, meaning if a variable had a count of 6 or more, it was selected (see 
Table 6.1). This decision aligns with the FS ensemble, which combines several 
FS outputs through aggregation/thresholding (Veronica and Amparo 2019). 

 
Figure 6.5: Charts of scores assigned by Chi-square (Created by author) 
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Figure 6.6: Charts of scores assigned by ANOVA (Created by author).  

 
 
 

 
Figure 6.7: Charts of scores assigned by Mutual information (Created by author). 
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Figure 6.8: Charts of scores assigned by Recursive feature elimination using Random Forest 

(Created by author) 

 

 
Figure 6.9: Charts of scores assigned by Forward Feature elimination using Random Forest 

(Created by author). 
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Figure 6.10: Charts of scores assigned by Backward feature elimination (Created by author)  

 
 

 
Figure 6.11: Charts of scores assigned by Embedded FS using Random Forest (Created by 

author). 
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Figure 6.12: Charts of scores assigned by Embedded FS using LightGBM (Created by 

author)
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Table 6.1: Feature selection methods, variables, and selection decision (Created by author) 

Variable CHIS ANOVA MI RFE FFS BFS ERF ELGBM Count Decision 
B.1   X X   X X 4  
B.2  X   X X  X 4  
B.3     X    1  
B.4 X  X X    X 4  
B.5  X   X X  X 4  
B.6 X  X X X  X X 6 Selected 
B.7 X X X X   X X 6 Selected 
B.8   X X X  X X 5  
B.9 X X X X  X X X 7 Selected 
B.10        X 1  
B.11     X X   2  
B.12        X 1  
B.13     X X   2  
B.14  X    X  X 3  
B.15    X  X X  3  
B.16    X X  X  3  
B.17         0  
B.18  X   X X  X 4  
B.19 X X X X  X X X 7 Selected 
B.20  X    X  X 3  
B.21      X  X 2  
B.22     X X   2  
B.23     X X   2  
B.24  X   X X  X 4  
B.25 X X X X X X X X 8 Selected 
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Variable CHIS ANOVA MI RFE FFS BFS ERF ELGBM Count Decision 
B.26     X X   2  
B.27 X X  X  X X X 6 Selected 
B.28 X X X X X X X X 8 Selected 
B.29     X    1  
B.30         0  
C.1   X X X  X X 5  
C.2 X X X X   X X 6 Selected 
C.3   X X   X X 4  
C.4 X  X X   X X 5  
C.5 X X X X X  X X 7 Selected 
C.6 X X X X   X X 6 Selected 
C.7 X X X X   X X 6 Selected 
C.8 X X X X X X X X 8 Selected 
C.9     X   X 2  
C.10    X X X X  4  
C.11     X    1  
C.12    X X  X  3  
C.13   X X X  X  4  
C.14 X X X X X X X X 8 Selected 
C.15 X X X X  X X  6 Selected 
C.16      X   1  
C.17   X X   X X 4  
C.18   X X  X X X 5  
C.19 X  X X X  X X 6 Selected 
C.20 X X X X X X X X 8 Selected 
D.1 X X   X   X 4  
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Variable CHIS ANOVA MI RFE FFS BFS ERF ELGBM Count Decision 
D.2 X X X     X 4  
D.3         0  
D.4 X X X  X    4  
D.5 X X   X    3  
D.6 X X       2  
D.7 X X X      3  
D.8         0  
D.9 X X X      3  
D.10 X X   X    3  
D.11 X X X X  X X X 7 Selected 
D.12 X X X X  X X  6 Selected 
D.13 X X   X    3  
D.14 X X X   X   4  
D.15         0  
D.16 X X       2  
D.17 X X X   X   4  
D.18     X X   2  
D.19 X X X   X   4  
D.20 X X       2  
E.1   X X  X X  4  
E.2 X X X X   X  5  
E.3   X X   X  3  
E.4 X  X X X  X  5  
E.5 X X X X X  X  8 Selected 
E.6 X X   X X   4  
E.7 X X X   X   4  
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Variable CHIS ANOVA MI RFE FFS BFS ERF ELGBM Count Decision 
E.8    X  X X  3  
E.9 X X X   X   4  
E.10 X X   X X   4  
E.11      X   1  
E.12     X X   2  
E.13     X    1  
E.14         0  
E.15      X   1  
F.1    X  X X X 4  
F.2 X X X X X  X X 7 Selected 
F.3 X X X  X X  X 6 Selected 
F.4  X    X  X 3  
F.5     X    1  
G.1    X X X X X 5  
G.2 X  X X   X X 5  
G.3   X X X X X X 6 Selected 
G.4    X   X X 3  
G.5 X  X X   X X 5  
G.6    X X  X  3  
Total 45 45 45 45 45 45 45 45  22 

22 variables were identified as having a count of 6 or more (Table 6.1), which is ¾ of the total of 8. This threshold was chosen 
to balance the strengths and weaknesses of the eight feature selection methods (Shen et al., 2012; Veronica and Amaparo 2019). 
These selected variables will be used to develop the AI-predictive model for deconstructability. Furthermore, all variables will 
be tested to allow for various experiments. This approach aims to achieve optimal model performance and identify the most 
impactful variables influencing the deconstructability of buildings. 
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6.3 Machine Learning Modelling 
6.3.1  Classification Learning Algorithms  

Choosing a machine learning algorithm for predictive modelling is paramount 
due to the absence of a universally superior model that suits all problems (Olu-
Ajayi et al., 2022b, 2022a, 2023; Wusu et al., 2022). This research aims to 
develop a predictive model with the highest possible accuracy for estimating the 
deconstructability of a building. While accuracy is a pivotal criterion for model 
selection, the interpretability of the chosen model is equally crucial (Rakhshan et 
al., 2021a, 2021c). This holds weight in the context of this study, which strives 
to offer a comprehensible AI-DPM model accessible to diverse stakeholders in 
the deconstruction space. Notably, these stakeholders may need more proficiency 
to navigate complex AI models. The insistence on interpretability is strategic, 
fostering effective utilisation of the model by stakeholders. This emphasis on 
accessibility is indispensable for the selected predictive model to fulfil its 
intended purpose. 

Consequently, opting for interpretable models to train the predictive 
deconstructability model seems reasonable. However, it is essential to 
acknowledge that while interpretable models offer transparency, they may not 
consistently deliver high accuracy (Rakhshan et al., 2021a, 2021c). This 
limitation arises from their inherent rigidity, often adhering to predetermined 
functional forms for the relationship between predictors and the response, as 
observed in parametric models. On the contrary, highly flexible models tend to 
provide accurate predictions. Nonetheless, this flexibility introduces challenges, 
including a loss of interpretability, increased variance, and the risk of overfitting, 
ultimately leading to a lack of generalisation of unseen data. Hence, when 
selecting a method for predictive modelling, careful consideration of the trade-
off is crucial. 

Moreover, it's a widely accepted practice to explore a wide range of machine 
learning models. Although specific models may appear more suitable in theory 
or practical applications for specific tasks, the author’s current understanding of 
these models does not reliably predict their performance in advance. The "no-
free-lunch" theorems (Wolpert, 1996) further emphasise that no single machine 
learning model consistently outperforms all others across diverse scenarios. 
Therefore, when addressing complex problems like the one in this study, it is 
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advisable to experiment with multiple algorithms to ascertain the most effective 
one. 

Building on the previous discussions, the use of various machine learning 
algorithms such as Gradient Boosting, KNN, Naive Bayes, MLP, Random Forest, 
SVM (Linear, Poly, and Radial kernels), Logistic Regression, AdaBoost, 
Discriminant Analysis, and Decision Tree is justified by the diverse strengths and 
unique capabilities each algorithm brings to the table. Each algorithm handles 
data differently and has specific characteristics that suit certain problems. For 
instance, Gradient Boosting and AdaBoost are powerful ensemble methods that 
combine the strengths of multiple weak learners to enhance prediction accuracy, 
making them particularly effective for complex datasets with non-linear 
relationships. Similarly, Random Forest, another ensemble method, provides 
robust predictions by averaging the results of multiple decision trees, reducing 
overfitting and improving generalisation. 

On the other hand, algorithms like K-Nearest Neighbours (KNN) and Support 
Vector Machines (SVM) are valuable for their simplicity and effectiveness in 
classification tasks. KNN is particularly useful for problems where the decision 
boundary is irregular and the dataset is manageable, as it makes predictions based 
on the closest training examples in the feature space. With its different kernel 
functions (Linear, Poly, Radial), SVM is highly versatile and capable of handling 
linear and non-linear classification tasks, providing flexibility in modelling 
complex relationships. Meanwhile, Naive Bayes, with its strong independence 
assumptions, is computationally efficient and performs well in high-dimensional 
spaces, making it suitable. 

Algorithms like Logistic Regression and Discriminant Analysis are widely used 
for their interpretability and effectiveness in binary classification tasks. Logistic 
Regression is straightforward and interpretable, providing probabilistic outputs 
and insights into the influence of each feature. Discriminant Analysis, which 
includes Linear Discriminant Analysis (LDA) and Quadratic Discriminant 
Analysis (QDA), is valuable for its ability to model the class distributions and 
make predictions based on the likelihood. Lastly, Decision Trees and Multi-Layer 
Perceptron (MLPs) are powerful tools for capturing complex interactions in the 
data. Decision Trees are easy to interpret and visualise. At the same time, MLPs, 
as a type of neural network, can learn intricate patterns through their multiple 
layers and non-linear activation functions.  
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Overall, twelve classification algorithms, including Gradient Boosting, KNN, 
Naive Bayes, MLP, Random Forest, SVM (Linear, Poly, and Radial kernels), 
Logistic Regression, AdaBoost, Discriminant Analysis, and Decision Tree, were 
used in this research. They are explained briefly below. 

1. Logistic regression 

Logistic regression measures the relationship between the categorical dependent 
variable and one or more independent variables by estimating probabilities using 
a logistic distribution. In logistic regression, the functional form of p(X) is. 

𝑝(𝑋) = 𝑝(𝑌 = 1|𝑋 = 𝑥) =
𝑒!!"!"#""⋯"!###

1 +	𝑒!!"!"#""⋯"!###
 

Where: 
𝑥%, …	𝑥& represent the independent features. 
𝛽', …	𝛽& represent the logistic regression coefficients and these coefficients are 
computed using the approach of maximising likelihood:  

𝜄(𝛽) = 12𝑦(𝛽)𝑥( −	 ln(1 + 𝑒!
$#%)7

*

(+%

 

Where: 
𝑦( represents the observed value of the ith observation alongside its independent 
features, denoted as x. p(X) predicts the probability based on values in x. 
Subsequently, these probabilities are transformed into binary outcomes using a 
threshold of 0.5. 

2. Discriminant analysis 

Discriminant analysis operates on the premise that different data classes are 
generated from distinct Gaussian distributions. This analysis can be either linear 
or quadratic approaches (as referenced). In the linear form, Bayes' theorem is 
utilised to derive probability estimates. Specifically, for a scenario with "m" 
classes and an input vector "x" containing independent features, the probability 
of the output class is expressed as follows: 

𝑝,(𝑋) = 𝑃(𝑌 = 𝑚|𝑋 = 𝑥) = 	
𝜋,𝑓,(𝑥)

∑ 𝜋(𝑓((𝑥)-
(+%

 

Where: 
𝜋,	represent the prior probability (0.5 in this study)  



 

   
 
134 

𝑓,(𝑥) represent density function of X, assuming a Gaussian distribution, 𝜋, 
can be computed as: 

𝑝,(𝑋) = 𝑃(𝑌 = 𝑚|𝑋 = 𝑥) =
𝜋, 	

1
𝜎,√2𝜋

𝑒./
%

01&,(#/3')
&5

∑ 𝜋( 	
1

𝜎(√2𝜋
𝑒./

%
01&((#/3%)

&5-
(+%

 

Where: 
𝜇, & 𝜎, represent mean and the variance of the observations in the mth class. 

3. K-nearest neighbours 

K-nearest neighbour often called KNN is a non-parametric approach to 
categorising data into various groups. The KNN classifier can be seen attributing 
a weight of 1/k to the K nearest neighbours, while assigning zero weight to all 
others. For a given positive integer “k” and test observation “x”, the KNN 
classifier identifies k data points in the dataset that are in proximity to “x”. The 
estimated conditional probability of “x” belonging to class “k” is then computed 
as: 

𝑝6(𝑋) = 𝑃(𝑌 = 𝑘	|𝑋 = 𝑥) =
1
𝑘
1 𝐼(𝑦( = 𝑘)

(∈*(
 

4. Naïve Bayes classification 

Naïve Bayes (NB) utilises Bayes theorem to classify data. NB classifier 
determines that an output belongs to a specific class if the probability linked to 
the variable prediction exceeds 0.5. this classifier operates under the assumption 
that the features (represented as the input vector “x” in this case) are independent, 
considering a particular class. Given an input vector “x”, the NB classification 
calculates the probability of the output variable belonging to class “m" as: 
 

𝑃(𝑌 = 𝑚|𝑥) =
𝑃(𝑌 = 𝑚)𝑃(𝑥|𝑌 = 𝑚)

𝑃(𝑥)
=
𝑃(𝑌 = 𝑚)∏ 𝑃(𝑥(|𝑌 = 𝑚)*

(+%
𝑃(𝑥)

 

5. Support vector machine (SVM) 

SVM is a non-probabilistic classifier. The internal structure of the model depends 
on the kernel function, which is linear, polynomial, Gaussian, Laplace, and 
sigmoid. SVM can prevent overfitting problems during training and validation by 
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the theory of structural risk minimisation.  The approximate functions in the SVM 
model are: 
𝑓(𝑥) = 	𝜔𝜑(𝑥) + 𝑏 
Where: 
𝜑(𝑥) represent high dimensional feature space mapped by the input space x. 
b represents minimized empirical parameters measured by the regularised error 
function. 
𝑅89-:(𝐶)=𝐶 ∗ 	

%
;
∑ 𝐿(𝑑( , 𝑦() +

%
0
‖𝜔‖0;

(+%  
Where: 

𝐶 ∗ 	 %
;
∑ 𝐿(𝑑( , 𝑦();
(+%  is estimated by the function 𝐿<(𝑑, 𝑦): 

𝐿<(𝑑, 𝑦) = N|𝑑 − 𝑦| − 𝜀|𝑑 − 𝑦| 	≥ 𝜀
0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Where: 
%
0
‖𝜔‖0 represent regularisation term; C represents the empirical parameter used 

to control the error and the regularisation term; 𝜀  represent tube size nearly equal 
to approximate accuracy during training. 
𝜀(	𝑎𝑛𝑑	𝜀(∗ are introduced, to estimate parameters W and d,  
𝑅89-:(𝑊, 𝜀(∗)) = %

0
‖𝜔‖0 + 𝐶 ∑ (𝜀( +	𝜀(∗);

(+%  
With Lagrange multipliers & optimal constrained introduced, the following 
decisions functions. 

𝑓(𝑥, 𝑎( , 𝑎(∗) = 1(𝑎( − 𝑎(∗)𝐾]𝑥( , 𝑥>^ + 𝑏
;

(+%

 

Where: 
𝐾]𝑥( , 𝑥>^ represents the kernel function; equal to the inner product of two vectors 
𝑥(,𝑥> in the feature space.  
𝐾]𝑥( , 𝑥>^ =  𝜇(𝑥()∗ − 	𝜇]𝑥>^.  

6. Decision tree 

A decision tree is a non-parametric technique. The technique generates a tree-like 
graph based on the input data. The response can be predicted by following the 
decision in the tree from the start node to the end node. Each node is associated 
with a test condition, and each branch represents the outcome of the test. 

7. Adaptive Boosting  
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Adaptive boosting, often called AdaBoost, was initially introduced by Freud and 
Schapire in 2012 to tackle a classification task. Since its inception, AdaBoost has 
become a widely used ensemble model in classification challenges. The 
fundamental concept involves an iterative process where numerous weak 
classifiers are generated using the training dataset, which is then combined based 
on a specific strategy. 

The process begins with creating a weak classifier using a training dataset where 
all samples have equal weights. However, the weights of misclassified samples 
in the training set are increased (or "boosted"). In the subsequent round, a new 
weak classifier is built using this updated weighted training data in the following 
round. This procedure is repeated, yielding multiple weak classifiers. Each 
classifier is assigned a score based on its corresponding classification error. 

A final robust classifier is formed by employing a specific rule to combine all the 
weak classifiers. This adaptive approach enhances the overall classification 
performance by iteratively focusing on the previously misclassified samples, 
creating a more robust model. 

Considering a typical binary classification task, with a training set represented as  

Θ = `(𝑋%𝑦%), … , ]𝑋&𝑦&^a 

Where: 

𝑋( , 𝑖 = 1,2, … 𝑝 represent the independent features. 

𝑦( ∈ {+1,−1} represent the label of the classes (i.e., ND vs D) 

The weights of the samples 𝑤( are initialised as: 

𝑑' = `𝑤%, … , 𝑤&a  

𝑤( =
1
𝑝
	; 𝑖 = 1,2, … , 𝑝 

Where: 

𝑑' represent the initial weight distribution vector for the training data. Then, an 
iterative process is called to figure out the best classifier. Representing the current 
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iteration number as t and the total iteration number as T, train a weak classifier 𝑙? 
from the Θ (i.e., training data) using the distribution 𝑑?.  

𝑙?(𝑋) = 𝜑(Θ, 𝑑?) 

Where: 

𝜑(.) represents a certain standalone learning algorithm. Theoretically, any 
standalone algorithm (e.g., SVM, KNN, DT, LR and more) can be used. The 
classifier error computation is calculated using. 

𝑒? =1𝑤?,(𝕝
&

(+%

(𝑙?(𝑋?) ≠ 𝑦() 

Where: 

𝕝(∙)	means it will return 1 for correctly classified sample & 0 for misclassified. 

The weight of the weak classifier 𝑙?	can be computed as: 

𝛼? =
1
2
log

1 − 𝑒?
𝑒?

 

The distribution of weights is updated accordingly: 

𝑑?"%(𝑖) =
𝑑?(𝑖)exp	(−𝛼?𝑦(𝑙?(𝑋())

𝑍?
 

Where: 

𝑍? represent normalised factor & can be computed as: 

𝑍? =1𝑤?,(

&

(+%

exp	(−𝛼?𝑦(𝑙?(𝑋()) 

From the most recent equation, if a sample is wrongly classified, its weight will 
increase in the following training round. Otherwise, the weight will decrease. 
This ensures the misclassified get more attention in subsequent learning round 
𝑙?"%. 
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Following the T times iterations, weak classifiers are obtained. Consequently, the 
strong classifier can be produced by a simple combination rule, i.e., weighted 
majority voting, 

𝐿(𝑋) = 𝑠𝑖𝑔𝑛 r1𝛼?𝑙?(𝑋)
)

?+%

s 

8. Gradient Boosting 

Gradient boosting is a boosting algorithm and an example of ensemble models 
(e.g., Adaboost, Xgboost, random forest, among others) combining weak 
learners, typically decision trees, to create a robust predictive model. It operates 
by iteratively adding models that correct errors of the mixed ensemble, optimising 
for a given loss function. Initially, a simple model is fit to the data, and subsequent 
models are trained on the residual errors of the prior models. This process uses 
gradient descent to minimise the loss function, progressively refining the model's 
predictions. Regularisation techniques, such as shrinkage (learning rate) and tree 
depth, prevent overfitting and enhance generalisation. The flexibility and 
effectiveness of Gradient Boosting make it a powerful tool for classification 
tasks. Interested readers are advised to check (Bentéjac et al., 2021).     

9. Random forest 

Random forest consists of an ensemble of simple tree predictors, each capable of 
producing a response when represented with a set of input variable values. The 
training algorithm generates random forests by bootstrap aggregating or bagging. 
After training the prediction of a vector x can be achieved by averaging the 
predictions from all the individual’s decision trees (B) using equation. For the 
current study, 100 decision trees are used based on a sensitivity study. 

𝑦t = 	
1
𝐵
1𝑓A(𝑥)
B

A+%

 

Where: 

𝑓A  represents individual decision trees. 

10. Artificial neural network (ANN)  
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ANN is an Artificial Intelligence (AI) technique that follows the principle of 
biological neural networks to solve the complex nonlinear problem between 
input-affecting factors and output variables. Usually, it contains an input layer, 
which contains the input parameters that affect the output values, one (or several) 
hidden layer (s) and an output layer, representing the simulated outcomes. Each 
layer contains neurons, which are connected by the activation function. The 
weighted sum of input factors is applied to a nonlinear activation function to 
generate output values. The equations are listed below. 
Weighted sum:  y = f(∑ wCxC − θD

C+% )                           
Where: 
wi is the weight of each input factor,  
xi is the input factor,  
θ is the threshold value for activation, and  
f(x) represents the activation function,  
We chose logarithmic sigmoid and tangent sigmoid functions for this study. 
Logarithmic sigmoid function:  log	sig(n) = %

%/EFG(/D)
   

Tangent sigmoid function:  tan	sig(n) = 0
%"EFG(/0D)

− 1                

6.3.2  ML Model Development 

This research aims to investigate various machine learning models and determine 
the most suitable one, especially in terms of its ability to generalise well when 
applied to future unseen deconstructability data. The research will utilise K-fold 
cross-validation (KfCV); see section 6.4 for more information on kfCV. This 
approach was chosen to ensure a robust and reliable method for selecting the best 
machine-learning model based on performance. 

The ML models and their performance metrics were implemented using Python 
programming language. ML libraries such as Scikit-learn, Pandas, and Seaborn, 
among others, were used. The development of the ML models was carried out 
using Google Colab python integrated development environment. Additionally, 
each model used its default configurations without hyperparameter tuning.  

6.4 ML Model Evaluation 
6.4.1  Metrics  

Evaluating the performance of predictive models is essential throughout the 
machine learning development process. It is typical for the machine learning 
process only sometimes to yield an optimal model with the expected performance, 
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highlighting the need for a thorough evaluation to assess the predictive 
effectiveness of the developed deconstructability machine learning model. 
Predictions fall into four categories in scenarios like the binary classification 
addressed in this study, where the model categorises buildings into deconstructible 
(1) or non-deconstructible (0) classes. 

To evaluate whether the chosen classifier accurately predicts and assigns buildings 
to their respective classes, criteria such as true negatives (TN) and true positives 
(TP) are utilised, as shown in the confusion matrix (Table 1). This matrix provides 
further insights into misclassification rates, including instances where a 
deconstructible building is incorrectly labelled as non-deconstructible (false 
negative or FN) or vice versa (false positive or FP). It's important to clarify that 
the rows in Table 1 represent actual values, while the columns represent predicted 
values. This distinction helps comprehensively assess the model's performance 
and understand its predictive capabilities. 

Table 6.2. Confusion matrix (Created by author) 
 Prediction 

Negative (Not 
deconstructible) 

Positive 
(Deconstructible) 

Actual Negative (Not 
deconstructible)  

True Negative False Positive 

Positive 
(Deconstructible) 

False Negative True positive 

Table 6.2 shows various metrics, including accuracy score, precision, recall, F1 
score, ROC curve, and AUROC (Area Under Receiver Operating Characteristic 
Curve), which can be calculated. 

