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A family of closed form expressions for the scalar field of strongly focused

Gaussian beams in oblate spheroidal coordinates is given. The solutions satisfy

the wave equation and are free from singularities. The lowest order solution in

the far field closely matches the energy density produced by a sine condition,

high-aperture lens ill uminated by a paraxial Gaussian beam. At the large waist

limit it reduces to the paraxial Gaussian beam form. It is equivalent to the

spherical wave of combined complex point source and sink but has the

advantage of more direct interpretation.

OCIS codes: 140.3430, 260.2110.

There is much interest in obtaining descriptions of Gaussian beams extending beyond the

paraxial case, prompted by many diverse uses of strongly focused laser beams in fields

such as microscopy, optical information storage or optical trapping. A variety of infinite

series, integral and approximate solutions have been proposed. However, as the beam

divergence angle grows these models become either computationally onerous or

increasingly inaccurate. A particularly simple description of Gaussian-like focused beams

is possible in oblate spheroidal coordinates.1 The scalar field of the lowest order mode

can be expressed as:
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where k = 2π/λ and ξ, η and ϕ are oblate spheroidal coordinates described in terms of

Cartesian x, y and z as:2
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The time dependent factor exp(-iωt) is implied but omitted for brevity. The scalar field of

expression (1) is a solution of the wave equation and has many properties expected from

a fundamental mode Gaussian beam beyond the paraxial approximation.1 However, it's

major shortcomings are a circular singularity of radius d in the beam waist plane and a

discontinuity occurring on the "focal disc" circumscribed by the singularity, apparently

violating energy conservation - see Fig. 1.

We observe that removal of both the singularity and the discontinuity can be

accomplished by adding a second wave to give
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The scalar field (3) is also an exact solution of the Helmholtz equation. It can be

described as consisting of a superposition of the outgoing wave (1) and an incoming

wave represented by the second term in (3). A similar interpretation in the context of a

beam wave superposition in Cartesian coordinates has recently been given by Sheppard

and Saghafi,3 who propose cancelli ng out the singularity due to a complex point source

at z = iz0 by the addition of a second, incoming wave associated with a sink point at the

same location.

By substituting the coordinates (2) into the distance from the complex point source

R = [x2 + y2 + (z - iz0)2]1/2 and setting z0 = d we obtain, after some algebra, the identity

R = d(ξ - iη). Apart from a constant factor, the spheroidal waves (1) and (3) can thus be

shown to be identically equivalent to Deschamp's complex point source wave4 and the

combined source and sink wave,3 respectively. This equivalence permits more intuitive

interpretation of the complex point waves than is possible through the usual description

as spherical waves associated with sources (or sinks) in complex space. The outgoing

wavefronts can be naturally depicted as oblate elli psoids of constant ξ emanating from
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the focal disc predominantly in the direction of positive z (Fig. 1). The incoming

wavefronts similarly converge on, and sink into, the focal disc from the direction of

negative z - the waves exactly mirror each other upon time reversal. Together, the two

waves form what is a physically realisable beam, continuous across the z = 0 plane

(Fig. 2). Unusual feature of the combined solution (3) is a standing wave component near

the z = 0 plane. This component grows in significance as kd is reduced and represents

interference of the "wings" of the incoming and outgoing waves. This is easily

demonstrated be setting η = 0 in expression (3), which corresponds to the z = 0 plane

outside the focal disc. We then obtain a pure standing wave characterised by the same

wavelength as the incoming or outgoing waves - see Fig. 3. It should be noted, however,

that producing such interference would require a focusing element subtending a solid

angle greater than 2π.

In the plane of the beam waist and at the limit of large waist radius, i.e. for kd >> 1,

expression (3) can be reduced to the familiar paraxial Gaussian beam form

exp − +k x y d kd2 2 2
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(4)

by applying the binomial expansion for η and neglecting terms of order greater than two.

The parameter d can now be identified with the Rayleigh range: d = kw0
2/2, where w0 is

the beam waist radius.

Inasmuch as the two terms in (3) are an incoming and an outgoing part of the same

wave, they can be examined separately for the purpose of investigating boundary

conditions. In the far field, as represented by ξ → ∞, the incoming wave tends to:

 − − − −exp cos exp ,kd ikr ikr1 α
� 
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(5)

since ξ → r/d and η → -cosα, where r and α are the distance from the origin and the

angle made with the negative z axis, respectively. As required, expression (5) represents

a spherical wave with a centre at the origin and angular weighting exp[-kd(1 - cosα)].

The normalised irradiance of the incoming wave in the far field is then:

exp[-2kd (1 - cos α)]. (6)
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We can compare expression (6) to the irradiance on a reference sphere representing the

principal surface of an aberration-free lens obeying the sine condition5 and ill uminated by

a paraxial Gaussian beam of radius w, namely:

cos exp
sin
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w
(7)

where f is the focal length. While the forms of (6) and (7) are different, there is close

resemblance: for small angles 2(1 - cosα) ≈ sin2α, hence the two irradiances become

approximately equal if we set 2f 2/kw2 equal to d = kw0
2/2, thus establishing direct

correspondence between the beam parameters prior to and after focusing. Although the

agreement is very close even for small values of kd - see Fig. 4 - we must nevertheless

conclude that the scalar field (3) does not represent exactly the field of a Gaussian beam

focused by a lens. Rather, it can be thought of as the complete field of a Gaussian wave

which is spherical in the far field and is further characterised by boundless angular extent

on the surface of a sphere, just as a paraxial Gaussian beam has infinite extent in any

transverse plane.

Finally, the wave (1) is merely the lowest order solution from a set containing

products of spherical harmonics and spherical Hankel functions of the first kind.1 This set

can be obtained by transforming (separable) spherical harmonic waves from prolate to

oblate spheroidal coordinates using a transformation proposed by Flammer.1,2 Similarly,

the wave (3) is the lowest order in a new, singularity-free set constructed using spherical

Bessel functions of the first kind jn, as follows:
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where p = kd(ξ - iη), P sn
m

� �
 are associated Legendre functions and s = (ξη - 1)/(ξ - iη).

As we have seen, the distance from the complex point source-sink can be expressed in

terms of the oblate coordinates as R = d(ξ - iη), hence p = kR; likewise s = (z - id)/R. By

substituting these identities into expression (8) we obtain a more convenient form
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which can be interpreted as a set of spherical harmonic waves centred on a complex

point source-sink. The set (9) is identical to the one hypothesised by Couture and

Belanger,6 except for the use of Bessel instead of Hankel functions. The spherical Bessel

functions are singularity free at the origin, unlike the Hankel functions, and are therefore

appropriate for describing physically realisable beams. It remains to be determined which

types of higher order beams can be generalised in a natural way by the set (9). However,

preliminary studies indicate that Laguerre-Gaussian beams are likely candidates.
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Fig. 1. The real part of the wave (1) plotted in the vicinity of the geometric focus with

kd = 2.3, showing the singularity and the discontinuity.
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Fig. 2. Field contours at t=0 for the combined wave (3) with kd = 2.3, shown in the plane

of the beam axis.
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Fig. 3. Time-averaged energy density of the wave (3) with kd = 1, shown in the focal

plane z = 0 and normalized to 1 at x = 0.
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Fig. 4. Far-field irradiance of the Gaussian wave (6) for beams with kd = 5 (a) and

kd = 2.3 (b) (continuous lines) compared to irradiance at a sine-condition lens (7)

(broken lines), plotted against polar angle. The divergence half-angles are 39° and 69°,

respectively.
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