UNIVERSITY OF HERTFORDSHIRE

MSc BY RESEARCH DEGREE THESIS

PRECISION PHOTOMETRY AT THE UNIVERSITY OF HERTFORDSHIRE'S BAYFORDBURY OBSERVATORY

Author: Peter John BECK Supervised by: Dr Mark GALLAWAY Dr Phillip LUCAS

Centre for Astrophysics Research School of Physics, Astronomy and Mathematics University of Hertfordshire

Submitted to the University of Hertfordshire in partial fulfilment of the requirements of the degree of Master of Science

November 2017

THIS PAGE INTENTIONALLY LEFT BLANK

Abstract

This thesis presents work conducted at the University of Hertfordshire's Observatory at Bayfordbury Hertfordshire to develop a model to predict the photometric precision of their 40cm aperture telescopes whilst observing a wide range of targets.

A model was formulated with suitable equations to predict the expected precision with a specified target by using only their catalogue magnitude, the selected exposure time and anticipated value of air mass. Significant effort was made to quantify the parameters for a particular telescope working in V band with 2x2 binning. The model's equations were predicted to be valid from magnitude 5 to magnitude 16.5 and for an air mass of up to 3.0.

The predicted results have typically been within 2 mmag of the measured values obtained from light curves, albeit there are a number of mismatches that may in part be due to poor observing conditions.

As part of the validation exercise, the technique was used to identify which predicted exoplanet transits would be satisfactorily captured by a telescope at the Bayfordbury Observatory, and to optimise the exposure time. Of the achieved observations with images correctly taken during a predicted transit (apart from one very faint target in adverse weather conditions), 12 satisfactory transits were captured and are presented in this thesis.

Declaration

I declare that no part of this work is being submitted concurrently for another award of the University or any other awarding body or institution. This thesis contains a substantial body of work that has not previously been submitted successfully for an award of the University or any other awarding body or institution. Except where indicated otherwise in the submission, the submission is my own work and has not been submitted successfully for any award.

Peter J Beck November 2017

CONTENTS

1	INTRODUCTION	1
1.1	Basic Concepts	1
1.2	Technical Background	5
1.3	Study Aims	22
2	METHOD	23
2.1	Definition of Generic Model of Equations for Any Telescope and Camera	23
2.2	Method of Deriving Parameters for Equations for a Specific Telescope and Camera	24
2.3	Method of Calculating Achieved Photometric Precision	29
2.4	Method of Assessing Photometric Precision	34
3	RESULTS	36
3.1	'Union Jack' Analysis	36
3.2	Derived Data for a Site Specific Telescope and Camera Configuration	38
3.3	Equations to Calculate Standard Deviation For a Specific Telescope and Camera Configuration	43
3.4	Observational Data	48
3.5	Comparison of Achieved Versus Predicted Precision	64
4	DISCUSSION	72
4.1	General	72
4.2	Comparison of Achieved Results Compared to Predictions	72
4.3	Revision of Equations to Better Match Results	74
4.4	Assessment of Achievements Compared to Objectives	74
4.5	Assessment of the Applicability of Methodology to Other Equipment	76
5	CONCLUSIONS	77
5.1	Overview	77
5.2	Applicability of Formulation to Future Observing Studies at the Bayfordbury	70
53	Ubservatory	/ð 78
0.0 C		
0		80
7	ACKNOWLEDGEMENTS	85
Appendix A	Telescopes and Cameras Available at Bayfordbury	87
Appendix B	Submitting Robotically Controlled Observations at Bayfordbury	
	Observatory	88
Appendix C	Location of Digital Copies of Image Data	88
Appendix D	Proprietary and Free Issue Software Packages Used	88
Appendix E	'Union Jack' Flat Field Results	89
Appendix F	Derivation of Relationship Between Instrument and Catalogue Magnitudes	92
Appendix G	Recommended Formulation to be Used at Bayfordbury for Calculating a Maximum Exposure Time for any Given Target	106
Appendix H	Light Curves of Non-Transiting Targets	107

Appendix I	Light Curves with Transits of Exo-Planets	124
Appendix J	Equation Fitted Exo-Planet Light Curves	129
Appendix K	Eclipsing Binary Transit Light Curves	141

FIGURES

Figure 1 Illustration of Band Passes with Different Types of Filter	2
Figure 2 Horizontal and Vertical Aperture Slices of WASP-52 in Image 27090	4
Figure 3 Predicted Scintillation Noise Levels With Different Exposure Times and	
Aperture Sizes	13
Figure 4 Example of the Sky Conditions Whilst Observing HAT-P-20 on 24/25.11.2016	48
Figure 5 Example of Increasing Sky Temperature Due to Cloud Conditions	
Terminating Observations (27/28-3-2017)	49
Figure 6 CCD Temperature Variation on 13/14-9-2016	61
Figure 7 All Telescopes: SD Error (using Counts) v Magnitude	65
Figure 8 CKT Telescope: SD Error (using Counts) v Magnitude	65
Figure 9 CKT Telescope: Absolute SD Error (%) (Using Counts) v Magnitude	66
Figure 10 CKT Telescope: Absolute SD Error (using Counts) (%) v Air Mass	66
Figure 11 All Telescopes: SD Error (using Catalogue Magnitude) v Magnitude	67
Figure 12 CKT Telescope: SD Error (using Catalogue Magnitude) v Magnitude	68
Figure 13 CKT Telescope: Absolute SD Error (%) v Magnitude	68
Figure 14 CKT Telescope: Absolute SD Error (%) v Air Mass	69
Figure 15 Comparison of Measured Transit Depth and Reference Transit Depths v	
Magnitude	70
Figure 16 Light Curves For the Transit of WD 1145+017 Taken on 25/26.3.2016 Using	
TYC 272-650-1 as the Reference Star	73
Figure 17 Aperture Slice For WD 1145+017 in Image 39486	74
Figure 18 Histogram of Gradients with a Sample UX UMa Images	89
Figure 19 Histogram of Gradients with a Sample V795-Her Images with 60s Exposure	
Time	90
Figure 20 Histogram of Gradients with a Sample V795-Her Images with 120s Exposure	
	91
Figure 21 (m ² - m) v Air Mass for BD+52 1722 on 30.4.2013 with a V Filter	94
Figure 22 Plot of Instrument Magnitude ($m't = 1s, X = 1.0$) Versus Catalogue	
Magnitude (m)	97
Figure 23 Predicted and Measured ($m't = texp, X = X$) V Catalogue Magnitude (m)	100
Figure 24 Magnitude Error ($\Delta m'$) V Catalogue Magnitude (m)	101
Figure 25 Predicted and Measured ($m't = texp, X = X$) V Catalogue Magnitude (m)	105
Figure 26 Magnitude Error ($\Delta m'$) V Catalogue Magnitude (m)	105
Figure 27 Plot of Count Versus Exposure Time with Different Binning Options	106
Figure 28 WASP-10 Check Star 1213-0608720 of 13/14-9-2016 by CKT Telescope	107
Figure 29 WASP-10 Check Star 1214-0612767 of 13/14-9-2016 by CKT Telescope	107
Figure 30 WASP-52 Check Star TYC 1161-890-1 of 23/24-9-2016 by CKT Telescope	108
Figure 31 WASP-52 Check Star TYC 1161-728-1 of 23/24-9-2016 by CKT Telescope	108
Figure 32 WASP-52 Check Star I YC 1161-890-1 of 30-9-2016 by CKT Telescope	109
Figure 33 WASP-52 Check Star I YC 1161-728-1 of 30-9-2016 by CKT Telescope	109
Figure 34 WASP-52 Check Star TYC 1161-890-1 of 4-11-2016 by CKT Telescope	110

Figure 40 COROT-1 Check Star COROT-102915842 of 19/20-1-2017 by CKT Telescope 113 Figure 41 COROT-1 Check Star COROT-102881564 of 19/20-1-2017 by CKT Telescope 113 Figure 46 WD 1145+017 Check Star UCAC4 458-051088 of 25/26-3-2017 by CKT Figure 48 HAT-P-20 Check Star TYC 1910-361-1 of 24/25-11-2016 by JHT Telescope 117 Figure 49 HAT-P-22 Check Star TYC3441-370-1 of 28/29-11-2016 by JHT Telescope 117 Figure 76 WASP-10 Transit of 13/14-10-2016 With CKT Telescope and Equation Fitting 129 Figure 77 WASP-52 Transit of 23/24-9-2016 With CKT Telescope and Equation Fitting 130 Figure 80 HAT-P-20 Transit of 2-11-2016 Taken Using CKT Telescope and Equation

Figure 81 COROT-1 Transit of 19/20-1-2017 Taken Using CKT Telescope and Equation	
Fitting	134
Figure 82 HAT-P-4 Transit of 8/9-4-2017 Taken Using CKT Telescope and Equation	
Fitting	135
Figure 83 HAT-P-20 Transit of 24/25-11-2016 Taken Using JHT Telescope and Equation	
Fitting	136
Figure 84 HAT-P-22 Partial Transit of 28/29-11-2016 Taken Using JHT Telescope and	
Equation Fitting	137
Figure 85 WASP-10 Transit of 17/18-10-2016 With RPT Telescope and Equation Fitting	138
Figure 86 WASP-52 Transit of 4-11-2016 With RPT Telescope and Equation Fitting	139
Figure 87 GJ 436 Transit of 26/27-3-2017 Taken Using RPT Telescope and Equation	
Fitting	140
Figure 88 UX UMa Eclipse with V Filter on CKT Telescope on 30-4-2013	141
Figure 89 UX UMa Eclipse with V Filter on DAT Telescope on 21-6-2013	141
Figure 90 UX UMa Eclipse with V Filter on DAT Telescope on 18-7-2013	141
Figure 91 UX UMa Eclipse with V Filter on CKT Telescope on 7-9-2013	142
Figure 92 UX UMa Eclipse with V Filter on CKT Telescope on 9-9-2013	142
Figure 93 UX UMa with V Filter on JHT and RPT Telescopes on 27-5-2017	142

TABLES

Table 1 Analysis of 3 Images for WASP-10 Taken by CKT Telescope 13/14-9-2016	
Using Measured Counts	. 50
Table 2 Derived and Measured Standard Deviations Using Measured Counts (No	
Transits Present)	. 53
Table 3 Analysis of 3 Images for WASP-10 Taken by CKT Telescope 13/14-9-2016 To	
Calculate the Predicted SD Using Catalogue Magnitudes	. 54
Table 4 Predicted and Measured Standard Deviations Using Catalogue Magnitudes	
(No Transits Present)	. 58
Table 5 List of Observations Made Capturing Full Exoplanet Transits	. 59
Table 6 List of Observations with Eclipsing Binary Star UX UMa	. 62
Table 7 Trend Line Slopes for ADU Count v Pixel Number For Various Cuts Through	
Image with 60s Exposure Time	. 89
Table 8 Trend Line Slopes for ADU Count v Pixel Number For Various Cuts Through	
Image with 60s Exposure Time	. 90
Table 9 Trend Line Slopes for ADU Count v Pixel Number For Various Cuts Through	
Image with 120s Exposure Time	. 91
Table 10 Images Produced For Four Landolt Catalogue Stars	. 92
Table 11 Stars, Catalogue Magnitudes and Image Sources	. 93
Table 12 Derivation of $(m't = 1s, X = 1.0)$ From Measured $I_{dc}=(Ntarget)t = texp, X = X \dots$. 97
Table 13 Verification by Comparison Between Predicted and Measured Target Counts	
Using Reference Images	100
Table 14 Validation by Comparison Of Predicted and Measured Target Magnitudes	104

1 INTRODUCTION

1.1 Basic Concepts

Photometry is the technique of measuring the brightness of astronomical objects (Cooper *et al.* 2004). Precision photometry is a crucial requirement for many astronomical observations, in particular in the search for exoplanets (Hartman *et al.* 2005).

Scientific quality Charge Coupled Devices (CCDs) operating in optical wavelengths are routinely used for astronomical purposes. A CCD camera has a large silicon chip with many thousands of CCDs that are arranged in a matrix to form an imaging detector. These matrix elements are called pixels and the photons collected by the telescope are focussed on these pixels to capture an image. Each pixel has a well that accumulates electrons that have been excited to the conductive band by the absorbed incident photons, and as a result the pixels progressively acquire electrical charge. After a suitable exposure time, the electrical charges on the pixels are progressively read and digitised to generate a frame of data called a raw image. The raw images are then calibrated and stored in a form¹ suitable for analysis. CCD cameras used for astronomical purposes are usually cooled to minimise the thermal noise on the measurements. For example the Super Wide Angle Search for Planets (SuperWASP) project had the cameras operating at -75°C (Pollacco *et al.* 2006).

Software is used to identify the target star in an image and in turn measure the brightness of the target star (the measurement of energy (flux) is initially in units of counts and then converted to units of magnitude²). A plot (called a light curve) is then produced of the measured brightness over time from a sequence of images. For example, the transit of an exo-planet in front of a host star can be observed as a short duration (typically two or three hours) dip in the light curve, although exoplanet detections with shallow light curve dimmings may require processing by sophisticated software (Collier Cameron *et al.* 2007).

These light curves are also called time series photometry, where photometry is the measurement of the amount of energy received from an object over a set time period and at a specified wavelength band. For scientific work, it is essential that the noise on the light curve is kept as low as possible for precision photometric readings. It is common practice to improve the precision by grouping together several measurements in a short time window to give a single value (this process is referred to as time "binning").

Quantum Efficiency (QE) is a measure of how efficiently photons are detected by the observing device. In the case of a CCD, the QE at a specified wavelength is the proportion of photons that are detected (electrons raised to the conductive band). A CCD camera is far more efficient than human eyesight as its QE is better by a factor of approximately 100. Furthermore, a CCD camera has a much wider operating wavelength band (typically in the range 350nm to 1,100nm compared to 450nm to 650nm for a human eye) (Howell 2006). High QE is important as the higher the Signal to Noise Ratio (SNR) the greater the precision, and the exposure time will be shorter to achieve the same count and in turn improve cadence.

magnitude=-2.5log10(flux/zero point flux).

¹ The files are structured to meet the requirements of the Flexible Image Transport System (FITS) format NASA., 21.9.2016, that is the standard format used for astronomy images and is the format required by most image processing software.

² Magnitude is defined by Pogson's equation where:-

By definition, an increase in flux by a factor of 100 reduces the magnitude by 5.

Calibration of raw images entails using a set of master calibration files to:-

- (a) Remove bias (the output from each pixel with a zero second exposure).
- (b) Remove dark current (the bias due to thermal noise that increases with time).
- (c) Flat field an image to compensate for the different QE of each pixel and the variation in the illumination across the image field of a chip due to optical conditions in the telescope and fore-optics (eg from dust particles and vignetting) such that all uniformly illuminated functional pixels generate the same value after flat fielding (Budding & Demircan 2007).

It is standard practice to introduce filters to restrict the measurements to photon wavelengths within a specified bandwidth. For example, the Johnson Cousins photometric system has filters called U (ultraviolet), B (blue), V (visible ie green to yellow), R (red) and I (near infra-red) (Cooper et al. 2004). However, this system has limitations in having some wide overlapping bandwidths; consequently other systems such as Sloan filters are also employed, as illustrated in Figure 1 (Bessell 2005).

Figure 1 Illustration of Band Passes with Different Types of Filter

Some filters (such as an H_{α} filter) have pass bands chosen to isolate specific spectral line features. Most telescopes can use only one filter at a time to observe a target, however there are specialist telescopes that can simultaneously observe a target with more than one filter. For example, a recent study requiring simultaneous multi-band observations (Ducci 2016) used the Rapid Eye Mount (REM) telescope (that uses plate dichroic splitting) to simultaneously observe with Sloan g, r, i and z filters.

The earth's atmosphere attenuates light. The greater the distance that the light travels through the atmosphere (represented by a term called "air mass") the greater the attenuation. At high values of air mass, there can be significantly more attenuation of blue light rather than red light – consequently the sun at dawn and dusk will appear to be redder than during the day. The same principal applies to observation with stars. The light from a predominantly red star will have significantly less attenuation at high air mass compared to that with a predominantly blue star.

A similar effect occurs with a star's image (a stellar disc) as its brightness reduces and reddens towards the outer edge that is called a limb. Limb darkening is caused by fewer photons escaping the stellar atmosphere at the edges of the limb (compared to those travelling radially outwards from the centre of the disc) because they have a relatively greater optical depth (for a given physical depth) to travel through the stellar atmosphere. Since the temperature reduces as the physical depth reduces then the light from a limb will have a lower radiative spectrum flux density and be more biased to the red end of the spectrum. Consequently the light curves for a transiting planet are more rectangular in shape for red light, whereas the transit floor for violet light can appear to be rounded for the entire transit (Haswell 2010).

Whilst images can be obtained by manually operating a telescope, the observation process can be automated by using robotically controlled telescopes. The user specifies key information such as which telescope and camera combination to use, the target star, the type of filter to select, and the number and duration of the exposures. If the observing conditions are suitable, the chosen robotically controlled telescope will make the required observations at the most appropriate time of night. The user can then access the image files from the telescope's computer at a convenient time afterwards.

Cadence is the rate at which images are taken and needs to be carefully chosen. A high cadence corresponds to a relatively short exposure time and consequently a faint star will have a low SNR as the pixels will capture less target signal compared to the overhead noise. Conversely the pixels capturing a bright target star's photons will saturate with the long exposure times that come with too low a cadence. Most measurement errors can be treated as Poisson and consequently the law of quadrature applies – the error is factored by $1/\sqrt{N}$ where N is the number of images in the same time bin.

Pixel binning is where the electron counts from several adjacent pixels are merged to form a single value. It is introduced to reduce noise, but at the expense of reduced resolution. The most common pixel binning options are 2x2, 3x3 and 4x4 for 4, 9 and 16 adjacent pixels respectively. Hardware pixel binning also reduces the full frame download time (compared to not doing any pixel binning) giving a slightly higher sampling cadence.

Scintillation noise is caused by pockets of hot and cold air bending the incident light from a star by different amounts (since the refractive index of light changes with air density) and consequently introduces distortions to the image (Ryan & Sandler 1998). Scintillation is also referred to as atmospheric air turbulence since the air is continually moving and consequently noise will be introduced as the distortions vary with time. One of the main benefits of observing from a high altitude site is that scintillation noise is much lower than at sea level. The measured noise on a signal due to scintillation is significantly reduced as the exposure time is increased, and smaller with larger diameter telescope apertures. In addition to introducing noise on the received light (flux) from a star, scintillation also increases the size of a star's disc on an image and as a result reduces the resolution of the image.

The angle subtended by a star to an observer is very small due to the enormous distances involved and the relatively small star diameter. So nominally a star viewed from a telescope in space should appear to be point like. However the light from a star passing through a telescope produces a diffraction pattern, with the central bright spot being referred to as an Airy disc (Carrol B.W. 2007). The arbitrary resolution test to differentiate between two sources is called the Rayleigh criterion that defines the minimum subtended angle (θ_{min}) for resolution as:-

$$\theta_{min} = 1.22 \frac{\lambda}{D} \tag{1}$$

Where λ is the wavelength of the light and D is the telescope aperture diameter.

Consequently a plot of measured signal strength over an image will appear as a collection of 'hills' with each 'hill' having the approximate shape of a bivariate normal distribution, as illustrated by the aperture slice of star WASP-52 that is presented as Figure 2.

Figure 2 Horizontal and Vertical Aperture Slices of WASP-52 in Image 27090

All of the stars observed in an image will have the same diffraction pattern, but will have different brightness levels/ peak amplitudes. Bright stars may appear to be larger than less bright stars because the outer edges of their diffraction patterns are more visible. The diffraction patterns with the Hubble Space Telescope results in the image of a star being ≈ 0.1 " across, as opposed to a width of ≈ 1 " with a ground based telescope since that image is also distorted by atmospheric turbulence (Cooper et al. 2004). The observed distribution of flux over the group of pixels making up a stellar image is often approximated by an empirical Point Spread Function (PSF) (Budding & Demircan 2007), where "seeing" is the main cause of ground based PSFs being much broader than diffraction limited PSFs. The telescope is said to be diffraction-limited if there are no aberrations or any atmospheric turbulence present to broaden the PSF (Cooper et al. 2004). In addition the flux profile from ground based telescopes may be stretched as a result

of small tracking errors. Techniques such as lucky imaging and Adaptive Optics (AO) try to minimise the worst effects of atmospheric turbulence in an endeavour to obtaining diffraction-limited images.

One of the highest precision ground based measurements is claimed to have achieved 14µmag precision (Kurtz 2005), although this entailed the use of a "Whole Earth Telescope" and a large number of observations.

1.2 Technical Background

1.2.1 Photometry

The study of variable stars was the initial major driver for precision photometry (Baptista *et al.* 1995, Dmitrienko 1994). However, following the seminal first detection of an exoplanet by photometric means (Charbonneau *et al.* 2000, Henry *et al.* 2000), the search and characterisation of exoplanets has become a major focus of interest for precision photometry (Pollacco et al. 2006), (Collier Cameron et al. 2007), (Haswell 2010), (de Mooij & Jayawardhana 2013).

Photometry was previously conducted with photographic emulsions and flux measurement devices known as Photo Multiplier Tubes (PMTs). However Charge Coupled Devices (CCDs) in cameras have effectively superseded them, since relatively inexpensive CCD cameras are capable of taking images with a high SNR, high bandpass and better QE (*Howell* 2006). However, PMTs are still used in special applications such as those requiring continuous brightness measurements (Kozhevnikov 2012). Recently more use has been made of CMOS technology in astronomical observations in the Near Infra Red (NIR) part of the spectrum (Kannawadi 2016). Recent innovations indicate that CCD cameras may become available with a high QE in the UV frequency range (Hamden *et al.* 2016).

Each pixel in a CCD camera progressively accumulates a charge as it registers incident photons whilst an exposure is taken. At the end of an exposure a clocking process progressively transports the charge on each pixel across the chip. Poor Charge Transport Efficiency (CTE) will result in charges trailing behind their original charge with a potential loss of measured flux for all stars. However, modern CCD devices now have a very high CTE compared to earlier CCDs and consequently the losses are relatively low. The charge on each pixel is sequentially read and an Analogue to Digital Conversion (ADC) factor is applied to generate a digital value (and consequently losing some resolution by quantisation); this ADC factor is dependent on the pixel electron well capacity and the maximum digital value used by the software. In the common case of a 16 bit camera the maximum value= 2^{16} -1 = 65,535 unsigned Analogue to Digital Units (ADUs). One key CCD photometry limitation with bright stars is how large a charge a pixel well can hold and still provide linear performance (Castellano et al. 2004). Since even the latest CCD chips still have a similar typical maximum low noise well depth of 100,000e, then the previously used techniques to overcome this limitation are still relevant.

'Backside' illuminated CCDs (thinned CCDs illuminated from behind) are considered to be superior to 'frontside' CCDs (the photons have to travel through the surface gate structures before being absorbed by the silicon) as they are less affected by intra-pixel variations than front sided-illuminated devices (Buffington *et al.* 1991). The relative QE of a back sided CCD greatly exceeds that of a front sided CCD and has a better short wavelength light detection response (*Howell* 2006).