For instance, the accuracy score reflects the proportion of correct predictions made 
overall and can be derived directly from the confusion matrix. Mathematically, it 
is calculated as the sum of true positive (TP) and true negative (TN) predictions 
divided by the total number of predictions: 

1. Accuracy score = )HIJ	*JLM?(NJ:")HIJ	OP:(?(NJ:
QRSTEU	VW	GUEXCYZCVD[

 

Precision measures the proportion of true positive predictions among all positive 
predictions: 
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2. Precision =   )HIJ	OP:(?(NJ:
\URE	GV[CZC]E[	"	^_`[E	GV[CZC]E[

 

Recall, also known as sensitivity or true positive rate, quantifies the proportion of 
actual positives that were correctly identified: 

3. Recall =   )HIJ	OP:(?(NJ:
)HIJ	&P:(?(NJ:	"	aMb:J	*JLM?(NJ:

 

The F1 score is the harmonic mean of precision and recall, providing a balanced 
measure between the two: 

4. F1= 2 * OHJc(:(P;	∗	dJcMbb
OHJc(:(P;	"	dJcMbb

 

5. ROC curve (Receiver Operating Characteristic curve) is a graphical plot 
illustrating the performance of a binary classifier across various threshold settings. 
It depicts the trade-off between true positive rate (TPR) and false positive rate 
(FPR). The diagonal dotted line in the middle represents the ROC curve, which is 
expected to be as far away as possible from the diagonal line. 

6. AUROC (Area Under the Receiver Operating Characteristic Curve) 
quantifies the overall performance of a binary classifier, providing a single scalar 
value summarising the ROC curve. A higher AUROC value indicates better 
classifier performance. A perfect AUROC should have a score of 1, whereas a 
random classifier will have a score of 0.5.  

6.4.2  Out-of-sample testing 

The resampling technique is commonly used to evaluate a predictive machine 
learning model and estimate how well it will generalise on test data. It may provide 
some assurances on how accurately a predictive model will perform in practice. 
Multiple strategies exist to do this, such as cross-validation, a resampling strategy 
that uses different dataset segments to train and test a model on different iterations. 
The simplest is two rounds of cross-validation, which involves partitioning data 
into subsets, training on one subset, validating the model on the other subset, and 
vice versa. Multiple rounds of cross-validation are performed using different 
partitions to reduce variability, and the validation results are averaged over the 
rounds to estimate the model's predictive performance. There are various types of 
cross-validation. 

K-fold cross-validation  
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In K-fold cross-validation (KfCV), the original dataset is randomly divided into 
K folds, each containing roughly equal observations. One of the K folds is set 
aside as the testing set, while the remaining k-1 folds are used for training the 
machine learning model. The model's performance is then assessed using the held 
out set, repeating this process k times, with each fold serving as the validation 
set. Performance metrics are recorded for each fold, and the model's overall 
performance is evaluated by averaging across the k folds. The average 
performance metric from each iteration estimates the model's generalisation 
performance when fitted to all available data. In general, k remains an unfixed 
parameter. Typical values are k =3, k =5, and k =10; the most used value in applied 
machine learning is k =5. The popular choice of k =5 is due to various published 
studies that found it to provide a good trade-off of low computational cost and low 
bias in estimating a model’s performance (Fushiki, 2011; Jung, 2018; Normawati 
& Ismi, 2019; Nti et al., 2021). The disadvantage of this method is that the training 
algorithm must be rerun from scratch k times, which means it takes k times 
computation time to evaluate. Figure 6.13 shows a 10-fold cross-validation. The 
reader can look up Figure 7.13 to see how the 5fold cv validation was used in this 
research. 

 

Figure 6.13: K-fold Cross Validation (Created by author) 

6.5 Experiments 
Two dataset groups were used to develop the two predictive models from which 
the most efficient (generalisable) and explainable will be chosen as the final AI-
DPM. Group 1 uses all 96 variables; Group 2 uses the 22 variables obtained 
through the FS methods.  
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The researcher experimented with a dataset split into training and testing sets to 
evaluate the performance of various machine-learning models. Though other 
splitting ratios, including 50:50, 60:40, 70:30, and 80:20, among others, have 
been used in studies, it is known that there is no such thing as a best-split ratio 
(Nguyen et al., 2021; Tao et al. 2020). As a result, the dataset in this research was 
partitioned into 75% for training and 25% for testing following studies such as 
(Ahmed et al., 2023; Bhosale & Patnaik, 2023). The training set underwent 
further preprocessing using the Synthetic Minority Over-sampling Technique 
(SMOTE) to address class imbalance, ensuring a balanced representation of 
classes for model training using the twelve models in section 6.3.1.  

Using the 75% training data with SMOTE applied, we employed 5-fold Cross-
Validation (CV) to assess each model’s performance rigorously. Metrics 
discussed in section 6.4.1 were calculated/used to evaluate the predictive 
capabilities of each model. During each CV iteration, the models were trained on 
the balanced training subset and tested on a test set to provide robust and unbiased 
performance estimates. This step was crucial to ensure the oversampling process 
did not artificially inflate the models' performance metrics. By testing on the 
untouched 25%, we assessed how well the models could generalise to real-world 
data distributions, thereby providing a realistic measure of their effectiveness.  

Figure 6.14 gives the AI-based predictive deconstructability model development 
and validation workflow.



 

   
 
144 

 
Figure 6.14: Workflow for AI-Deconstructability Predictive Mode (Created by author)
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Table 6.3 illustrates how various classification algorithms are performed across 
three distinct sets of features: utilising all features, features derived from EFA, 
and features selected through the FS technique. The confusion matrices, first 
through 5-fold cross-validation (CV) on 75% of the total dataset, balanced using 
SMOTE and then tested on the remaining 25% of untouched data, were presented 
in Table 6.3. Predicted values (P) represented rows in each confusion matrix, and 
the columns indicated the actual values (A). The categories within matrices were 
labelled "D" (Deconstructible) and "ND" (Non-Deconstructible), representing 
two possible classes predicted by the model. 

Analysing the confusion matrices provides valuable insights into the model's 
performance metrics, such as accuracy, precision, recall, and F1 score for each 
feature set. For example, in the first confusion matrix utilising all features, there 
were fewer correctly predicted instances (true positives and true negatives), with 
counts of 26 and 16, respectively. In contrast, the matrices for the reduced feature 
sets (features from FS) showed higher counts of correctly predicted instances 
(i.e., 22 and 27 for FS features). Despite using fewer features in the FS sets, this 
indicates that the models maintain high-performance levels, suggesting efficient 
feature reduction without significant loss of critical information. 

Furthermore, analysing the distribution of false positives and false negatives 
across the two matrices can highlight how the FS impacts model performance. 
Overall, Table 6.3 provides a comprehensive comparison, illustrating that while 
all features might offer the best raw accuracy, carefully selected feature subsets, 
through FS techniques, can achieve comparable performance with potentially 
improved interpretability and reduced computational cost. 
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Table 6.3: Confusion Matrix for the developed AI Models for balanced (SMOTE) and Imbalance data (Validation) 

 All Features Features from FS 
Model 5-Fold CV 

(Balance data) 
Testing 
(Imbalance data) 

5-Fold CV 
(Balance data) 

Validation 
(Imbalance data) 

 
Gradient 
Boosting (GB) 

 
P/A ND D 
ND 97 35 
D 47 85 

 

 
P/A ND D 
ND 16 17 
D 7 26 

 

 
P/A ND D 
ND 87 45 
D 45 87 

 

 
P/A ND D 
ND 22 11 
D 6 27 

 

K Nearest 
neighbour 
(KNN) 

 
P/A ND D 
ND 36 96 
D 10 122 

 

 
P/A ND D 
ND 11 22 
D 3 30 

 

 
P/A ND D 
ND 39 93 
D 9 123 

 

 
P/A ND D 
ND 4 29 
D 0 33 

 

Naive Bayes 
(NB) 

 
P/A ND D 
ND 92 40 
D 38 94 

 

 
P/A ND D 
ND 26 7 
D 12 21 

 

 
P/A ND D 
ND 90 42 
D 42 90 

 

 
P/A ND D 
ND 23 10 
D 4 29 

 

Artificial Neural 
Network (MLP) 

 
P/A ND D 
ND 95 37 
D 43 89 

 

 
P/A ND D 
ND 27 6 
D 7 26 

 

 
P/A ND D 
ND 98 34 
D 40 92 

 

 
P/A ND D 
ND 23 10 
D 7 26 

 

Random Forest 
(RF) 

 
P/A ND D 
ND 101 31 
D 43 89 

 

 
P/A ND D 
ND 26 7 
D 9 24 

 

 
P/A ND D 
ND 108 24 
D 45 87 

 

 
P/A ND D 
ND 19 14 
D 8 25 

 

Support vector 
Machine with 
Linear kernel 
(SVM-L) 

 
P/A ND D 
ND 74 58 
D 50 82 

 

 
P/A ND D 
ND 22 11 
D 8 25 

 

 
P/A ND D 
ND 90 42 
D 44 88 

 

 
P/A ND D 
ND 19 14 
D 8 25 
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 All Features Features from FS 
Support vector 
Machine with 
polynomial 
kernel (SVM-P) 

 
P/A ND D 
ND 95 37 
D 38 94 

 

 
P/A ND D 
ND 23 10 
D 5 28 

 

 
P/A ND D 
ND 96 36 
D 25 107 

 

 
P/A ND D 
ND 12 21 
D 3 30 

 

Support vector 
Machine with 
Radial kernel 
(SVM-R) 

 
P/A ND D 
ND 111 21 
D 52 80 

 

 
P/A ND D 
ND 31 2 
D 11 22 

 

 
P/A ND D 
ND 112 20 
D 51 81 

 

 
P/A ND D 
ND 29 4 
D 12 21 

 

Logistic 
regression (LR) 

 
P/A ND D 
ND 82 50 
D 47 85 

 

 
P/A ND D 
ND 21 12 
D 8 25 

 

 
P/A ND D 
ND 96 36 
D 42 90 

 

 
P/A ND D 
ND 21 12 
D 8 25 

 

AdaBoost (AB)  
P/A ND D 
ND 86 46 
D 45 87 

 

 
P/A ND D 
ND 21 12 
D 12 21 

 

 
P/A ND D 
ND 93 39 
D 44 88 

 

 
P/A ND D 
ND 18 15 
D 6 27 

 

Discriminant 
Analysis (DA) 

 
P/A ND D 
ND 60 72 
D 54 78 

 

 
P/A ND D 
ND 27 6 
D 16 17 

 

 
P/A ND D 
ND 96 36 
D 42 90 

 

 
P/A ND D 
ND 15 18 
D 9 24 

 

Decision Tree 
(DT) 

 
P/A ND D 
ND 80 52 
D 49 83 

 

 
P/A ND D 
ND 21 12 
D 9 24 

 

 
P/A ND D 
ND 86 46 
D 52 80 

 

 
P/A ND D 
ND 16 17 
D 12 21 
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Tables 6.4 and 6.5 offer a comprehensive comparison of model performance 
across various evaluation metrics—Accuracy (Acc), Precision (Pre), F1 score 
(F1), Recall (Rec), and Area Under the Curve (AUC)—for different classification 
algorithms. These metrics were calculated through 5-fold cross-validation and 
then tested on the untouched, imbalanced data (25% of the total dataset). Tables 
6.4 and 6.5 correspond to the metrics calculated for the different feature sets: all 
features and features selected through the FS technique, respectively. 

Each table compares the metrics obtained from the cross-validation phase with 
those from the testing phase. This comparison helps assess whether the model's 
performance on the training data indicates its generalisability to unseen data. If 
the performance metrics from cross-validation exceed those from testing, it 
suggests potential overfitting, where the model learns to memorise the training 
data instead of learning underlying patterns. This scenario is highlighted in the 
tables with yellow colouring. Conversely, suppose the performance metrics from 
testing are comparable or better than those from cross-validation. In that case, the 
model is balanced and can generalise well to new, unseen data. This situation is 
depicted with green colouring on the tables. 

For example, Table 6.4 highlights instances of potential overfitting, where the 
model's performance during cross-validation surpasses that of testing. In Table 
6.4, the random forest achieved an accuracy of 0.7194 during cross-validation, 
but it decreased to 0.6813 during testing, indicating potential overfitting. 
Conversely, models like Gaussian Naive Bayes (NB), Logistic regression (LR) 
and Artificial neural network (MLP) demonstrate consistent performance across 
both phases, suggesting robust generalisation capabilities. 
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Table 6.4: Accuracy, Precision, Recall, F1 score and AUC score for All features (Created by author) 

Model Acc Acc_V Pre Pre_V Rec Rec_V F1 F1_V AUC AUC_V 

GB 0.6894 0.6352 0.7063 0.6611 0.6493 0.7911 0.6723 0.6755 0.7458 0.6575 

KNN 0.5988 0.622 0.5624 0.5856 0.9247 0.9044 0.6971 0.6985 0.7304 0.787 

NB 0.7044 0.7121 0.711 0.745 0.7128 0.6276 0.7087 0.6705 0.7621 0.7489 

MLP 0.6554 0.7714 0.6916 0.7533 0.6435 0.6673 0.6304 0.7402 0.7309 0.8669 

RF 0.7194 0.6813 0.7471 0.8083 0.6479 0.7625 0.6925 0.7196 0.7876 0.8545 

SVM L 0.5909 0.7099 0.5874 0.6754 0.6295 0.7292 0.5973 0.7002 0.6097 0.8026 

SVM P 0.716 0.7714 0.7192 0.7333 0.7147 0.8425 0.7129 0.7761 0.7925 0.8852 

SVM R 0.7235 0.8022 0.7991 0.9 0.6114 0.6451 0.6848 0.7417 0.7865 0.8439 

LR 0.6325 0.6956 0.6251 0.6635 0.6517 0.7406 0.6312 0.6976 0.6728 0.8329 

AB 0.6553 0.6363 0.652 0.6476 0.6657 0.6229 0.6543 0.6239 0.6913 0.6446 

DA 0.5227 0.6637 0.5182 0.72 0.6008 0.5098 0.5501 0.5928 0.5346 0.6465 

DT 0.5908 0.7143 0.6026 0.7073 0.6553 0.7803 0.6431 0.6609 0.6023 0.6667 
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Table 6.5: Accuracy, Precision, Recall, F1 score and AUC score for features derived through FS techniques (created by author)  

Model Acc Acc_V Pre Pre_V Rec Rec_V F1 F1_V AUC Auc_V 

GB 0.6592 0.6659 0.6589 0.7089 0.6829 0.7565 0.6415 0.7246 0.7373 0.8099 

KNN 0.6139 0.5615 0.5694 0.5346 0.9311 1 0.7058 0.6891 0.7731 0.6442 

NB 0.6814 0.789 0.6987 0.736 0.6842 0.881 0.6836 0.7999 0.7486 0.7879 

MLP 0.7311 0.7418 0.73 0.7795 0.7245 0.8137 0.7085 0.744 0.7656 0.8182 

RF 0.7045 0.7857 0.7793 0.6969 0.6654 0.7565 0.6975 0.7143 0.8081 0.8163 

SVM L 0.6742 0.667 0.6783 0.6754 0.6687 0.7565 0.6689 0.6893 0.7075 0.7245 

SVM P 0.7689 0.6374 0.7535 0.591 0.8131 0.9044 0.7767 0.7075 0.8361 0.831 

SVM R 0.7311 0.7549 0.8069 0.8833 0.6191 0.6613 0.697 0.724 0.8177 0.8586 

LR 0.7045 0.6956 0.7181 0.6912 0.6867 0.7565 0.693 0.7073 0.7537 0.7815 

AB 0.6858 0.6813 0.6927 0.7006 0.6715 0.8137 0.6768 0.7229 0.7431 0.7521 

DA 0.7046 0.5901 0.7284 0.5817 0.6869 0.7378 0.694 0.6305 0.7374 0.6111 

DT 0.6557 0.6209 0.626 0.6611 0.6472 0.6724 0.6332 0.7132 0.6515 0.6667 
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6.7 Selection of the best AI-DPM 
Based on the performance metrics in Tables 6.4 and 6.5, the best machine-
learning models can be identified by examining their AUC, accuracy, precision, 
recall, and F1 scores. Notably, the research aims to select models that do not 
exhibit signs of overfitting. 

From Table 6.4, Support Vector Machine with Polynomial Kernel (SVM P) 
stands out with consistently high-performance metrics across cross-validation 
and testing phases. It achieves an AUC of 0.7925 and 0.8852, an accuracy of 
0.716 and 0.7714, and a balanced precision, recall, and F1 score, indicating a 
robust and generalisable model. Artificial Intelligence with multi (MLP) also 
performs well with an AUC of 0.7309 and 0.8669, accuracy of 0.6554 and 0.7714 
on cross-validation and testing, and balanced precision, recall, and F1 scores, 
showcasing strong generalisation. Lastly, the Support Vector Machine with radial 
kernel (SVM R) model is notable for its stable performance with an AUC of 
0.7865 and 0.8439, accuracy of 0.7235 and 0.8022, and other metrics suggesting 
reliable performance on both balanced and imbalanced datasets. 

From Table 6.5, MLP continues to excel with an AUC of 0.7656 and 0.8182, 
accuracy of 0.7311 and 0.7418, and high precision, recall, and F1 scores. This 
consistent performance across various feature sets makes it a top contender. The 
naive Bayes (NB) model also performs well with an AUC of 0.7486 and 0.7879, 
an accuracy of 0.6814 and 0.789, and balanced metrics, indicating it handles 
different feature sets effectively. Lastly, Gradient Boosting (GB) maintains 
strong performance with an AUC of 0.7373 and 0.8099, accuracy of 0.6592 and 
0.6659, and other balanced metrics, making it a reliable choice. 

Overall, the top two models were based on their consistent and robust 
performance across all metrics; the top models were SVM with Polynomial 
Kernel (SVM P) for all features and Artificial intelligence with multilayer 
perceptron (MLP) using FS techniques. These models demonstrated 
generalisation capabilities without overfitting, making them suitable candidates 
for deployment. Table 6.6 presents the metrics (generated from the test set) of the 
top models and the features used.  
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Table 6.6: Top two model's performance 

Model Features used Accuracy Precision Recall F1 AUC 

SVM P All features 0.7714 0.7333 0.8425 0.7761 0.8852 

MLP 
Features from FS 
Techniques 

0.7418 
 

0.7795 
 

0.8137 
 

0.744 
 

0.8182 
 

From the two best, the SVM with a polynomial kernel stands out as a robust 
choice due to its well-rounded performance across multiple evaluation criteria. 
With an AUC of 88%, the model demonstrates excellent capability in 
distinguishing between the deconstructability classes, indicating a high overall 
effectiveness in prediction. Additionally, the SVM's F1 score of 77% reflects a 
good balance between precision and recall, which is crucial for scenarios where 
false positives and false negatives carry significant consequences. The recall rate 
of 84% suggests that the model is particularly adept at identifying the true positive 
cases (deconstructability class), reducing the risk of missing critical instances. 
However, the precision of 73% indicates there is some trade-off, with a moderate 
rate of false positives. Nevertheless, an accuracy of 77% shows that the model 
performs reliably across the entire dataset, making it a dependable choice for 
general use.  

The SVM model was served and deployed as a web application for deconstruction 
professional validation. To use, the list of the checklist/features established needs 
to be provided either as an Excel or CSV file. Upon loading the data, users (i.e., 
deconstruction professionals and non-professionals) can click on the modelling, 
and the AI-DPM will be invoked, generating a deconstructability prediction. The 
user story for the AI-DPM model developed and deployed is presented in section 
C of this thesis’s appendix.
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6.8 Model Explainability 
The increasing use of advanced and complex AI algorithms has made explaining 
AI models essential. The European Union (EU) and the General Data Protection 
Regulation (GDPR) mandates that algorithms making significant decisions about 
users must provide explanations (Bibal et al., 2021; Brożek et al., 2024; Sovrano 
et al., 2021). Individuals have the right to understand these decisions, which can 
be achieved by clarifying the logic behind black box models (Brożek et al., 2024). 

Due to its comprehensiveness and importance, there are many interpretations of 
explainability, but this research adopts the one by the AI group of experts (AI-
EG) (AI, 2019). According to AI-EG, explainability involves providing 
information on how AI model decision-making works, the final decision, reasons 
for the conclusion, the data features used in the model or decision, and the 
combination of data features. Most importantly, AI-EG emphasises that 
explanations should be tailored to the expertise of the concerned stakeholders 
(e.g., academicians and professionals) and highly dependent on the context (Bibal 
et al., 2021; Hamon et al., 2022; Sovrano et al., 2021).  

Trustworthy explanations foster user trust, help identify model failures and 
support AI deployment across domains (Hamon et al., 2022). AI/ML models, like 
decision trees, naturally provide transparent decision-making processes. 
Meanwhile, there have been efforts to explain complex and less transparent AI 
models, including artificial neural networks and random forests.  

6.9 Chapter Summary 
This chapter explored supervised machine learning for binary classification of 
deconstructability. Data preprocessing involving tasks such as handling missing 
values using KNN data imputation, one-hot encoding and eight FS techniques 
from the three different FS types (i.e., filter, wrapper and embedded) were used 
collectively to arrive at 22 features. These features were ranked high by the 
different FS techniques whose count across the FS techniques exceeds 2/3, i.e., 
features with a count over 6 out of 8. These 22 features formed a feature set used 
in developing AI-DPM. While all the 96 features retrieved from the literature 
formed another feature set. The two feature sets were each divided into 75% for 
training and 25% for testing and were used in developing AI-DPM.  

The training data underwent SMOTE and one-hot encoding, while the test data 
was only one-hot encoded. Preprocessing was performed separately on the 
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training and test sets after the split to prevent data leakage and overly optimistic 
performance (overfitting). Over ten classification predictive models, including 
KNN, RF, AB, LR, NB, DT, and GB, were developed for each dataset group. 5-
fold cross-validation was utilised for the training dataset across the three feature 
sets to have a robust evaluation of the models developed. 

The models developed using the training data set and cross-validation across the 
two feature sets for all the AI algorithms were tested using the 25% unseen data 
(test and unbalanced pre-processed data) to assess the models' generalisability. 
From this assessment, the top three models based on performance across all 
metrics were SVM-with-Polynomial Kernel (SVM-P) for all features and 
multilayer-perceptron (MLP) using features from FS techniques. These models 
demonstrated generalisation capabilities without overfitting, making them 
suitable candidates for deployment. However, the objective was to decide on the 
best-regarding generalisability and interpretability. This led to SVM with a 
polynomial kernel emerging as the best among the two models. SVM-P was 
selected best due to its balanced performance across various evaluation metrics. 
It achieves an AUC of 88%, demonstrating strong capability in distinguishing 
between different deconstructability classes, indicating high predictive 
effectiveness. It has an accuracy of 77%, proving it is a reliable choice suitable 
for AI-DPM. Chapter seven discusses the findings, contribution, limitations, and 
future research. 
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Chapter Seven 

7.0 Discussion and Conclusion 

 
 
 

 
 
 
 
 

he aim of this research is to develop an AI-based predictive 
Deconstructability model for buildings, which can be used as a potential 
tool for assessing the deconstructability of buildings quickly and 

accurately. Predicting the deconstructability of a building can contribute to 
preventing demolition, as clients/owners already have informed knowledge about 
the state of the building and decisions around the end-of-life options best suited 
for the building. This thesis defined deconstructability as a binary-class problem 
that includes deconstructible and non-deconstructible.  

The correct classification of buildings for deconstruction/as deconstructible is a 
way of preventing demolition and encouraging reuse. The result improves the 
confidence to deconstruct buildings more and to avoid the waste that comes with 
complete demolition. However, the physical examination and thorough audit 
usually required before deconstruction is not ruled out; the AI-DPM only provide 
a quick assessment before the in-depth analysis. As a result, buildings assumed 
to be written off for demolition may be given another chance if they eventually 
get correctly predicted as deconstructible. 

In this thesis, there are two impact scenarios in the case of misclassification of a 
building’s deconstructability. First, it could result in an increased cost (i.e., 
misclassification of the non-deconstructible building as deconstructible) and may 
result in the client spending unnecessarily to carry out a thorough audit, which 
may be time-consuming or expensive.  However, this scenario may be managed, 

T 
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- Summary of findings and conclusion 

- Contributions to academic knowledge and industrial practices 

- Research Limitations 
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as a report will provide at least the building owner/client with a BREEAM 
sustainability credit/badge. 