If the maximum charge on a CCD is exceeded, then a phenomenon known as bleeding (also known as blooming) occurs that can result in a complete column of pixels in the image saturating. One way of avoiding bleeding is to use antiblooming CCDs (Neely A.W. 1993). These CCDs have antiblooming gates inbuilt into the CCD so that saturated pixels have their excess charge 'drained off' without compromising adjacent pixels. However, antiblooming CCDs will have a lower QE (than non anti-blooming CCDs) as they lose a significant percentage of their active pixel area because of the extra circuitry (*Howell* 2006). Consequently an antiblooming CCD has the benefit of avoiding charge leakage down a column when a well capacity is exceeded, but it comes at the expense of a reduced well capacity and more non-linearity with a high pixel charge (Castellano et al. 2004). The reduced well capacity is a disadvantage since deep wells are required to achieve a large dynamic range, in particular if there is a significant difference in brightness between the target star and the available check stars (Castellano et al. 2004).

Astronomers have used a wide range of different standard CCD cameras for approximately 20 years. Many of the early CCD chips had limitations such as long read-out times (Castellano et al. 2004, Southworth *et al.* 2009) and had noise levels of up to 50 times greater than current chips (*Howell* 2006).

There are numerous factors that have a bearing on how a CCD camera is best employed, in particular:-

- (a) The selection of the exposure time for the target to optimise the precision whilst keeping within the pixel linearity range. This decision is complicated if there is a need to take relatively frequent images to observe variable signals such as those during an exoplanet transit.
- (b) Read noise that is essentially a fixed error on each pixel.
- (c) The chosen CCD operating temperature. The lower the temperature the lower the level of dark current. However, too low a temperature might result in temperature instability over the observing period (in particular on a warm summer's night) and consequently introduce a different dark current to that calibrated for. Furthermore, continuously operating a cooler could result in electrical noise affecting the measurements.
- (d) Full frame download time (CCD read out time). This was particularly applicable with early CCD cameras where the read out time could be relatively high compared to the exposure time with bright stars. For example, Castellano (Castellano et al. 2004) had a CCD camera that took 13s to read a frame of data with an exposure time of 2s, that combined with other overheads resulted in a total elapsed time of 36s per 2s exposure. Even today, scientific cameras are on the market that also have a read out time of 13s, such as with the SBIG STX-16803 (SBIG; 7.10.2016).
- (e) The choice of filter type and its QE versus wavelength for the target.
- (f) The selected level of pixel binning. Eibe (Eibe et al. 2012) states that "considering the requirements for signal to noise ratio (S/N), exposure times and spatial sampling of the stellar profile for the seeing that is typically achieved at the observing site, the response of the CCD was found to be optimal if binned 2x2." In addition binning improves the SNR for very dim diffuse objects, since there is only one read out noise error with each bin (SBIG 2003). The disadvantage of binning is that the spatial resolution is reduced.

(g) Deciding whether sufficient information can be obtained from capturing only a partial frame of data and consequently reduce the download time.

In addition the object needs to be adequately sampled to centre and shape the PSF of a star. As a guide to having a high enough sample, a sampling parameter (r) is used that is defined by (Howell 1996):-

$$r = \frac{FWHM}{p} \tag{2}$$

Where p is the pixel size (arc seconds) and FWHM is the Full Width Half Maximum (arc seconds) i.e. the width of a cross section through the centre of a star's image where the pixel count exceeds half the peak pixel count.

A value of r<1.5 is considered to be under sampled and lower values will result in increasingly larger errors (*Howell* 2006).

Filters are often used with a camera to select particular wavelength pass bands (Dmitrienko 1994) (see Figure 1). The standard UBV system used with a PMT is known as the Johnson system (Johnson & Morgan 1953, Budding & Demircan 2007)]. This system was extended to UBVRI to create the Johnson-Cousins system (Cousins 1974, Warner 2006). The introduction of CCD cameras required a different set of filters called Bessel filters for the production of equivalent results as from a PMT (Bessell 1990). The Sloan Digital Sky Survey (SDSS) defined an alternative photometric system for use with large area CCD cameras. The SDSS filters (ugriz) define five pass bands that do not overlap³ (Fukugita *et al.* 1996). There are however other standards such Gaia, Hipparcos and Tycho, consequently a matched transformation is required so that results derived from different photometric systems can be compared (Jordi *et al.* 2010, Bessell 2000, Davenport *et al.* 2006, Jordi *et al.* 2006).

Dravins et al (Dravins D. 1997) noted a colour dependence to scintillation, showing that observations in red light are less adversely affected than blue light and therefore limiting the bandpass is highly desirable. Everett and Howell (Everett & Howell 2001) judged that a V filter to be the best compromise between CCD QE and observing in redder bands for which variable night-sky emission lines would add to the noise. However, the consequences of differential atmospheric extinction can be considered to be small with differential photometry as the contribution is only due to the colour differences between the target and comparison stars (Eibe *et al.* 2011).

The key calibration processes for data taken by a CCD camera (Snellen 2008), (Cooper et al. 2004), (Gallaway 2016):-

- (a) Compensate for Faulty Pixels.
- (b) Bias frame subtraction.
- (c) Dark frame current removal.
- (d) Flat field correction.

Faulty pixels arise from shortcomings in their manufacture and usually have fixed numerical values varying from very high values (hot pixels) to very low values (cold

³ The Johnson-Cousins standard has a large overlap of the red pass band with the V and I pass bands. The appropriate master calibration frame needs to be selected for the chosen filter when calibration is conducted.

pixels). Research grade CCD chips are CCD chips selected with low numbers of faulty pixels present. The measurements from correctly functioning pixels might also be compromised by a cosmic ray and should be treated as for faulty pixels.

Compensation can be performed by replacing an erroneous value by the average of the pixel counts of adjacent pixels, or by just masking them out. No compensation is made for other extraneous error sources such as cosmic rays and overflying aircraft captured in an image (a particular problem at the Bayfordbury Observatory) – these corruptions need to be identified by careful examination of the images.

A suitable combination of bias and dark current master frames are subtracted from a light frame as part of the calibration process. Bias frames are produced with a zero second exposure time⁴; a bias is applied to each pixel value to prevent the digital value from going negative since the word used for storing the number does not have a sign bit. (*Howell* 2006). The dark frame (dark current) is obtained by taking images with the camera shutter closed for selected 'exposure' times. The dark current could be scaled by the exposure time as this background electronic signal increases linearly with time and is often insignificant for many visible-light CCDs (Cooper et al. 2004). However, it is preferable to generate a tailor made set of master dark frames that map to the chosen light exposure time, selected CCD operating temperature and pixel binning option⁵ to simplify the calibration process and reduce the scope for interpolation errors.

Flat fielding is the process to correct for different pixel sensitivity to light with the selected filter. It also compensates for other shortcomings such as dust in the optical path and for the vignetting of the field of view (Budding & Demircan 2007).

It is usual to take multiple flat fields to improve the quality of the master flat field; with typically 5 to 10 calibrations per filter. For example, 120 flat field calibrations were taken over 5 days of an observing run (Everett & Howell 2001). Flat fields need to be made with a uniformly illuminated field (either as dome flats with a diffuse background, or as sky flats with a cloudless twilight sky). Each flat field taken needs to have filled the CCD wells (close to 50% full) to ensure a high SNR ratio. Dome flats are made inside an observatory by taking images of a diffusely illuminated white board (Budding & Demircan 2007). Ideally a master flat is generated by taking the median values from corresponding pixels in a series of flat fields that have been debiased and had the dark current subtracted. The master flat field is then normalised and subsequently divided into each image so that each pixel will nominally give the same count with the same illumination. It has been shown that the sensitivity variation across a CCD is independent of time (Balona et al. 1995). However, some contributors to flat field variation across a CCD frame may be temporary in nature and hence nightly flat fielding is common practice (Budding & Demircan 2007).

Photometric calibration uncertainties were considered to be the dominant source of systematic errors in the Pan-STARRS survey (Scolinic 2014) where the telescope is

⁴ Each telescope used at the Bayfordbury Observatory has a master set of 2x2, 3x3 and 4x4 pixel binning bias frames produced at the CCD operating temperature of -20°C.

⁵ Each telescope used at the Bayfordbury Observatory has a master set of 2x2, 3x3 and 4x4 pixel binning dark frames produced at the CCD operating temperature of -20°C, for each of the fixed range of exposure times available to a user. The appropriate master dark frame is selected when calibration is conducted.

located at high altitude with limited atmospheric turbulence. However, atmospheric extinction and scintillation can be one of the largest sources of error in photometric observations (Balona et al. 1995), (Gilliland & Brown 1992), (Hartman et al. 2005), (Ryan & Sandler 1998).

Absolute (all sky) photometry calibrates a local photometric system to a standard or reference system, by conducting detailed comparisons with the magnitude and colour values of standard stars (Budding & Demircan 2007)]. The major disadvantage of conducting absolute photometry, apart from having more steps than differential photometry (see below), is that it requires very good (transparent and stable/ constant) sky conditions, and furthermore these "photometric nights" rarely occur at most observatories. In addition, the required standard star frames may be unique to a given observing site and time of year (*Pecker* 1970).

Differential photometry is where one calculates the difference between a target's magnitude and that of a comparison star (or the average of several comparison stars) (Cooper et al. 2004); it provides the most accurate method of measuring small variations in magnitudes (*Warner* 2006). One of the key benefits of differential photometry is that it can be conducted on nights of lesser quality (Budding & Demircan 2007). The basic implementation of Pogson's equation to calculate the differential magnitude (Budding & Demircan 2007) is:-

$$\Delta m' = -2.5 \log\left(\frac{object-sky}{comparison-sky}\right) \tag{3}$$

Where *object*, *comparison* and *sky* are the respective counts for the target, reference star and sky background.

Differential photometry obtains magnitudes of a target star relative to a non-variable reference star of known magnitude. A field of standard Landolt stars (Landolt 1992) can be observed with Johnson UBVRI filters in conjunction with the observations of the survey fields to calibrate the magnitudes in each filter (Everett & Howell 2001). The key benefit of differential photometry is that the unsteadiness of the Earth's atmosphere (seeing) and extinction will apply equally to all stars in the Field Of View (FOV). It is usual that differential photometry against a reliable reference star is also conducted with several check stars. The light curves for the check stars should not vary with time if the processing is correctly conducted (eg using the correct aperture sizes), the check stars are of similar magnitude to the reference star and the observing conditions and measurements are of good quality.

A check star should be:-

- (a) in close proximity to the target star to reduce the effects of differential atmospheric extinction and noise from atmospheric scintillation, to reduce differences in the stellar point spread functions due to optical aberrations, and to minimise spatial variations in obscuring clouds (Everett & Howell 2001).
- (b) a similar colour as the target star (Ryan & Sandler 1998). A high air mass will result in light from blue stars being attenuated more than the light from red stars, and in turn artificially bias the differential photometry measurements taken at high air mass. Since observations of exo-planet transits last for a long time then it is likely that some readings will be taken at high air mass.
- (c) of similar magnitude as the target star such that all CCD pixel measurements have high ADU counts but remain within the linearity range. Under estimation of

errors can occur by using brighter check stars as they will have a higher SNR and hence a lower estimate of error (Koppelman 2010).

Software is usually used to automate the process of establishing the magnitudes of the target and check stars relative to the supplied magnitude of the reference star. Any unreliable check stars identified (with magnitudes having a relatively high standard deviation) are discarded. If the light curves for check stars vary during the observing session, it may be because they are variable stars, there has been an anomalous event or some non-uniform obscuration in an image has occurred. The changes in the mean magnitude of a bright ensemble of check stars can be used to correct the instrumental magnitudes of each star to produce a precise differential light curve for each star (Everett & Howell 2001); the sifted ensemble star light curves was found to have a typical standard deviation from their means of 2 milli magnitude with a target with V magnitude of 14 with a 0.9m telescope (Everett & Howell 2001).

The importance of having a high ADU count for **both** the target and reference star is illustrated using the following equation (Cooper et al. 2004) to give an approximate estimate of the magnitude error (δm) given a flux (F) with an uncertainty of δ_F :-

$$\delta m = 2.5 \log_{10} (1 + \frac{\delta_F}{F}) \tag{4}$$

Assuming that the flux uncertainty of \sqrt{F} dominates gives:-

$$\delta m = 2.5 \log_{10} (1 + \frac{1}{\sqrt{F}}) \tag{5}$$

Thus if one star has a flux count of 10,000 then the instrument magnitude error is ~ 0.01 . If a star has a low flux reading of 1,000 then the error is ~ 0.03 .

Consequently an ADU reading of 50,000 corresponds to a magnitude error of ~0.005, i.e. 5 milli magnitude.

Aperture photometry places an aperture around the target in the image to measure the combined target and implicitly sky flux as well. A concentric annulus (or another aperture) is then placed over a relatively nearby clear area in the image to measure the sky background flux; a software package is usually used to calculate the target flux (Cooper et al. 2004). The number of pixels in the sky annulus should be relatively large (a factor of 3) compared to the number in the source aperture (*Howell* 2006). There should not be any extraneous bright sources (such as stars or galaxies) in the sky annulus used to derive the background sky magnitude as this will artificially reduce the measured target magnitude. An alternative is to use profile fitting using a Point Spread Function (PSF) obtained from nearby bright stars to establish the PSF for the target, and in turn establish its photon count. Profile fitting is more appropriate if there is severe blending (*Howell* 2006) where other stars are also present in an aperture.

PSF photometry is chosen with very crowded fields (where it becomes difficult to conduct aperture photometry) such as obtaining light curves for main belt asteroids (Szabo 2016), (Pal 2012). However, Gilliland reported that PSF could not be relied upon as it varied across the CCD chip and also with time (Bramich 2008, Gilliland *et al.* 1991, Warner 2006). PSF on the target star's image shape can be conducted by either profile fitting or by using an algorithm (Naylor 1998). In large extragalactic surveys it is necessary to automate the extraction of source data in astronomic

images or Schmidt plates due to the large number of targets, as it would be far too time consuming to process manually (Bertin & Arnouts 1996, Maddox *et al.* 1990, Irwin 1985). It has been found that aperture photometry gives better precision than PSF photometry for the brightest stars, but PSF photometry gives better precision with fainter stars due to the presence of higher sky flux through an unweighted aperture (Hartman et al. 2005).

Relative photometry is where the known magnitude of the comparison star is added to the target star's differential magnitude (Cooper et al. 2004). Difference image photometry, also known as or Difference Image Analysis (DIA) or image subtraction (Tomaney A.B. 1996), is a useful variation of differential photometry for measuring large amplitude changes in a crowded field (*Howell* 2006) and in these circumstances superior to profile fitting photometry (Bramich 2008).

One feature of observing exoplanets and binary stars is that their orbital time is often precisely known (Conroy *et al.* 2013, Samolyk 2013, Gursoytrak *et al.* 2013); consequently greater precision can be achieved by obtaining data from multiple observations and then temporal bin the data into small bins of similar phase angle. This process is referred to as "folding". Assuming Poisson noise, folding reduces the error in a bin by $1/\sqrt{N}$, where N is the number of samples in a given bin (Castellano et al. 2004).

Telescopes are often described by their "focal ratio" or "F value" (Jenkins 1957), (Carrol B.W. 2007) where F=f/D, where f is the focal length of the objective lens and D is the aperture diameter. The speed of an optical system is 'faster' the higher the illuminance (J) – this is defined as the amount of light energy per second focussed on a unit area of the resolved image. From geometry it can be shown that

 $J \propto \frac{1}{F^2} \tag{6}$

Thus the greater the focal length of the telescope, the greater the F number and in turn the lower the illuminance. Conversely, reducing the value of f, gives a smaller the value of F and in turn the greater the value of J. Thus a focal reducer (reducing the value of f) will increase the illuminance on a CCD chip, however the magnification (M=(f_{objective}/f_{eyepiece})) will also be reduced. A reduced magnification means that observed size of a star's image will become smaller on the CCD chip (with the star's image still receiving the same number of incident photons as it would have done without a focal reducer). Consequently the exposure time with a focal reducer needs to be shorter (to obtain the same number of electrons in a given pixel well as would have been obtained without a focal reducer) and can also lead to 'under sampling' of an image (ie insufficient pixels representing a star to accurately describe its profile) (Castellano et al. 2004). A reduced magnification $(M=(\theta_{eventue}, \theta_{objective}))$ with a fixed eyepiece angle means that the objective angle is larger - ie there is a larger Field Of View (FOV) and potentially increases the number of suitable check stars in the FOV (Castellano et al. 2004), or is more suitable for applications studying faint extended objects (Afanasiev 2005). However, a focal-reducing imager can be prone to internal reflections which may slightly increase the noise levels (Southworth et al. 2013) and furthermore any additional optical component will reduce efficiency.

The 'plate scale' (P) of an image defines the angle subtended at a pixel and is usually quoted in units of arcsecs per pixel (Howell 2006). Thus with a focal length

(f) in units of mm, a CCD pixel size (μ) in units of microns, 206,265 for the conversion from radians to arcseconds and 1000 for the conversion factor between millimetres and microns gives:-

$$P = \frac{206265*\mu}{1000*f}$$

(7)

1.2.2 Pixel Binning

There are two types of pixel binning that may be available with a CCD camera – offchip binning and on-chip binning.

SBIG consider that off-chip binning to be useful when a non-anti-blooming CCD chip is installed. When this option has been selected, it causes any binning to be performed after the CCD chip has been read and greatly reduces blooming. (SBIG 12.10.2016). In other words off-chip binning is a cosmetic process to avoid large vertical streaks in an over exposed image by averaging high pixel counts with adjacent low pixel counts and has no relevance with precision photometry.

The precise method how on-chip binning is conducted is unclear in many publications and needs to be carefully interpreted for the particular CCD chip used by the camera. The documentation provided by the camera supplier may not include crucial information on the operation of the appropriate CCD chip and consequently the manufacturer's documentation should be consulted. For example, many CCD cameras use the Kodak "KAF" series of CCD sensors and the maximum pixel well depth quoted for the SBIG KAF-6303E by the SBIG camera manufacturer (SBIG 2003) is 100,000e-. However, the CCD chip manufacturer explains that when conducting 2x2 pixel binning (KODAK 1999), two rows in the CCD chip are added to a horizontal register that has a CCD charge capacity of 200,000 to 240,000e-(KODAK 1999), the first two pixels in the horizontal register are then added to the output diffusion node (for reading) that has a CCD charge capacity of 220,000 to 240,000e-. In other words, the average maximum charge on all 4 pixels with 2x2 pixel binning is 220,000/4= 54,000e- and NOT 100,000e- as implied by the camera manufacturer. Paradoxically, Howell (Howell 2006) states that "Generally, the output register pixels can hold five to ten times the charge of a single active pixel", so in such circumstances there would not be a risk of saturation as a result of 2x2 binning.

1.2.3 Milli Magnitude Photometry With Small Telescopes (<1m)

Milli magnitude photometric precision can be achieved with 'small' telescopes, where 'small' refers to telescopes that typically have an aperture size of 20cm, but can be as large as 1m, (Alton 2013), (Balona et al. 1995), (Licchelli 2007), (López-Morales 2006), (Pollacco et al. 2006).

Three milli magnitude photometric precision (Castellano et al. 2004) was achieved with a small aperture telescope (0.2m) Meade LX200 and a consumer grade CCD camera (chip size 765x510 pixels of 9 microns size). This equipment was used to observe the transits of HD 209458b (V=7.63mag) and OGLE-TR-56 (V=16.56mag).

Tracking, auto-guiding (or both) is required otherwise the stellar images will drift across the CCD giving uniformly poor measurements.

The scintillation error with a small telescope and a bright target (Castellano et al. 2004) is shown to be the dominant source of error. Had the telescope's aperture

been D=0.4m (instead of 0.2m) then from inspection of equation (8) the scintillation noise would have been reduced by a factor of $2^{-2/3}$ =0.63 (also see Figure 3).

Figure 3 Predicted Scintillation Noise Levels With Different Exposure Times and Aperture Sizes

Differential photometry is well suited to detect transits, ideally with similar colour⁶ stars and small values of air mass, enabling a 1m telescope to achieve as low as 0.8 milli magnitude accuracy (Castellano et al. 2004). However, there is a potential problem if there are too few bright comparison stars in the CCD FOV as several similar check stars are needed to minimise the differential photometry noise.

Castellano (Castellano et al. 2004) also states that there are four sources of random noise:-

- (a) Poisson noise from the target and comparison stars.
- (b) Noise introduced by calibrations.
- (c) Noise from atmospheric scintillation: atmospheric scintillation was considered to be a major noise source with bright stars (ie short exposure times were required).
- (d) CCD read noise: amateur quality CCDs typically have a read noise of 15e⁻ Root Mean Square (RMS) whereas scientific CCDs typically have a read noise of 1 to 2 e⁻ RMS.

Licchelli (Licchelli 2007) estimated that the scintillation noise at 30° elevation was 0.01 magnitude. Also that the different air mass extinction with an air mass of 1.8

⁶ Similar colour stars mean that the second order colour difference dependent extinction corrections are relatively small compared to a photometric transit depth.

between HD 209458 and its comparison star (HD 209346) due to a 12' angular offset⁷ was estimated to be 0.003 magnitude.

Sky background becomes more important with fainter targets and is ideally the dominant contribution. On the best quality nights, and with instrumentation with low noise, the background sky noise represents the final limiting for accurate measurement of weak astronomical sources – 'sky limited' detection (Budding & Demircan 2007).

Milli magnitude-precision (0.0008-0.0010 magnitude) photometry of bright stars (V<9.0 magnitude) with a 1m telescope and a standard CCD is reported by López-Morales (López-Morales 2006); with 0.0015 magnitude precision being achieved for observations of over 6 hours. It is stated that "The photometric precision of this setup is only limited by scintillation." There are a number of features of this paper that would not apply with a more modern CCD camera:-

- (a) The major limitations of this study were the shortest achievable CCD exposure time of 5s and a 1x1 unbinned read-out time of 128s.
- (b) The star was too bright for a 5s exposure. The aperture was reduced to shrink the collecting area from 0.589m² to 0.146m² to overcome this problem – negating the full benefit of a 1m telescope and the reduction in scintillation with a larger diameter aperture.

Although one suggestion to avoid saturation is to use a neutral density filter (López-Morales 2006), there is a danger that the neutral density filter will have poor photometric characteristics and provide inconsistent attenuation of the signal received by the CCD. However a neutral density filter with a Bessel R filter (requiring two filter wheels) has been used to obtain unsaturated focussed images for the study of a planetary transit using 1.2m and 1.93m telescopes (Moutou *et al.* 2009) with a V=9 magnitude target and with an Root Mean Square (RMS) error of between 0.0023 and 0.003 magnitude from a relatively low number of frames.

1.2.4 Ground Based Detection of Transits of Extrasolar Giant Planets

The exoplanet transit of the relatively bright star HD 209458 (V=7.63 magnitude) has been used by many astronomers (Castellano et al. 2004) as the reference for their studies. The results can be quite varied, but have progressively improved over time. The online catalogue of exoplanets (Zolotukhin 20.10.2016) defines the characteristics of this planet and also provides a long list of relevant papers, alternatively a MIT derived catalogue (Hanno Rein 5.9.2016) can be consulted instead. The predicted exoplanet transits times can be derived from the orbital period and the Julian time of a particular eclipse, however this information is readily available online as via an Exoplanet Transit Database (Czech 5.9.2016).

Martioli and Jablonski (Martioli & Jablonski 2007) describe observing HD 209458 with a 0.28m aperture telescope and an SBIG ST7E CCD camera. The light curves had RMS errors compatible with the depth of the transit (2%). They identified the following improvements that they could make:-

- (a) To use a larger unvignetted field-of-view to obtain more comparison stars.
- (b) To use auto-guiding to keep the target in the same area of the detector.

⁷ The implication of this is that the check stars should be equally distributed about the target star so that the differential extinction due to different air masses should tend to cancel out.

- (c) To use a red band pass filter to minimise the effects of differential extinction and differential refraction.
- (d) To select comparison stars as close in spectral type (G0V) to HD 209458 as possible.

Everett and Howell (Everett & Howell 2001) describe how to conduct high precision, wide field, time sampled stellar UBVRI photometry that is suitable for the discovery of exoplanets using a 0.9m telescope. It claims 2.0 milli magnitude precision with V~14 magnitude and 1.9 milli magnitude precision after binning with the brightest stars. The camera had eight CCD chips, each with 4096x2048 pixels², linearity of 0.1% for a well depth of up to 70,000 electrons. The CCD FOV was relatively small as its linear plate scale of 0".43 pixel⁻¹ translates to a relatively large FOV of 59'x59'. The UBVRI⁸ filters were used to estimate the spectral type and luminosity class of each star.

A number of wide field surveys have been conducted using small telescopes, and in particular the SuperWASP survey (Pollacco et al. 2006) has been very productive in obtaining light curves that after analysis (Collier Cameron et al. 2007) have yielded many candidate exo-planets. This survey was conducted after first establishing how many transiting planets that the survey was likely to find (Haswell 2010). The Multi-Site All Sky Camera (MASCARA) project (MASCARA 2017) aims to identify the brightest transiting planet systems in the sky. A smaller scale study with a particularly small aperture (4cm) camera by the Kilodegree Extremely Little Telescope (KELT) survey has successfully identified a number of exoplanets transiting bright stars (Soutter 2015): consequently transits by exoplanets identified by the KELT survey are likely to be good targets to observe.

In deciding whether it is worthwhile attempting to observe a known transit the following points need to be considered:-

- (a) The times that a transit occurs must be correspond to the times that the target is actually observable (i.e. dark enough for observing, and the star is observable with the chosen telescope) to establish if the full transit can be recorded. The observations must include sufficient coverage of the "before" and "after" transit periods to have enough points to give the required precision. However, this requirement can be relaxed by binning of observations from other occurrences of the same transit.
- (b) The target magnitude will determine the minimum exposure time. Knowing the transit duration will give the number of images taken during the transit and in turn the expected precision.
- (c) The Root of the Sum of Squares (RSS) of the predicted errors of the "in" and "out" of transit magnitudes must be significantly smaller than the specified depth of transit.
- (d) Minimise the background sky noise by choosing transits that occur with a favourable phase of the moon and with target stars with a line of sight well away from that of the moon.
- (e) The weather forecast needs to indicate an extended period of clear observations.
- (f) The number of times that the target star will be observable during an observing campaign.

⁸ U=Ultra-violet, B=blue, V=photovisual, R=red and I=infrared (*Norton* 2004, *Warner* 2006).

- (g) The precision of the measurements will depend on the air mass throughout the observing period and also on the suitability of the available check stars.
- (h) The target star might be a variable star. This might not be a problem if the variability is relatively insignificant compared to the change in magnitude with a transit. For example, although WASP-33 has a pulsation period of 69min its variability is only 0.001m (Herrero) which is far smaller than the transit depth of 0.0151m (Czech 5.9.2016).

The light curves for a transiting exo-planet are complicated by factors such as:-

- (a) Limb darkening. An analytical approach is presented by Mandel and Algol (Mandel 2002) to fit a theoretical algorithm to a light curve.
- (b) Impact parameter: a planet does not necessarily traverse the centre of the star as viewed by the observer. Impact parameter is a measure of the way the exoplanet has transited in front of the star and is defined as the shortest distance from the centre of the star's disc to the locus of the planet (Haswell 2010).
- (c) The four contact points during a transit. The first contact is when the limb of the planet makes first contact with the star and, the second contact is when the entire disc of the planet is observed to be just within the stellar disc. The third and fourth contacts are the equivalent points as the exoplanet completes its transit (Haswell 2010). In other words the extinction due to the transit will be partial for the period between first and second contacts and also for the period between third and fourth contacts.
- (d) The inferred exoplanet's radius can be larger than the actual radius due to attenuation through the atmosphere on the exoplanet (Tinetti 2014). In particular, the inferred radius can be larger at certain specific wavelengths corresponding to absorption lines for components in the atmosphere. For example, the inferred radius of exoplanet HD 209458b in Lyman α^9 (transition from the ground state of neutral hydrogen) is approximately 4R_J (radius of Jupiter) whereas the actual value is approximately only 1.4R_J (Vidal-Madjar 2002), (Haswell 2010).

1.2.5 Defocussing Photometry

Defocussing the telescope has been used to obtain precision photometry (Ferrero *et al.* 2010, Southworth et al. 2013), (de Mooij 2009). The preceding Southworth paper (Southworth et al. 2009) explains that heavy defocussing was employed with several minutes of exposure time to disperse the large number of photons over many pixels. Special attention needs to be taken to tune the defocussing in order to work only in the linear regime of the CCD (Mancini 2015). It is claimed that this approach reduced the problems due to scintillation and atmospheric effects until they became irrelevant and that the flat fielding errors were reduced by several orders of magnitude compared to focussed observations. The main objective being to maximise the S/N per unit of time (Southworth et al. 2009).

Too strong a defocus can increase the noise as the larger aperture increases the contribution from the sky-background to the total flux in the aperture and in turn

⁹ Lyman α absorption corresponds to a wavelength of 1216Å (corresponding to an electron transiting from the n=1 to n=2 orbits). It does NOT correspond to the centre frequency of 6563Å for an H_α filter (corresponding to a Balmer α transition between the n=3 and n=2 orbits). Furthermore, the Lyman α frequency is NOT detectable by standard CCD chips.

reduce the SNR (de Mooij & Jayawardhana 2013); however this effect is relatively small in a scintillation dominated regime (eg with bright stars and short exposure times).

A bigger problem is that the accurate removal of background flux becomes more important as the relative contribution of the background (especially in the infra-red region) to the total flux increases (de Mooij & Jayawardhana 2013). This problem can be compounded by any residual sky background gradient and hot pixels¹⁰.

A defocussed star takes longer to fill its pixel bins to their non-linearity level than a focussed star as it occupies more pixels on a CCD chip, and consequently has a longer exposure time and lower noise due to scintillation (Dravins *et al.* 1998, Young *et al.* 1992). The scintillation noise is given by:-

$$\sigma_{scint} = 0.004 D^{-\frac{2}{3}} X^{\frac{7}{4}} e^{-\frac{h}{H}} (2t_{exp})^{-0.5}$$
(8)

Where:-

 σ_{scint} is the normalised standard deviation (-).

D is the telescope aperture (m).

X is the air mass (-).

H is the altitude of the telescope (m).

H=8000 (m) is the scale height of the atmosphere.

 t_{exp} is the exposure time (s).

The sensitivity of scintillation error with telescope aperture size (using the above equation) is illustrated in Figure 3 Where aperture sizes of 0.2m, 0.4m and 1.0m have been considered. This Figure clearly demonstrates that scintillation error is significantly reduced by having a longer exposure time and a larger aperture size.

A large defocus was used by Licchelli, (Licchelli 2007) to extend the exposure time from 1s to 7s for HD 209458 (V=7.65 magnitude) to limit the noise due to scintillation and to achieve 3-4 milli magnitude precision with a 0.2m aperture reflector telescope and a commercial CCD camera.

Under normal circumstances, telescopes at the Bayfordbury Observatory will always remain focussed throughout an observing session. Disengaging the autofocus would be undesirable as the telescope would be unusable for subsequent users on the same night. Furthermore, disengaging the auto-focus would not give full control of the amount of defocussing and potentially result in problems in producing the light curves as the optimum target aperture size will vary during an observing session. Consequently an intentional defocus would be the preferred solution with a dedicated overnight session. It should be noted that defocussing is only of use where the target is very bright and would normally require a relatively short exposure time (i.e. there would potentially be a benefit from having a lower scintillation error as a result of having a longer exposure time plus a higher target count). However the need to conduct defocussing in the first place is limited since many of the potential exoplanet targets have relatively faint host stars that already require several minutes of exposure time before any pixel in a target aperture

¹⁰ The area used to estimate the sky background of a strongly defocussed image could inadvertently include faint stars that have been rendered invisible by the defocussing.

reaches its linearity limit. Alternatively, there is also the option to jitter the target (emulating an orthogonal transfer CCD) during an observation to provide a broadly equivalent effect.

1.2.6 Non Exoplanet Differential Photometry Studies

Arellano Ferro (Arellano Ferro *et al.* 2013) conducted CCD differential photometry with targets in a crowded central region of a cluster. This paper describes how the photometric precision for targets in crowded fields was typically of the order of 10 milli magnitude with one telescope (2.0m aperture) and 1-5 milli magnitude with the other telescope (1.54m aperture).

An improved method of differential photometry using auxiliary stars (stars outside of the main observing image) has been presented by (Fernández Fernández *et al.* 2012) to generate a light curve that is smoother than those obtained by more conventional methods by the use of many non-variable auxiliary stars when there are very few comparison stars available in the FOV.

1.2.7 Robotic Observations

The introduction of Automatic Precision Telescopes (APT) was assessed to speed up extinction observations by an order of magnitude, permitted much faster chopping between program and extinction stars (Young et al. 1992).

Robotically controlled observations are being conducted at several observatories such as:-

- (a) Cala Alta Observatory, Almeira, Spain, 50cm aperture (Eibe et al. 2012).
- (b) Mauna Loa Observatory (Hawaii), 8.5cm aperture (Guyon et al. 2011).
- (c) SuperWASP, Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and at the Sutherland Station of the South African Astronomical Observatory, 20cm aperture (Pollacco et al. 2006).
- (d) Bradford robotic telescope, Mount Tiede, Tenerife, 1.6cm to 36.5cm (Seal Braun & Baruch 2009).
- (e) TRAPPIST, ESO La Silla Observatory, Chile, 0.6m aperture (Jehin et al. 2011).
- (f) Watcher, Boyden Observatory, S Africa, 40cm aperture (Ferrero et al. 2010).
- (g) Bayfordbury Observatory, 5 telescopes with 40cm aperture (Bayfordbury-Observatory 5.9.2016).
- (h) Oversky Observatory, La Palma, Canary Islands, 35cm aperture (Vanhuysse *et al.* 2011).
- (i) PIRATE, La Palma, Canary Islands, 42.5cm aperture (Holmes et al. 2011).
- (j) BlueEye600 robotic observatory, Ondrejov, Czech Republic, 60cm aperture (Durech *et al.* 2017).
- (k) DEMONEX, Winer Observatory, Sonoita, Arizona, USA, 50cm aperture (Villanueva *et al.* 2017).
- (I) Isaac Newton Telescope, La Palma, Canary Islands, 254cm aperture (Thompson *et al.* 2016).
- (m) COATLI, Observatorio Astronomico Nacional, Sierra San Pedro Martir, Mexico, 50cm aperture (Watson *et al.* 2016, Snodgrass *et al.* 2016).
- (n) Liverpool Telescope, La Palma, Canary Islands, 200cm aperture (Steele 2004).
- (o) STELLAR, Teide Observatory, Tenerife, Canary Islands, 80cm and 120cm aperture (Strassmeier *et al.* 2004).
- (p) LCOGT, global network, nine apertures on 1.0m and two apertures of 200cm (Brown *et al.* 2013).

- (q) LSGT, Siding Spring Observatory, Australia, 43cm aperture (Im et al. 2015).
- (r) pt5m, William Herschel Observatory, Roque de los Muchachos, Observatory, La Palma, 50cm aperture (Hardy *et al.* 2015).

Eibe considered that robotic photometric observations may be of higher quality than manual observations due to the repetitive nature of the process (Eibe et al. 2011).

Vanhuysse demonstrated detection of an exoplanet with a remotely controlled observatory equipped with a small (35mm aperture) telescope. The precision of the equipment was assessed as 4 milli magnitude precision during the transit of HAT-P-8b (V=10.17) (Vanhuysse et al. 2011).

1.2.8 Non-Uniform Atmospheric Attenuation

Although differential photometry is considered to be suited to degraded observing conditions, observations at low altitude observatories (such as at Bayfordbury) are particularly subject to attenuation due to cirrus cloud, haze, mist, fog, dust, etc. Consequently there is the possibility that non-uniform attenuation could occur across an image and consequently the reference, check and target stars could all experience different time changing attenuations. Since the variation in observed magnitudes could be significant across an image under adverse conditions, it could result in the light curves for check stars having variable star characteristics. This feature might be more of a problem with 'fast' telescopes as they have a wider field of view (than an 'equivalent' 'slow' telescope with the same aperture size) and consequently the selected comparison stars could be much further away in angle from the target and hence more likely to have a different level of cirrus cloud cover.

There is a source of photometric uncertainty due to the variations in the colours of the calibration stars. This source of noise is considered to be negligible (as confirmed by the calibration measurements and final results).

1.2.9 Calculating Total Noise

One method of calculating the total noise is given in Southworth (Southworth et al. 2009):-

$$\sigma_{total} = \sqrt{\sigma_{target}^2 + \sigma_{sky}^2 + \sigma_{ron}^2 + \sigma_{flat}^2 + \sigma_{scint}^2}$$
(9)

Where σ_{target} is the noise on the target,

 σ_{sky} is the noise from the sky.

 σ_{ron} is the read out noise

 σ_{flat} is the flat field noise

This equation does not include the error due to thermal drift noise in the CCD as it was very low for the equipment used by Southworth. Likewise no allowance is made for cirrus noise, however this is less likely to have been a problem for the results presented in the Southworth paper as they were produced at the La Silla Observatory that is located at an altitude of 2,400m (La_Silla 5.9.2016).

Measurements with the non-variable stars should give a low standard deviation, with Southworth (Southworth et al. 2009) suggesting that the noise from differential photometry due to the measurement of the magnitude of the comparison star can be ignored if one uses many comparison stars.

Note: There are more rigorous methods such as given by Kjeldsen and Frandsen (Kjeldsen & Frandsen 1992) and Hartman (Hartman et al. 2005).

1.2.10 Estimation of Photometric Accuracy

The accuracy of the photometry depends on both the noise and the seeing. Koppelmann (Koppelman 2010) combines these sources of error to give a representative measurement of accuracy:-

$$\Delta M = \sqrt{\sigma_{Ref-Cavc}^2 + \left(\frac{1}{SNR}\right)^2} \tag{10}$$

Where $\sigma_{Ref-Cavc}$ is the standard deviation on the difference between the reference star magnitude and the average magnitudes of the check stars. SNR is the signal to noise ratio that can be directly measured on the target star; ideally a measurement of SNR should be taken of the target star in each image, and any images that have a particularly poor SNR should be discarded. Ideally there should be several standard stars (Cooper et al. 2004) of known magnitude close to the target such that they undergo similar seeing.

A detailed analysis of the sources of error is presented by Kjeldsen and Frandsen (Kjeldsen & Frandsen 1992), which in turn calls up the oft cited Gilliland (Gilliland et al. 1991) for CCD calibration techniques. Alternatively, PSF fitting can be used to minimise error, but should not be used if the PSF varies significantly across a CCD frame.

1.2.11 Lucky Imaging

Lucky Imaging is a process of achieving greater photometric precision by taking very large numbers of short exposure images, selecting only the best images (when the air turbulence is lower than at other times) and then merge these images to form a composite image (Faedi *et al.* 2013), (Baldwin *et al.* 2001), (Fried 1978), (Law *et al.* 2006), (Mackay 2013). Lucky images can be produced irrespective of the science target (Law *et al.* 2009). Automatic selection of the best images using the Strehl ratio (the peak value of a PSF divided by the theoretical diffraction-limited value) as a selection criterion has been used at the Palomar Observatory (Law 2007, Law et al. 2006, Mahajan 1982, Janssen *et al.* 2006).

There can be a high discard rate of images, although there are techniques to improve on the percentage of images that can be used (Mackay 2013). The lucky imaging technique has been used to obtain almost diffraction limited resolution for observing exoplanet transits. In the case of Bergfors, only the best 5% to 10% of the images were presented (Bergfors *et al.* 2013, Faedi et al. 2013).

The theoretical probability of obtaining a short exposure image is given by Fried (Fried 1978) as:-

 $Probability \approx 5.6e^{\left[-0.15579(D/r_0)^2\right]}$ (11)

For $D/r_0 \ge 3.5$, where D is the aperture diameter and r_0 is the coherent length of the distorted wave front (also called the turbulence-limited coherence factor). The conclusion from this work is that careful choice of the aperture diameter and selecting the best images from several hundred exposures will produce images that are significantly better than ordinary turbulence limited images (Fried 1978).

However, since a large number of images will be discarded, especially at low level sites that will have significant atmospheric turbulence (such as the Bayfordbury Observatory), it is considered unlikely that lucky imaging will provide enough images, especially with faint targets (requiring long exposure times) to adequately capture events such as exo-planet transits.

Standard camera shutters take a finite time to move and for very short exposure times the relatively slow shutter speed can result in shadows on an image as there is significantly more exposure at the centre of an image compared to that received at the sides of an image. Consequently specialist cameras such as the Cambridge LuckyCam (Law et al. 2006) have been used for lucky imaging observations such as those conducted by Faedi (Faedi et al. 2013) to minimise the uneven illumination due to shutter speed.

One way to increase cadence is to reduce the frame size used to record an image. This means that there are fewer pixels to down load, a reduced download time and consequently higher frame rates.

Lucky imaging will improve the PSF of a star making it narrower and with a higher peak value. As a result there will be fewer pixels capturing the image and consequently reduces the maximum exposure time. Although this is an undesirable feature for most differential photometry, it is important in crowded fields to avoid blending of the target (and reference stars).

1.2.12 Adaptive Optics

The angular width of the principal diffraction image (radians) has previously been defined as:-

$$\theta_{min} = 1.22 \frac{\lambda}{D}$$

(1)

Where:-

 λ is the wavelength (m).

D is the aperture width (m).

 θ is defined as the optimum angular resolution that can be achieved by a system; this diffraction limit constrains the size of the smallest optical image. Unfortunately this performance is not normally achieved with a conventional telescope due to turbulence in the earth's atmosphere. (Zeilik & Gregory 1998) causing twinkling, quiver and spreading (Tyson 1998). However, technological developments mean that ground based telescopes at many observatories can now achieve the diffraction limit as a result of introducing adaptive optics to compensate for a turbulent refractive atmosphere (Davies & Kasper 2012). In the case of the 5m telescope at the Palomar Observatory (Law et al. 2009), a combination of Lucky Imaging and adaptive optics achieved the diffraction limit of 35mas at the FWHM with light at 750nm.

Commercial manufacturers are now producing relatively simple adaptive optics systems for smaller telescopes. For example, SBIG claim that their adaptive optics system has achieved a reduction of the FWHM from 3.1" to 2.2" and an increase in brightness of approximately 30% (SBIG 5.9.2016).

AO are now considered to be sufficiently good that they can be used in the search for exoplanets by direct imaging (Yamamoto *et al.* 2013, Wahhaj *et al.* 2013, Rameau *et al.* 2013).

1.3 Study Aims

The primary study aims are to:-

- (a) Create a validated model of equations that quantify the predicted photometric precision of images taken with a specific telescope, camera and filter configuration at the University of Hertfordshire's robotically controlled telescopes located at the Bayfordbury Observatory in Hertfordshire.
- (b) Demonstrate that the predicted precision can be achieved by satisfactorily capturing transits with known transit depths.

Thus following an observing session (or with historical images), one could derive an estimated measurement error with any image. This process allows one to weight results, in particular, weighting data obtained on different nights for repeating events such as exoplanet transits. Although merging results from different telescopes has previously not been advocated because the measurement errors would be different (Young et al. 1992), by knowing the precision with each measurement opens the possibility of combining results from other nearby telescopes.

Other low altitude observatories could potentially also predict the precision of their images using the techniques adopted in this study.

The secondary study aims are to:-

- (a) Provide a tool to calculate predicted precision so that one can quickly decide if one can reliably observe an event such as the transit of the exoplanet for star WASP-33. This tool would also enable a user to investigate the optimal value of exposure time and cadence.
- (b) Establish a more reliable calculation for the recommended target exposure time for use at the Bayfordbury Observatory.

2 METHOD

Chapter 1 has outlined the background to conducting precision photometry. This Chapter identifies the method followed to achieve the stated project objectives. The approach taken has been to:-

- (a) Define the generic model of equations to calculate the SD of measurements taken with any telescope and camera combination (Section 2.1). These equations relate the predicted precision of ground based photometric measurements, without specifying any telescope/ camera specific characteristics. These equations not only define the predicted noise in an observation, but also provide predictions on the measured target flux. In the case of achieved precision where images and measurements are available, a subset of the equations can be used but with numerical measurements used instead of their equivalent predicted values.
- (b) Specify how the parameters in the generic equations defined in Section 2.1 are to be quantified for a specific telescope and camera combination (Section 2.2).
- (c) Identify how observational data is to be generated, processed and used to measure the achieved degree of validation of equations defined in Section 2.1 (Sections 2.3 and 2.4).

Standard Deviation (SD) has the conventional definition of:-

$$\sigma^2 = \frac{1}{(n-1)} \sum_{i=1}^n (x_i - \mu)^2$$

Where:-

n is the number of values of x,

 x_i is the ith value of x and

 μ is the mean value of x given by:-

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2.1 Definition of Generic Model of Equations for Any Telescope and Camera

2.1.1 Generic Equations

The observed total standard deviation for a target (or reference star) in units of photons (or ADU) is a combination of intrinsic calibration noise and the noise on a science frame, and is given by:-

$$\sigma_{total} = \sqrt{\sigma_{bias}^2 + \sigma_{dark}^2 + \sigma_{flat}^2 + I_{rms}^2 + \sigma_{sky}^2 + \sigma_{target}^2}$$
(2.1.1.1)

 σ_{bias} is the bias noise defined by equation (2.2.2.1).

 σ_{dark} is the dark current noise defined by equation (2.2.3.1)

 σ_{flat} is the flat field noise defined by equation (2.2.4.4).

 I_{rms} is scintillation noise defined by equation (2.2.5.2).

 σ_{sky} is sky noise defined by equation (2.2.6.2).

 σ_{target} is the target noise defined by equation (2.2.7.1).

The predicted total count in the target aperture from all sources is given by:-

$$N_{total} = N_{bias} + N_{dark} + N_{sky} + N_{target}$$
(2.1.1.2)

 N_{bias} is the bias count defined by equation (2.2.2.2).

 N_{dark} is the dark current count defined by equation (2.2.3.2).

 N_{sky} is the sky count defined by equation (2.2.6.4).

 N_{target} is the target count defined by equation (2.2.7.2) for a measured count or equation (2.2.7.5) for a predicted count.

2.2 Method of Deriving Parameters for Equations for a Specific Telescope and Camera

2.2.1 General Considerations

The calibrations have been conducted for:-

(a) 2x2 pixel binning.

(b) V filter (where applicable).

The calculations of the SD of the calibration noise was conducted using a specially written Python program to establish the noise on each PIXEL (as opposed to a value for the whole frame). The SD of each pixel was derived from the corresponding pixel counts on a series of images; the overall SD is simply the average of all the individual pixel SDs. A 5 sigma clipping process was applied first to avoid an excessively high SD being introduced by the presence of 'warm' and 'cold' pixels.

The choice of telescope and cameras was restricted to the equipment in the list provided in Appendix A. The use of nominally identical telescope and camera configurations (such as those for the CKT and JHT telescopes) offers the prospect of relatively straight forward read-across and the potential of merging results. The choice was further restricted to equipment that was both functional and available to this project.