The second scenario could result in writing off a building deconstructible as non-
deconstructible. This could have a significant negative impact, increasing the 
complete demolition rate. However, thorough audits may manage these impacts, 
especially for locations where it is a legal requirement, such as the London 
Circular Economy statement. However, in cases where the audit is voluntary, 
there may be no acceptable compensation. From that point of view, the correct 
classification of the building as deconstructible outweighs the proper 
classification as non-deconstructible.  

The scale of deconstructability was set with rigid boundaries. These boundaries 
were set based on the professional’s (respondents) first-hand experience. They 
provided scores in percentage indicating the deconstructability, with higher 
percentages indicating greater deconstructability and lower scores for otherwise. 
These scores were then transformed into a binary classification: 'deconstructible' 
for projects scoring above 60% and 'not deconstructible' for those scoring below 
60%. Also, this boundary was considered based on documented observations in 
building deconstruction research such as Akinade et al., 2015, Basta et al., 2020, 
among others. 

7.1 Summary of Findings and Conclusions 
7.1.1  Objective One: To identify explanatory variables from all 
perspectives (i.e., social, economic, technical, environmental, schedule, legal) 
influencing building deconstructability through a systematic literature review. 

To address the objective of identifying explanatory variables influencing building 
deconstructability through a systematic literature review, it is crucial to consider 
variables from multiple perspectives: social, economic, technical, environmental, 
schedule, and legal. An extensive examination of existing literature has identified 
several vital variables influencing deconstructability. 

From a social perspective, community awareness and stakeholder engagement 
play pivotal roles. The level of public knowledge regarding the benefits of 
deconstruction can drive the adoption of deconstructible designs. Moreover, the 
involvement and cooperation of various stakeholders, including property owners, 
construction professionals, and local governments, are essential for successfully 
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implementing deconstructability practices. Therefore, social acceptance and 
support for sustainable building practices are crucial explanatory variables. 

Economically, the variables associated with deconstruction cost and its benefit 
were discovered to be significant. This includes fees for deconstruction, potential 
savings from salvaging materials, and market demand for reclaimed materials. 
Economic incentives, such as tax or subsidies for deconstruction, can also 
influence the decision-making process. The overall economic viability and 
potential profitability of deconstructible projects are essential. 

Technically, the design and construction methods are significant determinants of 
a building's deconstructability. Factors such as the choice of materials, 
construction techniques, and modular or prefabricated components can facilitate 
or complicate the deconstruction process. Technological advancements in tools 
and machinery used for deconstruction also play a role. Furthermore, technical 
knowledge and expertise among construction professionals about deconstructible 
design principles are necessary for effective implementation. 

Environmental considerations include the potential for reducing waste and 
minimising environmental impact through deconstruction. The ability to recycle 
and reuse building materials contributes to sustainability goals. Environmental 
regulations and standards, such as those related to waste management and 
resource conservation, influence the adoption of deconstructible practices. 
Moreover, environmental impact assessments and lifecycle analyses help 
understand the broader implications of deconstruction on ecosystems and 
resource depletion. 

Scheduling aspects consider the time required for deconstruction compared to 
demolition. Deconstruction is often perceived to be more time-consuming due to 
the careful dismantling process. However, efficient scheduling and planning can 
mitigate time-related concerns.  

Legal aspects encompass the regulatory framework governing deconstruction 
practices. Building codes, zoning laws, and permits required for deconstruction 
activities are critical legal variables. Compliance with these regulations ensures 
that deconstruction projects are carried out within legal boundaries. 

In conclusion, a multifaceted approach considering the social, economic, 
technical, environmental, schedule, and legal perspectives is essential for 
understanding and enhancing deconstructability. The identified explanatory 
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variables highlighted the complexity of deconstruction. Addressing these 
variables comprehensively, stakeholders can promote more sustainable and 
efficient deconstructible building designs, ultimately contributing to 
environmental conservation and resource management. The systematic literature 
review underscores the need for an integrated strategy incorporating diverse 
perspectives to advance deconstructability. 

7.1.2  Objective two: To develop a deconstructability construct-based 
conceptual framework to aid data collection 

Developing a deconstructability construct-based conceptual framework to aid 
data collection involves systematically identifying and defining key constructs 
that influence deconstructability. This framework is a foundation for structured 
data collection, analysis, and interpretation, ensuring that all relevant variables 
are considered. The goal was to create a comprehensive and practical tool to guide 
researchers/practitioners in assessing and improving building deconstructability. 

The first step in developing this framework was identifying the primary 
constructs influencing deconstructability. These constructs were categorised into 
several dimensions: social, economic, technical, environmental, schedule, and 
legal, following the TELOS framework, extended to incorporate the social 
dimension. Each dimension encompasses a specific variable that needs to be 
considered. For instance, social constructs included community 
awareness/attitude and stakeholder engagement, while economic constructs 
covered cost-benefit analysis and market demand for reclaimed materials. 
Technical constructs involved building information such as mechanical joinery, 
design and construction methods, and environmental constructs focused on waste 
reduction and recycling potential. 

Once the key constructs were identified, the next step was to establish measurable 
indicators. For example, "community awareness" was measured by indicators 
such as public knowledge about deconstruction benefits and the extent of 
stakeholder participation in deconstruction projects. Similarly, "economic 
viability" was measured by indicators like deconstruction costs, potential savings 
from material salvage, and availability of economic incentives. 

To ensure the framework's effectiveness, it was essential to validate the constructs 
and their indicators through empirical research. This involves collecting data 
from surveys.  
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In conclusion, the deconstructability conceptual framework for deconstructability 
provided an organised and systematic approach to the collection and analysis of 
data, enabling a comprehensive assessment of deconstructability. By clearly 
defining/measuring key constructs across multiple dimensions, the framework 
aided in identifying areas for improvement and developing strategies to enhance 
deconstructability. This systematic approach advances academic research and 
provides practical insights for industry professionals, contributing to more 
sustainable and efficient building practices.  

7.1.3  Objective three: To investigate the explanatory variables helpful 
in developing and selecting the best AI model with an explainability and 
generalisability for deconstructability prediction useful for BIM, non-BIM, 
DfD and non-DfD buildings.  

To investigate the explanatory variables helpful in developing an explainable and 
generalisable AI for a deconstructability predictive model applicable to BIM 
(Building Information Modelling), non-BIM, DfD (Design for Deconstruction), 
and non-DfD buildings, a comprehensive approach such as identifying and using 
a range of variables that influence deconstructability across different building 
contexts was undertaken. The goal was to create an AI model that predicts 
deconstructability accurately and provides insights into the variables driving its 
predictions, ensuring transparency and generalisability. 

The first step was to identify explanatory variables that influence building 
deconstructability. These variables are categorised into several dimensions: 
social, economic, technical, environmental, schedule, and legal. For instance, 
social variables include stakeholder engagement and community awareness, 
while economic variables involve cost-benefit analyses and market demand for 
reclaimed materials. Technical variables involved construction methods, material 
types, and the presence of modular components, while environmental variables 
focused on waste reduction potential and recycling capabilities. Schedule-related 
variables considered the time required for deconstruction, and legal variables 
covered regulatory frameworks and compliance requirements. 

For BIM-based buildings, additional variables related to the digital representation 
of the building were considered. These included the level of detail (LOD) in BIM 
models, the presence of as-built BIM data, and the integration of deconstruction-
specific information. For non-BIM buildings, the presence of traditional 
construction documentation and any available digital data was utilised. In the 
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context of DfD buildings, the variables emphasised design features that facilitate 
easy disassembly, such as standardised components, connections for easy 
removal, and documentation of deconstruction sequences. Non-DfD buildings 
required a focus on retrofit potential and adaptability of existing structures for 
deconstruction. 

Collecting and preprocessing data related to these variables to develop a 
predictive AI model was crucial. This involves gathering data from a survey 
(provided by experts) representing deconstructed buildings. The collected data 
were pre-processed into usable form for AI model training. Feature selection 
techniques were employed to extract relevant features from raw data, and a data 
augmentation method (SMOTE) was applied to address imbalances in the dataset. 

Explainability and generalisability were critical aspects of the AI model. 
Explainability ensures that deconstruction professionals and every potential user 
can understand and trust the AI's predictions. This was achieved by employing 
techniques like SHAP (Shapley Additive explanations) to explain the best AI 
predictive model for AI-DPM. Generalisability ensures that the AI- models 
perform well across different building types and contexts. This was achieved by 
training on datasets that include/represent various building scenarios, including 
BIM and non-BIM, DfD and non-DfD buildings. Cross-validation techniques and 
robust performance metrics were employed to evaluate the model's 
generalisability. 

In conclusion, investigating explanatory variables for developing an explainable 
and generalisable AI model for deconstructability involves thoroughly analysing 
the established variables. Focusing on explainability and generalisability, the 
resulting AI model (SVM with polynomial kernel) using all the 96 established 
variables provided the most accurate predictions. Furthermore, the performance 
of SVM with the polynomial kernel using all 96 variables over an MLP using 
features extracted from the FS showed and validated that all the established 
variables were significant and valuable in deconstructability prediction. This also 
supports the claim that many perspectives must be incorporated for a realistic and 
practical deconstructability prediction. In this research, variables B.1 to G.7 (see 
Appendix B for their definitions) need to be checked for building of all sorts 
nearing or at the end of their useful lives for their deconstructability 
prediction/assessments. The findings in this research suggest the relevance of all 
the established variables, and the robust AI algorithm development and validation 
approach not only advances academic study but also offers guides for 
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deconstruction professionals, providing a guide for future research looking into 
the use of AI/ML for prediction. 

7.2 Contributions to Knowledge   
7.2.1  Contribution of study to academic knowledge 

One of the most significant contributions of the research into AI for 
deconstructability is its demonstration of how advanced AI techniques can be 
effectively utilised to develop predictive models for building deconstructability. 
This research has successfully shown variables encompassing different 
dimensions, such as social, economic, technical, environmental, schedule, and 
legal, can be leveraged with sophisticated AI tools to create accurate and 
generalisable models for predicting the deconstructability of buildings. The 
ability to analyse these variables quickly using advanced AI techniques 
represented advancement over traditional methods, often requiring extensive 
manual effort and time. 

The research introduced numerous explanatory variables to the deconstructability 
literature using survey questionnaires from experts regarding past deconstructed 
projects. This comprehensive approach has emphasised the importance of 
integrating diverse variables to capture the multifaceted nature of 
deconstructability. The study has shown that combining technical variables, such 
as material properties and construction techniques, with social variables, like 
stakeholder engagement and regulatory compliance, leads to more robust and 
insightful predictive models. This methodological innovation underscores the 
necessity of a holistic perspective in developing AI models for deconstructability. 

Additionally, the research has provided valuable insights into the suitability of 
different AI tools for developing deconstructability predictive models. It has 
established methods like LR, DT, and KNN may not be well-suited for integrating 
variables. In contrast, methods such as Random Forests (RF), Multi-layered 
perceptron (MLP), and Support Vector Machines (SVM) can effectively handle 
the complexity of such data. This revelation enriches the existing body of 
knowledge and guides future research towards utilising more robust and 
appropriate AI techniques. By exposing the field to these advanced tools, the 
study encourages other researchers to explore beyond commonly used methods, 
potentially leading to significant improvements in predictive modelling for 
deconstructability and other areas of construction research. This shift towards 
more sophisticated AI methodologies promises to enhance the generalisability 
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and explainability of predictive models, ultimately supporting more sustainable 
and efficient building practices. 

7.2.2  Contribution of study to practice/deconstruction industry 

The research has made three significant contributions to the deconstruction 
industry. First is the capability to identify variables influencing deconstructability 
early in the planning and design stages. This early identification is possible due 
to the integration of various academic and industrial literature. By incorporating 
these variables, the conceptual framework developed in this research enhances 
early predictive capabilities, allowing construction professionals to make 
informed decisions that facilitate deconstructability from the outset. 

The second significant contribution is the versatility of the AI models, predicting 
deconstructability for different building types, including those designed with 
Building Information Modelling (BIM), Design for Deconstruction (DfD), and 
traditional construction methods. Unlike previous models that may have focused 
predominantly on specific building types, the developed AI models apply to BIM 
buildings and non-BIM structures. This is particularly important for the 
construction industry, which comprises a diverse mix of building projects non-
DfD and non-BIM. Including comprehensive variables ensures the models are 
robust and adaptable, offering practical insights and predictions relevant to a 
broad spectrum of deconstruction projects. 

The third contribution is the systematic literature review (i.e., chapter four) 
focused on the AI/ML applications for deconstruction. It provides an overview of 
what is already in existence (i.e., the AI application areas and the subfields 
employed) and some challenges from the existing literature affecting AI for 
deconstruction; suggestions on possible deconstruction yet to be exploited using 
AI were highlighted. The researcher believes this will help and serve as a starting 
point for deconstruction practitioners and academics in supporting the AI skill 
force without deconstruction domain expertise to understand areas where AI can 
be used for deconstruction activities. Also, it will help deconstruction 
practitioners just starting on AI adoption to note subfields and methods that are 
relevant/feasible for deconstruction activities. This study is a valuable resource 
for researchers and industry practitioners, offering insights into relevant AI uses 
and ongoing research within deconstruction.  
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7.3 Overview of Key Findings 
This research developed an AI-based Deconstructability Predictive Model (AI-
DPM) to quickly assess whether a building is suitable for deconstruction rather 
than demolition, advancing sustainability in construction. The model’s binary 
classification structure—deconstructible or non-deconstructible—streamlines 
decision-making by assigning a precise categorisation to buildings based on a 
threshold score. Crucially, this model integrates diverse variables spanning 
social, economic, technical, environmental, scheduling, and legal dimensions, 
creating a multifaceted approach to predict deconstructability. The study 
demonstrated the model’s applicability across BIM, non-BIM, DfD, and non-DfD 
buildings, filling a notable gap in current deconstructability assessment literature.  

7.3.1 Interpretation of Findings and Theoretical Implications 

1.  Confirmations of Known Influences on Deconstructability 

Consistent with existing literature, this research reaffirms that economic and 
technical factors primarily influence deconstructability. For instance, 
deconstruction costs, salvage value, and modular construction methods have 
previously been highlighted as core factors (e.g., Akinade et al., 2015). This 
alignment strengthens the reliability of the model’s approach, indicating that 
these variables continue to be relevant and can be effectively leveraged by AI. 

2. The Role of Multi-Dimensional Variables in Deconstructability 

This research confirms that deconstructability is influenced by various variables, 
each contributing uniquely to deconstructability outcomes. Integrating variables 
beyond the technical and economic—such as social concerns like stakeholder 
engagement and environmental concerns like waste minimisation—reflects an 
essential shift from traditional views in deconstructability studies. While prior 
research has emphasised technical concerns (e.g., Akinade et al., 2015; Guy, 
2006) and economic concerns (e.g., Tatiya et al., 2018), this research expands the 
framework, supporting theories on sustainability and resilience by underscoring 
the complex interdependencies between non-technical and technical concerns 
like social, environment, schedule and economic (e.g., Akinade et al., 2017), 
aligning with frameworks like the TELOS. 

3. Binary Classification and Threshold Limitations 
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The binary classification of deconstructability (i.e., deconstructible vs. non-
deconstructible) effectively translates complex data into actionable insights for 
deconstruction professionals. The decision to use a 60% threshold aligns with 
prior studies. Still, this research indicates that relying on a rigid threshold may 
overlook nuanced cases that do not fit neatly within either category. For instance, 
certain buildings could exhibit features that suggest “partial deconstructability,” 
where some elements are suited for reuse while others are not, highlighting the 
need for granularity in classification. 

A more sophisticated multi-class model could better capture the continuum of 
deconstructability. However, the binary system offers significant advantages in 
terms of simplicity and usability, especially for industry professionals who may 
prefer clear yes-or-no over ambiguous scoring. This approach highlights a tension 
between practical applicability and theoretical precision, suggesting that future 
models may need to balance clarity and detail by incorporating "intermediate" 
classes or probabilities for more realistic predictions. 

4.  Insights on AI Models: SVM with Polynomial Kernel  

The success of the SVM model with a polynomial kernel over simpler models 
(e.g., Logistic Regression, Decision Trees) demonstrates the importance of 
advanced AI techniques in handling multi-dimensional deconstructability data, 
as shown by inconsistencies in results across simpler algorithms like KNN. The 
SVM model’s superior performance confirms that advanced AI can more 
effectively capture non-linear relationships between variables.  

5. Feature selection; not applicable to all predictive modelling scenario   
The research finds that support vector machines with the polynomial kernel 
(SVM-P) using all features and Artificial neural networks with multilayer 
perceptron (MLP) using the features deducted from the FS techniques are the two 
high-performing models. Among the two, the SVM-P shows the highest 
predictive capabilities because of its higher accuracy and AUC, even as it uses all 
features. These findings made it known that, though researchers have proved the 
use of FS for enhancing predictive capabilities in AI predictive models, their uses 
and advantages may depend on the problem and scenario; as such, their uses may 
not apply to all kinds of issues/scenario where AI predictive model is used. 
Additionally, the predictive modelling performance of SVM-P suggests and 
supports the idea that deconstructability is a multifaceted concept. This is 
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evidenced by the fact that the highest performance was achieved when all the 
diverse set of variables was used 

6.  Explainability as a Vital Component for Industry Acceptance 

The study emphasises that explainability—achieved here with SHAP (Shapley 
Additive explanations)—is crucial for real-world adoption, especially as many 
stakeholders may lack AI expertise. By clarifying how the model makes 
predictions, SHAP enables users to understand which factors influence outcomes, 
adding a layer of transparency often lacking in AI applications. 

This emphasis on explainability aligns with the interpretability-accuracy trade-
off in AI, where complex models often excel at prediction but struggle to provide 
clear insights into how decisions are made. The model gains trustworthiness by 
prioritising interpretability—a significant advantage for industry adoption—
though it might sacrifice some predictive nuance. This insight has broader 
implications, suggesting that AI models in deconstruction should prioritise 
transparency as much as accuracy, particularly when decisions impact 
sustainability and long-term resource management. 

7.3.2 Implications of Findings 

- Policy Implications for Encouraging Sustainable Deconstruction 

This research suggests that deconstructability could inform policy frameworks 
such as BREEAM certifications and circular economy standards (e.g., London 
circular statement) and push for broader regulatory adoption. Such frameworks 
could incentivise projects incorporating deconstruction planning, potentially 
increasing deconstruction implementation. This research can further support pre-
redevelopment and pre-demolition audits in line with the Sustainable 
Development Goals (SDGs) and Site Waste Management Plan (SWMP). 

7.4 Limitations 
In developing AI predictive models, numerous methods and considerations are 
available, often drawn from empirical findings in research. No single approach 
universally applies to all scenarios. This supports the No Free Lunch Theorem 
notion that no algorithm is universally superior. Nevertheless, this research 
demonstrates that strategically selecting a diverse range of methods and 
algorithms within an end-to-end modelling framework can potentially create a 
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robust solution adaptable to multiple challenges within a specific domain—such 
as predicting building deconstructability in this research. However, this approach 
has drawbacks, including vulnerability to SMOTE overfitting. Some limitations 
identified include: 

When the data available for training an AI model is limited, the model's ability to 
learn/generalise effectively is severely hindered. This scarcity of data can result 
in numerous issues, such as overfitting, where the model performs exceptionally 
poorly on unseen data (test/validation). Small datasets often need more diversity 
and representativeness for the model to capture the underlying trends within the 
data. Consequently, the model's predictions of new data can be unreliable and 
inaccurate. Additionally, small datasets can lead to increased variance in the 
model's performance, making it difficult to achieve consistent results. To mitigate 
these issues, techniques such as synthetic data generation and transfer learning 
can be employed. However, these solutions are not always feasible or sufficient, 
emphasising the critical need for large, high-quality datasets in developing 
reliable and effective AI predictive models. 

In addressing missing data, there is no one-way-fits-all solution. Researchers 
often develop their approaches based on literature reviews, experiments and the 
domain/problem. In this research, the researcher employed machine learning data 
imputation, specifically KNN, assuming missing data were entirely at random 
(MAR/MCAR). However, implementing KNN for missing data imputation can 
take time and effort. 

When dealing with an imbalanced class, caution is necessary when employing 
data resampling techniques such as SMOTE. SMOTE application can result in 
overly optimistic performance for the developed AI model. The experiments 
indicated that SMOTE makes the AI predictive models developed prone to 
overfitting. The research is constrained by a clear recommendation regarding the 
SMOTE threshold to mitigate overfitting. 

Furthermore, more extensive validation of AI-DPM lies in their practical 
deployment and validation within real-time deconstruction projects by 
deconstruction experts. While AI-DPM were developed and tested using past 
deconstruction project data, their effectiveness for current and real-time 
deconstruction needs to be investigated.  
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Lastly, this research gathered data through survey questionnaires relying on 
expert opinions. While experts offer valuable insights, their responses may 
introduce bias. This could limit the model's objectivity. Additionally, the data 
focused exclusively on residential apartment buildings, excluding other building 
types that might exhibit different deconstructability characteristics. This limited 
scope could result in the loss of significant insights. Non-residential buildings 
(e.g., office buildings, schools, or industrial facilities) often have distinct 
structural, regulatory, and economic factors influencing their deconstructability. 
For future research, incorporating a wider variety of residential and non-
residential building types would enhance the model’s generalisability and allow 
it to reflect the broader diversity in sustainability needs across the building sector. 

7.4 Future work 

Several promising avenues for future work can be identified based on the 
limitations and findings of this research. An important direction for future 
research is the comprehensive validation of AI-DPM through expert evaluations 
and practical implementations. Collaborating with industry professionals and 
conducting pilot projects on actual deconstruction sites will provide valuable 
feedback and highlight practical challenges and opportunities for improvement. 
This hands-on approach can uncover nuances and context-specific difficulties 
that might not be evident through theoretical modelling alone. Furthermore, 
involving a multidisciplinary team, including environmental scientists, architects, 
and policymakers, can enrich the validation process and ensure that the models 
align with sustainability goals and regulatory frameworks. 

Using more extensive (more samples) and varied sources of datasets (such as 
documents, images, videos, plans and others) for AI-DPM development will 
enhance the models used by deconstruction experts and other potential users, 
including waste management consultants and building owners. This will help to 
test and refine the models' robustness across diverse building types and 
geographical regions.  

Lastly, exploring the integration of AI-DPM with other emerging technologies, 
such as reality-capturing technologies and the Internet of Things (IoT), can open 
new frontiers in building deconstructability. They can facilitate real-time data 
collection, aiding monitoring of structural health/material conditions and 
facilitating real-time predictive modelling. By using these technologies, future 
research can create more holistic and resilient deconstructability frameworks that 
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predict and actively manage the lifecycle of buildings, promoting a circular 
economy in the construction industry. 

7.5 Chapter Summary 
The chapter presented significant insights drawn from the study findings. The 
best-performing AI-DPM demonstrates that integrating diverse variables is 
crucial for the prediction of building deconstructability. This indicated the 
robustness and validity of AI-DPM models. Moreover, the high-level 
performance achieved by many AI-DPMs underscores the possibility of 
developing a single, comprehensive model applicable to deconstruction projects 
of all sizes, including non-design for deconstruction and non-BIM. 

The research has contributed some significant variables to the AI-DPM and 
deconstruction research area and established the need to incorporate and look at 
deconstructability from diverse perspectives, including social, economic, 
technical, schedule, environmental, and legal. The research has established that 
SVM and MLP are high-performing models with good generalisability 
capabilities. The research has also shown the efficiency of feature selection and 
how they were not the best solution in all AI/ML predictive model development.  

The chief limitation of the research is the use of a questionnaire, small sample 
size and oversampling techniques to augment and balance the class in the 263 
data retrieved from the questionnaire survey representing deconstruction projects. 
Future research should investigate the possibility of getting more data, including 
video, images, and documents, to develop AI-DPM. They should also seek to 
carry out large-scale AI-DPM validation through expert evaluation/practical 
implementations. Collaborating with industry professionals and conducting pilot 
projects on actual deconstruction sites will provide valuable feedback and 
highlight practical challenges and opportunities for improvement. This hands-on 
approach can uncover nuances and context-specific factors that might not be 
evident through theoretical modelling. 

   

 

 

  



 

   
 
169 

Reference 
Abdullah, A., Anumba, C., & Durmisevic, E. (2003a). Decision tools for demolition 

techniques selection. Proceedings, 55–72. 
Abdullah, A., Anumba, C., & Durmisevic, E. (2003b). Decision tools for demolition 

techniques selection. Proceedings, 55–72. 
Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., 

Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: 
A review of present status, opportunities and future challenges. Journal of Building 
Engineering, 44, 103299. https://doi.org/https://doi.org/10.1016/j.jobe.2021.103299 

Adeniran, A. O. (2019). Application of Likert scale’s type and Cronbach’s alpha analysis in 
an airport perception study. Scholar Journal of Applied Sciences and Research, 2(4), 1–
5. 

Aguilar-Fernández, M. E., & Otegi-Olaso, J. R. (2018). Firm Size and the Business Model 
for Sustainable Innovation. Sustainability, 10(12). https://doi.org/10.3390/su10124785 

Ahmed, M., Afreen, N., Ahmed, M., Sameer, M., & Ahamed, J. (2023). An inception V3 
approach for malware classification using machine learning and transfer learning. 
International Journal of Intelligent Networks, 4, 11–18. 
https://doi.org/https://doi.org/10.1016/j.ijin.2022.11.005 

AI, H. (2019). High-level expert group on artificial intelligence. Ethics Guidelines for 
Trustworthy AI, 6. 

Aidonis, D. (2019a). Multiobjective Mathematical Programming Model for the Optimization 
of End-of-Life Buildings Deconstruction and Demolition Processes. Sustainability, 
11(5), 1426. https://doi.org/10.3390/su11051426 

Aidonis, D. (2019b). Multiobjective Mathematical Programming Model for the Optimization 
of End-of-Life Buildings Deconstruction and Demolition Processes. Sustainability, 
11(5), 1426. https://doi.org/10.3390/su11051426 

Ajayi, S. O., & Oyedele, L. O. (2018). Critical design factors for minimising waste in 
construction projects: A structural equation modelling approach. Resources, 
Conservation and Recycling, 137, 302–313. 
https://doi.org/10.1016/j.resconrec.2018.06.005 

Akanbi, L. A., Oyedele, A. O., Oyedele, L. O., & Salami, R. O. (2020a). Deep learning 
model for Demolition Waste Prediction in a circular economy. Journal of Cleaner 
Production, 274, 122843. https://doi.org/10.1016/j.jclepro.2020.122843 

Akanbi, L. A., Oyedele, A. O., Oyedele, L. O., & Salami, R. O. (2020b). Deep learning 
model for Demolition Waste Prediction in a circular economy. Journal of Cleaner 
Production, 274, 122843. https://doi.org/10.1016/j.jclepro.2020.122843 

Akanbi, L. A., Oyedele, A. O., Oyedele, L. O., & Salami, R. O. (2020c). Deep learning 
model for Demolition Waste Prediction in a circular economy. Journal of Cleaner 
Production, 274, 122843. https://doi.org/10.1016/j.jclepro.2020.122843 

Akanbi, L. A., Oyedele, A. O., Oyedele, L. O., & Salami, R. O. (2020d). Deep learning 
model for Demolition Waste Prediction in a circular economy. Journal of Cleaner 
Production, 274, 122843. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122843 

Akanbi, L. A., Oyedele, L. O., Omoteso, K., Bilal, M., Akinade, O. O., Ajayi, A. O., Davila 
Delgado, J. M., & Owolabi, H. A. (2019a). Disassembly and deconstruction analytics 
system (D-DAS) for construction in a circular economy. Journal of Cleaner Production, 
223, 386–396. https://doi.org/10.1016/j.jclepro.2019.03.172 



 

   
 
170 

Akanbi, L. A., Oyedele, L. O., Omoteso, K., Bilal, M., Akinade, O. O., Ajayi, A. O., Davila 
Delgado, J. M., & Owolabi, H. A. (2019b). Disassembly and deconstruction analytics 
system (D-DAS) for construction in a circular economy. Journal of Cleaner Production, 
223, 386–396. https://doi.org/10.1016/j.jclepro.2019.03.172 

Akanbi, L. A., Oyedele, L. O., Omoteso, K., Bilal, M., Akinade, O. O., Ajayi, A. O., Davila 
Delgado, J. M., & Owolabi, H. A. (2019c). Disassembly and deconstruction analytics 
system (D-DAS) for construction in a circular economy. Journal of Cleaner Production, 
223, 386–396. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.03.172 

Àkànbí, L., Oyedele, L. O., Omoteso, K., Bilal, M., Akinadé, O. O., Ajayi, A., Delgado, J. M. 
D., & Owolabi, H. (2019). Disassembly and deconstruction analytics system (D-DAS) 
for construction in a circular economy. Journal of Cleaner Production, null, null. 
https://doi.org/10.1016/J.JCLEPRO.2019.03.172 

Akbarieh, A., Jayasinghe, L. B., Waldmann, D., & Teferle, F. N. (2020). BIM-based end-of-
lifecycle decision making and digital deconstruction: Literature review. Sustainability, 
12(7), 2670. 

Akbarnezhad, A., Ong, K. C. G., & Chandra, L. R. (2014a). Economic and environmental 
assessment of deconstruction strategies using building information modeling. 
Automation in Construction, 37, 131–144. https://doi.org/10.1016/j.autcon.2013.10.017 

Akbarnezhad, A., Ong, K. C. G., & Chandra, L. R. (2014b). Economic and environmental 
assessment of deconstruction strategies using building information modeling. 
Automation in Construction, 37, 131–144. https://doi.org/10.1016/j.autcon.2013.10.017 

Akbarnezhad, A., Ong, K. C. G., & Chandra, L. R. (2014c). Economic and environmental 
assessment of deconstruction strategies using building information modeling. 
Automation in Construction, 37, 131–144. https://doi.org/10.1016/j.autcon.2013.10.017 

Akbarpour, N., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., & Oliva, D. (2021). An innovative 
waste management system in a smart city under stochastic optimization using vehicle 
routing problem. Soft Computing, 25(8), 6707–6727. 

Akinadé, O. O., Oyedele, L. O., Ajayi, S., Bilal, M., Alaka, H., Owolabi, H., Bello, S., 
Jaiyeoba, B. E., & Kadiri, K. O. (2017). Design for Deconstruction (DfD): Critical 
success factors for diverting end-of-life waste from landfills. Waste Management, 60, 3–
13. https://doi.org/10.1016/j.wasman.2016.08.017 

Akinade, O. O., Oyedele, L. O., Ajayi, S. O., Bilal, M., Alaka, H. A., Owolabi, H. A., Bello, 
S. A., Jaiyeoba, B. E., & Kadiri, K. O. (2017a). Design for Deconstruction (DfD): 
Critical success factors for diverting end-of-life waste from landfills. Waste 
Management, 60, 3–13. 

Akinade, O. O., Oyedele, L. O., Ajayi, S. O., Bilal, M., Alaka, H. A., Owolabi, H. A., Bello, 
S. A., Jaiyeoba, B. E., & Kadiri, K. O. (2017b). Design for Deconstruction (DfD): 
Critical success factors for diverting end-of-life waste from landfills. Waste 
Management, 60, 3–13. https://doi.org/10.1016/j.wasman.2016.08.017 

Akinade, O. O., Oyedele, L. O., Ajayi, S. O., Bilal, M., Alaka, H. A., Owolabi, H. A., Bello, 
S. A., Jaiyeoba, B. E., & Kadiri, K. O. (2017c). Design for Deconstruction (DfD): 
Critical success factors for diverting end-of-life waste from landfills. Waste 
Management, 60, 3–13. https://doi.org/10.1016/j.wasman.2016.08.017 

Akinade, O. O., Oyedele, L. O., Bilal, M., Ajayi, S. O., Owolabi, H. A., Alaka, H. A., & 
Bello, S. A. (2015a). Waste minimisation through deconstruction: A BIM based 
Deconstructability Assessment Score (BIM-DAS). Resources, Conservation and 
Recycling, 105, 167–176. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84946547463&doi=10.1016%2Fj.resconrec.2015.10.018&partnerID=40&md5=bb6eb9
0d5989ac23ec0933af1f3d5822 

Akinade, O. O., Oyedele, L. O., Bilal, M., Ajayi, S. O., Owolabi, H. A., Alaka, H. A., & 
Bello, S. A. (2015b). Waste minimisation through deconstruction: A BIM based 



 

   
 
171 

Deconstructability Assessment Score (BIM-DAS). Resources, Conservation and 
Recycling, 105, 167–176. https://doi.org/10.1016/j.resconrec.2015.10.018 

Akinade, O. O., Oyedele, L. O., Bilal, M., Ajayi, S. O., Owolabi, H. A., Alaka, H. A., & 
Bello, S. A. (2015c). Waste minimisation through deconstruction: A BIM based 
Deconstructability Assessment Score (BIM-DAS). Resources, Conservation and 
Recycling, 105, 167–176. https://doi.org/10.1016/j.resconrec.2015.10.018 

Akinade, O. O., Oyedele, L. O., Bilal, M., Ajayi, S. O., Owolabi, H. A., Alaka, H. A., & 
Bello, S. A. (2015d). Waste minimisation through deconstruction: A BIM based 
Deconstructability Assessment Score (BIM-DAS). Resources, Conservation and 
Recycling, 105, 167–176. https://doi.org/10.1016/j.resconrec.2015.10.018 

Akinadé, O. O., Oyedele, L. O., Bilal, M., Ajayi, S., Owolabi, H., Alaka, H., & Bello, S. 
(2015). Waste minimisation through deconstruction: A BIM based Deconstructability 
Assessment Score (BIM-DAS). Resources Conservation and Recycling, 105, 167–176. 
https://doi.org/10.1016/J.RESCONREC.2015.10.018 

Akinadé, O. O., Oyedele, L. O., Omoteso, K., Ajayi, S., Bilal, M., Owolabi, H., Alaka, H., 
Ayris, L., & Looney, J. H. (2017). BIM-based deconstruction tool: Towards essential 
functionalities. International Journal of Sustainable Built Environment, 6, 260–271. 
https://doi.org/10.1016/J.IJSBE.2017.01.002 

Akinadé, O. O., Oyedele, L. O., Oyedele, A. O., Delgado, J. M. D., Bilal, M., Àkànbí, L., 
Ajayi, A., & Owolabi, H. (2020). Design for deconstruction using a circular economy 
approach: barriers and strategies for improvement. Production Planning & Control, 31, 
829–840. https://doi.org/10.1080/09537287.2019.1695006 

Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., Delgado, M. D., Akinade, O. O., & 
Ahmed, A. A. (2020). Deep learning in the construction industry: A review of present 
status and future innovations. Journal of Building Engineering, 32, 101827. 
https://doi.org/https://doi.org/10.1016/j.jobe.2020.101827 

Al-Adhami, M., Wu, S., & Ma, L. (2019). Extended reality approach for construction quality 
control. 

Alaka, H. A., Oyedele, L. O., Owolabi, H. A., Kumar, V., Ajayi, S. O., Akinade, O. O., & 
Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a 
framework for tool selection. Expert Systems with Applications, 94, 164–184. 
https://doi.org/10.1016/j.eswa.2017.10.040 

Alaka, H., O. Oyedele, L., Hakeem, O., O. Ajayi, S., Bilal, M., & O. Akinade, O. (2016). 
Methodological approach of construction business failure prediction studies: a review. 
Construction Management and Economics, 34(11). 

Alaka, H., Oyedele, L., Owolabi, H., Akinade, O., Bilal, M., & Ajayi, S. (2018). Firms 
Failure Prediction Models. IEEE Transactions on Engineering Management, PP(4), 1–
10. https://doi.org/10.1109/TEM.2018.2856376 

Alaka, H., Oyedele, L., Owolabi, H., Kumar, V., Ajayi, S., Akinade, O., & Bilal, M. (2017). 
Systematic Review of Bankruptcy Prediction Models : Towards A Framework for Tool 
Selection Senior Lecturer , Faculty of Engineering , Environment and Computing , 
Coventry University , Coventry , Professor , Bristol Enterprise Research and Innovation 
Centr. 

Alaloul, W. S., Musarat, M. A., Rabbani, M. B. A., Altaf, M., Alzubi, K. M., & Al Salaheen, 
M. (2022). Assessment of Economic Sustainability in the Construction Sector: Evidence 
from Three Developed Countries (the USA, China, and the UK). Sustainability, 14(10). 
https://doi.org/10.3390/su14106326 

Alizadehsalehi, S., Hadavi, A., & Huang, J. C. (2020). From BIM to extended reality in AEC 
industry. Automation in Construction, 116, 103254. 
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103254 



 

   
 
172 

Altomonte, S., Allen, J., Bluyssen, P. M., Brager, G., Heschong, L., Loder, A., Schiavon, S., 
Veitch, J. A., Wang, L., & Wargocki, P. (2020). Ten questions concerning well-being in 
the built environment. Building and Environment, 180, 106949. 
https://doi.org/10.1016/j.buildenv.2020.106949 

Anastasiou, D., Tasopoulou, A., Gemenetzi, G., Gareiou, Z., & Zervas, E. (2022). Public’s 
perceptions of urban identity of Thessaloniki, Greece. URBAN DESIGN International, 
27(1), 18–42. https://doi.org/10.1057/s41289-021-00172-8 

Andi, & Minato, T. (2003). Design documents quality in the Japanese construction industry: 
Factors influencing and impacts on construction process. International Journal of 
Project Management, 21(7), 537–546. https://doi.org/10.1016/S0263-7863(02)00083-2 

Ansah, M. K., Chen, X., Yang, H., Lu, L., & Lam, P. T. I. (2021). Developing an automated 
BIM-based life cycle assessment approach for modularly designed high-rise buildings. 
Environmental Impact Assessment Review, 90. 
https://doi.org/10.1016/j.eiar.2021.106618 

Anumba, C. J., Abdullah, A., & Ruikar, K. (2008). An integrated system for demolition 
techniques selection. Architectural Engineering and Design Management, 4(2), 130–
148. 

Aromataris, E., & Pearson, A. (2014). The systematic review: An overview. American 
Journal of Nursing, 114(3), 53–58. 
https://doi.org/10.1097/01.NAJ.0000444496.24228.2c 

Aslam, M. S., Huang, B., & Cui, L. (2020). Review of construction and demolition waste 
management in China and USA. Journal of Environmental Management, 264, 110445. 
https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110445 

Ayeleru, O. O., Fewster-Young, N., Gbashi, S., Akintola, A. T., Ramatsa, I. M., & Olubambi, 
P. A. (2023). A statistical analysis of recycling attitudes and behaviours towards 
municipal solid waste management: A case study of the University of Johannesburg, 
South Africa. Cleaner Waste Systems, 4, 100077. 
https://doi.org/https://doi.org/10.1016/j.clwas.2023.100077 

Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., 
Shringi, A., & Mendis, P. (2022). Artificial intelligence and smart vision for building 
and construction 4.0: Machine and deep learning methods and applications. Automation 
in Construction, 141, 104440. 

Baker, H., Moncaster, A., Remøy, H., & Wilkinson, S. (2021). Retention not demolition: how 
heritage thinking can inform carbon reduction. Journal of Architectural Conservation, 
27(3), 176–194. https://doi.org/10.1080/13556207.2021.1948239 

Baker-Brown, D. (2016). Developing the Brighton Waste House: from zero waste on site to 
re-use of waste. Sustainable Built Environment Conference 2016 in Hamburg: 
Strategies, Stakeholders, Success Factors, 342–351. 

Balaguer, C., Gimenez, A., & Abderrahim, C. M. (2002). ROMA robots for inspection of 
steel based infrastructures. Industrial Robot: An International Journal, 29(3), 246–251. 
https://doi.org/10.1108/01439910210425540 

Balogun, H., Alaka, H., & Egwim, C. (2021). Boruta-Grid-search Least square support vector 
machine for NO2 pollution prediction using big data analytics and IoT emission sensors. 
Applied Computing and Informatics. https://doi.org/10.1108/ACI-04-2021-0092 

Balogun, H., Alaka, H., Egwim, C. N., & Ajayi, S. (2022a). Systematic review of drivers 
influencing building deconstructability: Towards a construct-based conceptual 
framework. Waste Management & Research, 0734242X221124078. 
https://doi.org/https://doi.org/10.1177/0734242X221124078 

Balogun, H., Alaka, H., Egwim, C. N., & Ajayi, S. (2022b). Systematic review of drivers 
influencing building deconstructability: Towards a construct-based conceptual 



 

   
 
173 

framework. Waste Management & Research, 41, 512–530. 
https://doi.org/10.1177/0734242X221124078 

Balogun, H., Alaka, H., Egwim, N. C., & Ajayi, S. (2021a). An application of Machine 
learning with Boruta Feature selection to Improve NO2 pollution prediction. 
Environmental Design and Management Conference (EDMIC), 551–561. 

Balogun, H., Alaka, H., Egwim, N. C., & Ajayi, S. (2021b). RANDOM FOREST FEATURE 
SELECTION FOR PARTICULATE MATTER (PM10) POLLUTION 
CONCENTRATION. Environmental Design and Management Conference (EDMIC), 
576–587. 

Banfi, F., & Mandelli, A. (2021). Computer vision meets image processing and UAS 
PhotoGrammetric data integration: from HBIM to the eXtended reality project of arco 
della Pace in milan and its decorative complexity. Journal of Imaging, 7(7), 118. 

Bassier, M., Vergauwen, M., & Van Genechten, B. (2017). Automated classification of 
heritage buildings for as-built BIM using machine learning techniques. ISPRS Annals of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 25–30. 

Basta, A., Serror, M. H., & Marzouk, M. (2020a). A BIM-based framework for quantitative 
assessment of steel structure deconstructability. Automation in Construction, 111, 
103064. https://doi.org/https://doi.org/10.1016/j.autcon.2019.103064 

Basta, A., Serror, M. H., & Marzouk, M. (2020b). A BIM-based framework for quantitative 
assessment of steel structure deconstructability. Automation in Construction, 
111(January 2019), 103064. https://doi.org/10.1016/j.autcon.2019.103064 

Basta, A., Serror, M. H., & Marzouk, M. (2020c). A BIM-based framework for quantitative 
assessment of steel structure deconstructability. Automation in Construction, 
111(January 2019), 103064. https://doi.org/10.1016/j.autcon.2019.103064 

Basta, A., Serror, M. H., & Marzouk, M. (2020d). A BIM-based framework for quantitative 
assessment of steel structure deconstructability. Automation in Construction, 
111(January 2019), 103064. https://doi.org/10.1016/j.autcon.2019.103064 

Belur, J., Tompson, L., Thornton, A., & Simon, M. (2018). Interrater Reliability in 
Systematic Review Methodology: Exploring Variation in Coder Decision-Making. 
Sociological Methods & Research, 50(2), 837–865. 
https://doi.org/10.1177/0049124118799372 

Benkraouda, O., Thodi, B. T., Yeo, H., Menendez, M., & Jabari, S. E. (2020). Traffic data 
imputation using deep convolutional neural networks. IEEE Access, 8, 104740–104752. 

Bennasar, M., Hicks, Y., & Setchi, R. (2015). Feature selection using Joint Mutual 
Information Maximisation. Expert Systems with Applications, 42(22), 8520–8532. 
https://doi.org/https://doi.org/10.1016/j.eswa.2015.07.007 

Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient 
boosting algorithms. Artificial Intelligence Review, 54(3), 1937–1967. 
https://doi.org/10.1007/s10462-020-09896-5 

Bertin, I., Mesnil, R., Jaeger, J.-M., Feraille, A., & Le Roy, R. (2020). A BIM-Based 
Framework and Databank for Reusing Load-Bearing Structural Elements. Sustainability, 
12(8). https://doi.org/10.3390/su12083147 

Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. 
(2021a). Fundamentals of building deconstruction as a circular economy strategy for the 
reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1–31. 

Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. 
(2021b). Fundamentals of building deconstruction as a circular economy strategy for the 
reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1–31. 
https://doi.org/https://doi.org/10.3390/app11030939 

Bertino, G., Kisser, J., Zeilinger, J., Langergraber, G., Fischer, T., & Österreicher, D. 
(2021c). Fundamentals of building deconstruction as a circular economy strategy for the 



 

   
 
174 

reuse of construction materials. Applied Sciences (Switzerland), 11(3), 1–31. 
https://doi.org/10.3390/app11030939 

Bhosale, Y. H., & Patnaik, K. S. (2023). Application of Deep Learning Techniques in 
Diagnosis of Covid-19 (Coronavirus): A Systematic Review. Neural Processing Letters, 
55(3), 3551–3603. https://doi.org/10.1007/s11063-022-11023-0 

Bibal, A., Lognoul, M., De Streel, A., & Frénay, B. (2021). Legal requirements on 
explainability in machine learning. Artificial Intelligence and Law, 29, 149–169. 

Biggs, G., Kotoku, T., & Tanikawa, T. (2011). Ceiling Beam Screw Removal Using a 
Robotic Manipulator. Advanced Robotics, 25(11–12), 1451–1472. 
https://doi.org/10.1163/016918611x579484 

Bilal, M., Oyedele, L. O., Qadir, J., Munir, K., Ajayi, S. O., Akinade, O. O., Owolabi, H. A., 
Alaka, H. A., & Pasha, M. (2016). Big Data in the construction industry: A review of 
present status, opportunities, and future trends. Advanced Engineering Informatics, 
30(3), 500–521. https://doi.org/https://doi.org/10.1016/j.aei.2016.07.001 

Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. Bmj, 314(7080), 
572. 

Blengini, G. A., & Di Carlo, T. (2010). The changing role of life cycle phases, subsystems 
and materials in the LCA of low energy buildings. Energy and Buildings, 42(6), 869–
880. https://doi.org/10.1016/j.enbuild.2009.12.009 

Bowen, N. K., & Guo, S. (2011). Structural equation modeling. Oxford University Press. 
Bradley Guy, S. S. (2004). Design for Deconstruction and Materials Reuse. Deconstruction 

and Building Materials Reuse Conference. 
Brilakis, I., Lourakis, M., Sacks, R., Savarese, S., Christodoulou, S., Teizer, J., & 

Makhmalbaf, A. (2010). Toward automated generation of parametric BIMs based on 
hybrid video and laser scanning data. Advanced Engineering Informatics, 24(4), 456–
465. 

Brożek, B., Furman, M., Jakubiec, M., & Kucharzyk, B. (2024). The black box problem 
revisited. Real and imaginary challenges for automated legal decision making. Artificial 
Intelligence and Law, 32(2), 427–440. https://doi.org/10.1007/s10506-023-09356-9 

BS 6187:2011. (n.d.). Code of practice for full and partial demolition. 
Burton, L. J., & Mazerolle, S. M. (2011). Survey Instrument Validity Part I: Principles of 

Survey Instrument Development and Validation in Athletic Training Education 
Research. Athletic Training Education Journal, 6(1), 27–35. 
https://doi.org/10.4085/1947-380X-6.1.27 

Caparrós, P. J., & Astarloa, E. A. (2017). Arquitecturas reversibles de Japón. Las casas de 
Shirakawa-go. Rita_revista Indexada de Textos Académicos, 7, 76–85. 