The observing campaign endeavoured to be kept reasonably short (although weather restrictions and equipment failures extended the campaign for longer than originally intended), not just to limit the scope for the equipment noise changing over this period, but also because the observatory undergoes regular equipment upgrades and consequently the equipment being used might be changed to a different standard that in turn would require another set of error measurements/ calculations.

Although flat fielding is applied to the images, there can still be a variation in the measured pixel count across an image. This feature is undesirable as not only will different relative magnitudes arise depending on which star is chosen as the reference star, but if the tracking drifts off, then different pixels will be accumulating ADU counts for both the target and reference stars from different locations on the CCD chip: nominally identical readings will consequently differ slightly and introduce an additional noise component. It was decided that a uniformly illuminated calibrated image should have lines drawn horizontally, vertically and diagonally to

form a 'Union Jack' set of cross-sections and to establish the variation along these lines to see if there was a potential problem (see Section 3.1).

2.2.2 Bias Noise and Count

The bias noise and count are constants for a given CCD temperature. The required CCD operating temperature used at the Bayfordbury Observatory is -20°C. They were determined from an analysis of a series of bias images, as outlined in Section 2.2.1.

$\sigma_{bias} = \text{Constant}$	(2.2.2.1)
N _{bias} = Constant	(2.2.2.2)

2.2.3 Dark Current Noise and Count

The dark current noise and count are constants and were taken at the CCD operating temperature of -20°C for each of the 2x2, 3x3 and 4x4 hardware pixel binning options. Since the dark current noise and count are both proportional to t_{exp} , several dark current images were taken for each value of t_{exp} . The dark current and bias for each value of t_{exp} were then determined as outlined in Section 2.2.1.

$\sigma_{dark} = \dot{\sigma}_{dark} t_{exp}$	(2.2.3.1)
$N_{dark} = \dot{N}_{dark} t_{exp}$	(2.2.3.2)

2.2.4 Flat Field Noise and Count

Dome flats were taken at the CCD operating temperature of -20°C for each of the 2x2, 3x3 and 4x4 hardware pixel binning options. For this study, the dome flat field images were taken with pixel ADU counts close to the linearity limit (see Section 3.3.2) with the bias and dark frames subtracted. The overall pixel calibration SD for each binning option was then calculated using the method outlined in Section 2.2.1. Since the total measured calibration SD (σ_{cal}) includes both flat field (σ_{flat}), bias (σ_{bias}) and dark frame noise (σ_{dark}), then:-

$$\sigma_{cal} = \sqrt{\sigma_{bias}^2 + \sigma_{dark}^2 + \sigma_{flat}^2}$$
(2.2.4.1)

Re-arranging to isolate σ_{flat} gives:-

$$\therefore \sigma_{\text{flat}} = \sqrt{\sigma_{\text{cal}}^2 - \sigma_{bias}^2 - \sigma_{dark}^2}$$
(2.2.4.2)

Where σ_{bias} and σ_{dark} have been calculated in equations (2.2.2.1) and (2.2.3.1). It was assumed that σ_{flat} is independent of t_{exp} , but directly proportional to the target count. The next step was to establish a value for σ_{flat} for an ADU count of 1 (ie $N_{target} = 1$ derived from an ADU count of $(N_{target})_{flat}$ for the flat field measurement) to give the flat field noise for $N_{target} = 1$:-

$$(\sigma_{flat})_{N_{target}=1} = \sigma_{flat} / (N_{target})_{flat}$$
(2.2.4.3)

Thus the general case for the flat field noise with any ADU count (N_{target}) is:-

$$\sigma_{flat} = (\sigma_{flat})_{N_{target}=1} N_{target}$$
(2.2.4.4)

Flat field does not introduce a net change in flux as it is a noise.

2.2.5 Scintillation Noise and Count

From equation (8) the standard scintillation noise equation for $N_{target} = 1$ is:-

$$\sigma_{scint} = 0.004 D^{-\frac{2}{3}} X^{\frac{7}{4}} e^{-\frac{h}{H}} (2t_{exp})^{-0.5}$$
(2.2.5.1)

Thus the general case for the scintillation noise with any ADU count (N_{target}) is:-

$$I_{rms} = N_{target}\sigma_{scint} \tag{2.2.5.2}$$

Scintillation does not introduce a net change in flux as it is a noise.

2.2.6 Sky Noise

Let σ'_{sky} be the background noise taken with a region of sky essentially devoid of bright stars. (ie σ^2_{target} =0). Rewriting equation (2.1.1.1) with equation (2.2.4.1) with $\sigma_{target} = 0$ and setting $\sigma_{total} = \sigma'_{sky}$ gives:-

$$\sigma'_{sky} = \sqrt{\sigma_{cal}^2 + (I_{rms})_{sky}^2 + \sigma_{sky}^2}$$
(2.2.6.1)

$$\therefore \sigma_{sky} = \sqrt{\sigma_{sky}^{\prime 2} - \sigma_{cal}^2 - (I_{rms})_{sky}^2}$$
(2.2.6.2)

Where σ_{cal} is given by equation (2.2.4.1) and $(I_{rms})_{sky}$ is generated using a revised version of equation (2.2.5.2):-

$$(I_{rms})_{sky} = N_{sky} * \sigma_{scint}$$
(2.2.6.3)

where σ_{scint} is given by equation (2.2.5.1) and N_{sky} is the count from the sky that is assumed to increase linearly with exposure time:-

$$N_{sky} = constant * t_{exp} \tag{2.2.6.4}$$

It is common practice to define sky noise at different levels depending on how bright the sky is on a particular observing night. For example, Southworth (Southworth et al. 2009) identifies different sky conditions as "dark", "grey" and "bright". In the case of predicting the expected precision, it will be necessary to identify the predicted sky conditions and use sky noise data appropriate for those conditions. Conversely, if an image has already been taken, then an estimate of the sky conditions is required to give appropriate values of sky noise¹¹.

¹¹ Potentially a bespoke calculation of sky noise could be made with an image by making a measurement of the sky noise in that image.

2.2.7 Target Noise and Count

The standard assumption is made that the target signal has Poisson characteristics and consequently the target noise is given by:-

$$\sigma_{target} = \sqrt{N_{target}} \tag{2.2.7.1}$$

Where N_{target} is either the measured value in the case of existing images:-

$$N_{target} = [(N_{target})_{t=t_{exp}, X=X}]_{measured}$$
(2.2.7.2)

which corresponds to an average count per second of:-

$$[(N_{target})_{t=1s,t_{exp},X=X}]_{measured} = \frac{1}{t_{exp}}[(N_{target})_{t=t_{exp},X=X}]_{measured}$$
(2.2.7.3)

Or alternatively N_{target} is a predicted value when planning an observation:-

$$N_{target} = [(N_{target})_{t=t_{exp}, X=X}]_{predicted}$$
(2.2.7.4)

Where the predicted count after an exposure of t_{exp} is simply:-

$$[(N_{target})_{t=t_{exp},X=X}]_{predicted} = t_{exp}[(N_{target})_{t=1s,X=X}]_{predicted}$$
(2.2.7.5)

Where $[(N_{target})_{t=1s,X=X}]_{predicted}$ is derived for a particular telescope and camera combination in equation (2.2.8.8).

2.2.8 Conversion of Catalogue Magnitude to Instrument Magnitude

A large number of images were examined covering a wide range of catalogue magnitudes with the objective of establishing:-

- (a) An accurate slope of a line fitted to a plot of instrument magnitude (m') versus catalogue magnitude (m).
- (b) The range of magnitudes that the equations (shown below) were valid.

However, since all measurements of m' have been taken with different values of air mass and exposure times, it was necessary to first scale for t_{exp} to give a common exposure time of 1.0s (Howell 2006) $(m'_{t=1s,X=X})$ and to then compensate the instrument magnitudes for an air mass of 1.0 to generate $m'_{t=1s,X=1.0}$. To compensate for air mass (X), it is assumed that m' changes linearly with X, and since m is a constant, then the following relationship applies (Cooper et al. 2004):-

$$m'_{t=1s,X=X} - m = \epsilon X + \zeta \tag{2.2.8.1}$$

Where ζ is the zero-point offset (depends on the value of t_{exp}) and ϵ is the extinction coefficient that is independent of t_{exp} . The analysis by Pereyra (Pereyra *et al.* 2017) with a CCD camera similar to those used at Bayfordbury Observatory indicates that linearity would be expected for up to 90% of well capacity.

A plot of $m'_{t=1s,X=X}$ versus X was then produced and a best fit line fitted to the data points to give the slope (ϵ) and its attendant bias (ζ). A general expression giving $m'_{t=1s,X=1.0}$ was generated by re-expressing equation (2.2.8.1) to give:-

$$m'_{t=1s,X=1.0} - m = \epsilon 1.0 + \zeta \tag{2.2.8.2}$$

and then equation (2.2.8.1) was subtracted from equation (2.2.8.2) to give:-

$$m'_{t=1s,X=1.0} - m'_{t=1s,X=X} = \epsilon (1.0 - X)$$

$$\therefore m'_{t=1s,X=1.0} = m'_{t=1s,X=X} + \epsilon (1.0 - X)$$
(2.2.8.3)
(2.2.8.4)

The predicted instrumentation magnitude for a star that has a catalogue magnitude of m (that is observed with an air mass of 1.0 and a 1s exposure) is defined by the best straight line fit of a plot of observed magnitude versus catalogue magnitude:-

$$[m'_{t=1s,X=1.0}]_{predicted} = gradient * m + Bias$$
(2.2.8.5)

Where 'gradient' and 'bias' can be extracted from a plot of $m'_{t=1s,X=1.0}$ versus m.

Derived values for $m'_{t=1s,X=1.0}$ were established in Section 3.2.6 from a mixture of archived Bayfordbury images and from some specially generated images where there were too few archived images over the magnitude range of interest. A plot of $m'_{t=1s,X=1.0}$ versus m was then produced and a best line fitted to the data points to give a slope of measured m' versus m and its attendant bias.

The derived equation then underwent a verification exercise by inputting the observation conditions for the same images to generate corresponding <u>predicted</u> values for instrument magnitude $([m'_{t=t_{exp},X=X}]_{predicted})$. The difference between the predicted and measured values of m' needed to be small and it also provided a measure of the accuracy of the plot. The equation was then subjected to a validation exercise using an independent set of data – the obtained difference between the predicted and achieved values of m' was required to be similar to that obtained in the verification exercise to give confidence in the validity of the approach and to establish the range of catalogue magnitudes that the equations are valid.

The derivation of a predicted instrument magnitude for $t = t_{exp}$ and X = X $([m'_{t=t_{exp},X=X}]_{predicted})$ has been achieved by the following method. For a proposed observation, the predicted instrument magnitude for a given catalogue magnitude (m) can be established from equation (2.2.8.5). To compensate the predicted value for $[m'_{t=1s,X=1.0}]_{predicted}$ for X, one can re-express equation (2.2.8.3) to predict $m'_{t=1s,X=X}$:-

$$[m'_{t=1s,X=X}]_{predicted} = [m'_{t=1s,X=1.0}]_{predicted} - \epsilon(1.0 - X)$$
(2.2.8.6)

Having obtained a predicted value for $m'_{t=1s,X=X}$, one can then calculate the corresponding predicted value for $(N_{target})_{t=1s,X=1.0}$. Since Pogsen's equation gives:-

$$m'_{t=1s,X=X} = -2.5 \log_{10} [(N_{target})_{t=1s}]$$
(2.2.8.7)

Then re-expressing equation (2.2.8.7) gives:-

$$[(N_{target})_{t=1s,X=X}]_{predicted} = 10^{-[m'_{t=1s,X=X}]_{predicted}/2.5}$$
(2.2.8.8)

 $[(N_{target})_{t=1s,X=X}]_{predicted}$ is an important term as it can be used to derive the peak count in a pixel and in turn the maximum exposure time to keep the measured counts within the linearity limit for the CCD chip (see Section 3.3.2).
The highest achievable value for N_{target} corresponds to an air mass of X=1.0 and is a more rigorous condition for predicting the peak count in a pixel. Re-stating equation (2.2.8.8) for X=1.0 gives:-

$$[(N_{target})_{t=1s,X=1.0}]_{predicted} = 10^{-[m'_{t=1s,X=1.0}]_{predicted}/2.5}$$
(2.2.8.9)

The predicted count for any other time is obtained by factoring the predicted count for t=1s by t_{exp} .

$$\therefore [(N_{target})_{t=t_{exp},X=X}]_{predicted} = t_{exp}[(N_{target})_{t=1s,X=X}]_{predicted}$$
(2.2.7.4)

Thus the predicted instrument magnitude is at $t = t_{exp}$ and X=X is given by:-

$$[m'_{t=t_{exp},X=X}]_{predicted} = -2.5 \log_{10} \{ [(N_{target})_{t=t_{exp},X=X}]_{predicted}$$
(2.2.8.10)

By definition, the measured instrument magnitude is:-

$$[m'_{t=t_{exp},X=X}]_{measured} = -2.5 \log_{10}[(N_{target})_{t=t_{exp},X=X}]_{measured}$$
(2.2.8.11)

The difference ($\Delta m'$) between the predicted and measured values of m' at $t = t_{exp}$ and X=X is simply:-

$$\Delta m' = [m'_{t=t_{exp}, X=X}]_{predicted} - [m'_{t=t_{exp}, X=X}]_{measured}$$
(2.2.8.12)

2.3 Method of Calculating Achieved Photometric Precision

2.3.1 Strategy to Assess Predicted Precision Against Achieved Precision

Sufficiently large numbers of observations were required to validate the formulation over a large range of target magnitudes, exposure time and air mass. Consequently the following information was required:-

- (a) A list of a limited number of non-variable targets that are observable at Bayfordbury Observatory for substantial periods of time that cover a sufficiently wide spread of magnitudes to validate the formulation over the predicted range of magnitude validity (Section 2.3.2).
- (b) A list of targets that are suitable to observe on any given day (Section 2.3.3).
- (c) The recommended exposure times for observing each selected target (Section 2.3.4).

The images obtained from an observing session need to be processed to generate results that can be used to demonstrate compliance with the project objectives (Sections 2.3.5 and 2.3.6).

The formulation given in Section 2.2 to calculate precision for a given set of observing conditions needed to be validated using a credible set of tests to demonstrate that the project objectives have been met. The three general test conditions are:-

- (a) Observing a non-variable star over a prolonged observing period. The measured noise can then be compared against the predicted noise (Section 3.4.1).
- (b) Observing transits with a known transit depth. The predicted precision for a known transit should indicate whether the transit could be reliably detected and the subsequent observations should confirm that such transits have indeed

been captured. In the case of exo-planets, a secondary measure of precision is to use a transit fitting program with the measured data to derive the measured depth of transit. This depth can then be compared with the corresponding reference value for the depth of transit to give a measure of the achieved precision Section 3.4.2.

(c) Observing variable star UX UMa to demonstrate that the predicted precision can be used to define the tolerance bars for the light curves of variable stars (Section 3.4.3).

2.3.2 Identify Suitable Targets for Validation of Equations

Suitable targets covering a wide range of magnitudes were required to validate the equations. The following considerations were made to select targets that were considered to be the most useful in confirming the predicted precision of the equations:-

- (a) Although the instrument magnitude can be predicted for a large range of target catalogue magnitudes, the target choice needed to be restricted to a magnitude range where reliable measurements can be made. For instance, a very low target magnitude required a very long exposure time to obtain a meaningful flux measurement. The general guide being to not exceed an exposure time exceeding 10 to 15 minutes in order that reliable tracking could be achieved.
- (b) Exo-planet transits were identified where there is a known change in magnitude.
- (c) All targets were non-variable, or have a variability that is significantly lower than the depth of a transit.
- (d) The targets were ideally observable for a significant period of time over much of the year so that measurements could be more readily taken and provide the opportunity to fold results into a composite set of results.
- (e) The target star should have suitable check stars in close proximity (see Section 1.2.1).
- (f) The Declination angle should ideally be not be too low since a low an angle will:-
 - Risk being too low for the telescopes to mechanically slew to observe the target (the limits are defined in the Bayfordbury Observatory web site (Bayfordbury-Observatory 5.9.2016)).
 - (ii) Result in an undesirably high air mass on the observations.

2.3.3 Identify Targets to Observe When Observing Conditions are Predicted to be Favourable

The observation campaign needed to be planned with the following guidelines:-

- (a) Consult the BBC weather web site (BBC 6.10.2017) to establish the predicted cloud cover over the following few days. Identify any nights that were predicted to provide a prolonged period of clear skies that were needed to obtain images of a full transit.
- (b) Avoid nights when there was a high moon phase angle and the moon would be in close proximity to the target.
- (c) Establish the predicted exo-planet transits on the proposed observing night using the web site of the Czech Astronomy Society (Czech 5.9.2016).
- (d) Dismiss unsuitable transits using the following criteria as a starting point:-
 - (i) Stars with a Declination angle below the lowest value that the chosen telescope could achieve.

- (ii) Any exoplanets with transit depth of less than 0.005 magnitude so that the transit can be clearly identified.
- (iii) Any exoplanets whose transit begins/ ends outside of the hours of observing at the Bayfordbury web site.
- (iv) Any transits that start or end outside of the period that the target star is observable from the chosen telescope.

A simple sketch on graph paper showing the timings for items (iii) and (iv) simplifies the process of not only identifying the transits that can potentially be fully observed, but also to define the duration of the observations with each target if more than one transit is to be observed on the same night with the same telescope.

2.3.4 Decide on the Exposure Time

The exposure time needed to be carefully chosen with the following issues considered:-

- (a) The maximum exposure times for the target and its associated stars used for differential photometry were chosen to avoid exceeding the linearity limit of the CCD chip.
- (b) To not exceed 15 minutes as higher values might result in the telescopes having tracking difficulties.
- (c) An optimised value needed to be selected to give a high enough cadence yet still give sufficient precision. Better precision comes with longer exposure times (to minimise scintillation noise) but a higher cadence provides more images in the same available time such that the transit can be clearly identified from the light curve.
- (d) Avoid serious blooming problems by using a non anti-blooming CCD camera.

2.3.5 Obtaining Images to Generate Light Curves and Derive an Estimate of Achieved Precision

Large numbers of images requiring several hours of observing time were required to provide a sufficient number of images to measure the achieved precision over a wide range of target magnitudes to:-

- (a) demonstrate that the predicted precision would be achieved in practice,
- (b) encompass a sufficiently large number of targets and
- (c) provide a large number of points for a transit fitting program to be able to generate a good curve to fit to the observed transit.

The images could be obtained either by manually controlling the telescopes, or by submitting robotically controlled jobs as described by Appendix B. Although operating the telescopes manually is fairly straightforward for a limited number of images, the need for several hours of contiguous observations throughout a night with tightly specified time windows was found to be more suitable for robotically controlled observing.

2.3.6 Checking Images

Images taken after (or preferably during) an observing session, and their associated FITS headers, needed to be checked for faults that might impact on the precision of the analysis. These issues include:-

- (a) The telescope was so far mis-aligned that it could not be 'plate solved' by the processing software as it could relate the image to what should be observed in that image.
- (b) Aircraft tracks through the image.
- (c) The image was badly out of focus (the stars had the appearance of ring doughnuts).
- (d) Badly overexposed stars (with a non anti-blooming CCD camera) causing vertical lines in the vicinity of the stars being used for photometry purposes.
- (e) Cirrus cloud.
- (f) Proximity and phase of the moon from the target star.
- (g) Icing on the CCD chip during periods of warm weather.
- (h) The CCD temperature, as recorded in the FITS header (CCD-TEMP) to an image needed to be inspected for compliance with the intended operating temperature (SET-TEMP). For example, the CCD could have been either set at the wrong temperature or the cooling was not requested. In periods of warm weather when the ambient temperature was high, the CCD temperature could drift if the CCD camera cooling system is unable to stabilise at the required temperature (see Figure 6 in Section 3.4.2) for an example of such a failure).
- (i) Maximum air mass achieved: any images with an air mass greater than 2.0 might have questionable accuracy.
- (j) Conduct aperture slices through the target, reference and all check stars to verify that the peak values have not saturated, and more importantly have not exceeded the CCD linearity limit.

2.3.7 Method of Processing of Results

Faulty Pixels

The high quality CCD chips used meant that there should have been very few faulty pixels and as a consequence it was unlikely, considering the relatively small size of the target aperture and sky annulus that they would interfere with photometric measurements. The derivation of the SD values, in the calibration files identified very few deficient pixels and consequently they were not considered to be a problem. A faulty hot pixel could have been identified by using one of the software processing package (such as Maxim DL) to graphically display the values in selected areas of the image.

Differential Photometry

Differential photometry was used with an aperture over the target star and an surrounding annulus to establish the background sky brightness¹². The size of the aperture is a compromise between including all the light from the star and including excessive noise (Cooper et al. 2004). The convention adopted is to identify an aperture size with a radius in pixels of 3*FWHM. The annulus needs to have radii that encompass an area of at least 3 times that of the target aperture to give a good statistical determination of the background level (Howell 2006). Differential photometry could only be conducted with valid data files; for instance the software

¹²Unless special circumstances prevail such as when there was blending or an aircraft track passes through the sky annulus: in such circumstances an aperture was placed in a nearby region of sky and used instead.

package Maxim DL^{TM} (CyanogenImaging 2016) would not calculate photometry for an image that has not been plate solved¹³.

A suitable reference star of known magnitude and several check stars were identified to the software processing package in order that a tabular set of magnitude data could be produced and in turn a set of light curves. The light curves were inspected to ensure that the light curves for the check stars were reasonably horizontal. A limited magnitude range plot then needed to be produced for the target star to reveal the detailed transit. Any apparently 'rogue' points needed to be investigated (see Section 2.3.6).

The data was initially assigned a Julian Date (JD) time that needs to be converted to either the time from the start of observations or some other reference time such as the scheduled start of transit. The time base needed to be converted to hours and fractions of hours and the start and end of transit needed to be represented in the composite plot.

The observed differential magnitude of target (Δm) was calculated by a data processing package and added to the reference star magnitude (m_{REF}) to give a relative magnitude of the target star:-

$$m = m_{REF} + \Delta m$$

(2.3.7.1)

The standard deviation on the relative magnitude of the target star is consequently a function of the error on the magnitude measurement noise of both the target (σ_{total}) and reference star (σ_{REF}). The all-inclusive SD (assuming small magnitude errors) for the difference between the target approximates to:-

$$\sigma_{all} = \sqrt{\sigma_{\text{total}}^2 + \sigma_{REF}^2}$$
(2.3.7.2)

If N reference stars were to be used then the standard deviation (using the law of quadrature) on the composite reference magnitude is:-

$$\sigma_{REF} = \frac{\sqrt{\sigma_{REF1}^2 + \sigma_{REF2}^2 + \dots + \sigma_{REFN}^2}}{N}$$
(2.3.7.3)

Let $\sigma_{REF1} = \sigma_{REF2} \dots = \sigma_{REFN}$

$$: \sigma_{REF} = \frac{\sqrt{\sigma_{REF1}^2 + \sigma_{REF1}^2 + \dots + \sigma_{REF1}^2}}{N}$$
(2.3.7.4)

$$\therefore \sigma_{REF} = \frac{\sigma_{REF1}}{\sqrt{N}} \tag{2.3.7.5}$$

In other words the precision will improve with additional reference stars, provided that the errors on individual reference stars are not excessively large. For example, if there are two stars with the first reference star having an SD of σ_{REF1} and the second reference star with a high standard deviation of (say) $\sigma_{REF2} = 4\sigma_{REF1}$ is used, then the revised error with two reference stars $\sigma_{REF} = \sqrt{(\sigma_{REF1}^2 + 4^2 \sigma_{REF1}^2)/2} \approx 2\sigma_{REF1}$. This means that taking another reference star with a high noise can significantly increase the overall noise. However, since the value of the noise with

¹³ An image that has not been plate solved has a slightly smaller file size than an image that has been plate solved.

each reference star is known, it should be possible to calculate whether using a particular star would be useful as a reference star.