Carcoba, A. (2004). Whose costs? Who benefits. Journal on European Agency for Safety and 
Health at Work. 

Cha, G.-W., Choi, S.-H., Hong, W.-H., & Park, C.-W. (2022a). Development of machine 
learning model for prediction of demolition waste generation rate of buildings in 
redevelopment areas. International Journal of Environmental Research and Public 
Health, 20(1), 107. 

Cha, G.-W., Choi, S.-H., Hong, W.-H., & Park, C.-W. (2022b). Development of Machine 
Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in 
Redevelopment Areas. International Journal of Environmental Research and Public 
Health, 20(1), 107. https://doi.org/10.3390/ijerph20010107 

Cha, G.-W., Moon, H. J., Kim, Y.-M., Hong, W.-H., Hwang, J.-H., Park, W.-J., & Kim, Y.-
C. (2020). Development of a Prediction Model for Demolition Waste Generation Using 
a Random Forest Algorithm Based on Small DataSets. International Journal of 
Environmental Research and Public Health, 17(19), 6997. 
https://doi.org/10.3390/ijerph17196997 



 

   
 
175 

Chadwick, E. (2020). Strengthening the links between planning and health in England. 1–4. 
https://doi.org/10.1136/bmj.m795 

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & 
Electrical Engineering, 40(1), 16–28. 

Charef, R. (2022). Supporting construction stakeholders with the circular economy: A trans-
scaler framework to understand the holistic approach. Cleaner Engineering and 
Technology, 8, 100454. https://doi.org/https://doi.org/10.1016/j.clet.2022.100454 

Charef, R., Ganjian, E., & Emmitt, S. (2021). Socio-economic and environmental barriers for 
a holistic asset lifecycle approach to achieve circular economy: A pattern-matching 
method. Technological Forecasting and Social Change, 170, 120798. 
https://doi.org/10.1016/J.TECHFORE.2021.120798 

Charef, R., Morel, J., & Rakhshan, K. (2021). Barriers to Implementing the Circular 
Economy in the Construction Industry: A Critical Review. Sustainability, null, null. 
https://doi.org/10.3390/su132312989 

Chawla, N. V, Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic 
minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–
357. 

Chen, M., Qu, R., & Fang, W. (2022). Case-based reasoning system for fault diagnosis of 
aero-engines. Expert Systems with Applications, 202, 117350. 
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117350 

Chen, R. W., Navin-Chandra, D., & Print, F. B. (1994). A cost-benefit analysis model of 
product design for recyclability and its application. IEEE Transactions on Components, 
Packaging, and Manufacturing Technology: Part A, 17(4), 502–507. 
https://doi.org/10.1109/95.335032 

Chen, W., Yang, S., Zhang, X., Jordan, N. D., & Huang, J. (2022). Embodied energy and 
carbon emissions of building materials in China. Building and Environment, 207. 
https://doi.org/10.1016/j.buildenv.2021.108434 

Chini, A., & Bruening, S. (2003). Deconstruction and materials reuse in the United States. 
The Future of Sustainable Construction, October, 1–22. 

Chini, A. R., & Balachandran, S. (2002). Anticipating and responding to deconstruction 
through building design. Proceedings of Design for Deconstruction and Materials 
Reuse, CIB Publication, 272, 175–185. 

Chini, A. R., & Bruening, S. (2003). Deconstruction and materials reuse in the United States. 
The Future of Sustainable Construction, 14. 

Cho, E., & Kim, S. (2015). Cronbach’s coefficient alpha: Well known but poorly understood. 
Organizational Research Methods, 18(2), 207–230. 

Collaboration for Environmental Evidence. (2013). Guidelines for Systematic Review and 
Evidence Synthesis in Environmental Management. In Version 4.2 (Issue March). 
http://www.environmentalevidence.org/wp-content/uploads/2014/06/Review-guidelines-
version-4.2-final.pdf 

Comfort, S. E., & Park, Y. E. (2018). On the Field of Environmental Communication: A 
Systematic Review of the Peer-Reviewed Literature. Environmental Communication, 
12(7), 862–875. https://doi.org/10.1080/17524032.2018.1514315 

Condotta, M., & Zatta, E. (2021). Reuse of building elements in the architectural practice and 
the European regulatory context: Inconsistencies and possible improvements. Journal of 
Cleaner Production, 318. https://doi.org/10.1016/j.jclepro.2021.128413 

Corucci, F., & Ruffaldi, E. (2015). Toward Autonomous Robots for Demolitions in 
Unstructured Environments. In Intelligent Autonomous Systems 13 (pp. 1515–1532). 
Springer International Publishing. https://doi.org/10.1007/978-3-319-08338-4_109 

Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: four 
recommendations for getting the most from your analysis. Research, and Evaluation 



 

   
 
176 

Practical Assessment, Research, and Evaluation, 10, 7. https://doi.org/10.7275/jyj1-
4868 

Cottafava, D., & Ritzen, M. (2021a). Circularity indicator for residential buildings: 
Addressing the gap between embodied impacts and design aspects. Resources, 
Conservation and Recycling, 164, 105120. 
https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105120 

Cottafava, D., & Ritzen, M. (2021b). Circularity indicator for residential buildings: 
Addressing the gap between embodied impacts and design aspects. Resources, 
Conservation and Recycling, 164, 105120. 
https://doi.org/10.1016/j.resconrec.2020.105120 

Cottafava, D., & Ritzen, M. (2021c). Circularity indicator for residentials buildings: 
Addressing the gap between embodied impacts and design aspects. Resources, 
Conservation and Recycling, 164. https://doi.org/10.1016/j.resconrec.2020.105120 

Couto, J., & Couto, A. (2010a). Analysis of barriers and the potential for exploration of 
deconstruction techniques in Portuguese construction sites. Sustainability, 2(2), 428–
442. 

Couto, J., & Couto, A. (2010b). Analysis of barriers and the potential for exploration of 
deconstruction techniques in Portuguese construction sites. Sustainability, 2(2), 428–
442. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84866498547&doi=10.3390%2Fsu2020428&partnerID=40&md5=af05070cf9ae4f25e8
4ee526b3e84f10 

Couto, J. P., & Couto, A. M. (2007). Reasons to consider the deconstruction process as an 
important practice to sustainable construction. Portugal SB 2007 - Sustainable 
Construction, Materials and Practices: Challenge of the Industry for the New 
Millennium, 76–81. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84898913416&partnerID=40&md5=7e91162685db266cd31ba63ae3a6db9f 

Craig, I. D., Ferguson, L., & Finch, A. T. (2014). 11 - Journals ranking and impact factors: 
how the performance of journals is measured. In B. Cope & A. Phillips (Eds.), The 
Future of the Academic Journal (Second Edition) (pp. 259–298). Chandos Publishing. 
https://doi.org/https://doi.org/10.1533/9781780634647.259 

Croce, V., Caroti, G., De Luca, L., Jacquot, K., Piemonte, A., & Véron, P. (2021). From the 
Semantic Point Cloud to Heritage-Building Information Modeling: A Semiautomatic 
Approach Exploiting Machine Learning. Remote Sensing, 13(3). 
https://doi.org/10.3390/rs13030461 

Crowther, P. (2000). Developing guidelines for designing for deconstruction. 
Deconstruction-Closing the Loop Conference Proceedings. 

Crowther, P. (2005a). Design for Disassembly - Themes and Principles. Environment Design 
Guide, 2, 1–7. https://eprints.qut.edu.au/2888/ 

Crowther, P. (2005b). Design for Disassembly - Themes and Principles. Environment Design 
Guide, 2, 1–7. 

Crowther, P. (2009). Designing for disassembly. In P. Newton, K. Hampson, & R. 
Drogemuller (Eds.), Technology, Design and Process Innovation in the Built 
Environment (pp. 224–237). Taylor \& Francis. https://eprints.qut.edu.au/19383/ 

Cruz Rios, F., Grau, D., & Bilec, M. (2021). Barriers and Enablers to Circular Building 
Design in the US: An Empirical Study. Journal of Construction Engineering and 
Management, 147(10). https://doi.org/10.1061/(ASCE)CO.1943-7862.0002109 

Cruz-Ramirez, S. R., Ishizuka, Y., Mae, Y., Takubo, T., & Arai, T. (2008, August). 
Dismantling interior facilities in buildings by human robot collaboration. 2008 IEEE 
International Conference on Robotics and Automation. 
https://doi.org/10.1109/robot.2008.4543602 



 

   
 
177 

Cruz-Ramírez, S. R., Mae, Y., Arai, T., Takubo, T., & Ohara, K. (2010). Vision-Based 
Hierarchical Recognition for Dismantling Robot Applied to Interior Renewal of 
Buildings. Computer-Aided Civil and Infrastructure Engineering, 26(5), 336–355. 
https://doi.org/10.1111/j.1467-8667.2010.00689.x 

Da Rocha, C. G., & Sattler, M. A. (2009). A discussion on the reuse of building components 
in Brazil: An analysis of major social, economical and legal factors. Resources, 
Conservation and Recycling, 54(2), 104–112. 
https://doi.org/10.1016/j.resconrec.2009.07.004 

da Rocha, C. G., & Sattler, M. A. (2009). A discussion on the reuse of building components 
in Brazil: An analysis of major social, economical and legal factors. Resources, 
Conservation and Recycling, 54(2), 104–112. 
https://doi.org/10.1016/j.resconrec.2009.07.004 

Dams, B., Maskell, D., Shea, A., Allen, S., Driesser, M., Kretschmann, T., Walker, P., & 
Emmitt, S. (2021). A circular construction evaluation framework to promote designing 
for disassembly and adaptability. Journal of Cleaner Production, 316, 128122. 
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.128122 

Dantata, N., Touran, A., & Wang, J. (2005a). An analysis of cost and duration for 
deconstruction and demolition of residential buildings in Massachusetts. Resources, 
Conservation and Recycling, 44(1), 1–15. 

Dantata, N., Touran, A., & Wang, J. (2005b). An analysis of cost and duration for 
deconstruction and demolition of residential buildings in Massachusetts. Resources, 
Conservation and Recycling, 44(1), 1–15. 
https://doi.org/https://doi.org/10.1016/j.resconrec.2004.09.001 

Dao, D. Van, Ly, H.-B., Trinh, S. H., Le, T.-T., & Pham, B. T. (2019). Artificial intelligence 
approaches for prediction of compressive strength of geopolymer concrete. Materials, 
12(6), 983. 

Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R., & Ameyaw, E. E. 
(2020). Artificial intelligence in the AEC industry: Scientometric analysis and 
visualization of research activities. Automation in Construction, 112, 103081. 
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103081 

DEFRA. (2020). UK Statistics on Waste (Issue March). 
https://www.gov.uk/government/statistics/uk-waste-data/uk-statistics-on-waste 

Del Río Merino, M., Gracia, P. I., & Azevedo, I. S. W. (2010). Sustainable construction: 
Construction and demolition waste reconsidered. Waste Management and Research, 
28(2), 118–129. https://doi.org/10.1177/0734242X09103841 

Densley Tingley, D., Cooper, S., & Cullen, J. (2017). Understanding and overcoming the 
barriers to structural steel reuse, a UK perspective. Journal of Cleaner Production, 
148(2017), 642–652. https://doi.org/10.1016/j.jclepro.2017.02.006 

Densley Tingley, D., & Davison, B. (2012a). Developing an LCA methodology to account 
for the environmental benefits of design for deconstruction. Building and Environment, 
57, 387–395. https://doi.org/10.1016/j.buildenv.2012.06.005 

Densley Tingley, D., & Davison, B. (2012b). Developing an LCA methodology to account 
for the environmental benefits of design for deconstruction. Building and Environment, 
57, 387–395. https://doi.org/10.1016/j.buildenv.2012.06.005 

DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage 
publications. 

Ding, H., & Li, D. (2015). Identification of mitochondrial proteins of malaria parasite using 
analysis of variance. Amino Acids, 47, 329–333. 

Ding, Y. (2022). New Technological Measures of Sustainable Buildings in Triple Bottom-
Line Analysis. Mathematical Problems in Engineering, 2022. 
https://doi.org/10.1155/2022/7750056 



 

   
 
178 

Ding, Z., Cao, X., Wang, Y., Wu, H., Zuo, J., & Zillante, G. (2022). Cost-benefit analysis of 
demolition waste management via agent-based modelling: A case study in Shenzhen. 
Waste Management, 137, 169–178. https://doi.org/10.1016/j.wasman.2021.10.036 

Dion, P. A. (2008). Interpreting Structural Equation Modeling Results: A Reply to Martin 
and Cullen. Journal of Business Ethics, 83(3), 365–368. https://doi.org/10.1007/s10551-
007-9634-7 

Diyamandoglu, V., & Fortuna, L. M. (2015). Deconstruction of wood-framed houses: 
Material recovery and environmental impact. Resources, Conservation and Recycling, 
100, 21–30. https://doi.org/10.1016/j.resconrec.2015.04.006 

Doukari, O., & Greenwood, D. (2020). Automatic generation of building information models 
from digitized plans. Automation in Construction, 113, 103129. 

Du, J., Chen, H., & Zhang, W. (2018). A deep learning method for data recovery in sensor 
networks using effective spatio-temporal correlation data. Sensor Review. 

Duan, J., Asteris, P. G., Nguyen, H., Bui, X.-N., & Moayedi, H. (2021). A novel artificial 
intelligence technique to predict compressive strength of recycled aggregate concrete 
using ICA-XGBoost model. Engineering with Computers, 37(4), 3329–3346. 

Egwim, C. N., Alaka, H., Demir, E., Balogun, H., & Ajayi, S. (2022). Systematic review of 
critical drivers for delay risk prediction: towards a conceptual framework for BIM-based 
construction projects. Frontiers in Engineering and Built Environment, ahead-of-
print(ahead-of-print). https://doi.org/10.1108/FEBE-05-2022-0017 

Egwim, C. N., Alaka, H., Toriola-Coker, L. O., Balogun, H., Ajayi, S., & Oseghale, R. 
(2021a). Extraction of underlying factors causing construction projects delay in Nigeria. 
Journal of Engineering, Design and Technology, ahead-of-print(ahead-of-print). 
https://doi.org/10.1108/JEDT-04-2021-0211 

Egwim, C. N., Alaka, H., Toriola-Coker, L. O., Balogun, H., Ajayi, S., & Oseghale, R. 
(2021b). Extraction of underlying factors causing construction projects delay in Nigeria. 
Journal of Engineering, Design and Technology. https://doi.org/10.1108/JEDT-04-
2021-0211 

Egwim, C. N., Alaka, H., Toriola-Coker, L. O., Balogun, H., & Sunmola, F. (2021). Applied 
artificial intelligence for predicting construction projects delay. Machine Learning with 
Applications, 6, 100166. 

Egwim, C. N., Egunjobi, O. O., Gomes, A., & Alaka, H. (2021). A Comparative Study on 
Machine Learning Algorithms for Assessing Energy Efficiency of Buildings. In M. 
Kamp, I. Koprinska, A. Bibal, T. Bouadi, B. Frénay, L. Galárraga, J. Oramas, L. 
Adilova, Y. Krishnamurthy, B. Kang, C. Largeron, J. Lijffijt, T. Viard, P. Welke, M. 
Ruocco, E. Aune, C. Gallicchio, G. Schiele, F. Pernkopf, … G. Graça (Eds.), Machine 
Learning and Principles and Practice of Knowledge Discovery in Databases (pp. 546–
566). Springer International Publishing. 

Ekanayake, B. (2022). A deep learning-based building defects detection tool for 
sustainability monitoring. 10th World Construction Symposium, 2022. 

Ekanayake, B., Ahmadian Fard Fini, A., Wong, J. K. W., & Smith, P. (2022). A deep 
learning-based approach to facilitate the as-built state recognition of indoor construction 
works. Construction Innovation. https://doi.org/10.1108/ci-05-2022-0121 

El Aboudi, N., & Benhlima, L. (2016). Review on wrapper feature selection approaches. 
2016 International Conference on Engineering & MIS (ICEMIS), 1–5. 

Elkington, J. (1998). Partnerships from cannibals with forks: The triple bottom line of 21st‐
century business. Environmental Quality Management, 8(1), 37–51. 

England, H. (2008). Conservation Principles, Policies and Guidance for the Sustainable 
Management of the Historic Environment (p. 72). English Heritage. 

England, H. (2015). Conservation Principles, Policies and Guidance-For the Sustainable 
Management of the Historic Environment.[Pdf] Historic England. 



 

   
 
179 

Feng, D.-C., Liu, Z.-T., Wang, X.-D., Jiang, Z.-M., & Liang, S.-X. (2020). Failure mode 
classification and bearing capacity prediction for reinforced concrete columns based on 
ensemble machine learning algorithm. Advanced Engineering Informatics, 45, 101126. 

Fenves, S. J., & Ibarra-Anaya, E. (1989). A knowledge-based system for evaluating the 
seismic resistance of existing buildings. Computer Utilization in Structural Engineering, 
428–437. 

Fountas, P., & Kolomvatsos, K. (2020). Ensemble based Data Imputation at the Edge. 2020 
IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 961–
968. https://doi.org/10.1109/ICTAI50040.2020.00150 

Freeman, R. E. (1999). Divergent stakeholder theory. Academy of Management Review, 
24(2), 233–236. 

Freeman, R. E. (2010). Strategic management: A stakeholder approach. Cambridge 
university press. 

Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics 
and Computing, 21, 137–146. 

Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular 
Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–
768. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.12.048 

Gnat, S. (2021). Impact of Categorical Variables Encoding on Property Mass Valuation. 
Procedia Computer Science, 192, 3542–3550. 
https://doi.org/https://doi.org/10.1016/j.procs.2021.09.127 

Goh, C. S., Chong, H.-Y., Jack, L., & Mohd Faris, A. F. (2020). Revisiting triple bottom line 
within the context of sustainable construction: A systematic review. Journal of Cleaner 
Production, 252, 119884. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119884 

Gorgolewski, M. (2006). The implications of reuse and recycling for the design of steel 
buildings (1). Canadian Journal of Civil Engineering, 33, 489+. 

Gorgolewski, M., Straka, V., Edmonds, J., & Sergio, C. (2006). Facilitating greater reuse and 
recycling of structural steel in the construction and demolition process. Ryerson 
University. Can. Inst. Steel Construct. 

Govindan, K., Zhuang, Y., & Chen, G. (2022). Analysis of factors influencing residents’ 
waste sorting behavior: A case study of Shanghai. Journal of Cleaner Production, 349, 
131126. 

Greer, D. (2004). Building the Deconstruction Industry. Biocycle, 36–42. 
Guan, H., Zhang, Y., Xian, M., Cheng, H.-D., & Tang, X. (2021). SMOTE-WENN: Solving 

class imbalance and small sample problems by oversampling and distance scaling. 
Applied Intelligence, 51, 1394–1409. 

Guy, B. (2001). Building deconstruction assessment tool. CIB Deconstruction and Materials 
Reuse: Technology, Economic, and Policy, 125–137. 

Guy, B. (2004). Deconstruction Certification Standard, DECON 04 . Deconstruction and 
Building Materials Reuse Conference Proceedings . 

Guy, B. (2006a). The optimisation of building deconstruction for Department of Defense 
facilities: Ft. McClellan Deconstruction Project. International Journal of Environmental 
Technology and Management, 6(3–4), 386–404. 
https://doi.org/10.1504/ijetm.2006.009003 

Guy, B. (2006b). The optimization of building deconstruction for department of defense 
facilities: FT. Mcclellan deconstruction project. Journal of Green Building, 1(1), 102–
122. https://doi.org/10.3992/jgb.1.1.102 

Guy, B. (2006c). The optimization of building deconstruction for department of defense 
facilities: FT. Mcclellan deconstruction project. Journal of Green Building, 1(1), 102–
122. https://www.scopus.com/inward/record.uri?eid=2-s2.0-



 

   
 
180 

70749159031&doi=10.3992%2Fjgb.1.1.102&partnerID=40&md5=d8f2624d4834ab145
d5f80578dedcad8 

Guy, B. (2006d). The optimization of building deconstruction for department of defense 
facilities: FT. Mcclellan deconstruction project. Journal of Green Building, 1(1), 102–
122. https://doi.org/10.3992/jgb.1.1.102 

Guy, B. (2006e). The optimization of building deconstruction for department of defense 
facilities: FT. Mcclellan Deconstruction Project. Journal of Green Building, 1(1), 102–
122. 

Guy, B., & Ciarimboli, N. (2008a). DfD: design for disassembly in the built environment: a 
guide to closed-loop design and building. Hamer Center. 

Guy, B., & Ciarimboli, N. (2008b). DfD: design for disassembly in the built environment: a 
guide to closed-loop design and building. Hamer Center. 

Guy, B., & Mclendon, S. (2003). Building Deconstruction : Reuse and Recycling of Building 
Materials. Guy, B., & Mclendon, S. (2003). Building Deconstruction : Reuse and 
Recycling of Building Materials, (352), 1–25. Retrieved from 
Http://Www.Dep.State.Fl.Us/Waste/Quick_topics/Publications/Shw/Recycling/IGyear2/
Reports/Alachua2.Pdf, 352, 1–25. 

Guy, B., & Ohlsen, M. (2003a). Creating Business Opportunities Through the Use of a 
Deconstruction Feasibility Tool. Proceedings of the 11 Th Rinker International 
Conference, CIB, Deconstruction and Materials Reuse, CIB Publication, 287(6), 7–10. 

Guy, B., & Ohlsen, M. (2003b). Creating Business Opportunities Through the Use of a 
Deconstruction Feasibility Tool. Proceedings of the 11 Th Rinker International 
Conference, CIB, Deconstruction and Materials Reuse, CIB Publication, 287(6), 7–10. 

Haifeng, L., & Baoming, P. (2021a). An Evaluation Model of Demolished Houses based on 
Improved Deep Learning. 2021 7th International Conference on Computer and 
Communications (ICCC), 1249–1255. 
https://doi.org/10.1109/ICCC54389.2021.9674495 

Haifeng, L., & Baoming, P. (2021b, December). An Evaluation Model of Demolished 
Houses based on Improved Deep Learning. 2021 7th International Conference on 
Computer and Communications (ICCC). 
https://doi.org/10.1109/iccc54389.2021.9674495 

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis: 
Pearson new international edition. Essex: Pearson Education Limited, 1(2). 

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). An 
Introduction to Structural Equation Modeling. In J. F. Hair Jr., G. T. M. Hult, C. M. 
Ringle, M. Sarstedt, N. P. Danks, & S. Ray (Eds.), Partial Least Squares Structural 
Equation Modeling (PLS-SEM) Using R: A Workbook (pp. 1–29). Springer International 
Publishing. https://doi.org/10.1007/978-3-030-80519-7_1 

Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The use of partial least 
squares structural equation modeling in strategic management research: a review of past 
practices and recommendations for future applications. Long Range Planning, 45(5–6), 
320–340. 

Hamon, R., Junklewitz, H., Malgieri, G., Hert, P. De, Beslay, L., & Sanchez, I. (2021). 
Impossible Explanations? Beyond explainable AI in the GDPR from a COVID-19 use 
case scenario. Proceedings of the 2021 ACM Conference on Fairness, Accountability, 
and Transparency, 549–559. https://doi.org/10.1145/3442188.3445917 

Hamon, R., Junklewitz, H., Sanchez, I., Malgieri, G., & Hert, P. De. (2022). Bridging the 
Gap Between AI and Explainability in the GDPR: Towards Trustworthiness-by-Design 
in Automated Decision-Making. IEEE Computational Intelligence Magazine, 17(1), 72–
85. https://doi.org/10.1109/MCI.2021.3129960 



 

   
 
181 

Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for neural 
networks. Journal of Big Data, 7(1), 28. https://doi.org/10.1186/s40537-020-00305-w 

Harberger, A. C., & Jenkins, G. P. (2002). Cost-Benefit Analysis,“International Library of 
Critical Writings in Economics No. 152. Glos: Edward Elgar Publishing. 

Harirchian, E., Lahmer, T., Kumari, V., & Jadhav, K. (2020). Application of support vector 
machine modeling for the rapid seismic hazard safety evaluation of existing buildings. 
Energies, 13(13), 3340. 

He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling 
approach for imbalanced learning. 2008 IEEE International Joint Conference on Neural 
Networks (IEEE World Congress on Computational Intelligence), 1322–1328. 

Higgins, J. P. T., & Green, S. (2008). Cochrane handbook for systematic reviews of 
interventions. 

Hradil, P., Fülöp, L., & Ungureanu, V. (2019a). Reusability of components from single-
storey steel-framed buildings. Steel Construction, 12(2), 91–97. 

Hradil, P., Fülöp, L., & Ungureanu, V. (2019b). Reusability of components from single-
storey steel-framed buildings. Steel Construction, 12(2), 91–97. 
https://doi.org/https://doi.org/10.1002/stco.201800032 

Hradil, P., Fülöp, L., & Ungureanu, V. (2019c). Reusability of components from single-
storey steel-framed buildings. Steel Construction, 12(2), 91–97. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85064147719&doi=10.1002%2Fstco.201800032&partnerID=40&md5=6c89e4d048b30
c6ed3a09e9ed37c6c1b 

Hu, X., Zhou, Y., Vanhullebusch, S., Mestdagh, R., Cui, Z., & Li, J. (2022). Smart building 
demolition and waste management frame with image-to-BIM. Journal of Building 
Engineering, 49, 104058. https://doi.org/https://doi.org/10.1016/j.jobe.2022.104058 

Huan, Liu., Lei, Yu. (2005). Towards integrating feature selection algorithms for 
classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 
17(4). 

Hübner, F., & Schultmann, F. (2015). Robust multi-mode resource constrained project 
scheduling of building deconstruction under uncertainty. MISTA, 638–644. 
https://www.researchgate.net/publication/281118491 

Hübner, F., Volk, R., Kühlen, A., & Schultmann, F. (2017). Review of project planning 
methods for deconstruction projects of buildings. Built Environment Project and Asset 
Management, 7(2), 212–226. https://doi.org/10.1108/BEPAM-11-2016-0075 

Hudak, A. T., Crookston, N. L., Evans, J. S., Hall, D. E., & Falkowski, M. J. (2008). Nearest 
neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR 
data. Remote Sensing of Environment, 112(5), 2232–2245. 
https://doi.org/10.1016/j.rse.2007.10.009 

Huuhka, S. (2014). Assessing the potential for re-use. In Re-use of structural elements 
Environmentally efficient recovery of building components. http://www.vtt.fi 

Huuhka, S., & Hakanen, J. H. (2015). Potential and barriers for reusing load-bearing building 
components in Finland. International Journal for Housing Science and Its Applications, 
39(4), 215–224. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84978859582&partnerID=40&md5=0fd8122bf0cbe67cb1ce41b3207be698 

Huuhka, S., Kaasalainen, T., Hakanen, J. H., & Lahdensivu, J. (2015). Reusing concrete 
panels from buildings for building: Potential in Finnish 1970s mass housing. Resources, 
Conservation and Recycling, 101, 105–121. 

Hwang, S.-H., Mangalathu, S., Shin, J., & Jeon, J.-S. (2021). Machine learning-based 
approaches for seismic demand and collapse of ductile reinforced concrete building 
frames. Journal of Building Engineering, 34, 101905. 
https://doi.org/10.1016/j.jobe.2020.101905 



 

   
 
182 

Ibrahim, H., SalahEldin Elsayed, M., Seddik Moustafa, W., & Mohamed Abdou, H. (2023). 
Functional analysis as a method on sustainable building design: A case study in 
educational buildings implementing the triple bottom line. Alexandria Engineering 
Journal, 62, 63–73. https://doi.org/https://doi.org/10.1016/j.aej.2022.07.019 

Inoue, F., Honjo, A., Makino, T., & Kwon, S. (2018). Inspection Robot System Using Duct 
Fan and Deterioration Estimation of Building Wall that Can Be Applied Even in 
Disaster. 2018 18th International Conference on Control, Automation and Systems 
(ICCAS), 331–334. 

ISO 20887. (2020). Sustainability in buildings and civil engineering works -Design for 
disassembly and adaptability - Principles, requirements, and guidance. . 

Istrate, I.-R., Iribarren, D., Gálvez-Martos, J.-L., & Dufour, J. (2020). Review of life-cycle 
environmental consequences of waste-to-energy solutions on the municipal solid waste 
management system. Resources, Conservation and Recycling, 157, 104778. 

Jerez, J. M., Molina, I., García-Laencina, P. J., Alba, E., Ribelles, N., Martín, M., & Franco, 
L. (2010). Missing data imputation using statistical and machine learning methods in a 
real breast cancer problem. Artificial Intelligence in Medicine, 50(2), 105–115. 

Jović, A., Brkić, K., & Bogunović, N. (2015). A review of feature selection methods with 
applications. 2015 38th International Convention on Information and Communication 
Technology, Electronics and Microelectronics, MIPRO 2015 - Proceedings, 1200–1205. 
https://doi.org/10.1109/MIPRO.2015.7160458 

Jung, Y. (2018). Multiple predicting K-fold cross-validation for model selection. Journal of 
Nonparametric Statistics, 30(1), 197–215. 

Kanters, J. (2018). Design for deconstruction in the design process: State of the art. 
Buildings, 8(11). 

Kaplan, G., Comert, R., Kaplan, O., Matci, D. K., & Avdan, U. (2022). Using Machine 
Learning to Extract Building Inventory Information Based on LiDAR Data. ISPRS 
International Journal of Geo-Information, 11(10), 517. 

Keerin, P., Kurutach, W., & Boongoen, T. (2012). Cluster-based KNN missing value 
imputation for DNA microarray data. 2012 IEEE International Conference on Systems, 
Man, and Cybernetics (SMC), 445–450. https://doi.org/10.1109/ICSMC.2012.6377764 

Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in 
construction: A systematic literature review. Automation in Construction, 129, 103760. 
https://doi.org/https://doi.org/10.1016/j.autcon.2021.103760 

Khandve, P. (2014). Demolition of Buildings:An Overview. International Journal of 
Advance Engineering and Research Development, 1(06). 
https://doi.org/10.21090/ijaerd.010643 

Kibert, C. (2003a). Deconstruction: The start of a sustainable materials strategy for the built 
environment. Industry and Environment, 26, 84–88. 

Kibert, C. (2003b). Deconstruction: The start of a sustainable materials strategy for the built 
environment. Industry and Environment, 26, 84–88. 

Kibert, C. J. (2000a). Implementing Deconstruction in Florida: Materials Reuse Issues, 
Disassembly Techniques, Economics and Policy. 

Kibert, C. J. (2000b). Implementing Deconstruction in Florida: Materials Reuse Issues, 
Disassembly Techniques, Economics and Policy. 

Kibert, C. J., Chini, A. R., & Jennifer, L. (2001). Deconstruction As an Essential Component 
of Sustainable Construction. CIB World Building Congress, April, 1–11. 
https://www.irbnet.de/daten/iconda/CIB3122.pdf 

Kibert, C. J., & Languell, J. L. (2000). Implementing deconstruction in Florida: Materials 
reuse issues, disassembly techniques, economics and policy. In Florida Center for Solid 
and Hazardouse Waste. 



 

   
 
183 

Kim, S., & Kim, S.-A. (2022). A design support tool based on building information modeling 
for design for deconstruction: A graph-based deconstructability assessment approach. 
Journal of Cleaner Production, null, null. https://doi.org/10.1016/j.jclepro.2022.135343 

Knoth, K., Fufa, S. M., & Seilskjær, E. (2022). Barriers, success factors, and perspectives for 
the reuse of construction products in Norway. Journal of Cleaner Production, 337. 
https://doi.org/10.1016/j.jclepro.2022.130494 

Koc, K., & Okudan, O. (2021). Assessment of Life Cycle Risks of Deconstruction in Urban 
Regeneration Projects. Journal of Construction Engineering and Management, 147(10). 
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002161 

Kozminska, U. (2019). Circular design: reused materials and the future reuse of building 
elements in architecture. Process, challenges and case studies. IOP Conference Series: 
Earth and Environmental Science, 225(1), 012033. https://doi.org/10.1088/1755-
1315/225/1/012033 

Krajnc, D., & Glavič, P. (2005). A model for integrated assessment of sustainable 
development. Resources, Conservation and Recycling, 43(2), 189–208. 

Ku, Y., Yang, J., Fang, H., Xiao, W., & Zhuang, J. (2021). Deep learning of grasping 
detection for a robot used in sorting construction and demolition waste. Journal of 
Material Cycles and Waste Management, 23(1), 84–95. 

Kugley, S., Wade, A., Thomas, J., Mahood, Q., Jørgensen, A. K., Hammerstrøm, K., & 
Sathe, N. (2017). Searching for studies: a guide to information retrieval for Campbell 
systematic reviews. Campbell Systematic Reviews, 13(1), 1–73. 
https://doi.org/10.4073/cmg.2016.1 

Kulkarni, A. J., Krishnasamy, G., & Abraham, A. (2017). Introduction to Optimization BT  - 
Cohort Intelligence: A Socio-inspired Optimization Method (A. J. Kulkarni, G. 
Krishnasamy, & A. Abraham, Eds.; pp. 1–7). Springer International Publishing. 
https://doi.org/10.1007/978-3-319-44254-9_1 

Lachat, A., Mantalovas, K., Desbois, T., Yazoghli-Marzouk, O., Colas, A.-S., Di Mino, G., & 
Feraille, A. (2021). From buildings’ end of life to aggregate recycling under a circular 
economic perspective: A comparative life cycle assessment case study. Sustainability 
(Switzerland), 13(17). https://doi.org/10.3390/su13179625 

Laefer, D. F., & Manke, J. P. (2008). Building reuse assessment for sustainable urban 
reconstruction. Journal of Construction Engineering and Management, 134(3), 217–
227. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:3(217) 

Lee, S., Pan, W., Linner, T., & Bock, T. (2015). A framework for robot assisted 
deconstruction: process, sub-systems and modelling. 32nd ISARC: Proceedings of the 
International Symposium on Automation and Robotics in Construction. 

Leea, H. J., Heuera, C., & Brell-Cokcana, S. (2022). Concept of a Robot Assisted On-Site 
Deconstruction Approach for Reusing Concrete Walls. 39th International Symposium on 
Automation and Robotics in Construction (ISARC), 422–429. 

Leigh, N. G., & Patterson, L. M. (2006a). Deconstructing to redevelop: A sustainable 
alternative to mechanical demolition. Journal of the American Planning Association, 
72(2), 217–225. https://doi.org/10.1080/01944360608976740 

Leigh, N. G., & Patterson, L. M. (2006b). Deconstructing to redevelop: A sustainable 
alternative to mechanical demolition. Journal of the American Planning Association, 
72(2), 217–225. https://doi.org/10.1080/01944360608976740 

Leigh, N. G., & Patterson, L. M. (2006c). Deconstructing to redevelop: A sustainable 
alternative to mechanical demolition. Journal of the American Planning Association, 
72(2), 217–225. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
33745393101&doi=10.1080%2F01944360608976740&partnerID=40&md5=92548c28c
c2f06aaa4ad3489f9e2417f 



 

   
 
184 

Liu, C., Pun, S., & Itoh, Y. (2004). Information technology applications for planning in 
deconstruction. 

Liu, H., & Setiono, R. (1995). Discretization of ordinal attributes and feature selection. 
Liu, H., Zhou, M., & Liu, Q. (2019). An embedded feature selection method for imbalanced 

data classification. IEEE/CAA Journal of Automatica Sinica, 6(3), 703–715. 
Liu, J., Yi, Y., & Wang, X. (2020). Exploring factors influencing construction waste 

reduction: A structural equation modeling approach. Journal of Cleaner Production, 
276, 123185. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123185 

Liu, L., Yan, R.-J., Maruvanchery, V., Kayacan, E., Chen, I.-M., & Tiong, L. K. (2017a). 
Transfer learning on convolutional activation feature as applied to a building quality 
assessment robot. International Journal of Advanced Robotic Systems, 14(3), 
172988141771262. https://doi.org/10.1177/1729881417712620 

Liu, L., Yan, R.-J., Maruvanchery, V., Kayacan, E., Chen, I.-M., & Tiong, L. K. (2017b). 
Transfer learning on convolutional activation feature as applied to a building quality 
assessment robot. International Journal of Advanced Robotic Systems, 14(3), 
1729881417712620. 

Lloret, S., Ferreres, A., Hernández, A., & Tomás, I. (2017). The exploratory factor analysis 
of items: guided analysis based on empirical data and software. Anales de Psicología, 
33(2), 417–432. 

Low, J. K., Wallis, S. L., Hernandez, G., Cerqueira, I. S., Steinhorn, G., & Berry, T.-A. 
(2020). Encouraging circular waste economies for the New Zealand construction 
industry: Opportunities and barriers. Frontiers in Sustainable Cities, 2, 35. 

Lublasser, E., Hildebrand, L., Vollpracht, A., & Brell-Cokcan, S. (2017a). Robot assisted 
deconstruction of multi-layered façade constructions on the example of external thermal 
insulation composite systems. Construction Robotics, 1(1), 39–47. 
https://doi.org/10.1007/s41693-017-0001-7 

Lublasser, E., Hildebrand, L., Vollpracht, A., & Brell-Cokcan, S. (2017b). Robot assisted 
deconstruction of multi-layered façade constructions on the example of external thermal 
insulation composite systems. Construction Robotics, 1(1–4), 39–47. 
https://doi.org/10.1007/s41693-017-0001-7 

Lublasser, E., Iturralde, K., Linner, T., Brell Cokcan, S., & Bock, T. (2016). Automated 
refurbishment & end-of-life processes research approaches in German and Japanese 
construction. Proceedings of the CIB* IAARC W119 CIC 2016 Workshop. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., 
Himmelfarb, J., Bansal, N., & Lee, S.-I. (2019). Explainable AI for trees: From local 
explanations to global understanding. ArXiv Preprint ArXiv:1905.04610. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., 
Himmelfarb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global 
understanding with explainable AI for trees. Nature Machine Intelligence, 2(1), 56–67. 

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. 
Advances in Neural Information Processing Systems, 30. 

Machado, R. C., de Souza, H. A., & Veríssimo, G. de S. (2018a). Analysis of guidelines and 
identification of characteristics influencing the deconstruction potential of buildings. 
Sustainability (Switzerland), 10(8), 1–20. https://doi.org/10.3390/su10082604 

Machado, R. C., de Souza, H. A., & Veríssimo, G. S. (2018b). Analysis of guidelines and 
identification of characteristics influencing the deconstruction potential of buildings. 
Sustainability (Switzerland), 10(8). 

Machado, R. C., de Souza, H. A., & Veríssimo, G. S. (2018c). Analysis of guidelines and 
identification of characteristics influencing the deconstruction potential of buildings. 
Sustainability (Switzerland), 10(8). https://www.scopus.com/inward/record.uri?eid=2-
s2.0-



 

   
 
185 

85050377898&doi=10.3390%2Fsu10082604&partnerID=40&md5=40dc17e1bdd7bb42
5c6c510a51218af8 

Mangalathu, S., & Jeon, J.-S. (2018). Classification of failure mode and prediction of shear 
strength for reinforced concrete beam-column joints using machine learning techniques. 
Engineering Structures, 160, 85–94. 

Mardani, A., Kannan, D., Hooker, R. E., Ozkul, S., Alrasheedi, M., & Tirkolaee, E. B. 
(2020). Evaluation of green and sustainable supply chain management using structural 
equation modelling: A systematic review of the state of the art literature and 
recommendations for future research. Journal of Cleaner Production, 249, 119383. 

Marzouk, M., Elmaraghy, A., & Voordijk, H. (2019). Lean deconstruction approach for 
buildings demolition processes using BIM. Lean Construction Journal, 2019, 147–173. 

McCarthy, J. (2007). What is artificial intelligence. Available from . 
Melella, R., Di Ruocco, G., & Sorvillo, A. (2021). Circular construction process: Method for 

developing a selective, low co2eq disassembly and demolition plan. Sustainability 
(Switzerland), 13(16). https://doi.org/10.3390/su13168815 

Meng, K., Xu, G., Peng, X., Youcef-Toumi, K., & Li, J. (2022). Intelligent disassembly of 
electric-vehicle batteries: a forward-looking overview. Resources, Conservation and 
Recycling, 182, 106207. 

Mingers, J., Macri, F., & Petrovici, D. (2012). Using the h-index to measure the quality of 
journals in the field of business and management. Information Processing & 
Management, 48(2), 234–241. https://doi.org/https://doi.org/10.1016/j.ipm.2011.03.009 

Mohammed, M., Shafiq, N., Elmansoury, A., Al-Mekhlafi, A.-B. A., Rached, E. F., Zawawi, 
N. A., Haruna, A., Rafindadi, A. D., & Ibrahim, M. B. (2021). Modeling of 3R (reduce, 
reuse and recycle) for sustainable construction waste reduction: A partial least squares 
structural equation modeling (PLS-SEM). Sustainability, 13(19), 10660. 

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for 
systematic reviews and meta-analyses: The PRISMA statement. International Journal of 
Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007 

Morfidis, K., & Kostinakis, K. (2018). Approaches to the rapid seismic damage prediction of 
r/c buildings using artificial neural networks. Engineering Structures, 165, 120–141. 

Mousavi, M., TohidiFar, A., & Alvanchi, A. (2022). BIM and machine learning in seismic 
damage prediction for non-structural exterior infill walls. Automation in Construction, 
139, 104288. https://doi.org/https://doi.org/10.1016/j.autcon.2022.104288 

Muralikrishna, I. V, & Manickam, V. (2017). Chapter Five - Life Cycle Assessment. In I. V 
Muralikrishna & V. Manickam (Eds.), Environmental Management (pp. 57–75). 
Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-811989-
1.00005-1 

Mustaqeem, A., Anwar, S. M., Majid, M., & Khan, A. R. (2017). Wrapper method for feature 
selection to classify cardiac arrhythmia. 2017 39th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society (EMBC), 3656–3659. 

Na, S., Heo, S., Han, S., Shin, Y., & Lee, M. (2022). Development of an Artificial 
Intelligence Model to Recognise Construction Waste by Applying Image Data 
Augmentation and Transfer Learning. Buildings, 12(2). 
https://doi.org/10.3390/buildings12020175 

NAHB Research Center. (2000). A guide to deconstruction. 
NAHB Research Centre. (2000a). A Guide to Deconstruction. 
NAHB Research Centre. (2000b). A Guide to Deconstruction. 
NAHB Research Centre. (2001a). A report on the Feasibility of Deconstruction: An 

investigation of deconstruction activity in 4 cities. 
NAHB Research Centre. (2001b). A report on the Feasibility of Deconstruction: An 

investigation of deconstruction activity in 4 cities. 1–138. 



 

   
 
186 

Nakajima, S. (2014). Barriers for deconstruction and reuse/recycling of construction 
materials in Japan. Barriers for Deconstruction and Reuse/Recycling of Construction 
Materials, 53. 

Nakajima, S., & Russel, M. (2014a). Barriers for Deconstruction and Reuse / Recycling of 
Construction Materials. CIB Pubilication 397 - Working Commission W115: 
Construction Materials Stewartship, 1–161. 

Nakajima, S., & Russel, M. (2014b). Barriers for Deconstruction and Reuse / Recycling of 
Construction Materials. CIB Pubilication 397 - Working Commission W115: 
Construction Materials Stewartship, 1–161. 

Nguyen, Q. H., Ly, H.-B., Ho, L. S., Al-Ansari, N., Le, H. Van, Tran, V. Q., Prakash, I., & 
Pham, B. T. (2021). Influence of Data Splitting on Performance of Machine Learning 
Models in Prediction of Shear Strength of Soil. Mathematical Problems in Engineering, 
2021(1), 4832864. https://doi.org/https://doi.org/10.1155/2021/4832864 

Nnamoko, N., & Korkontzelos, I. (2020). Efficient treatment of outliers and class imbalance 
for diabetes prediction. Artificial Intelligence in Medicine, 104, 101815. 
https://doi.org/https://doi.org/10.1016/j.artmed.2020.101815 

Normawati, D., & Ismi, D. P. (2019). K-fold cross validation for selection of cardiovascular 
disease diagnosis features by applying rule-based datamining. Signal and Image 
Processing Letters, 1(2), 62–72. 

Nti, I. K., Nyarko-Boateng, O., & Aning, J. (2021). Performance of machine learning 
algorithms with different K values in K-fold cross-validation. International Journal of 
Information Technology and Computer Science, 13(6), 61–71. 

Nunnally, J. C., & BERNSTEIN, I. R. (1994). Psychometric Theory. New York: MacGrow-
Hill Higher. INC. 

Obaid, H. S., Dheyab, S. A., & Sabry, S. S. (2019). The Impact of Data Pre-Processing 
Techniques and Dimensionality Reduction on the Accuracy of Machine Learning. 2019 
9th Annual Information Technology, Electromechanical Engineering and 
Microelectronics Conference (IEMECON), 279–283. 
https://doi.org/10.1109/IEMECONX.2019.8877011 

Obi, L., Awuzie, B., Obi, C., Omotayo, T., Oke, A., & Osobajo, O. (2021). BIM for 
Deconstruction: An Interpretive Structural Model of Factors Influencing 
Implementation. Buildings, 11, 227. https://doi.org/10.3390/BUILDINGS11060227 

Olavarrieta, S. (2022). Using single impact metrics to assess research in business and 
economics: why institutions should use multi-criteria systems for assessing research. 
Journal of Economics, Finance and Administrative Science, 27(53), 6–33. 
https://doi.org/10.1108/JEFAS-04-2021-0033 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Balogun, H., Wusu, G., Yusuf, W., & Adegoke, M. 
(2023). Building energy performance prediction: A reliability analysis and evaluation of 
feature selection methods. Expert Systems with Applications, 225, 120109. 
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120109 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022a). Building energy 
consumption prediction for residential buildings using deep learning and other machine 
learning techniques. Journal of Building Engineering, 45, 103406. 

Olu-Ajayi, R., Alaka, H., Sulaimon, I., Sunmola, F., & Ajayi, S. (2022b). Machine learning 
for energy performance prediction at the design stage of buildings. Energy for 
Sustainable Development, 66, 12–25. 

Oluleye, B. I., Chan, D. W. M., & Antwi-Afari, P. (2023). Adopting Artificial Intelligence 
for enhancing the implementation of systemic circularity in the construction industry: A 
critical review. Sustainable Production and Consumption, 35, 509–524. 
https://doi.org/https://doi.org/10.1016/j.spc.2022.12.002 



 

   
 
187 

Paduart, A., Debacker, W., Henrotay, C., Asnong, K., De Wilde, W. P., & Hendrickx, H. 
(2008a). Technical detailing principles for the design of adaptable and reusable 
construction elements in temporary dwellings. WIT Transactions on Ecology and the 
Environment, 109, 425–433. 