Data Folding

Although multiple transits of the same exo-planet (or UX UMa: see Table 6) could have been data folded and time binned, it has not been conducted for a number of reasons. The main one being that it was judged that significant effort might be required to conduct data folding correctly and would not add significantly to the project. Potential technical issues identified with data folding were:-

- (a) It might have been necessary to compensate for different systematic biases when over plotting complementary sets of observations. Consequently the mean measured magnitude whilst the exoplanet is out of transit might need to be worked out for each set of observations and the light curve shifted accordingly.
- (b) There is a danger with long exposure times (eg 10 minutes) that the time window might straddle the start or end of a transit and distort the shape of the transit.
- (c) The data folding that was conducted with UX UMa found that the orbital period would noticeable vary and as a consequence the transit needed to be aligned by hand. The varying orbital time with UX UMa is a known feature (Kjurkchieva & Marchev 1994) that can also apply with exo-planet transits.

Curve Fitting

Curve fitting using the tool provided by the web site for the Czech Astronomy Society (Czech 5.9.2016) was conducted to obtain a matched curve for each transit – and a measured transit depth and duration established by this tool that could then be compared to the supplied reference data.

2.4 Method of Assessing Photometric Precision

2.4.1 Software Tools

A number of commercially available and free issue software packages (such as APT^{TM} , DSL^{TM} and Maxim DL^{TM}) were used with the appropriate equations to analyse images to produce a table of data for input into a Microsoft $EXCEL^{@TM}$ spread sheet (or a user written program) to calculate the SD (see Appendix D). The predicted SD was calculated using a Microsoft $EXCEL^{@TM}$ spread sheet (or a user written program).

2.4.2 Calculating Measured Standard Deviation

The achieved precision for a series of existing images was calculated by an analysis of individual images with the equations given in Section 2.2 tailored for the particular telescope (see Section 3.3.1)¹⁴. Alternatively, the SD was also directly calculated from the light curve (whilst a target was not in transit).

¹⁴ It can be quite labour intensive to extract all of the data for the equations, especially with large numbers of images. However, since the dominant reason for a variation in the measured precision is the air mass (X), then it is assumed that it is sufficient to analyse a small number of images in detail to indicate how the precision varies across the light curve.

2.4.3 Calculating Predicted Standard Deviation

The predicted precision for the anticipated observing conditions was calculated using the equations given in Chapter 2 tailored for the particular telescope (see Section 3.3.2) to predict the standard deviation.

2.4.4 Compare the Predicted and Achieved Values of Standard Deviation

The predicted and observed values of standard deviation were compared in an $\mathsf{EXCEL}^\mathsf{TM}$ spread sheet. The differences were plotted against target magnitude. Any 'rogue' values identified by this process were investigated to establish whether there was:-

- (a) A problem with that particular set of observations, or
- (b) a calculation error, or
- (C) a weakness in the formulation, or
- (d) significantly different observing conditions to that assumed.

3 RESULTS

Chapter 2 has defined the generic model and its equations for any combination of telescope and camera. This Chapter provides results for a specific telescope, camera and filter configuration operating at the Bayfordbury Observatory. The approach taken has been to:-

- (a) Verify that a calibrated uniformly illuminated image has a very small gradient in ADU values across the image. (Section 3.1).
- (b) Derive the parameters for the equations derived in Section 2.1 for a specific telescope, camera and filter combination at Bayfordbury Observatory (Section 3.2).
- (c) Populate the generic equations with the telescope, camera and filter specific data and sequentially order such that the achieved/ predicted precision can be calculated in a spread sheet (Section 0).
- (d) Present the results of observations taken (Section 3.4).
- (e) Compare the predicted precision from the equations with the achieved precision from the observations (Section 3.5).

The location of soft copies of images used for this analysis is defined in Appendix C and proprietary software packages used identified in Appendix D.

3.1 'Union Jack' Analysis

The purpose of this exercise was to demonstrate that light images had been accurately calibrated by the dome flats. i.e. to prove that a light images of the sky have uniform brightness after calibration using the dome flats. Poor quality differential photometry might arise if there was a significant slope in brightness across a calibrated image.

Several sets of 10 images with few stars present were taken in quick succession to provide a set of calibrated images. i.e. The images had bias, dark and flat field calibrations applied and the next phase was to 'remove' the presence of stars in order to measure the variation in the measured sky over a complete image. This has been achieved by a purpose written Python program to apply sigma clipping with multiple passes to successively remove the return from the stars and 'rogue' points.

For each set of 10 image files, each of the 10 image files was successively processed to remove the stars by applying multi pass sigma clipping. Initially only $+\sigma$ clipping was conducted to remove the stars, however one diagonal was found to have a dead pixel and consequently gave a zero output, so $\pm\sigma$ clipping has been conducted. Another factor was that applying only $+\sigma$ clipping meant that the updated σ value for use in the next pass did not change very quickly: this was because there were still some large low value pixels (eg dead pixels) distorting the SD calculation.

All 10 of the sigma clipped files were then processed to generate a single image holding composite pixel values for the mean and a further single image with the composite median values. For information, a composite array was also produced for the SD values. These arrays were subsequently used to generate 3 files in FITs format for plotting.

The next phase of the processing was to 'cut' two diagonal lines and two lines to form a cross over the image comprising median values. A linear array was formed for each line and plots of median counts versus column number were generated.

A Python linear regression module was then applied to each cut to give a best fit linear line. The gradient gives a measure of the flat field slope. In addition, calculations have been conducted to work out the "variation" of the plot compared to the linear line to obtain a measure of how good a straight line fit is to the plots. The variation was calculated using the best fit line ($y=mx_i + c$) to calculate a measure of the divergence of the values on a cut from the best fit line. Using the convention adopted shown by Norton (Cooper et al. 2004) where "i" is the column number for a pixel along a cut and (x_i, y_i) are the values of the "i"th data point in a cut, and N is the number of columns:-

$$SD = \left[\frac{\Sigma(y_i - mx_i - c)^2}{N}\right]^{0.5}$$
 (3.1.1)

All data processing was of images taken on the CKT telescope with 2x2 binning and a "V" filter. The following data files were processed:-

- (a)Six sets of ten files with 60s images with UX UMa. 3 sets from 6.9.2013 (images in the range 15140 to 15169) and 3 sets from 7.9.2013 (images in the range 15338 to 15367).
- (b) 9 sets of 10 files with 60s images for V795 Her. All 9 sets were from 4.9.2013 (images in the range 14859 to 14973).
- (c)9 sets of 10 files with 120s images for V795 Her. All 9 sets were from 5.8.2013 (images in the range 14141 to 14254).

The images were processed by a specially written Python program to calculate these slopes and the SDs about these slopes, with variants tailored for 60s and 120s exposures, for plotting by the Matplotlib routines called up by the Python program. Straight forward directory name changes were required in the program to access the files in the directory allocated for each set of 10 files.

The program can be readily changed to select the number of passes and SDs to apply. In all cases $\pm \sigma$ and 3 passes were selected.

The results presented in Appendix E show the observed variation across a large number of images: the slopes show very small (typically <0.003 ADU counts per pixel in any direction across the chip), so the error resulting from a tracking error shifting the images by several pixels across the chip will be insignificant compared to other sources of error. The SDs about the slopes were typically <5ADU which is considered to be relatively insignificant compared to other errors, and considering the intrinsic uncertainty in these processed images. This also means that the calculated instrument magnitude (m') derived for different reference stars should not be significantly influenced by any slope that is present across the CCD chip.

3.2 Derived Data for a Site Specific Telescope and Camera Configuration

Section 3.2 provides numerical values for the CKT telescope (its configuration and camera are outlined in Appendix A) with a V filter and 2x2 hardware binning. The key characteristics of the CKT telescope are that it is a robotically controlled Meade LX200GPS telescope with an aperture of 406.4mm and a focal length of 4064mm. As indicated by Appendix A, the JHT telescope has an identical configuration to the CKT telescope and consequently read-across of the CKT telescope characteristics can be applied to the operation of the JHT telescope. Occasional use has been made of the RPT telescope that has the same telescope build standard, but has a different camera to that used by the CKT telescope. Consequently any analysis conducted using the CKT telescope data is believed to be only indicative of the expected performance with the RPT telescope.

The approach taken has been to:-

- (a) Generate calibration data (Section 3.2.1 to Section 3.2.3).
- (b) Define the parameters for the scintillation error (Section 3.2.4).
- (c) Calculate a representative formulation for sky noise (Section 3.2.5).
- (d) Establish parameters for the catalogue to instrument magnitude equation using images from the Bayfordbury Observatory archives and specially taken images for this project (Section 3.2.6).

3.2.1 Bias

The SD and bias values (obtained from an analysis of a series of bias frames) respectively replace the constants in equations (2.2.2.1) and (2.2.2.2) to give:-

$\sigma_{bias} = 6.37$	(3.2.1.1)
$N_{bias} = 839$	(3.2.1.2)

3.2.2 Dark Current

The SD and dark current values (obtained from an analysis of a series of dark current frames) respectively replace the constants in equations (2.2.3.1) and (2.2.3.2) to give:-

$\sigma_{dark} = 0.0028 t_{exp}$	(3.2.2.1)
$N_{dark} = 0.0306 t_{exp}$	(3.2.2.2)

3.2.3 Flat Field

The analysis of a series of flat field frames has derived the constant term $(\sigma_{flat})_{N_{target}=1}$ in equation (2.2.4.4):-

 $\sigma_{flat} = (\sigma_{flat})_{N_{target}=1} N_{target}$ (2.2.4.4)

to give:-

 $\sigma_{flat} = 0.00211 N_{target} \tag{3.2.3.1}$

3.2.4 Scintillation Error

The standard scintillation equation (2.2.5.1):-

$$\sigma_{scint} = 0.004 D^{-\frac{2}{3}} X^{\frac{7}{4}} e^{-\frac{h}{H}} (2t_{exp})^{-0.5}$$
(2.2.5.1)

has the scale height (H), the Bayfordbury Observatory height (h) and telescope aperture diameter (D) substituted by 8000m, 60m and 0.4m respectively to give:-

$$\sigma_{scint} = 0.00731301 * X^{\frac{7}{4}} * (2t_{exp})^{-0.5}$$
(3.2.4.1)

The equation for the total scintillation error (I_{rms}) is simply equation (2.2.5.2) as the SD scales with target count.

$$\therefore I_{rms} = N_{target}\sigma_{scint} \tag{2.2.5.2}$$

3.2.5 Sky Noise

The SD and bias equations were populated with values obtained from an analysis of areas of sky in several images to give numerical values in equation numbers (2.2.6.2) and (2.2.6.4).

$$\sigma_{sky} = \sqrt{\sigma_{sky}^{\prime 2} - \sigma_{cal}^2 - (I_{rms})_{sky}^2}$$
(2.2.6.2)

$$N_{sky} = constant * t_{exp} \tag{2.2.6.4}$$

The mean count for the sky in these images was calculated as:-

$$N_{sky} = 3.95t_{exp} \tag{3.2.5.1}$$

The corresponding SD analysis of the sky data from a series of images gives:-

$$\sigma'_{sky} = 0.078t_{exp} + 6.37 \tag{3.2.5.2}$$

$$\therefore \sigma_{sky}^{\prime 2} = 0.006084t_{exp}^2 + 0.99372t_{exp} + 6.37^2$$
(3.2.5.3)

Now σ_{cal} is defined by equation (2.2.4.1):-

$$\sigma_{cal} = \sqrt{\sigma_{bias}^2 + \sigma_{dark}^2 + \sigma_{flat}^2}$$
(2.2.4.1)

Where

$$\sigma_{bias} = 6.37$$
 (3.2.1.1)

$$\sigma_{dark} = 0.0028 t_{exp} \tag{3.2.2.1}$$

Substituting N_{sky} for N_{target} in equation (3.2.3.1)

$$\sigma_{flat} = 0.00211 N_{target}$$
 (3.2.3.1)

gives:-

$$\sigma_{flat} = 0.00211 N_{sky} \tag{3.2.5.4}$$

Substituting N_{sky} from equation (3.2.5.1) into equation (3.2.5.4) gives:-

$$\therefore \sigma_{flat} = 0.00211 * 3.95t_{exp} = 0.0083345t_{exp}$$
(3.2.5.5)

Substituting σ_{bias} from equation (3.2.1.1), σ_{dark} from equation (3.2.2.1) and σ_{flat} from equation (3.2.5.5) into equation (2.2.4.1) gives:-

$$\therefore \sigma_{cal}^2 = (6.37)^2 + (0.0028t_{exp})^2 + (0.0083345t_{exp})^2$$
(3.2.5.6)

$$\therefore \sigma_{cal}^2 = 0.0000773t_{exp}^2 + 6.37^2 \tag{3.2.5.7}$$

Substituting N_{sky} in equation (3.2.5.2)

$$I_{rms} = N_{target}\sigma_{scint} \tag{2.2.5.2}$$

gives:-

$$I_{rms} = N_{sky}\sigma_{scint} \tag{3.2.5.8}$$

The typical value for air mass is in the range 1 to 2. Taking an average value for X=1.5 in equation (3.2.4.1)

$$\sigma_{scint} = 0.00731301 * X^{\frac{7}{4}} * (2t_{exp})^{-0.5}$$
(3.2.4.1)

gives

$$\sigma_{scint} = 0.014868 * (2t_{exp})^{-0.5}$$
(3.2.5.9)

Substituting N_{sky} from equation (3.2.5.1) and σ_{scint} from equation (3.2.5.9) into equation (3.2.5.8) gives:-

$$I_{rms} = 3.95t_{exp} * 0.014868 * (2t_{exp})^{-0.5}$$
(3.2.5.10)

$$\therefore I_{rms} = 0.0415274 * t_{exp}^{0.5}$$
(3.2.5.11)

$$\therefore I_{rms}^2 = 0.0017245 t_{exp} \tag{3.2.5.12}$$

Substituting $\sigma_{sky}^{\prime 2}$ from equation (3.2.5.3), σ_{cal}^2 from equation (3.2.5.7) and I_{rms}^2 from equation (3.2.5.12) into equation (2.2.6.2) gives:-

$$\sigma_{sky}^{2} = 0.006084t_{exp}^{2} - 0.000773t_{exp}^{2}$$

$$+ 0.99372t_{exp} - 0.0017245t_{exp}$$

$$+ 6.37^{2} - 6.37^{2}$$
(3.2.5.13)

$$\therefore \sigma_{sky}^2 = 0.0060067 t_{exp}^2 + 0.9919955 t_{exp}$$
(3.2.5.14)

$$\sigma_{sky} = \sqrt{t_{exp}(0.0060067t_{exp} + 0.992)}$$
(3.2.5.15)

Note: these values correspond to a relatively low sky noise, as the intention has been to find the limiting precision that could be achieved. Ideally a set of equations corresponding to equation (3.2.5.15) should be generated corresponding to different amounts of sky noise, perhaps as a function of the moon brightness. As stated in Section 2.2.6, measurements of sky noise can potentially be calculated for individual images, although this does require a significant effort.

3.2.6 Catalogue to Instrument Magnitude Relationship

Section 2.2.8 outlined the relationship between catalogue and instrument magnitude that is central to calculating a predicted ADU count for a target (and reference star).

Appendix F presents the results of a significant exercise to derive values for the "gradient" and "Bias" in equation (2.2.8.5) from Figure 22 (also shown below for convenience) to give a predicted instrument magnitude (with an air mass of 1.0 and a 1s exposure) for a given catalogue magnitude (m):-

Figure 22 Plot of Instrument Magnitude $(m'_{t=1s,X=1.0})$ Versus Catalogue Magnitude (m)

 $[m'_{t=1s,X=1.0}]_{\text{predicted}} = 1.0023m - 20.2122$ (3.2.6.1)

These parameters were established using non variable target stars chosen to include extremes of magnitude that could be observed by the Observatory's telescopes to indicate the range of magnitudes that the equations are valid for.

Appendix F also established a value for ε from the slope in Figure 21 (also shown below for convenience) to compensate instrument magnitude for air mass in equation (2.2.8.6) to give:-

Figure 21 (m'-m) v Air Mass for BD+52 1722 on 30.4.2013 with a V Filter

 $[m'_{t=1s,X=X}]_{predicted} = [m'_{t=1s,X=1.0}]_{predicted} - 0.62(1.0 - X)$ (3.2.6.2) Alternatively:-

$$[m'_{t=1s,X=1.0}]_{\text{predicted}} = [m'_{t=1s,X=X}]_{\text{predicted}} + 0.62(1.0 - X)$$
(3.2.6.3)

Scaling for $t=t_{exp}$ using equations (2.2.8.8), (2.2.7.4) and (2.2.8.10) gave $[m'_{t=t_{exp},X=X}]_{predicted}$). Thus measured values of instrument magnitude $([m'_{t=t_{exp},X=X}]_{measured})$ from equation (2.2.8.11) could be directly compared with the predicted values of instrument magnitude $([m'_{t=t_{exp},X=X}]_{predicted})$. The work not only verified that the populated equations were self-consistent with the source data, but subsequently validated them using a larger pool of additional data covering an even larger range of catalogue magnitudes. The evidence suggested that the equations might be valid for catalogue magnitudes in the range 5 to at least 16.5 when working in V band and using 2x2 hardware binning.

3.3 Equations to Calculate Standard Deviation For a Specific Telescope and Camera Configuration

This Section summarises the equations to be used to calculate the predicted or achieved precision¹⁵:-

(a) Equations for calculating the achieved precision from existing images (Section 3.3.1).

(b) Equations to calculating the predicted precision when observing a target with user defined observing conditions (Section 3.3.2).

3.3.1 Equations for Calculating Achieved Standard Deviation for a Given Image

The following equations have been employed to calculate the achieved SD in existing images using the user defined t_{exp} , the achieved air mass (X) and the measured values of N_{target} , $(\sigma_{sky})_{target}$, $N_{reference}$ and $(\sigma_{sky})_{reference}$ for the CKT (or JHT) telescope operating with a V filter and 2x2 binning for the target star. The total SD for the target is essentially equation (2.1.1.1).

$$(\sigma_{total})_{target} = \sqrt{\sigma_{bias}^2 + \sigma_{dark}^2 + \sigma_{flat}^2 + (l^2_{rms})_{target} + (\sigma_{sky}^2)_{target} + \sigma_{target}^2}$$
(3.3.1.1)

 $\sigma_{bias} = 6.37$ (3.2.1.1)

$$\sigma_{dark} = 0.0028 t_{exp} \tag{3.2.2.1}$$

$$\sigma_{flat} = 0.00211 N_{target} \tag{3.2.3.1}$$

$$(I_{rms})_{target} = N_{target}\sigma_{scint}$$
(2.2.5.2)

$$\sigma_{scint} = 0.00731301 * X^{\frac{7}{4}} * (2t_{exp})^{-0.5}$$
(3.2.4.1)

Where X and t_{exp} are the values given in the FITS header block.

 N_{target} is the sky subtracted¹⁶ measured target count i.e. $[(N_{target})_{t=t_{exp},X=X}]_{measured}$ from the calibrated image. The measured values for N_{target} and $(\sigma_{sky})_{target}$ are directly given by a software package such as APT by aperture photometry. It is essential that the user defined radii of the aperture and sky annulus circles are recorded as part of the process.

Since the image is already calibrated and the software package subtracts the sky component in the target aperture (N_{sky}), then the software package effectively calculates equation (2.1.1.2) re-expressed as:-

¹⁵ The term "predicted precision" refers to a predicted precision (potentially before any images have been taken) for a given set of observing conditions as calculated by the equations presented in this thesis. Whereas the term "achieved precision" is the achieved precision with an image as calculated by the equations presented in this thesis. "Achieved precision" is potentially of particular use when dealing with light curves from variable stars. However, the term "measured precision" has been reserved for the measured precision in a light curve of a star with a nominally constant magnitude.

¹⁶ The software package (such as APT) calculates the sky count per pixel from a user defined sky annulus. The scaled sky count is subtracted from the target count in a user defined target aperture of nominally 3 FWHM radii.

$$N_{target} = N_{total} - N_{sky} - N_{dark} - N_{bias}$$
(3.3.1.2)

The target SD equation is given by the existing equation:-

$$\sigma_{target} = \sqrt{N_{target}} \tag{2.2.7.1}$$

Re-expressing equation (4) to convert to units of magnitude (neglecting the sign as one is only interested in the size of the uncertainty) gives:-

$$(\sigma_{total})_{target in magnitude} = 2.5 * \log \left[1 + \frac{(\sigma_{total})_{target}}{N_{target}} \right]$$
(3.3.1.3)

Including the errors in the reference star, using the same equations but with the subscript of 'reference'. Thus amending equation (3.3.1.1) gives:-

$$(\sigma_{total})_{reference} = \sqrt{\sigma_{bias}^{2} + \sigma_{dark}^{2} + (\sigma_{flat}^{2})_{reference} + (l^{2}_{rms})_{reference} + (\sigma_{sky}^{2})_{reference} + \sigma_{reference}^{2}}$$

$$(3.3.1.4)$$

$$\sigma_{bias} = 6.37$$
 (3.2.1.1)

$$\sigma_{dark} = 0.0028 t_{exp} \tag{3.2.2.1}$$

 $(\sigma_{flat})_{reference} = 0.00211 N_{reference}$ (3.3.1.5)

$$\sigma_{reference} = \sqrt{N_{reference}} \tag{3.3.1.6}$$

$$(I_{rms})_{reference} = N_{reference} * \sigma_{scint}$$
(3.3.1.7)

$$\sigma_{scint} = 0.00731301 * X^{\frac{7}{4}} * (2t_{exp})^{-0.5}$$
(3.2.4.1)

The measured values for $N_{reference}$ and $(\sigma_{sky})_{reference}$ are directly given by a software package such as APT by aperture photometry. It is essential that the radii of the aperture and sky annulus circles are recorded as part of the process.