Paduart, A., Debacker, W., Henrotay, C., Asnong, K., De Wilde, W. P., & Hendrickx, H. 
(2008b). Technical detailing principles for the design of adaptable and reusable 
construction elements in temporary dwellings. WIT Transactions on Ecology and the 
Environment, 109, 425–433. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
58849105489&doi=10.2495%2FWM080441&partnerID=40&md5=3adf0e48df90f444a
8dd53f280ad8d18 

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., 
Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., 
Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., 
McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: 
updated guidance and exemplars for reporting systematic reviews. BMJ, 372. 
https://doi.org/10.1136/bmj.n160 

Pan, Y., & Zhang, L. (2021). Roles of artificial intelligence in construction engineering and 
management: A critical review and future trends. Automation in Construction, 122, 
103517. https://doi.org/https://doi.org/10.1016/j.autcon.2020.103517 

Pantini, S., & Rigamonti, L. (2020). Is selective demolition always a sustainable choice? 
Waste Management, 103, 169–176. https://doi.org/10.1016/j.wasman.2019.12.033 

Pargent, F., Pfisterer, F., Thomas, J., & Bischl, B. (2022). Regularized target encoding 
outperforms traditional methods in supervised machine learning with high cardinality 
features. Comput. Stat., 37(5), 2671–2692. https://doi.org/10.1007/s00180-022-01207-6 

Pons-Valladares, O., & Nikolic, J. (2020). Sustainable design, construction, refurbishment 
and restoration of architecture: A review. Sustainability (Switzerland), 12(22), 1–18. 
https://doi.org/10.3390/su12229741 

Poschmann, H., Brueggemann, H., & Goldmann, D. (2020). Disassembly 4.0: A review on 
using robotics in disassembly tasks as a way of automation. Chemie Ingenieur Technik, 
92(4), 341–359. 

Pranav, P., Pitroda, J., & Bhavsar, J. J. (2015). Demolition: Methods and Comparision. 
August, 978–981. 

Queheille, E., Taillandier, F., & Saiyouri, N. (2019a). Optimization of strategy planning for 
building deconstruction. Automation in Construction, 98, 236–247. 
https://doi.org/10.1016/j.autcon.2018.11.007 

Queheille, E., Taillandier, F., & Saiyouri, N. (2019b). Optimization of strategy planning for 
building deconstruction. Automation in Construction, 98, 236–247. 
https://doi.org/10.1016/j.autcon.2018.11.007 

Queheille, E., Taillandier, F., & Saiyouri, N. (2019c). Optimization tool of waste 
management in building deconstruction with environmental criteria. 7th International 
Conference on Sustainable Solid Waste Management. 

Queheille, E., Taillandier, F., & Saiyouri, N. (2019d). Optimization tool of waste 
management in building deconstruction with environmental criteria. 7th International 
Conference on Sustainable Solid Waste Management. 

Rafiei, M. H., & Adeli, H. (2017a). A novel machine learning-based algorithm to detect 
damage in high-rise building structures. The Structural Design of Tall and Special 
Buildings, 26(18), e1400. https://doi.org/10.1002/tal.1400 

Rafiei, M. H., & Adeli, H. (2017b). A novel machine learning-based algorithm to detect 
damage in high-rise building structures. The Structural Design of Tall and Special 
Buildings, 26(18), e1400. https://doi.org/10.1002/tal.1400 



 

   
 
188 

Raghu, D., Markopoulou, A., Marengo, M., Neri, I., Chronis, A., & De Wolf, C. (2022). 
Enabling Component Reuse from Existing Buildings through Machine Learning, Using 
Google Street View to Enhance Building Databases. Proceedings of the 27th CAADRIA 
Conference, Sydney, 9-15 April 2022, 577–586. 
https://doi.org/https://doi.org/10.52842/conf.caadria.2022.2.577 

Raghu, S. J., & Rodrigues, L. L. R. (2021). Developing and validating an instrument of 
antecedents of solid waste management behaviour using mixed methods procedure. 
Cogent Psychology, 8(1), 1886628. 

Rahman, M. M., & Davis, D. N. (2013). Machine Learning-Based Missing Value Imputation 
Method for Clinical Datasets BT  - IAENG Transactions on Engineering Technologies: 
Special Volume of the World Congress on Engineering 2012 (G.-C. Yang, S. Ao, & L. 
Gelman, Eds.; pp. 245–257). Springer Netherlands. https://doi.org/10.1007/978-94-007-
6190-2_19 

Rahman, Md. G., & Islam, M. Z. (2013). Missing value imputation using decision trees and 
decision forests by splitting and merging records: Two novel techniques. Knowledge-
Based Systems, 53, 51–65. https://doi.org/https://doi.org/10.1016/j.knosys.2013.08.023 

Rakhshan, K., Morel, J., Alaka, H., & Charef, R. (2020a). Components reuse in the building 
sector – A systematic review. Waste Management & Research, 38, 347–370. 
https://doi.org/10.1177/0734242X20910463 

Rakhshan, K., Morel, J. C., Alaka, H., & Charef, R. (2020b). Components reuse in the 
building sector – A systematic review. Waste Management and Research, 38(4), 347–
370. https://doi.org/10.1177/0734242X20910463 

Rakhshan, K., Morel, J.-C., & Daneshkhah, A. (2021a). A probabilistic predictive model for 
assessing the economic reusability of load-bearing building components: Developing a 
Circular Economy framework. Sustainable Production and Consumption, 27, 630–642. 
https://doi.org/https://doi.org/10.1016/j.spc.2021.01.031 

Rakhshan, K., Morel, J.-C., & Daneshkhah, A. (2021b). A probabilistic predictive model for 
assessing the economic reusability of load-bearing building components: Developing a 
Circular Economy framework. Sustainable Production and Consumption, 27, 630–642. 
https://doi.org/https://doi.org/10.1016/j.spc.2021.01.031 

Rakhshan, K., Morel, J.-C., & Daneshkhah, A. (2021c). Predicting the technical reusability of 
load-bearing building components: A probabilistic approach towards developing a 
Circular Economy framework. Journal of Building Engineering, 42, 102791. 
https://doi.org/https://doi.org/10.1016/j.jobe.2021.102791 

Rebekka, V. (2015). DECONSTRUCTION PROJECT PLANNING BASED ON 
AUTOMATIC ACQUISITION AND RECONSTRUCTION OF BUILDING 
INFORMATION FOR EXISTING BUILDINGS. Smart and Sustainable Built 
Environment (SASBE) Conference 2015, 47. 

Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and Adoption 
Challenges of AI in the Construction Industry: A PRISMA Review. Journal of Open 
Innovation: Technology, Market, and Complexity, 8(1), 45. 
https://doi.org/https://doi.org/10.3390/joitmc8010045 

Rhodes, C. (2019). Construction Industry: Statistics and policy. House of Commons Library, 
01432, 1–13. 

RIBA. (2021). Long Life, Low Energy. 
Rios, F. C., Chong, W. K., & Grau, D. (2015a). Design for Disassembly and Deconstruction - 

Challenges and Opportunities. Procedia Engineering, 118, 1296–1304. 
https://doi.org/10.1016/j.proeng.2015.08.485 

Rios, F. C., Chong, W. K., & Grau, D. (2015b). Design for Disassembly and Deconstruction - 
Challenges and Opportunities. Procedia Engineering, 118, 1296–1304. 
https://doi.org/10.1016/J.PROENG.2015.08.485 



 

   
 
189 

Rios, F. C., Chong, W. K., & Grau, D. (2015c). Design for Disassembly and Deconstruction - 
Challenges and Opportunities. Procedia Engineering, 118, 1296–1304. 
https://doi.org/10.1016/j.proeng.2015.08.485 

Roeslin, S., Ma, Q., Juárez-Garcia, H., Gómez-Bernal, A., Wicker, J., & Wotherspoon, L. 
(2020). A machine learning damage prediction model for the 2017 Puebla-Morelos, 
Mexico, earthquake. Earthquake Spectra, 36(2_suppl), 314–339. 

Runchi, Z., Liguo, X., & Qin, W. (2023). An ensemble credit scoring model based on logistic 
regression with heterogeneous balancing and weighting effects. Expert Systems with 
Applications, 212, 118732. https://doi.org/https://doi.org/10.1016/j.eswa.2022.118732 

Sadek, A. W., & Swailem, M. K. (n.d.). A Knowledge Based Expert System for Seismic 
Assessment of Existing Reinforced Concrete Buildings. Proceedings of the Third 
International Conference on Engineering Computational Technology. 
https://doi.org/10.4203/ccp.76.6 

Sain, H., & Purnami, S. W. (2015). Combine sampling support vector machine for 
imbalanced data classification. Procedia Computer Science, 72, 59–66. 

Saka, A. B., Oyedele, L. O., Akanbi, L. A., Ganiyu, S. A., Chan, D. W. M., & Bello, S. A. 
(2023). Conversational artificial intelligence in the AEC industry: A review of present 
status, challenges and opportunities. Advanced Engineering Informatics, 55, 101869. 
https://doi.org/https://doi.org/10.1016/j.aei.2022.101869 

Saka, A., Taiwo, R., Saka, N., Salami, B. A., Ajayi, S., Akande, K., & Kazemi, H. (2024). 
GPT models in construction industry: Opportunities, limitations, and a use case 
validation. Developments in the Built Environment, 17, 100300. 
https://doi.org/https://doi.org/10.1016/j.dibe.2023.100300 

Sanchez, B., & Haas, C. (2018). A novel selective disassembly sequence planning method for 
adaptive reuse of buildings. Journal of Cleaner Production, 183, 998–1010. 
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.02.201 

Sanchez, B., Rausch, C., & Haas, C. (2019a). “Deconstruction programming for adaptive 
reuse of buildings.” Automation in Construction, 107. 
https://doi.org/10.1016/j.autcon.2019.102921 

Sanchez, B., Rausch, C., & Haas, C. (2019b). Deconstruction programming for adaptive 
reuse of buildings. Automation in Construction, 107, 102921. 

Sanchez, B., Rausch, C., Haas, C., & Saari, R. (2020a). A selective disassembly multi-
objective optimization approach for adaptive reuse of building components. Resources, 
Conservation and Recycling, 154, 104605. 
https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104605 

Sanchez, B., Rausch, C., Haas, C., & Saari, R. (2020b). A selective disassembly multi-
objective optimization approach for adaptive reuse of building components. Resources, 
Conservation and Recycling, 154(August 2019), 104605. 
https://doi.org/10.1016/j.resconrec.2019.104605 

Sangeetha, M., & Senthil Kumaran, M. (2020). Deep learning-based data imputation on time-
variant data using recurrent neural network. Soft Computing, 24(17), 13369–13380. 

Sari, O. L., Adi, T. J. W., & Munif, A. (2019). Selection model of building demolition 
method based on expert system. Third International Conference on Sustainable 
Innovation 2019–Technology and Engineering (IcoSITE 2019), 58–61. 

Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019a). “Research Methods for Business 
Students” Chapter 4: Understanding research philosophy and approaches to theory 
development. In Researchgate.Net (Issue January). www.pearson.com/uk 

Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019b). “Research Methods for Business 
Students” Chapter 4: Understanding research philosophy and approaches to theory 
development. In Researchgate.Net (Issue January). www.pearson.com/uk 



 

   
 
190 

Schultmann, F. (2003). Dealing with uncertainties in (de-)construction management, the 
contribution of fuzzy scheduling. Deconstruction and Materials Reuse - Proceedings of 
the 11th Rinker International Conference on Deconstruction and Materials Reuse, 
University of Florida, Gainesville, USA, May 7-10, 2003. Ed.: A. Chini, 287, 15-S. 

Schwede, D., & Störl, E. (2017). Methode zur Analyse der Rezyklierbarkeit von 
Baukonstruktionen. Bautechnik, 94(1), 1–9. 

Shahruddin, S., & Zairul, M. (2020). BIM requirements across a construction project 
lifecycle: A PRISMA-compliant systematic review and meta-analysis. International 
Journal of Innovation, Creativity and Change, 12(5), 569–590. 

Shami, M. (2006). A comprehensive review of building deconstruction and salvage: 
Deconstruction benefits and hurdles. International Journal of Environmental 
Technology and Management, 6(3–4), 236–291. 
https://doi.org/10.1504/ijetm.2006.008998 

Shami, M. (2008a). Solid waste sustainability related to building deconstruction. 
International Journal of Environmental Technology and Management, 8(2–3), 117–191. 

Shami, M. (2008b). Solid waste sustainability related to building deconstruction. 
International Journal of Environmental Technology and Management, 8(2–3), 117–191. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
39749106649&doi=10.1504%2FIJETM.2008.017330&partnerID=40&md5=d6c917602
0a43a32bd20140afe11c444 

Shon, D., Noh, B., & Byun, N. (2022). Identification and extracting method of exterior 
building information on 3D map. Buildings, 12(4), 452. 

Siddiqua, A., Hahladakis, J. N., & Al-Attiya, W. A. K. A. (2022). An overview of the 
environmental pollution and health effects associated with waste landfilling and open 
dumping. Environmental Science and Pollution Research, 29(39), 58514–58536. 
https://doi.org/10.1007/s11356-022-21578-z 

Silva, L. O., & Zárate, L. E. (2014). A Brief Review of the Main Approaches for Treatment 
of Missing Data. Intell. Data Anal., 18(6), 1177–1198. 

Smith, S., Hsu, L.-Y., & Smith, G. C. (2016). Partial disassembly sequence planning based 
on cost-benefit analysis. Journal of Cleaner Production, 139, 729–739. 
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.08.095 

Sovrano, F., Vitali, F., & Palmirani, M. (2021). Making Things Explainable vs Explaining: 
Requirements and Challenges Under the GDPR. In V. Rodríguez-Doncel, M. Palmirani, 
M. Araszkiewicz, P. Casanovas, U. Pagallo, & G. Sartor (Eds.), AI Approaches to the 
Complexity of Legal Systems XI-XII (pp. 169–182). Springer International Publishing. 

Spathis, D., Perez-Pozuelo, I., Marques-Fernandez, L., & Mascolo, C. (2022). Breaking away 
from labels: The promise of self-supervised machine learning in intelligent health. 
Patterns, 3(2), 100410. https://doi.org/https://doi.org/10.1016/j.patter.2021.100410 

Srour, I., Chong, W. K., & Zhang, F. (2012a). Sustainable recycling approach: An 
understanding of designers’ and contractors’ recycling responsibilities throughout the 
life cycle of buildings in two US cities. Sustainable Development, 20(5), 350–360. 
https://doi.org/10.1002/sd.493 

Srour, I., Chong, W. K., & Zhang, F. (2012b). Sustainable recycling approach: An 
understanding of designers’ and contractors’ recycling responsibilities throughout the 
life cycle of buildings in two US cities. Sustainable Development, 20(5), 350–360. 
https://doi.org/10.1002/sd.493 

Sun, Y., & Gu, Z. (2022). Using computer vision to recognize construction material: A 
Trustworthy Dataset Perspective. Resources, Conservation and Recycling, 183, 106362. 
https://doi.org/https://doi.org/10.1016/j.resconrec.2022.106362 

Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2013). Using multivariate statistics (Vol. 
6). pearson Boston, MA. 



 

   
 
191 

Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting 
Research Instruments in Science Education. Research in Science Education, 48(6), 
1273–1296. https://doi.org/10.1007/s11165-016-9602-2 

Taherdoost, H., Sahibuddin, S., & Jalaliyoon, N. (2014). Exploratory factor analysis: 
Concepts and theory. 2nd International Conference on Mathematical, Computational 
and Statistical Sciences. 

Tainton, B. E. (1990). The unit of analysis ‘problem’in educational research. Journal of 
Educational Research, 6(1), 4–19. 

Tang, C., Luktarhan, N., & Zhao, Y. (2020). An efficient intrusion detection method based on 
LightGBM and autoencoder. Symmetry, 12(9). https://doi.org/10.3390/sym12091458 

Tao, H., Al-Sulttani, A. O., Salih Ameen, A. M., Ali, Z. H., Al-Ansari, N., Salih, S. Q., & 
Mostafa, R. R. (2020). Training and Testing Data Division Influence on Hybrid 
Machine Learning Model Process: Application of River Flow Forecasting. Complexity, 
2020(1), 8844367. https://doi.org/https://doi.org/10.1155/2020/8844367 

Tatiya, A., Zhao, D., Syal, M., Berghorn, G. H., & LaMore, R. (2018a). Cost prediction 
model for building deconstruction in urban areas. Journal of Cleaner Production, 195, 
1572–1580. https://doi.org/10.1016/j.jclepro.2017.08.084 

Tatiya, A., Zhao, D., Syal, M., Berghorn, G. H., & LaMore, R. (2018b). Cost prediction 
model for building deconstruction in urban areas. Journal of Cleaner Production, 195, 
1572–1580. https://doi.org/10.1016/j.jclepro.2017.08.084 

Tatiya, A., Zhao, D., Syal, M., Berghorn, G. H., & LaMore, R. (2018c). Cost prediction 
model for building deconstruction in urban areas. Journal of Cleaner Production, 195, 
1572–1580. https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85027561222&doi=10.1016%2Fj.jclepro.2017.08.084&partnerID=40&md5=1d911551
a73c9f01e6f4eb7924040248 

Tatiya, A., Zhao, D., Syal, M., Berghorn, G. H., & LaMore, R. (2018d). Cost prediction 
model for building deconstruction in urban areas. Journal of Cleaner Production, 195, 
1572–1580. https://doi.org/10.1016/j.jclepro.2017.08.084 

Tatiya, A., Zhao, D., Syal, M., Berghorn, G. H., & LaMore, R. (2018e). Cost prediction 
model for building deconstruction in urban areas. Journal of Cleaner Production, 195, 
1572–1580. https://doi.org/10.1016/j.jclepro.2017.08.084 

Tawfik, G. M., Dila, K. A. S., Mohamed, M. Y. F., Tam, D. N. H., Kien, N. D., Ahmed, A. 
M., & Huy, N. T. (2019). A step by step guide for conducting a systematic review and 
meta-analysis with simulation data. Tropical Medicine and Health, 47(1), 1–9. 
https://doi.org/10.1186/s41182-019-0165-6 

Terenchuk, S., Pashko, A., Yeremenko, B., Kartavykh, S., & Ershovа, N. (2018). Modeling 
an intelligent system for the estimation of technical state of construction structures. 
Восточно-Европейский Журнал Передовых Технологий, 3 (2), 47–53. 

TERI. (2017). CEMENT INDUSTRY: Trends Report. 1–21. 
https://www.teriin.org/library/files/Cement-Industry-Trends-Report2017.pdf 

Thelwall, M., & Sud, P. (2022). Scopus 1900–2020: Growth in articles, abstracts, countries, 
fields, and journals. Quantitative Science Studies, 3(1), 37–50. 
https://doi.org/10.1162/qss_a_00177 

Thomas, T., & Rajabi, E. (2021). A systematic review of machine learning-based missing 
value imputation techniques. Data Technologies and Applications, 55(4), 558–585. 
https://doi.org/10.1108/DTA-12-2020-0298 

Thomsen, A., Schultmann, F., & Kohler, N. (2011). Deconstruction, demolition and 
destruction. Building Research and Information, 39(4), 327–332. 
https://doi.org/10.1080/09613218.2011.585785 

Tokuyama, Y., Miki, R., Fukushima, Y., Tarutani, Y., & Yokohira, T. (2020). Performance 
Evaluation of Feature Encoding Methods in Network Traffic Prediction Using Recurrent 



 

   
 
192 

Neural Networks. Proceedings of the 2020 8th International Conference on Information 
and Education Technology, 279–283. https://doi.org/10.1145/3395245.3396441 

Uc-Cetina, V., Navarro-Guerrero, N., Martin-Gonzalez, A., Weber, C., & Wermter, S. 
(2022). Survey on reinforcement learning for language processing. Artificial Intelligence 
Review. https://doi.org/10.1007/s10462-022-10205-5 

UK Green Building Council. (n.d.). UKGBC. Circular Economy. 
UNEP, U. (2020). Emissions gap report 2020. UN Environment Programme. 
United Nations. (2018). Department of Economic and Social Affairs. 
United States Environmental Protection Agency (EPA). (2018). Construction and Demolition 

Debris: Material-Specific Data. 
Ursachi, G., Horodnic, I. A., & Zait, A. (2015). How reliable are measurement scales? 

External factors with indirect influence on reliability estimators. Procedia Economics 
and Finance, 20, 679–686. 

van den Berg, M., Voordijk, H., & Adriaanse, A. (2018). Supporting deconstruction practices 
with information systems using ethnographic-action research. 34th Annual Association 
of Researchers in Construction Management Conference, ARCOM 2018. 

van den Berg, M., Voordijk, H., & Adriaanse, A. (2020a). Recovering building elements for 
reuse (or not) – Ethnographic insights into selective demolition practices. Journal of 
Cleaner Production, 256, 120332. https://doi.org/10.1016/j.jclepro.2020.120332 

van den Berg, M., Voordijk, H., & Adriaanse, A. (2020b). Recovering building elements for 
reuse (or not) – Ethnographic insights into selective demolition practices. Journal of 
Cleaner Production, 256. https://doi.org/10.1016/j.jclepro.2020.120332 

Verdelho Trindade, N., Ferreira, A., Madeiras Pereira, J., & Oliveira, S. (2023). Extended 
reality in AEC. Automation in Construction, 154, 105018. 
https://doi.org/https://doi.org/10.1016/j.autcon.2023.105018 

Volk, R. (2017). Proactive-reactive, robust scheduling and capacity planning of 
deconstruction projects under uncertainty (Vol. 20). KIT Scientific Publishing. 

Volk, R., Luu, T. H., Mueller-Roemer, J. S., Sevilmis, N., & Schultmann, F. (2018). 
Deconstruction project planning of existing buildings based on automated acquisition 
and reconstruction of building information. Automation in Construction, 91(July 2017), 
226–245. https://doi.org/10.1016/j.autcon.2018.03.017 

Volk, R., Müller, R., Reinhardt, J., & Schultmann, F. (2019). An Integrated Material Flows, 
Stakeholders and Policies Approach to Identify and Exploit Regional Resource 
Potentials. Ecological Economics, 161, 292–320. 
https://doi.org/10.1016/j.ecolecon.2019.03.020 

Wahlström, M., Hradil, P., zu Castell-Rudenhausen, M., Bergmans, J., van Cauwenberghe, 
L., Van Belle, Y., Sičáková, A., Struková, Z., & Li, J. (2019). Pre-demolition audit-
overall guidance document: PARADE. Best practices for Pre-demolition Audits 
ensuring high quality RAw materials. EIT RawMaterials. 

Wang, X., Kim, M. J., Love, P. E. D., & Kang, S.-C. (2013). Augmented Reality in built 
environment: Classification and implications for future research. Automation in 
Construction, 32, 1–13. https://doi.org/https://doi.org/10.1016/j.autcon.2012.11.021 

Wang, Z., Hu, T., & Liu, J. (2024). Decoupling economic growth from construction waste 
generation: Comparative analysis between the EU and China. Journal of Environmental 
Management, 353, 120144. 
https://doi.org/https://doi.org/10.1016/j.jenvman.2024.120144 

Wang, Z., Li, H., & Yang, X. (2020). Vision-based robotic system for on-site construction 
and demolition waste sorting and recycling. Journal of Building Engineering, 32, 
101769. https://doi.org/https://doi.org/10.1016/j.jobe.2020.101769 



 

   
 
193 

Wang, Z., Li, H., & Zhang, X. (2019). Construction waste recycling robot for nails and 
screws: Computer vision technology and neural network approach. Automation in 
Construction, 97, 220–228. 

Warszawski, A. (1999). Industrialised and Automated Building System, Technion-Israel 
Institute of Technology, E \& FN Spon. Melaka. 

Webster, M., & Costello, D. (2006a). Designing structural systems for deconstruction. 
Webster, M., & Costello, D. (2006b). Designing structural systems for deconstruction. 
Wei, Y., Pushkar, A., & Akinci, B. (2019). Supporting Deconstruction Waste Management 

through 3D Imaging: A Case Study. In M. Al-Hussein (Ed.), Proceedings of the 36th 
International Symposium on Automation and Robotics in Construction (ISARC) (pp. 
438–445). International Association for Automation and Robotics in Construction 
(IAARC). https://doi.org/10.22260/ISARC2019/0059 

White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained 
equations: Issues and guidance for practice. Statistics in Medicine, 30(4), 377–399. 
https://doi.org/https://doi.org/10.1002/sim.4067 

Wit, B., & Pylak, K. (2020). Implementation of triple bottom line to a business model canvas 
in reverse logistics. Electronic Markets, 30(4), 679–697. https://doi.org/10.1007/s12525-
020-00422-7 

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural 
Computation, 8(7), 1341–1390. 

World Bank. (2020, April). Urban development. 
https://www.worldbank.org/en/topic/urbandevelopment 

Wu, G., Wang, L., Yang, R., Hou, W., Zhang, S., Guo, X., & Zhao, W. (2022). Pollution 
characteristics and risk assessment of heavy metals in the soil of a construction waste 
landfill site. Ecological Informatics, 70, 101700. 
https://doi.org/https://doi.org/10.1016/j.ecoinf.2022.101700 

Wusu, G. E., Alaka, H., Yusuf, W., Mporas, I., Toriola-Coker, L., & Oseghale, R. (2022). A 
machine learning approach for predicting critical factors determining adoption of offsite 
construction in Nigeria. Smart and Sustainable Built Environment, ahead-of-print. 

Xanthopoulos, A., Aidonis, D., Vlachos, D., & Iakovou, E. (2012a). A planning optimisation 
framework for construction and demolition waste management. International Journal of 
Industrial and Systems Engineering, 10(3), 257. 
https://doi.org/10.1504/ijise.2012.045675 

Xanthopoulos, A., Aidonis, D., Vlachos, D., & Iakovou, E. (2012b). A planning optimisation 
framework for construction and demolition waste management. International Journal of 
Industrial and Systems Engineering, 10(3), 257–276. 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84858243386&doi=10.1504%2FIJISE.2012.045675&partnerID=40&md5=956c06c7a5
702954d39a2327da125d62 

Xanthopoulos, A., & Iakovou, E. (2009). On the optimal design of the disassembly and 
recovery processes. Waste Management, 29(5), 1702–1711. 
https://doi.org/https://doi.org/10.1016/j.wasman.2008.11.009 

Xiao, W., Yang, J., Fang, H., Zhuang, J., Ku, Y., & Zhang, X. (2020). Development of an 
automatic sorting robot for construction and demolition waste. Clean Technologies and 
Environmental Policy, 22(9), 1829–1841. https://doi.org/10.1007/s10098-020-01922-y 

Xu, K., Shen, G. Q., Liu, G., & Martek, I. (2019). Demolition of existing buildings in urban 
renewal projects: A decision support system in the China context. Sustainability 
(Switzerland), 11(2). https://doi.org/10.3390/su11020491 

Xu, Y., Lu, X., Tian, Y., & Huang, Y. (2022). Real-time seismic damage prediction and 
comparison of various ground motion intensity measures based on machine learning. 
Journal of Earthquake Engineering, 26(8), 4259–4279. 



 

   
 
194 

Xu, Y., Zhou, Y., Sekula, P., & Ding, L. (2021). Machine learning in construction: From 
shallow to deep learning. Developments in the Built Environment, 6, 100045. 
https://doi.org/https://doi.org/10.1016/j.dibe.2021.100045 

Yadhunath, R., Srikanth, S., Sudheer, A., Jyotsna, C., & Amudha, J. (2022). Detecting 
Surface Cracks on Buildings Using Computer Vision: An Experimental Comparison of 
Digital Image Processing and Deep Learning. In V. S. Reddy, V. K. Prasad, J. Wang, & 
K. T. V Reddy (Eds.), Soft Computing and Signal Processing (pp. 197–210). Springer 
Singapore. 

Yang, J., Jiang, P., Zheng, M., Zhou, J., & Liu, X. (2022). Investigating the influencing 
factors of incentive-based household waste recycling using structural equation 
modelling. Waste Management, 142, 120–131. 

Ye, X., Yu, W. W., Yu, W. H., & Lv, L. N. (2022). Simulating urban growth through case-
based reasoning. European Journal of Remote Sensing, 55(1), 277–290. 
https://doi.org/10.1080/22797254.2022.2056518 

Younger, M., Morrow-almeida, H. R., Vindigni, S. M., & Dannenberg, A. L. (2008). 
Opportunities for Co-Benefits. 35(5), 517–526. 
https://doi.org/10.1016/j.amepre.2008.08.017 

Yuan, H., Xu, G., Yao, Z., Jia, J., & Zhang, Y. (2018). Imputation of missing data in time 
series for air pollutants using long short-term memory recurrent neural networks. 
Proceedings of the 2018 ACM International Joint Conference and 2018 International 
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, 1293–
1300. 

Zabek, M., Hildebrand, L., Brell-Cokcan, S., & Wirth, M. (2017). Used building materials as 
secondary resources–Identification of valuable building material and automized 
deconstruction. Journal of Facade Design and Engineering, 5(2), 25–33. 

Zahir, S., Syal, M. G. M., LaMore, R., & Berghorn, G. (2016). Approaches and Associated 
Costs for the Removal of Abandoned Buildings. Construction Research Congress , 229–
239. https://doi.org/10.1061/9780784479827.024 

Zaman, A. U., Arnott, J., Mclntyre, K., & Hannon, J. (2018). Resource harvesting through a 
systematic deconstruction of the residential house: A case study of the “Whole House 
Reuse” project in Christchurch, New Zealand. Sustainability (Switzerland), 10(10). 
https://doi.org/10.3390/su10103430 

Zhang, X., Zhang, M., Zhang, H., Jiang, Z., Liu, C., & Cai, W. (2020). A review on energy, 
environment and economic assessment in remanufacturing based on life cycle 
assessment method. Journal of Cleaner Production, 255. 
https://doi.org/10.1016/j.jclepro.2020.120160 

Zhuang, Y., Ke, R., & Wang, Y. (2019). Innovative method for traffic data imputation based 
on convolutional neural network. IET Intelligent Transport Systems, 13(4), 605–613. 

  



 

   
 
195 

 Appendix 
Appendix A: Online Survey  
The process of data collection in this study is illustrated in Figure A1. 
 

 
Figure A1. Process of the Multi-method Quantitative Research Approach 

Respondent Information Sheet: 

You are invited to complete an online survey as part of a PhD Research undertaken by Habeeb 
Balogun, a Business Analytics student at Business School, University of Hertfordshire, UK.  

Please read the following information carefully before deciding whether to take part. Please ask if 
there is anything unclear or if you would like more information.  

You are eligible to take part in this study if you are 18 or over. 

The Study 
The study aims to develop an artificial intelligence-based deconstructability predictive model 
able to predict if a building is a good candidate for deconstruction. The model will create pre-
deconstruction audit knowledge, aid faster decision-making on whether a building is suitable 
for deconstruction or not, and increase wider implementation of deconstruction during and 
after the design stage thus increasing a sustainable environment and economy. 
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What does taking part involve?   
If you agree to take part in this study, you will be asked to complete an online 
survey/questionnaire.  This survey/questionnaire will ask about impactful factors influencing 
the deconstructability of an existing building and it will take you approximately [8] minutes 
to complete. 

Do I have to take part?    
No. It is up to you to decide whether to take part. You are free to withdraw from the study at 
any time and without giving a reason.  If you choose not to take part, you do not need to do 
anything further. 

Are there any benefits or risks for me if I take part?  
You may not directly benefit from this research; however, we hope that your participation in 
the study may give you asses to test how the model works when its ready for end users.  
There are no expected risks for participants. Any data that you provide will be treated as 
confidential and the questionnaire is anonymous. 
All data from the study will be stored securely on my university One Drive cloud storage 
system which only I have access to and will be deleted once I am done developing the 
artificial intelligence predictive model. 

What will happen to the findings of this study?  
The findings will be used to train, test and validate the artificial intelligence 
deconstructability model.  

Has this study received ethical approval?  
This study has been approved by the University of Hertfordshire Social Sciences, Arts and 
Humanities, Ethics Committee with Delegated Authority (SSAH ECDA). The Ethics 
Protocol number for this study is cBUS/PGR/UH/05259. 

If you would like to receive more information and for any other queries about this project you 
can contact me by email (h.balogun@herts.ac.uk) or my director of studies, Professor Hafiz 
Alaka (h.alaka@herts.ac.uk) 

Although we hope this is not the case, if you have any complaints or concerns about any 
aspect of the way you have been approached or treated during this study, please write to the 
University’s Secretary and Registrar at the following address: 

Secretary and Registrar 
University of Hertfordshire 
College Lane 
Hatfield, Hertfordshire 
AL10 9AB 
United Kingdom 
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Ethical approval  

The proof of ethical approval from the University of Hertfordshire, UK 
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Table A1. List of Online survey questions 
Question 
Number 

Question Question type Options 

Section A 
A1.1 I confirm that I have read and understood the 

respondent information sheet 
Multiple Choice: Single Answer Yes / No 

A1.2 I understand that all personal information will remain 
confidential and that all efforts will be made to ensure I cannot 
be identified (except as might be required by law). 

Multiple Choice: Single Answer Yes / No 

A1.3 I agree that data gathered in this study may be stored securely 
and anonymously and may be used for solely for this research 

Multiple Choice: Single Answer Yes / No 

A1.4 I understand that my participation is voluntary and that I am 
free to withdraw at any time without giving a reason. 

Multiple Choice: Single Answer Yes / No 

A1.5 I agree to take part in this study Multiple Choice: Single Answer Yes / No 
A1.6 I have worked/participated/engaged on/in a building end-of-life 

project where disassembly/deconstruction was 
considered/done? 

Multiple Choice: Single Answer Yes / No 

NOTE: If your response to A1.6 is no, then you are not fit to respond to the subsequent questions. Thank you and Goodbye. 
A1.7 If response to A1.6 is yes, what option was agreed 

upon/implemented 
Multiple Choice: Single Answer Deconstruction / Refurbishment / 

Renovation / Demolition / Abandon 
or Do nothing 

Respondents Information 
A1.8 What of the following services do you offer?  Multiple Choice: Multiple 

Answers 
Demolition / Deconstruction / 
Refurbishment / Redevelopment / 
Others 

A1.9 How would you best describe your profession/role? Multiple Choice: Single Answer Client / Developer / Demolition 
Contractor or Engineer / Architect / 
Other 

A1.10 How many years of experience do you have in 
Demolition/Deconstruction/waste management field? 

Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 

NOTE: Where the respondent has worked on multiple deconstruction/demolition project, s/he should please provide answers based on just one project. 
However, respondents can complete this questionnaire multiple times; in each case, all answers should be based on a specific project. 
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Question 
Number 

Question Question type Options 

A1.11 I confirm that all/subsequent response is exclusively focused on 
a single deconstruction project? 

Multiple Choice: Single Answer Yes / No 

A1.12 To what extent was the building deconstructed or can the 
building be deconstructed to? 

Multiple Choice: Single Answer Full deconstruction / Partial 
demolition / Full Demolition 

A.1.13 On a scale of 0 -100, can you describe how deconstructible the 
building was?  

Multiple Choice: Single Answer < 25% / 25-50% / 50-99% / 100%  

Section B 
B.1 Where was/is the building deconstruction project located? Multiple Choice: Single Answer USA / UK / France / China / Others 
B.2 What was/is the building type? Multiple Choice: Single Answer Residential / Non-residential 
B.3 What was/is the construction method of the building? Multiple Choice: Single Answer Prefabricated / Traditional 
B.4 What year was/is the building built? Multiple Choice: Single Answer pre-1990 / pre-1930 / pre-1950 / pre-

1978 / post-1978 
B.5 Was/is the building Occupied Multiple Choice: Single Answer Yes / No 
B.6 Number of stories/floors Multiple Choice: Single Answer 1 / 1½ / 2 / 3 / More 
B.7 Numbers of rooms Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 
B.8 Number of bathrooms/toilets Multiple Choice: Single Answer 1 / 2 / 3 / 4 / Others 
B.9 Was/is the structure secured to prevent unwanted entry? Multiple Choice: Single Answer Fully / Partly / No 
B.10 Was/is there room around the structure to serve as staging area? Multiple Choice: Single Answer Yes / No 
B.11 Was/is there exterior trash? Multiple Choice: Single Answer No trash / Piles of Trash  
B.12 Was/is there interior trash? Multiple Choice: Single Answer No trash / Piles of Trash  
B.13 Were there restricted movement in and out of the building? Multiple Choice: Single Answer Yes / No 
B.14 Were hazards present on-site? Multiple Choice: Single Answer Yes / No 
B.15 What was/is the state of the building? Multiple Choice: Single Answer Collapse / Partial collapse / Healthy 
B.16 Was/is the structural elements connection accessible/separable? Multiple Choice: Single Answer Yes / No 
B.17 Was/is there good road network to the building? Multiple Choice: Single Answer Yes / No 
B.18 What was/is the roof type? Multiple Choice: Single Answer Flat / Pitched  
B.19 What was/is the foundation type? Multiple Choice: Single Answer Monolithic concrete / Concrete 

block / Combination / Unknown / 
Others 

B.20 Was/is there any recycling facility closer? Multiple Choice: Single Answer Yes / No 
B.21 Was/is there major cracking of brick/wood rotting? Multiple Choice: Single Answer Yes / No 
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Question 
Number 

Question Question type Options 

B.22 Was/is there broken or missing windows? Multiple Choice: Single Answer Yes / No 
B.23 Was/is there missing bricks and siding Multiple Choice: Single Answer Yes / No 
B.24 Was/is there roof damage Multiple Choice: Single Answer Yes / No 
B.25 Were there major fire damages? Multiple Choice: Single Answer Yes / No 
B.26 Were there major water damages? Multiple Choice: Single Answer Yes / No 
B.27 What hazardous materials were identified? Multiple Choice: Single Answer Asbestos / Mercury / Lead / Others 
B.28 What is the estimated quantity of hazardous materials 

identified?  
Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 

B.29 Do you have access to information about the building? (design 
plans and/or inventory) 

Multiple Choice: Single Answer Yes / No 

B.30 Has a detailed disassembly plan been developed? Multiple Choice: Single Answer Yes / No 
Section C 

C.1 What was/is the percent of Brick Siding?  Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
C.2 What was/is the percent of Wood Siding?  Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
C.3 What was/is the percent of Stone Siding?  Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
C.4 What was/is the percent of Vinyl/Synthetic Siding?  Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
C.5 What was/is the percent of Aluminium Siding? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
C.6 What was/is the percent of other siding? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
C.7 What was/is the number of rooms with wood flooring? Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 
C.8 Was/is there dimensional ceiling or floor joists observed? Multiple Choice: Single Answer Yes / No / Unknown 
C.9 Was/is there dimensional lumber larger than 4x4? Multiple Choice: Single Answer Yes / No / Unknown 
C.10 What was/is the percent of Wall plasters? Multiple Choice: Single Answer < 25% / 25-50% / 50-99% / 100% 
C.11 What was/is the percent of drywall? Multiple Choice: Single Answer < 25% / 25-50% / 50-99% / 100% 
C.12 What was/is the number of rooms with crown moulding? Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 
C.13 What was/is the number of rooms with casing around doors & 

windows? 
Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 

C.14 What was/is the number of rooms with baseboard moulding? Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 
C.15 What was/is the number of rooms with chair railing moulding? Multiple Choice: Single Answer 1 / 2 / 3 / 4 / 5+ 
C.16 Was/is there basement? Multiple Choice: Single Answer Yes / No / Unknown 
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Question 
Number 

Question Question type Options 

C.17 What kind of the composite materials (in large quantity) are 
still/was in place? 

Multiple Choice: Single Answer Fibre reinforced polymer / Ceramic / 
Steel reinforced concrete / 
Composite wood beam / Others 

C.18 What percentage of the total building component can be/was 
reused? 

Multiple Choice: Single Answer < 25% / 25-50% / 50-99% / 100% 

C.19 What percentage of the total building component can be/was 
recycled? 

Multiple Choice: Single Answer < 25% / 25-50% / 50-99% / 100% 

C.20 What percentage of the total building component will be/was 
sent to landfill? 

Multiple Choice: Single Answer < 25% / 25-50% / 50-99% / 100% 

Section D 
D.1 Was/is there a fireplace mantel Multiple Choice: Single Answer Yes / No / Unknown 
D.2 Was/is there a stair treads/railing Multiple Choice: Single Answer Yes / No / Unknown 
D.3 Was/is there other architectural woodworks Multiple Choice: Single Answer Yes / No / Unknown 
D.4 Was/is there stained/leaded glass Multiple Choice: Single Answer Yes / No / Unknown 
D.5 Was/is there solid wood doors Multiple Choice: Single Answer Yes / No / Unknown 
D.6 Was/is there wood framed windows Multiple Choice: Single Answer Yes / No / Unknown 
D.7 Was/is there built-in wood cabinetry Multiple Choice: Single Answer Yes / No / Unknown 
D.8 Was/is there decorative architectural wrought iron Multiple Choice: Single Answer Yes / No / Unknown 
D.9 Was/is there lighting fixtures Multiple Choice: Single Answer Yes / No / Unknown 
D.10 Was/is/are there radiators Multiple Choice: Single Answer Yes / No / Unknown 
D.11 Was/is/are there sinks Multiple Choice: Single Answer Yes / No / Unknown 
D.12 Was/is/are there claw foot tub Multiple Choice: Single Answer Yes / No / Unknown 
D.13 Was/are there old appliances (oven, refrigerator) Multiple Choice: Single Answer Yes / No / Unknown 
D.14 Was/is there iron gates/fencing Multiple Choice: Single Answer Yes / No / Unknown 
D.15 Was/is there metal roofing Multiple Choice: Single Answer Yes / No / Unknown 
D.16 Was/are there countertops Multiple Choice: Single Answer Yes / No / Unknown 
D.17 Was/is there door hardware Multiple Choice: Single Answer Yes / No / Unknown 
D.18 Was/are there other old/rare steels Multiple Choice: Single Answer Yes / No / Unknown 
D.19 Are you aware of any architectural salvage yards? Multiple Choice: Single Answer Yes / No / Unknown 
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Question 
Number 

Question Question type Options 

D.20 
Were there any other architectural components present in the 
building with historic/commercial value? 

Multiple Choice: Single Answer Yes / No / Unknown 

Section E 
E.1 What was/is the percent of Claddings reusable/recyclable? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
E.2 What was/is the percent of Connections reusable/recyclable? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
E.3 What was/is the percent of Frameworks reusable/recyclable? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
E.4 What was/is the percent of Glazing reusable/recyclable? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 
E.5 What was/is the percent of Insulation reusable/recyclable? Multiple Choice: Single Answer 1 (little) / 2 / 3 / 4 / 5 (lots) 

E.6 
How expensive is/was it to hire deconstruction worker in your 
region 

Multiple Choice: Single Answer Cheap / Expensive / Not sure 

E.7 
How expensive is/was the tipping/disposal fee for dumping 
waste in landfill in your region? 

Multiple Choice: Single Answer Cheap / Expensive / Not sure 

E.8 
How expensive is/was it to get deconstruction/disassembly 
permit from the government/local authority? 

Multiple Choice: Single Answer Cheap / Expensive / Not sure 

E.9 
How expensive is/was it to get a trained toxic/hazardous 
material handler in your region? 

Multiple Choice: Single Answer Cheap / Expensive / Not sure 

E.10 How expensive is/was it to get specialised equipment/tools? Multiple Choice: Single Answer Cheap / Expensive / Not sure 

E.11 
Are you aware of any stockists of reclaimed components or 
elements? 

Multiple Choice: Single Answer Yes / No  

E.12 

Are there any restrictions or limitations on the availability of 
certain materials due to environmental regulations or building 
codes? 

Multiple Choice: Single Answer Yes / No  

E.13 

Would you consider reclaiming components from a project if 
you knew there was good demand for them, and they were 
commercially viable? 

Multiple Choice: Single Answer Yes / No 

E.14 

Are you in the position to supply spare parts or to provide a 
reconditioning service on demand or to undertake 
reconditioning as a core service? 

Multiple Choice: Single Answer Yes / No  

E.15 
Were tests available to assess the condition/life expectancy of 
materials (both in-situ and ex-situ)? 

Multiple Choice: Single Answer Yes / No  

Section F 
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Question 
Number 

Question Question type Options 

F.1 Which stakeholders would you say have the significant 
influence on your deconstruction activities 

Multiple Choice: Single Answer Building owner / Contractor / Client 
/ Government / Others 

F.2 What would you say was/is the main motivation for the 
deconstruction? 

Multiple Choice: Single Answer Sustainability badge / Economic 
gain / Job creation / Social 
responsibility / Others 

F.3 Does the government policy encourage deconstruction in the 
region? 

Multiple Choice: Single Answer Yes / No 

F.4 Does the public attitude encourage deconstruction in the 
region? 

Multiple Choice: Single Answer Yes / No 

F.5 Do you believe that the benefits of material reuse are well-
understood by the public? 

Multiple Choice: Single Answer Yes / No / Not sure 

Section G 
G.1 What was/is the estimated time it took or the estimated time it 

will take to for jobsite preparation? 
Multiple Choice: Single Answer Few hours / A Day / Few days / 

Weeks / Others 
G.2 What was/is the estimated time it took or the estimated time it 

will take to get permit to deconstruction permit? 
Multiple Choice: Single Answer Few hours / A Day / Few days / 

Weeks / Others 
G.3 What was/is the estimated time it took or the estimated time it 

will take to deconstruct the building? 
Multiple Choice: Single Answer Few hours / Days / Weeks / Months 

/ Others 
G.4 What was/is the estimated time it took or the estimated time it 

will take to assess the building for deconstruction? 
Multiple Choice: Single Answer Few hours / A Day / Few days / 

Weeks / Others 
G.5 What was/is the estimated time it took or the estimated time it 

will take to sort the recovered building components? 
Multiple Choice: Single Answer Few hours / Days / Weeks / Months 

/ Others 
G.6 What time of the year was/is the disassembly/deconstruction 

(done or proposed to be done)? 
Multiple Choice: Single Answer Rainy / Non-Rainy / Not sure 

G.7 We would like to keep in touch with you about this 
survey. If you would be willing to be contacted, please 
provide contact information (Phone number or email) 

Free Text  
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Appendix B: Definitions 
Embodied carbon:  
provides a measure of the greenhouse gas emissions associated with the extraction, 
processing, fabrication and transportation of the materials and products used in buildings. 
 
Operational carbon:  
provides a measure of the greenhouse gas emissions associated with the in-use operation of a 
building. This usually includes carbon emissions associated with heating, hot water, cooling, 
ventilation, and lighting, 
 
Circular economy:  
The concept of a closed-loop system of consumption that aims to eliminate waste through the 
continual use of resources through reuse, sharing, repair, refurbishment, remanufacturing, and 
recycling, minimising the use of resource inputs and the creation of waste, pollution, and 
carbon emissions. 
 
Pre-consumer recycling:  
The reprocessing of waste materials that arise during the process of manufacturing products. 
to be used in new production. 
 
Post-consumer recycling:  
The reprocessing of waste materials that have been collected after they have spent a period. 
of time in use. 
 
Design for disassembly (DfD):  
A design principle that calls for the end-of-life options of how the product, components 
and materials can be deconstructed. 
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Appendix C: Screenshots of the AI-DPM Developed and Served as a Web application 

 

Figure C1: The starting page where user uploads an Excel or CSV file of the deconstruction data (Screenshot from the deployed AI-DPM model)  
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Figure C2: User trying to locate the file directories where the data reside, ready to try AI-DPM (Screenshot from the deployed AI-DPM model)  
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Figure C3: User clicks on Modelling, and selects deconstructability scores for the AI-DPM engine to output prediction (Screenshot from the deployed AI-DPM 
model)  
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Figure C4: Once the AI-DPM outputs the prediction, User have the choice to save the prediction as a report, like audit report (Screenshot from the deployed AI-
DPM model)  