Re-expressing equation (3.3.1.3) to convert to units of magnitude for the reference star gives:-

$$(\sigma_{total})_{reference in magnitude} = 2.5 * \log \left[1 + \frac{(\sigma_{total})_{reference}}{N_{reference}} \right]$$
(3.3.1.8)

Re-expressing equation (2.3.7.2) gives the total error in magnitude:-

$$(\sigma_{total})_{all in magnitude} = [((\sigma_{total})_{target in magnitude})^2 + ((\sigma_{total})_{reference in magnitude})^2]^{0.5}$$
(3.3.1.10)

3.3.2 Equations for Calculating the Predicted Standard Deviation for a Given Target Equations For Predicting SD for a Target of Magnitude m_{target}

The following equations give the predicted SD for the target star as a function of t_{exp} , X and m_{target} for the CKT telescope operating with a V filter and 2x2 binning:-

$$(\sigma_{total})_{target} = \sqrt{\sigma_{bias}^2 + \sigma_{dark}^2 + (\sigma_{flat})_{target}^2 + (I_{rms})_{target}^2 + \sigma_{sky}^2 + \sigma_{target}^2}$$
(3.3.2.1)

Where:-

$$\sigma_{bias} = 6.37$$
 (3.2.1.1)

$$\sigma_{dark} = 0.0028 t_{exp} \tag{3.2.2.1}$$

$$(\sigma_{flat})_{target} = 0.00211N_{target} \tag{3.3.2.2}$$

$$(I_{rms})_{target} = N_{target}\sigma_{scint}$$
(3.3.2.3)

-

$$\sigma_{scint} = 0.00731301 * X^{\frac{1}{4}} * (2t_{exp})^{-0.5}$$
(3.2.4.1)

$$\sigma_{target} = \sqrt{N_{target}} \tag{3.3.2.4}$$

$$\sigma_{sky} = \sqrt{t_{exp}(0.00600763t_{exp} + 0.992)}$$
(3.2.5.15)

and X is the predicted value of air mass at a specific time in a planned observing session. The predicted total count for the target in the target aperture is a re-expression of equation (2.1.1.2):-

$$(N_{total})_{target} = N_{target} + N_{sky} + N_{dark} + N_{bias}$$
(3.3.2.5)

where

$$N_{target} = [(N_{target})_{t=t_{exp}, X=X}]_{predicted}$$
(3.3.2.6)

where $[(N_{target})_{t=t_{exp},X=X}]_{predicted}$ is given by equation (2.2.7.4):-

$$[(N_{target})_{t=t_{exp},X=X}]_{predicted} = t_{exp}[(N_{target})_{t=1s,X=X}]_{predicted}$$
(2.2.7.4)

and
$$[(N_{target})_{t=1s,X=X}]_{predicted}$$
 is defined by equation (2.2.8.8):-

$$[(N_{target})_{t=1s,X=X}]_{predicted} = 10^{-[m'_{t=1s,X=X,target}]_{predicted}/2.5}$$
(2.2.8.8)

and $[m'_{t=1s,X=X,target}]_{\text{predicted}}$ is given by equation (3.2.6.1):-

$$[m'_{t=1s,X=X,target}]_{predicted} = [m'_{t=1s,X=1.0,target}]_{predicted} - 0.62(1.0 - X)$$
(3.2.6.1)

and $[m'_{t=1s,X=1.0,target}]_{predicted}$ is given by equation (3.2.6.2):-

$$[m'_{t=1s,X=1.0,target}]_{predicted} = 1.0023m_{target} - 20.2122$$
(3.2.6.2)

and m_{target} is the catalogue magnitude of the target. The equations deriving N_{sky} , N_{dark} , and N_{bias} are respectively defined by equations (3.2.5.1), (3.2.2.2) and (3.2.1.2).

$N_{sky} = 3.95 t_{exp}$	(3.2.5.1)
$N_{dark} = 0.0306 t_{exp}$	(3.2.2.2)
$N_{bias} = 839$	(3.2.1.2)

Where the selected value of the exposure time (t_{exp}) is a user defined input. Appendix G provides guidelines on the choice of the maximum value for t_{exp} to keep the peak target count in a pixel within the linearity range. The key Figure 27 illustrating where linearity is lost is shown below for convenience.

Figure 27 Plot of Count Versus Exposure Time with Different Binning Options

The choice of the maximum value for t_{exp} should not be made without considering the stars available (as either reference or check stars with known values of magnitude) that will also be present in the same image as the target star: the corresponding values of maximum value for t_{exp} for these stars should also be considered to ensure that a sufficient number of these stars can be used for the differential photometry. A secondary consideration is to ensure that the sampling rate is sufficiently high enough to obtain a light curve with sufficient resolution to observe, for example, a transit.

Equations For Predicting SD for a Reference Star of Magnitude mreference

The following equations give the predicted SD for the reference star as a function of t_{exp} , X and $m_{reference}$ for the CKT telescope operating with a V filter and 2x2 binning:-

$$\sqrt{\sigma_{bias}^2 + \sigma_{dark}^2 + (\sigma_{flat})_{reference}^2 + (I_{rms})_{reference}^2 + \sigma_{sky}^2 + \sigma_{reference}^2}$$

(3.3.2.11)

$$\sigma_{reference} = \sqrt{N_{reference}} \tag{3.3.2.12}$$

Where σ_{sky} , σ_{bias} and σ_{dark} are the same values as used for the target and consequently are derived from the same equations.

$$\sigma_{bias} = 6.37$$
 (3.2.1.1)

$$\sigma_{dark} = 0.0028 t_{exp} \tag{3.2.2.1}$$

$$(\sigma_{flat})_{reference} = 0.00211N_{reference}$$
(3.3.2.13)

$$(I_{rms})_{reference} = N_{reference}\sigma_{scint}$$
(3.3.2.14)

$$\sigma_{scint} = 0.00731301 * X^{\frac{7}{4}} * (2t_{exp})^{-0.5}$$
(3.2.4.1)

$$\sigma_{sky} = \sqrt{t_{exp}(0.00600763t_{exp} + 0.992)}$$
(3.2.5.15)

Where X is the predicted value of air mass at a specific time in a planned observing session. The predicted total count for the reference star in the aperture is given by restating equation (3.3.2.5) for the reference star:-

$$(N_{total})_{reference} = N_{reference} + N_{sky} + N_{dark} + N_{bias}$$
(3.3.2.15)

The following equations are directly equivalent to the ones used for the target, but with 'target' replaced by 'reference':-

$$N_{reference} = [(N_{reference})_{t=t_{exp},X=X}]_{predicted}$$
(3.3.2.16)
$$[(N_{reference})_{t=t_{exp},X=X}]_{predicted} = t_{exp}[(N_{reference})_{t=1s,X=X}]_{predicted}$$
(3.3.2.17)

$$[(N_{reference})_{t=1s,X=X}]_{predicted} = 10^{-[m'_{t=1s,X=X,target}]_{predicted}/2.5}$$
(3.3.2.18)

$$[m'_{t=1s,X=X,reference}]_{predicted} = [m'_{t=1s,X=1.0,reference}]_{predicted} - 0.62(1.0 - X)$$

$$[m'_{t=1s,X=1.0,reference}]_{predicted} = 1.0023m_{reference} - 20.2122$$
(3.3.2.20)

Where N_{sky} , N_{dark} and N_{bias} are the same values as used for the target and consequently are derived from the same equations. Likewise, the selected value of the exposure time (t_{exp}) is a user defined input.

$$N_{sky} = 3.95t_{exp} \tag{3.2.5.2}$$

$$N_{dark} = 0.0306 t_{exp} \tag{3.2.2.2}$$

$$N_{bias} = 839$$
 (3.2.1.2)

Equations For Predicting Overall SD in units of Magnitude

The same equations used to predict the magnitude of the overall SD with the target and reference stars are the same as used to calculate the achieved SD:-

The total SD for the target star in units of magnitude is:-

$$(\sigma_{total})_{target in magnitude} = 2.5 * \log \left[1 + \frac{(\sigma_{total})_{target}}{N_{target}} \right]$$
(3.3.1.3)

The total SD for the reference star in units of magnitude is:-

$$(\sigma_{total})_{reference in magnitude} = 2.5 * \log \left[1 + \frac{(\sigma_{total})_{reference}}{N_{reference}} \right]$$
(3.3.1.8)

The SD for both stars in units of magnitude is given by:-

$$(\sigma_{total})_{all in magnitude} = [((\sigma_{total})_{target in magnitude})^2 + ((\sigma_{total})_{reference in magnitude})^2]^{0.5}$$
(3.3.1.10)

3.4 Observational Data

The majority if not all of the observations presented in this Section were taken robotically. Many attempted observations failed to take all of the requested images for a wide range of reasons, in particular adverse weather conditions: the sky temperature was above the -22°C threshold for observing (used to decide if there is cloud present), equipment failures, dead zones with the JHT telescope, clashes with other users' jobs, etc. Of those robotic observing sessions that produced images, a significant number of the images were compromised and some had to be discarded: the reasons ranged from equipment problems, poor weather conditions (e.g. see Figure 4), inappropriate exposure time, not being plate solved, (ie the Pinpoint software package could not identify the location of the image in the sky from the supplied coordinates and is usually caused by imprecise tracking) etc.

Figure 4 Example of the Sky Conditions Whilst Observing HAT-P-20 on 24/25.11.2016

One of the major problems in obtaining suitable data was the long continuous period of observing required to obtain a full exoplanet transit (with a meaningful period of observations both before and after transit) whilst the target was observable and the weather conditions were good enough to permit robotic observations for the entire period. Figure 5 provides an example of where the cloud cover interrupted an observation.

Figure 5 Example of Increasing Sky Temperature Due to Cloud Conditions Terminating Observations (27/28-3-2017)

Inevitably some transits were not as complete as required and could include measurements with a high value of air mass, but wherever possible this data has been analysed to make best use of this valuable data. The observations could only come from the telescopes that were both operational and available at the time of the required observations. Consequently preference was given to observations from the CKT, JHT and RPT telescopes in that order (see Appendix A). The JHT telescope has an identical configuration to the CKT telescope and therefore read-across of results can be made. However, as previously discussed in Section 3.2, the RPT telescope has a different camera, albeit of scientific standard, and therefore comparison is more tentative, but the predicted performance would still be expected to be similar to that predicted for the CKT telescope.

3.4.1 Observations with a Non Variable Star in the Absence of a Transit

The results presented in Section 3.4.1 not only cover non variable stars without a known or predicted exoplanet transit, but also non variable stars where an extended period of observing has been captured whilst they are not undergoing a transit.

The analysis is presented in two parts:-

- (a) Results presented in Table 2 that predict the SD primarily using measured target count obtained from images.
- (b) Results presented in Table 4 that predict the SD primarily using target catalogue magnitudes but without any data from images. Consequently this approach is a more challenging exercise as it makes full use of the equations developed in this thesis.

SD Calculated Using Target Count

Table 2 presents the list of observations with their SDs calculated using an analysis of the images identified by the first column, corresponding to the first, middle and last image of their sequences. The values in the column entitled "Derived SD from Target Counts" have been calculated using the measured target count with the method outlined in Section 3.3.1. An example of the calculations in a spread sheet is presented as Table 1.

Item	Value	Value	Value	Equation
Image	26560	26628	26708	
Telescope	CKT	CKT	СКТ	
Date/Time	2016-09-13T20:33:58	2016-09-13T23:31:49	2016-09-14T01:42:53	
Julian Date	2457645.357	2457645.48	2457645.571	
Moon	Nighttime, clear, high gibbous moon.	Nighttime, clear, high gibbous moon.	Nighttime, clear, low gibbous moon.	
CCD Temperature	-17.36867625	-19.97710074	-20.41762135	
x=	1.288038766	1.065788438	1.159495248	
texp	300	300	300	
Øbias	6.37	6.37	6.37	3.2.1.1
σdark	0.84	0.84	0.84	3.2.2.1
FWHM (FITS Header)	2.904665208	4.622466612	4.33121798	
Aperture Radius (APT/MaximD	8	8	8	
Inner Sky Radius (APT/MaximD	10	10	10	
Outer Sky Radius (APT/Maxim	18	18	18	
TARGET	WASP-10/ 1214-0612683	VASP-10/ 1214-0612683	NASP-10/ 1214-0612683	
Peak Value (MaximDL)	34051	11276	9294	
Spectral Type	K5V	K5V	K5V	
m target	12.71	12.71	12.71	
σ_sky target from APT	29.287	29	21.481	
Ntarget from APT	285538	284847	270399	
Sigma flat target	602.48518	601.02717	570.54189	3.2.3.1
Sigma scint	0.000464939	0.000333768	0.000386804	3.2.4.1
Irms target	132.7578132	95.07283627	104.5914842	2.2.5.2
Sigma target	534.3575582	533.7105957	519.9990385	2.2.7.1
Sigma total target	816.7313144	809.9393717	779.3324982	3.3.1.1
Sigma target total (Magnitude)	0.003101125	0.003082822	0.003124762	3.3.1.3
Reference Star	1214-0612756	1214-0612756	1214-0612756	
m reference	12.19	12.19	12.19	
Spectral Type	Not found	Not found	Not found	
Nreference from APT	465308	462815	442047	
Sigma sky reference from APT	30.493	29.882	24.65	
Peak Value from MaximDL	34097	16195	15338	
Sigma flat reference	981.79988	976.53965	932.71917	3.3.1.5
Sigma scint	0.000464939	0.000333768	0.000386804	3.2.4.1
Irms Reference	0.9996	154.4728739	170.9856613	3.3.1.7
σReference	682.134884	680.3050786	664.8661519	3.3.1.6
Sigma total reference (count)	1195.91434	1200.516878	1158.402802	3.3.1.4
Sigma reference total magnitud	0.002786932	0.002812694	0.002841496	3.3.1.8
Sigma all (Magnitude)	0.004169408	0.004173133	0.004223534	3.3.1.10
TRANSFIT FIT EQUATION Ref	0.0394	0.0394	0.0394	N/A
TRANSFIT FIT EQUATION Measured	0.0366	0.0366	0.0366	N/A
TRANSFIT FIT EQUATION Δmag	0.0028	0.0028	0.0028	N/A
SD 3-5hrs	0.003049377	0.003049377	0.003049377	

Table 1 Analysis of 3 Images for WASP-10 Taken by CKT Telescope13/14-9-2016 Using Measured Counts

The calculations have used image specific values for the following terms:-

- (a) The achieved air mass (X) from the FITS header block.
- (b) The selected exposure time (t_{exp}) from the FITS header block.
- (c) The measured target count (N_{target}) calculated using APT with the chosen radius for the target star aperture.
- (d) The measured sky noise $((\sigma_{sky})_{target})$ calculated using APT with the chosen sky annulus dimensions for the target star.
- (e) The measured reference star count ($N_{reference}$) calculated using APT with the chosen radius for the reference star aperture.
- (f) The measured sky noise $((\sigma_{sky})_{reference})$ calculated using APT with the chosen sky annulus dimensions for the reference star.

The column entitled "Figure Number in Appendix H" identifies the Figures with the corresponding light curves. The column entitled "Measured SD from Plots" is the SD obtained from an Excel spread sheet when there was no transit present. For clarity, the Figures show the 'mean', 'mean + σ ' and 'mean - σ ' for the period examined, plus the scheduled start and end of transit. NB The SD from the plots may correspond to a relatively short period of time that is significantly displaced in time relative to the time of some of the analysed images. For example, inspection of Figure 62 (for WASP-10 on 13/14.9.2016 and reproduced below for convenience) shows that the first image 26560 was taken 3 hrs before the start of the period used to determine the "Measured SD from Plots", and had a higher air mass (giving a higher predicted SD) than for the period used to derive the SD from the plots.

Figure 62 WASP-10 Transit of 13/14-9-2016 by CKT Telescope

The results from the RPT telescope have been greyed out as they were generated using equations tailored for the CKT telescope.

Image Number	Target	Date	V (mag)	Telescope	t _{exp} (s)	No. of Images	Air Mass (-)	Achieved SD from Target Counts (mmag)	Measured SD from Plots (mmag)	Difference (mmag)	Difference (%)	Figure Number in Appendix H
26560						22	1.29	4.17		-1.12	-37	
26628	WASP-10	13/14.9. 2016	12.71	СКТ	300	(3hr to	1.07	4.17	3.05	-1.12	-37	Figure 62
26708						5111)	1.16	4.22		-1.17	-39	
26880						20	1.78	4.32		0.12	3	
26931	WASP-52	23/24.9. 2016	12.0	СКТ	300	(4hr to	1.40	4.18	4.45	0.26	6	Figure 63
26990						onr)	1.84	4.62		-0.18	-4	
27090						٩	1.56	4.24		-0.15	-4	
27101	WASP-52	30.9. 2016	12.0	СКТ	300	(0hr -	1.38	4.19	4.09	-0.09	-2	Figure 64
27120						1.2500)	1.42	4.51		-0.41	-10	
28265						3	1.48	4.30		0.06	1	
28295	WASP-52	4.11. 2016	12.0	СКТ	300	(1.7hr to	1.68	4.39	4.36	-0.03	-1	Figure 65
28295						1.9nr)	2.05	4.59		-0.23	-5	
28473						19	1.52	4.36		-0.52	-14	
28573	WASP-52	5.11. 2016	12.0	СКТ	300	(0hr to	1.36	4.23	3.83	-0.40	-10	Figure 36 (No transit)
28620						4.4nr)	1.65	4.37		-0.54	-14	(No transity
27955						15	1.78	4.29		-2.21	-106	
28003	HAT-P-20	2.11. 2016	11.34	СКТ	180	(0hr to	1.36	4.09	2.08	-2.01	-97	Figure 66
28053						0.8hr)	1.17	4.04		-1.96	-94	
34128						22	2.04	5.69		7.92	58	
34206	COROT-1	19/20.1. 2017	13.6	СКТ	300	2.9hr to	1.79	5.56	13.61	8.05	59	Figure 67
34249						4.9hr	3.03	12.77		0.83	6	
40969						19	1.33	4.09		-2.00	-96	
41014	HAT-P-4	8/9.4 .2017	11.12	СКТ	180	(4.3hr to	1.05	3.89	2.09	-1.80	-86	Figure 68
41058						5.4hr)	1.10	3.96		-1.87	-89	
39486						10	1.66	15.71		140.49	90	
39676	WD 1145 +017	25/26.3 .2017	17.28	СКТ	600	(3.1hr to	1.63	18.58	156.2	137.62	88	Figure 69
39896						4.4hr)	2.45	27.36		128.84	82	
29685						40	1.54	4.38		-1.59	-57	
29734	HAT-P-20	24/25.11. 2016	11.34	JHT	180	(4hr to	1.14	4.07	2.79	-1.28	-46	Figure 70
29784						0.311)	1.33	4.14		-1.35	-49	
31024		28/29 11				75	1.23	6.76		0.48	7	
31212	HAT-P-22	20/23.11.	9.73	JHT	20	2.8hr to 3.8hr	1.06	7.72	7.23	-0.49	-7	Figure 71
31383							1.00	7.63		-0.40	-5	
27358		17/18.10.	12.7	врт	200	16 (2.4br.to	1.07	4.10	2.19	-0.92	-29	Figure 72
27387	WASP-10	2016	12.7	KF I	300	(2.411 to 3.8hr)	1.23	4.22	5.10	-1.04	-33	Figure 72
28229							1.40	3.98		1.34	25	
28258	WASP-52	4.11.	12.0	RPT	300	23 (0hr to	1.43	3.94	5.32	1.37	26	Figure 73
28324		2016				2.4hr)	2.03	4.22		1.10	21	J

Image Number	Target	Date	V (mag)	Telescope	t _{exp} (s)	No. of Images	Air Mass (-)	Achieved SD from Target Counts (mmag)	Measured SD from Plots (mmag)	Difference (mmag)	Difference (%)	Figure Number in Appendix H
40191						58	1.02	4.09		1.78	30	
40270	HAT-P-22	27/28.3. 2017	9.73	RPT	60	(0hr to	1.00	4.12	5.86	1.74	30	Figure 74
40377	-					1.4111)	1.03	4.66		1.20	20	

Table 2 Derived and Measured Standard Deviations Using Measured Counts (NoTransits Present)

SD Calculated Using Target Catalogue Magnitude

Table 4 presents the equivalent results for the same images listed in Table 2 plus the results from a number of check stars, but this time using catalogue magnitudes to predict the SD instead of using target counts from the images. The predicted SD has been calculated using the method and equations given in Section 3.3.2 and an example of the calculations in a spread sheet is presented as Table 3.

The calculations have used values for the following terms:-

- (a) Target catalogue magnitude (m_{target}) .
- (b) Reference star catalogue magnitude ($m_{reference}$).
- (c) Selected exposure time (t_{exp}) .
- (d) Achieved air mass (X) from the FITS header block.

The column entitled "Figure Number in Appendix H" identifies the Figures with the corresponding light curves. The column entitled "Measured SD from Plots" is the SD obtained from an Excel spread sheet when there was no transit present. For clarity, the Figures show the 'mean', 'mean + SD' and 'mean - SD' for the period examined, plus the scheduled start and end of transit.

Item	Value	Value	Value	Equation
Image	26560	26628	26708	
Telescope	CKT	СКТ	СКТ	
Date/Time	2016-09-13T20:33:58	2016-09-13T23:31:49	2016-09-14T01:42:53	
Julian Date	2457645.357	2457645.48	2457645.571	
Moon	Nighttime, clear, high gibbous moon.	Nighttime, clear, high gibbous moon.	Nighttime, clear, low gibbous moon.	
CCD Temperature	-17.36867625	-19.97710074	-20.41762135	
x=	1.288038766	1.065788438	1.159495248	
texp	300	300	300	
σ_sky	28.9517357	28.9517357	28.9517357	3.2.5.15
σbias	6.37	6.37	6.37	3.2.1.1
σdark	0.84	0.84	0.84	3.2.2.1
FWHM (FITS Header)	2.904665208	4.622466612	4.33121798	
Aperture Radius (APT/MaximD	8	8	8	
Inner Sky Radius (APT/MaximD	10	10	10	
Outer Sky Radius (APT/Maxim	18	18	18	
TARGET	WASP-10/ 1214-0612683	VASP-10/ 1214-0612683	9294	
Peak Value (MaximDL)	34051	11276	9294	
Spectral Type	K5V	K5V	K5V	
m target	12.71	12.71	12.71	
m' t=1, x=1.0 predicted	-7.472967	-7.472967	-7.472967	3.2.6.2
m't=1,x=x predicted	-7.294382965	-7.432178168	-7.374079946	3.2.6.1
Ntarget t=1,x=x predicted	827.4717696	939.4448009	890.4960115	2.2.8.9
Ntarget predicted	248241.5309	281833.4403	267148.8034	2.2.7.4
Sigma flat target	523.7896302	594.668559	563.6839753	3.3.2.3
Sigma scint	0.000464939	0.000333768	0.000386804	3.2.4.1
Irms target	115.4172221	94.06700622	103.3342943	3.3.2.4
Sigma target	498.2384277	530.8798737	516.8643956	3.3.2.2
Sigma total target	732.664813	803.2385838	772.2990931	3.3.2.1
Sigma target total (Magnitude)	0.003199743	0.003089998	0.003134221	3.3.1.3
Reference Star	1214-0612756	1214-0612756	1214-0612756	
m reference	12.19	12.19	12.19	
Spectral Type	K5V	K5V	K5V	
m't=1s,x=1.0,predicted	-7.994163	-7.994163	-7.994163	3.3.2.20
m't=1,x=x predicted	-7.815578965	-7.953374168	-7.895275946	3.3.2.19
Nreference t=1,x=x predicted	1337.3084	1518.272295	1439.164304	3.3.2.18
Nreference predicted	401192.5325	455481.6886	431749.2913	3.3.2.17
Peak Value from MaximDL	34097	16195	15338	
Sigma flat reference	846.5162437	961.0663629	910.9910045	3.3.2.13
Sigma scint	0.000464939	0.000333768	0.000386804	3.2.4.1
Irms Reference	186.5301406	152.0252486	167.0024637	3.3.2.14
σReference	633.3976102	674.893835	657.0763207	3.3.2.12
Sigma total reference (count)	1073.990345	1184.534256	1135.967962	3.3.2.11
Sigma reference total magnitue	0.002902627	0.002819921	0.00285291	3.3.1.8
Sigma all (Magnitude)	0.004320139	0.004183305	0.004238211	3.3.1.10
TRANSFIT FIT EQUATION Ref	0.0394	0.0394	0.0394	
TRANSFIT FIT EQUATION Measured	0.0366	0.0366	0.0366	
TRANSFIT FIT EQUATION Δmag	0.0028	0.0028	0.0028	
SD 3-5hrs	0.003049377	0.003049377	0.003049377	l

Table 3 Analysis of 3 Images for WASP-10 Taken by CKT Telescope 13/14-9-2016 To Calculate the Predicted SD Using Catalogue Magnitudes

lmage Number	Target	Date	V (mag)	Telescope	t _{exp} (s)	No. of Images	Air Mass (-)	Predicted SD from Catalogue Magnitudes (mmag)	Measured SD from Plots (mmag)	Difference (mmag)	Difference (%)	Figure Number in Appendix H
26560							1.29	4.32		-1.27	-42	
26628	WASP-10	13/14.9. 2016	12.71	СКТ	300	22 (3hr to 5hr)	1.07	4.18	3.05	-1.13	-37	Figure 62
26708						. ,	1.16	4.24		-1.19	-39	
26560	WASP-10					56	1.29	4.33		-1.61	-59	
26628	Check Star 1213-	13/14.9. 2016	12.73	СКТ	300	(Ohr to	1.07	4.19	2.72	-1.47	-54	Figure 28
26708	0608720					5.2nr)	1.16	4.25		-1.52	-56	
26560	WASP-10					56	1.29	4.44		-0.77	-21	
26628	Check Star 1214-	13/14.9. 2016	12.92	СКТ	300	(Ohr to	1.07	4.29	3.67	-0.62	-17	Figure 29
26708	0612767					5.2111)	1.16	4.35		-0.68	-19	
26880							1.78	4.41		0.03	1	
26931	WASP-52	23/24.9. 2016	12.0	СКТ	300	20 (4hr to 6hr)	1.40	4.14	4.45	0.31	7	Figure 63
26990							1.84	4.47		-0.02	0	
26880	WASP-52						1.78	4.36		-1.64	-60	
26931	Check Star TYC 1161-	23/24.9. 2016	11.84	СКТ	300	60 (0hr to 6 0hr)	1.40	4.10	2.72	-1.37	-50	Figure 30
26990	890-1					,	1.84	4.42		-1.69	-62	
26880	WASP-52					60	1.78	4.26		-1.06	-33	
26931	Check Star TYC 1161-	23/24.9. 2016	11.42	СКТ	300	(Ohr to	1.40	4.01	3.19	-0.81	-25	Figure 31
26990	728-1					6.0nr)	1.84	4.31		-1.11	-35	
27090						9	1.56	4.25		-0.16	-4	
27101	WASP-52	30.9. 2016	12.0	СКТ	300	(0hr -	1.38	4.13	4.09	-0.04	-1	Figure 64
27120						1.25111)	1.42	4.15		-0.06	-1	
27090	WASP-52					31	1.56	4.20		-0.94	-29	
27101	Check Star TYC 1161-	30.9. 2016	11.84	СКТ	300	(Ohr to	1.38	4.08	3.27	-0.82	-25	Figure 32
27120	890-1					3.311)	1.42	4.11		-0.84	-26	
27090	WASP-52					31	1.56	4.11		1.10	+21	
27101	Check Star TYC 1161-	30.9. 2016	11.42	СКТ	300	(Ohr to	1.38	4.00	5.21	1.22	+23	Figure 33
27120	728-1					0.011)	1.42	4.02		1.20	+23	
28265						3	1.48	4.19		0.17	4	
28295	WASP-52	4.11. 2016	12.0	СКТ	300	(1.7hr to 1 9hr)	1.68	4.33	4.36	0.03	1	Figure 65
28325						1.5117	2.05	4.67		-0.31	-7	
28265	WASP-52					20	1.48	4.15		-0.65	-18	
28295	Check Star TYC 1161-	4.11. 2016	11.84	СКТ	300	(0hr to 1 9hr)	1.68	4.28	3.50	-0.78	-22	Figure 34
28325	890-1						2.05	4.61		-1.11	-32	
28265	WASP-52					20	1.48	4.05		-0.49	-14	
28295	Check Star TYC 1161-	4.11. 2016	11.42	СКТ	300	(0hr to 1 9hr)	1.68	4.18	3.57	-0.61	-17	Figure 35
28325	<i>i</i> ∠ö-1						2.05	4.49		-0.91	-26	
28473	WASP-52	5.11.	12.0	CKT	300	48	1.52	4.22	3.83	-0.39	-10	Figure 36

lmage Number	Target	Date	V (mag)	Telescope	t _{exp} (s)	No. of Images	Air Mass (-)	Predicted SD from Catalogue Magnitudes (mmag)	Measured SD from Plots (mmag)	Difference (mmag)	Difference (%)	Figure Number in Appendix H
28573		2016				(0hr to	1.36	4.12		-0.29	-8	(No
28620						4.4111)	1.65	4.31		-0.48	-13	Transit)
28473	WASP-52					48	1.52	4.17		-0.05	-1	
28573	Check Star TYC 1161-	5.11. 2016	11.84	СКТ	300	(Ohr to	1.36	4.08	4.13	0.05	+1	Figure 37
28620	890-1					4.4111)	1.65	4.26		-0.14	-3	
28473	WASP-52					48	1.52	4.08		2.33	36	
28573	Check Star TYC 1161-	5.11. 2016	11.42	CKT	300	(0hr to	1.36	3.99	6.41	2.43	38	Figure 38
28620	728-1						1.65	4.16		2.25	35	
27955		2.11				15	1.78	4.29		-2.21	-106	
28003	HAT-P-20	2.11. 2016	11.34	СКТ	180	(0hr to 0 8hr)	1.36	4.09	2.08	-2.01	-97	Figure 66
28053						ere,	1.17	4.04		-1.96	-94	
27955	HAT-P-20	2 11				52	1.78	4.57		0.4	8	
28003	TYC 1914-	2016	11.69	СКТ	180	(0 to 3.1 hr)	1.36	4.20	4.96	0.76	15	Figure 39
28053	17-1						1.17	4.07		0.89	18	
34128		19/20 1				22	2.04	6.71		6.89	51	
34206	COROT-1	2017	13.6	СКТ	300	(2.9hr to 4.9hr)	1.79	6.31	13.61	7.29	54	Figure 67
34249							3.03	8.79		4.82	35	
34128	COROT-1					19	2.04	6.62		2.64	28	
34206	Check star COROT-	19/20.1. 2017	13.517	CKT	300	(0.0hr to 4.9hr)	1.79	6.23	9.26	3.03	33	Figure 40
34249	102313042						3.03	8.66		0.59	6	
34128	COROT-1					48	2.04	6.57		1.02	13	
34206	Check star COROT- 102881564	19/20.1. 2017	13.465	СКТ	300	(0.0hr to 4.9hr)	1.79	6.18	7.58	1.41	19	Figure 41
34249							3.03	6.52		1.07	14	
40969						19	1.33	3.96		-1.87	-89	
41014	HAT-P-4	8/9.4. 2017	11.12	СКТ	180	(4.3hr to 5.4hr)	1.05	3.81	2.09	-1.72	-82	Figure 68
41058						,	1.10	3.83		-1.74	-83	
40969	HAT-P-4					00	1.33	4.07		-0.96	-31	
41014	Check Star BD+36	8/9.4. 2017	11.55	СКТ	180	(0.0hr to 5.4hr)	1.05	3.91	3.11	-0.80	-26	Figure 42
41058	2394						1.10	3.93		-0.82	-26	
40969	HAT-P-4					90	1.33	5.72		-1.87	-49	
41014	Check Star TYC 2569-	8/9.4. 2017	11.68	СКТ	180	(0.0hr to 5 4hr)	1.05	3.95	3.85	-0.10	-3	Figure 43
41058	1501-1					•••••	1.10	3.47		0.38	10	
40969	HAT-P-4					an	1.33	5.75		-1.81	-46	
41014	Check Star TYC 2569-	8/9.4. 2017	12.05	СКТ	180	(0.0hr to 5.4hr)	1.05	4.08	3.94	-0.14	-4	Figure 44
41058	ı∠30-1					,	1.10	3.52		0.42	11	
40969	HAT-P-4 Check Star	8/9.4.	12.13	СКТ	180	90 (0.0hr to	1.33	5.76	3.65	-2.11	-58	Figure 45

Image Number	Target	Date	V (mag)	Telescope	t _{exp} (s)	No. of Images	Air Mass (-)	Predicted SD from Catalogue Magnitudes (mmag)	Measured SD from Plots (mmag)	Difference (mmag)	Difference (%)	Figure Number in Appendix H
41014	TYC 2569- 1310-1	2017				5.4hr)	1.05	4.12		-0.47	-13	
41058							1.10	3.53		0.11	3	
39486						10	1.66	17.36		138.84	89	
39676	WD 1145 +017	25/26.3. 2017	17.28	СКТ	600	(3.1hr to 4 7hr)	1.63	17.18	156.2	139.02	89	Figure 69
39896							2.45	23.41		1362.79	85	
39486	WD 1145 +017					27	1.66	3.67		1.23	25	
39676	Check Star UCAC4	25/26.3. 2017	11.75	СКТ	600	(0.0hr to 4 7hr)	1.63	3.66	4.89	1.24	25	Figure 46
39896	458- 051088)	2.45	4.07		0.82	17	
29685						40	1.54	6.62		-3.83	-137	
29734	HAT-P-20	24/25.11. 2016	11.34	JHT	180	(4hr to 6 3hr)	1.14	3.96	2.79	-1.17	-42	Figure 70
29784						ololli)	1.33	4.07		-1.28	-46	
29685	HAT-P-20					08	1.54	4.34		6.05	58	
29734	Check Star TYC 1914-	24/25.11. 2016	11.69	JHT	180	(0ht to 6.3hr)	1.14	4.05	10.39	6.33	61	Figure 47
29784	17-1					ololli)	1.33	4.18		6.21	60	
29685	HAT-P-20					98	1.54	4.19		3.07	42	
29734	Check Star TYC 1910-	24/25.11. 2016	11.21	JHT	180	(Oht to	1.14	3.93	7.26	3.33	46	Figure 48
29784	361-1					6.3hr)	1.33	4.04		3.22	44	
31024						75	1.23	6.310		0.925	12.7	
31212	HAT-P-22	28/29.11. 2016	9.73	JHT	20	(2.8hr to	1.06	5.922	7.235	1.313	18.1	Figure 71
31383						5.0m)	1.00	5.804		1.431	19.7	
31024	HAT-P-22					281	1.23	7.73		4	34	
31212	Check Star TYC3441-	28/29.11. 2016	11.59	JHT	20	(Ohr to	1.06	7.29	11.73	4.44	38	Figure 49
31383	370-1					5.011)	1.00	7.16		4.57	39	
27358		1=110.10				16	1.07	4.18		-1.00	-32	
27387	WASP-10	17/18.10. 2016	12.7	RPT	300	(2.4 to	1.23	4.28	3.18	-1.10	-35	Figure 72
27 <mark>4</mark> 02						5.0m)	1.50	4.47		-1.29	-41	
27358	WASP-10	1=110.10				45	1.07	4.19		-0.68	-19	
27387	Check Star 1213-	17/18.10. 2016	12.73	RPT	300	(0.0 to	1.23	4.29	3.51	-0.78	-22	Figure 50
27 <mark>4</mark> 02	0608720					4.3111)	1.50	4.48		-0.97	-28	
27358	WASP-10					45	1.07	4.29		-0.75	-21	
27387	Check Star 1214-	17/18.10. 2016	12.92	RPT	300	(0.0 to	1.23	4.39	3.54	-0.86	-24	Figure 51
27 <mark>4</mark> 02	0612767					4.3nr)	1.50	4.60		-1.06	-30	
28229		,				23	1.40	4.14	5.32	1.18	22	
28258	WASP-52	4.11. 2016	12.0	RPT	300	(Ohr to	1.43	4.16	0.02	1.16	22	Figure 73
28324						2.4111)	2.03	4.64		0.67	13	
28229	WASP-52	4.11.	11.84	RPT	300	46	1.40	4.10	3.33	-0.77	-23	Figure 52
28258	TYC 1161-	2016				(0hr to	1.43	4.12		-0.79	-24	

lmage Number	Target	Date	V (mag)	Telescope	t _{exp} (s)	No. of Images	Air Mass (-)	Predicted SD from Catalogue Magnitudes (mmag)	Measured SD from Plots (mmag)	Difference (mmag)	Difference (%)	Figure Number in Appendix H
28324	890-1					4.6hr)	2.03	4.59		-1.26	-38	
28229	WASP-52					46	1.40	4.01	7.91	3.90	49	
28258	Check Star TYC 1161-	4.11. 2016	11.42	RPT	300	(0hr to	1.43	4.03		3.88	49	Figure 53
28324	728-1					4.0111)	2.03	4.47		3.43	43	
40191						58	1.02	4.29		1.57	27	
40270	HAT-P-22	27/28.3. 2017	9.73	RPT	60	(Ohr to	1.00	4.27	5.86	1.59	27	Figure 74
40377						1.4111)	1.03	4.30		1.56	27	
40191	HAT-P-22					104	1.02	4.92		2.31	32	
40270	Check Star TYC3441-	27/28.3. 2017	11.59	RPT	60	(Ohr to	1.00	4.91	7.23	2.32	32	Figure 54
40377	370-1	-				2.6hr)	1.03	4.94		2.29	32	
40191	HAT-P-22					104	1.02	4.55		6.58	59	
40270	Check Star TYC3441-	27/28.3. 2017	10.85	RPT	60	(Ohr to	1.00	4.53	11.13	6.60	59	Figure 55
40377	1256-1					2.6hr)	1.03	4.56		6.57	59	
39997						43	1.18	4.34		-1.54	-55	
40091	GJ436	26/27.3. 2017	10.613	RPT	60	(Ohr to	1.11	4.27	2.8	-1.47	-52	Figure 75
40170						1.0nr)	1.14	4.30		-1.50	-54	
39997	GJ436	00/07.0				111	1.18	4.74		0.36	7	
40091	Check Star TYC 1984-	26/27.3. 2017	11.43	RPT	60	(Ohr to 3 Ohr)	1.11	4.66	5.09	0.44	9	Figure 57
40170	1928-1					0.0111)	1.14	4.69		0.40	8	
39997	GJ436 Check Star	26/27.3				111	1.18	4.64		1.55	25	
40091	TYC1984-	2017	11.27	RPT	60	(0hr to 3.0hr)	1.11	4.56	6.19	1.63	26	Figure 58
40170	1332-1						1.14	4.59		1.59	26	
39997	GJ436 Check Star	26/27.3.				111	1.18	4.61		2.09	31	
40091	TYC1984- 1840-1	2017	11.23	RPT	60	(0hr to 3.0hr)	1.11	4.54	6.7	2.16	32	Figure 59
40170	10101					,	1.14	4.57		2.13	32	
39997	GJ436 Check Star	26/27.3.				111	1.18	4.39		-0.23	-6	F i 0.0
40091	TYC1984- 1884-1	2017	10.76	RPI	60	(Uhr to 3.0hr)	1.11	4.32	4.16	-0.16	-4	Figure 60
40170						,	1.14	4.35		-0.19	-5	
39997	GJ436 Check Star	26/27.3.	10.40	DDT	60	111 (0hr to	1.18	4.29	4.00	-0.30	-/	Figure 64
40091	TYC 1984- 2006-1	2017	10.48	۲۲I	00	(011 to 3.0hr)	1.11	4.22	4.00	-0.23	-6	Figure 61
40170							1.14	4.26		-0.26	-6	

Table 4 Predicted and Measured Standard Deviations Using Catalogue Magnitudes (No Transits Present)

Although obtaining a light curve with good precision for WD 1145+017 was expected to be challenging, the results were found to be less precise than had been predicted. Further investigation established that WD 1145+017 is identified as a variable star and the light curve produced using K2 data (assumed to be very precise) shown as Figure 1 in Gary (Gary *et al.* 2017) shows significant periodic variations between 17.2 and 17.7mag: this is far greater variation than the quoted transit depth of 0.1035mag given by the web site for the Czech Astronomy Society (Czech 5.9.2016). Consequently, in addition to other factors discussed in

Section 4.2, it has been concluded that this target is unsuitable for the purposes of demonstrating the validity of the SD equations and has been discarded from the analysis. However, the light curve for its check star UCAC4 457-051088 (V=11.75mag) is still suitable for analysis.

3.4.2 Observations Taken To Capture Exoplanet Transits

The results presented in this Section 3.4.2 cover observations made of known exoplanet transits with non-variable¹⁷ stars. The purpose of this exercise was to demonstrate that the predicted precision obtained using the equations presented in Section 3.3.2 (and reflected by the results presented by Table 4) translates in practice to a capability to observe transits of known transit depth that are larger than the predicted SD. Table 5 presents a list of successful observations that captured 'scheduled' exo-planet transits provided by the web site for the Czech Astronomy Society (Czech 5.9.2016). The column entitled "Measured Transit Depth" presents the depth of transit generated from the data by the transit fitting process that is also provided by the web site for the Czech Astronomy Society (Czech 5.9.2016). The selected exposure time was chosen using the methodology outlined in Section 2.3.4 and the spread sheet illustrated by Table 3. The light curves have been presented as Appendix I and the plots of fitted transits obtained after processing have been presented in Appendix J.

Date	Target	v	Telescop e	t _{exp} (s)	Number of Images	Measured Transit Depth (mmag)	Reference Transit Depth (mmag)	Abs Differ- ence (mmag)	Abs Differ- ence (%)	Figure Number in Appendix I	Figure Number in Appendix J
13/14.9.2016	WASP-10	12.7	СКТ	300	57	36.6 ± 1.3	39.4	2.8	7.1	Figure 62	Figure 76
23/24.9.2016	WASP-52	12.0	СКТ	300	62	29.6 ± 1.9	29	0.6	2.1	Figure 63	Figure 77
30.9.2016	WASP-52	12.0	CKT	300	31	38.3 ± 1.8	29	9.3	32.0	Figure 64	Figure 78
4.11.2016	WASP-52	12.0	СКТ	300	21	23.2 ± 2.8	29	5.8	20.0	Figure 65	Figure 79
2.11.2016	HAT-P-20	11.34	СКТ	180	52	22.7 ± 0.8	20.4	2.3	11.3	Figure 66	Figure 80
19/20.1.2017	COROT-1	13.6	СКТ	300	55	33.0 ±5.1	24.7	8.3	33.6	Figure 67	Figure 81
8/9.4.2017	HAT-P-4 [*]	11.12	СКТ	180	90	13.6* ±0.9	7.9	5.7	72.2	Figure 68	Figure 82
25/26.3.2017	WD 1145+017	17.28	СКТ	600	27	-	-	-	-	Figure 69	-
24/25.11.2016	HAT-P-20	11.34	JHT	180	62	21.9 ± 1.0	20.4	1.5	7.4	Figure 70	Figure 83
28/29.11.2016	HAT-P-22	9.73	JHT	20	281	17.2 ± 1.3	11.9	5.3	4.5	Figure 71	Figure 84
17/18.10.2016	WASP-10	12.7	RPT	300	49	33.1 ± 1.5	39.4	6.3	16.0	Figure 72	Figure 85
4.11.2016	WASP-52	12.0	RPT	300	46	33.9 ± 2.3	29	4.9	16.8	Figure 73	Figure 86
26/27.3.2017	GJ436	10.6	RPT	60	111	5.9 ±0.7	9.0	3.1	34.4	Figure 75	Figure 87

* Incomplete transit captured

Table 5 List of Observations Made Capturing Full Exoplanet Transits

¹⁷ Or the variability is considered to be insignificant. For example WASP-10 has a small variability in brightness: Maciejewski (Maciejewski, 2011) has identified a worst case of a 3mmag variation in WASP 10 in a 4 hour period due to sun spots: this change is relatively small compared to the transit depth of 39.4mmag, and might be removed anyway in the trend removal process by the transit fit program (eg see Figure 76).

Figure 76 to Figure 87 present the results from the transit fitting program with Figure 76(a) reproduced below for convenience.

Figure 76(a) WASP-10 Transit of 13/14-10-2016 With CKT Telescope and Equation Fitting – Fitted Transits

The plot on the top of Figure 76(a) is an initial fit to the raw data by the transit fitting program. The lower plot shows the corresponding transit curve produced with linear bias removal. The error bars shown in the plots are the SD values extracted from Figure 76(b) (reproduced below for convenience) presents the difference between the fitted curve and the raw data.

Figure 76(b) WASP-10 Transit of 13/14-10-2016 With CKT Telescope and Equation Fitting – Residual Differences

As illustrated by Figure 76(c) (reproduced below for convenience), the set of data on the bottom right corresponds to key parameters obtained from the curve fitting process, in particular the reference depth of transfer that has been included in

Table 5 in the column entitled "Measured Transit Depth (mmag)". The reference transit depth data is from the web site for the Czech Astronomy Society (Czech 5.9.2016), however, it does not quote their uncertainty¹⁸¹⁹.

Figure 76(c) WASP-10 Transit of 13/14-10-2016 With CKT Telescope and Equation Fitting – Measured Parameters

A CCD temperature stability problem was encountered on 13/14-9-2016 (as shown by Figure 6) when the required -20°C camera temperature was not achieved until near to the end of the transit by WASP-10b.

Figure 6 CCD Temperature Variation on 13/14-9-2016

¹⁸ In the case of WASP-10: the quoted transit depth of 39.4mmag appears to be slightly high as Christian (Christian, 2009) quotes a transit depth of 33 ± 1 mmag that is broadly consistent with the results presented in Table 5. Furthermore, inspection of the numerous transit depth measurements shown in the plot for WASP-10 on the web site for the Czech Astronomy Society also indicates that a transit depth of 39mmag is slightly too high. ¹⁹ Transit depth is often given by the term $k^2 = (R_P/R_P)^2$ where R_P is the planet radius and R_P is

¹⁹ Transit depth is often given by the term $k^2 = (R_P/R_*)^2$ where R_P is the planet radius and R_* is the star radius. This is an approximation since using Pogson's equation, converting from \log_{10} to \log_e and then applying a McClaurin expansion gives $\Delta m = 1.087 \left[k^2 + \left\{ \frac{k^4}{2} \right\} + \cdots \right]$. Since the size of the planets is usually relatively large compared to the size of the host star, the value of the smaller terms in the expansion may not necessarily be insignificant.

The otherwise satisfactory transit for WASP-10 shown as Figure 62 and Figure 76 is thus initially slightly compromised by this temperature variation as the dark current at temperatures higher than -20°C will not be fully compensated by the calibration using standard -20°C master dark current frame.

3.4.3 Eclipsing Cataclysmic Variable Star UX UMa

An observing campaign was conducted with eclipsing binary star UX UMa (V=13.26±0.31mag). UX UMa was chosen as a target as it is well documented, has a relatively short orbital period and has a significant depth for its primary transit. The results have been included as it provides further evidence that one can observe events that have a magnitude variation greater than the predicted precision. Furthermore, the predicted precision has been used to define the uncertainty on these measurements: the significant variation in the brightness of UX UMa outside of the eclipse precludes reliable measurement of the SD from the light curve. Table 6 presents a list of observations made of UX UMa taken by the CKT and DAT telescopes (see Appendix A). The column entitled "Start" corresponds to the predicted precision for the middle image of the sequence and the column entitled "End" corresponds to the predicted precision for the predicted precision for the sequence and the sequence.

Date	elescope	Filter	t _{exp} (s)	Number of Images	Predicted Precision (mmag)			SD from Light Curve	Observed Transit Depth (mag)	Figure Number in Appendix K
					Start	Mid	End	(mmag)	(
30.4.2013	СКТ	V	60	100	5.8	5.8	6.1	32.5	1.16	Figure 88
21.6.2013	DAT	V	60	55	5.9	6.0	6.1	19.6	1.08	Figure 89
18.7.2013	DAT	V	60	58	6.2	6.4	6.7	17.5	1.04	Figure 90
7.9.2013	СКТ	V	60	30	6.7	6.9	7.1	20.7	1.01	Figure 91
9.9.2013	СКТ	V	60	30	6.6	6.8	7.0	18.9	0.89	Figure 92
27.5.2017	JHT	V	60	66	5.8	5.8	5.9	12.9	-	Figure 93
27.5.2017	RPT	V	60	119	5.8	5.9	6.2	16.1	-	

Table 6 List of Observations with Eclipsing Binary Star UX UMa

The column entitled "Figure Number in Appendix K" references the Figures presented in Appendix K with Figure 88 reproduced below for convenience.

Figure 88 UX UMa Eclipse with V Filter on CKT Telescope on 30-4-2013

The tolerance bars in all light curves indicate the predicted precision that has been obtained by interpolating between the corresponding values presented in the column entitled "Predicted Precision". The transit depths are presented in column entitled "Observed Transit Depth" and have been calculated as the difference in magnitude between the mean value and lowest value, as indicated in the respective Figure. The column entitled "SD from Light Curve" is the measured SD from the light curve (whilst there was not a transit) and are represented in the respective Figure as the \pm SD lines about the mean value line.

Figure 93 (reproduced below for convenience) presents the light curves from the simultaneous observations by the JHT and RPT telescopes, with a common time base corresponding to the start of data from the JHT telescope. Unfortunately the JHT camera temperature was initially at only -12.7°C, but improved to -15.7°C by the end of the observations. Secondly, there was some saturation of the reference star with the RPT telescope observations that diminished as the value of air mass increased. A shift was applied to the JHT plot corresponding to the mean difference between the two plots in the first 2.3 hours. The main objective of this plot is to demonstrate that large variations in one light curve are also present in the other light curve, and ideally demonstrate that the predicted tolerance values from each light curve overlap.

Figure 93 UX UMa with V Filter on JHT and RPT Telescopes on 27-5-2017

3.5 Comparison of Achieved Versus Predicted Precision

3.5.1 Non Variable Stars Without Transits

Section 3.4.1 compares values of SD from either the measured or predicted values of SD (derived using the formulation presented in Sections 3.3.1 and 3.3.2) against the reference SD values obtained from light curves. These results have been taken over a wide range of observing conditions in terms of cloud cover and phase of moon. This means that the achieved observing performance should be representative for a wide range of observing conditions, as opposed to defining the best possible achievable performance that can be rarely obtained.

SD Calculated using Target Count

The results presented in Table 2 and Figure 7 present the SD error obtained for all telescopes for target V magnitudes in the range 9.7mag to 13.6mag. A negative number for the SD error shown in Table 2 and Figure 7 means that the SD derived from target counts is larger (more pessimistic) than the SD derived from the light curve. The results typically show errors of less than 2mmag between the SDs derived from counts from individual images and the respective SD values calculated using an Excel spread sheet from the light curve data. The relatively poor performance with COROT 1 (V=13.6mag) was obtained with observing conditions that were far from ideal, in particular the air mass varied between 1.8 and 3.0.

Inspection of Table 2 and Figure 7 shows that the results for the RPT telescope, even though it uses a different camera to that used by the CKT and JHT telescopes, typically have an error of less than 2mmag.

It is to be noted that the measured SD values for stars with transiting planets have often been obtained for relatively short durations and few data values (especially with high values of exposure time) and is consequently liable to more error than with a longer term reading. Conversely, the measured SD for the companion check stars have been obtained for the full observing periods, however these data may include periods with significantly different values of air mass and consequently different signal to noise ratios and air turbulence.

Figure 8 presents the same information for the CKT telescope only, but without the results for COROT 1. In all cases the SD error is less than 2mmag. The trend line shows a gradual increase in the SD error from a negative (overestimate of the SD) to a positive (underestimate of the SD) as the catalogue magnitude increases.

Figure 8 CKT Telescope: SD Error (using Counts) v Magnitude

Figure 9 has the same information presented in Figure 8 (and the results from COROT-1) but expressed as an absolute percentage error. This plot does not provide any evidence to suggest that the relative size of the errors increases with catalogue magnitude.

Figure 10 presents the absolute SD error plotted against air mass. The trend line does not show a reduction in performance with increase in air mass, although it might be influenced by the single point with an air mass of 3 that may fortuitously have a low SD error.

Figure 10 CKT Telescope: Absolute SD Error (using Counts) (%) v Air Mass

SD Calculated Using Target Catalogue Magnitude

It can be observed that Table 4 demonstrates that the SD results obtained solely from the catalogue magnitudes, measured air masses and exposure times show that the predicted SD values are broadly similar to the SD values from the light curve data for all telescopes. There are far more measurements presented in Table 4 than with Table 2, as the analysis presented in Table 2 was primarily to prove the analysis process using a limited number of equations, whereas Table 4 presents results obtained using the full equations and includes many results from check stars to provide additional evidence of the validity of the equations. Although the derived results have been matched to the achieved air mass and selected value for t_{exp} , they are still 'predicted' results as no reference has been made to the data in any of the images taken. Furthermore, the equations in an EXCEL spreadsheet (such as illustrated in Table 3) were used **before** any observations were taken in an endeavour to give the best compromise between precision and cadence to capture an exoplanet transit of known duration and transit depth.

Figure 11 presents the error between predicted SD (using magnitudes) and measured SD values from light curves plotted against catalogue magnitude, for measurements taken from Table 4 with all of the telescopes.

Figure 11 All Telescopes: SD Error (using Catalogue Magnitude) v Magnitude

Figure 12 presents data for the CKT telescope only, and shows the difference between the predicted SD using target catalogue magnitude compared to the measured SD values from a designated period in the respective light curves. In many cases the SD error is less than 2mmag. This plot shows that (apart from the results from COROT 1) most of the predicted SD values are larger than the measured SD values from the light curves.

Figure 12 CKT Telescope: SD Error (using Catalogue Magnitude) v Magnitude Figure 13 has the same information presented in Figure 12 but expressed as an absolute percentage error. The trend line implies that there is no obvious increase in SD error with catalogue magnitude for the selected range of target catalogue magnitudes.

Figure 13 CKT Telescope: Absolute SD Error (%) v Magnitude

Figure 14 presents the same SD error but plotted against air mass. From inspection there is no evidence of increasing SD with increasing air mass. This implies that the equation compensation for air mass is proving to provide good compensation for a wide range of values of air mass.

Figure 14 CKT Telescope: Absolute SD Error (%) v Air Mass

3.5.2 Non Variable Stars With Transits

The derived transit depths from the transit fitting program presented in Section 3.4.2 have been generated regardless of the duration of the observations. Figure 15 presents the derived transit depths (and their reported tolerances) and reference transit depths (from Table 5) plotted against catalogue magnitude. In most cases the reference transit depths are broadly consistent with the predicted 1SD error bars. No error bars have been assigned to the reference transit depth, however Section 3.4.2 states that the reference transit depth for WASP-10 (V=12.7) of 39.4mmag may be too high and that a more precise value would be 33±1 mmag. Inspection of Figure 15 indicates that this value is more consistent with the predicted results than the reference value of 39.4mmag.

Figure 15 Comparison of Measured Transit Depth and Reference Transit Depths v Magnitude

The transit depth measurement for HAT-P-4 (V=11.12) of 8/9.4.2017 in Table 5 is likely to be more prone to error as inspection of Figure 68 indicates that a full transit had not been fully captured.

3.5.3 Eclipsing Binary Star UX UMa

The results presented in Section 3.4.3 are consistent with those obtained by Dmitrienko (Dmitrienko 1994) who conducted a large number of transit depth measurements for UX UMa (Table 3 of this reference shows that the measured transit depth values for a V filter varied between 0.68mag to 1.15mag).

The value of the SD from the light curves is much larger than the predicted SD since the observed SD from the light curve reflects the variability of the cataclysmic variable outside of the eclipse²⁰ with the bulk of the luminosity due to accretion (Kolb 2010). This means that the measured SD of the light curve should not be used to define precision²¹.

Figure 93, despite the limitations of the observations, clearly has the displaced JHT telescope light curve largely overlapping the equivalent light curve from the RPT telescope. The match appears to improve as time advances and some of the limitations of the light curves become less pronounced. For example, the close match at approximately 1.3 hours would not be expected had the light curve

²⁰ The light curve reflects interactions arising from material being taken via the Roche lobe of the red giant star, falling onto the bright spot on the accretion disc and eventually migrating onto the white dwarf's surface causing novas.

²¹ An alternative method to calculate the SD would be to use a check (or reference) star's light curve to define precision, but the alternative star might have a significantly different magnitude with a correspondingly different SD.

variations been solely due to measurement noise. The high degree of over-lapping of the tolerance bars²² gives confidence that the predicted tolerances are satisfactory.

Consequently the predicted precision can be used to assist in identifying genuine physical effects in the light curve.

²² The predicted tolerances are only believed to be indicative of the expected performance with the RPT telescope.

4 DISCUSSION

4.1 General

The observing conditions have often been compromised by the presence of cloud. However, good precision has still been achieved using differential photometry despite adverse conditions. For example, even with the cloudy conditions captured by the Bayfordbury All Sky Camera on 24/25.11.2016 (Figure 4), a good transit light curve was still captured for HAT-P-20 (see Figure 70 and Figure 83). It may have been the case that the cloud cover was reasonably uniform for all images taken during the observing period.

The light curve for WASP-10 has a close resemblance to the detailed light curves presented in Figure 5b to Sada (Sada & Ramón-Fox 2016) that had been produced at a site 989m amsl in Mexico using a 0.36m telescope with a Johnson-Cousins Ic filter. The precision of their 4 light curves was defined by the statement "Average point-to-point variation values ranged between 0.0031 and 0.0039 for these four individual light curves." Inspection of Table 4 shows that the predicted precision of the CKT telescope (for the air mass and exposure time used on WASP-10 observation of 13/14.9.2016) was approximately 4.2mmag with a measured SD of approximately 3.1mmag. Both of these figures are consistent with the observations made by Sada. Similar precision was also achieved with the check stars 1213-0608720 and 1214-0612767 that have similar magnitudes as WASP-10. In the case of the WASP-10 observation by the RPT telescope on 17/18.10.2016, the predicted precision was approximately 4.3mmag and the measured SD was approximately 3.2mmag. This means that both the CKT and RPT telescopes at Bayfordbury Observatory have achieved similar precision to that achieved by the similar telescope used by SADA.

4.2 Comparison of Achieved Results Compared to Predictions

The results presented in Table 2 of Section 3.4.1 show the SD derived using measured counts with the CKT telescope. These results are typically within 2mmag of the corresponding reference SD values obtained from the light curves, albeit there were some mismatches with the results from COROT-1 that may in part be due to poor observing conditions.

The more comprehensive set of results presented in Table 4 of Section 3.4.1 show the predicted SD values derived using catalogue magnitudes with the CKT telescope. The results are also typically within 2mmag of the measured values obtained from the light curves, apart from a few exceptions, and fully consistent with the errors obtained in the validation process (see Figure 26). A similar performance was not only achieved with the JHT telescope but also with the RPT telescope.

A model with the predicted precision equations was implemented in a spread sheet as part of the process to generate Table 4 of Section 3.4.1 (an example completed spread sheet for WASP-10 is provided as Table 3). This spread sheet was used to help identify which predicted exoplanet transits could be satisfactorily captured by the CKT telescope. Table 5 in Section 3.4.2 shows that the achieved observations with images correctly taken during a predicted transit (apart from the very faint inappropriate target WD 1145+017 in adverse weather conditions), captured 12 satisfactory transits with transit depths broadly consistent with the reference transit depths, even though many of the light curves did not satisfactorily capture the full transit. Furthermore, Table 5 gives transit depth tolerances (derived by transit depth equation fitting process) that are consistent with the predicted values of SD given in Table 4.

The very speculative observation of target WD 1145+017 was particularly challenging due to its low magnitude (V=17.28). However, since the quoted high depth of transit (103.5mmag) and the predicted SD (Table 4 shows predicted SD values between 17mmag and 23mmag for the achieved values of air mass) for this target suggested that the transit could be captured. However the transit was not satisfactorily captured with the observations taken on 25/26.3.2017. As already stated at the end of Section 3.4.1, WD 1145+017 was found to be an unsuitable star for precision photometry as it is a variable star. In addition, an examination of the data and observation conditions revealed that it was quite foggy that night and even using the brightest star (TYC 272-650-1) as the reference star, the light curve for the check star was unsteady as illustrated in Figure 16.

Figure 16 Light Curves For the Transit of WD 1145+017 Taken on 25/26.3.2016 Using TYC 272-650-1 as the Reference Star

Other factors noted that may also be relevant to other observations where poor results are obtained are:-

(a) The other non-variable stars in the image (that were identified using DS9 and the SIMBAD catalogue) were all significantly brighter than the target star. Since weather factors (such as undetectable cirrus and fog) and air mass varied quite considerably over the observing period, there was a significant risk that any stars used as a reference star/ check star could have readings exceeding the pixel well linearity limit at some stage during an observing period. The initial analysis used a reference star (TYC 272-650-1, V=11.26) that was subsequently found to be saturated in the first image. As the observations had proceeded and the air mass increased, the saturation ceased and resulted in the apparent magnitude of the check star progressively reducing, as can be observed in Figure 16. Subsequent analysis used an alternative less bright star (UCAC4 457-049477, V=11.69) as the reference star (and used in the generation of the light curve presented as Figure 46) but even this star had unacceptably high peak counts that exceeded the linearity limit, as did the check²³ star UCAC4 458-051088.

- (b) The observing conditions were poor as the air mass was relatively high and varied from 1.7 to 2.4 during the observing period.
- (c) As anticipated, the count for the target was low (despite having an exposure time of 600s) and the removed sky bias was relatively high compared to that of the target. For example, the first image had a recorded target count of only 6097 after subtracting the sky bias. The relatively high sky noise and irregular cross sections are illustrated in the aperture slice presented as Figure 17.

Figure 17 Aperture Slice For WD 1145+017 in Image 39486

(d) Apart from being difficult to identify the faint target star in an image, there is an increased risk that another faint variable star (with Poisson noise) could be present in an aperture/annulus that would have an insignificant contribution to the count with a bright star, but this may not necessarily be the case with a faint star.

4.3 Revision of Equations to Better Match Results

No revisions to the equations are advocated as there are no clear discrepancies in the results. The good matches obtained in this study suggest that the errors introduced by having a target and reference star of different colour was negligible with V filter.

4.4 Assessment of Achievements Compared to Objectives

The first primary study aim identified in Section 1.3 was to:-

"Create a validated model of equations that quantify the predicted photometric precision of images taken with a specific telescope, camera and filter configuration at the University of Hertfordshire's robotically controlled telescopes located at the Bayfordbury Observatory in Hertfordshire.

This thesis provides a straightforward definitive method of deriving the predicted photometric precision for any target captured by the CKT telescope at the Bayfordbury Observatory. The analysis has furnished numerical values for a set of

²³ There are no other non-variable stars readily identifiable in the images taken for WD 1145+017 with a V magnitude specified in the SIMBAD catalogue. It might be possible to find alternative reference and check stars using an another star catalogue.

equations that define the precision of the CKT telescope and camera configuration whilst working in V band with 2x2 binning.

The data from a series of multiple hour observations for a wide range of target magnitudes, exposures times and values of air mass have been analysed. The achieved matches (between the predicted SD with the CKT telescope and the achieved SD from the light curves) are shown in Table 4 to be consistently good, often within 2mmag precision. A similar outcome was also achieved with the JHT telescope which nominally has an identical telescope and camera configuration. In the case of the RPT telescope, the predicted performance (using the equations tailored for the CKT telescope, even though the RPT telescope has a slightly different type of camera to the one used with the CKT telescope) was still similar to that achieved in practice.

The second primary study aim identified in Section 1.3 was to:-

"Demonstrate that the predicted precision can be achieved by satisfactorily capturing transits with known transit depths."

The equations defined in this thesis provide a predicted precision that is valid for any target over a large range of catalogue magnitudes and values of air mass. The predicted precision has been calculated using the catalogue magnitude of the target star, the catalogue magnitude of the reference star, the predicted range of values of air mass for an observation and the chosen value of exposure time.

Suitable forecast exo-planet transits were identified using the predicted precision calculated using these equations. In turn the achieved results were compared with the predicted precision. The results presented in Section 3.4.2 and Table 5 clearly demonstrate that multiple exo-planet transits have been successfully captured, with uncertainties in the depth of transit (defined by the equation fitting process) consistent with the predicted SDs shown in Table 4.

The first secondary study aim identified in Section 1.3 was to:-

"Provide a tool to calculate predicted precision so that one can quickly decide if one can reliably observe an event such as the transit of the exoplanet for star WASP-33. This tool would also enable a user to investigate the optimal value of exposure time and cadence."

The predicted precision equations were implemented in a spread sheet as part of the process to generate Table 4 of Section 3.4.1. An example of the spread sheet is provided as Table 3.

Suitable candidate exo-planet transits that could be satisfactorily captured using the CKT telescope were then identified using the predicted precision for this spread sheet.

The exposure time has been iteratively changed in this spread sheet to find an optimum value of t_{exp} that gives a suitably high cadence yet still gave an acceptable predicted accuracy.

The second secondary study aim identified in Section 1.3 was to:-

"Establish a more reliable calculation for the recommended target exposure time for use at the Bayfordbury Observatory."

Appendix G provides a method that could be adopted at the Bayfordbury Observatory to establish a maximum value for t_{exp} that keeps the peak target count from a pixel within the linearity range. The user also needs to verify that the selected value of t_{exp} is not predicted to exceed the linearity limit for the reference star and for the check stars.

4.5 Assessment of the Applicability of Methodology to Other Equipment

No reason has been identified that would preclude using the techniques identified in this thesis for use by other observatories with similar equipment to provide predicted precision with their observations.

An alternative application of the formulation is to quantify the change in the predicted precision with a proposed new camera. Linearity plots similar to those presented as Figure 27 would establish the camera's linearity limit(s) and (assuming a similar quantum efficiency) directly translate into a scale factor on the maximum exposure time for a given target. For example, if the pixel's well depth linearity limit of the new camera was double that for the CKT camera (but still has the same effective pixel collection area as the CKT telescope's camera), then the maximum exposure time for a target would also double.

5 CONCLUSIONS

5.1 Overview

Previously there has been uncertainty in predicting what precision could be achieved from observing targets and in particular the precision when observing a variable star such as UX UMa. Indeed, there were suggestions that the telescopes at Bayfordbury Observatory would be unable to capture an exo-planet transit.

This thesis presents an extensive series of measurements and data reduction that has been conducted to derive a formulation to predict the precision of an observation by the CKT telescope operating in V band with 2x2 binning. The validity of the equations covers a range of V magnitudes from 5mag to 16.5mag, and for air masses up to 3.0.

The formulation is very straight forward and only requires knowledge of the catalogue magnitude (of both the target and reference stars), exposure time and the expected highest value of air mass in order to predict the precision, assuming acceptable observing conditions and correct equipment functionality. As a consequence an observer can iteratively predict the precision **before** an observation has been taken to:-

- (a) Establish whether it is worthwhile attempting to observe a particular target in the first place.
- (b) Optimise the exposure time to give the best compromise between a high cadence and the required precision.
- (c) Identify any constraints on the maximum value of air mass during an observation to maintain the required predicted precision.

Alternatively, the formulation can be used to predict the achieved precision **after** an observation using the achieved values of air mass.

This formulation has been used to identify which predicted exo-planet transits would be worth observing and the optimum value of exposure time that should be used. The subsequent observations successfully captured 12 exo-planet transits with an achieved a precision consistent with the original calibration. This performance has been obtained over a wide range of weather conditions, target magnitudes and values of air mass. Consequently it is considered that the formulation has been demonstrated to be robust, often in observing conditions that were far from perfect.

A method has also been developed to calculate the maximum exposure time for a given catalogue magnitude that could be implemented on Bayfordbury Observatory. This method would provide observers with a recommended maximum observing time for any target and should help them optimise the exposure times and consequently have fewer failed observations/ potentially produce higher precision results.

This thesis has also identified a number of important considerations for precision observations. For example, it is important to ensure that the pixel well linearity limit is not exceeded by any target, reference or check star due to the variation in air mass and cloud conditions during a prolonged observation period.

An additional benefit of this work is that observations taken as part of this project have provided the database foundation for one of the main astrophysics practicals carried out by 2nd year students on the Astrophysics BSc and MPhys degree programmes. The measurement and interpretation of these images (by the students) is assessed based on physical understanding and statistical method (that has been taught in lectures). Furthermore, students have also been submitting observing jobs to capture transiting exoplanets now that it has been demonstrated that exo-planet transits can, with care, be captured using the telescopes at the Bayfordbury Observatory.

Evidence of full compliance with the study aims (Section 1.3) has been provided in Section 4.4. Consequently it is considered that all primary and secondary study aims have been fully met.

5.2 Applicability of Formulation to Future Observing Studies at the Bayfordbury Observatory

The techniques and formulation developed in this thesis could be used to assist in:-

- (a) Optimising the exposure time/ cadence for observing predicted exo-planet transits.
- (b) Identifying potential targets (such as brown dwarfs) that could be satisfactorily captured with the required precision. The equations can be used to optimise the exposure time, identify if there are certain values of air mass that would be highly undesirable and to help identify which stars might be suitable to be used as reference stars.
- (c) Conducting studies where the precision may be hard to identify, such as with the cataclysmic variable binary star UX UMa.
- (d) Assisting in identifying the smallest detectable transit depth that could be detected in searches for new exo-planet transits.

5.3 Identification Of Further Work

The key areas where further work would be particularly useful are to:-

- (a) Extend the parameterisation of the equations to cover additional telescope/ camera configurations, hardware binning options and filter options at the Bayfordbury Observatory.
- (b) Use the techniques at another observatory. Dr. S. Fossey of UCL Observatory (UCLO, University College London) has expressed an interest in reviewing these techniques and comparing with current methods of photometry used at UCLO, and has requested a copy of this thesis.
- (c) Explore using 1x1 binning for relatively bright targets that would potentially have a significantly reduced SD with longer exposure times (see Figure 27), but with a lower cadence. This investigation would be particularly relevant to cameras that have hardware binning that cannot fully accommodate the summing of filled individual pixel wells because of the well capacity limitation of the summing wells. This investigation might identify any saturation in individual pixels that has been disguised by the hardware binning process.
- (d) Implement the derivation of an optimised exposure time calculation in the Bayfordbury Observatory software.
- (e) Demonstrate that the light curves simultaneously taken of the same target using different telescopes (and potentially with different exposure times) can be successfully combined (or binned) by weighting each data point according to the predicted precision from equations tailored for each telescope. For example, if all five robotically controlled telescopes at Bayfordbury Observatory were

simultaneously observing the same exo-planet transit of a faint target, then each point on their respective light curve could be included to give a higher cadence than from one telescope alone - the corresponding predicted values of SD could then be included as the third column in the data file that is input to the transit fitting program (accessed via the web site of the Czech Astronomy Society). An extension of this process could be applied to results with significantly different telescopes and exposure times, and possibly with observations from different locations.

- (f) To develop a program to provide a predicted precision on a light curve based on the predicted SD (generated by the equations), to reflect the change in air mass with an observation lasting several hours. This program could also check on whether the pixel linearity limit might be exceeded during this observation.
- (g) To investigate the inclusion of a colour term to represent the error introduced by using a target and a reference star of different colours.

Afanasiev V.L.M., A.V., 2005, Astronomy Letters, 31, 214

Alton K.B., 2013, Journal of the American Association of Variable Star Observers (JAAVSO), 41, 97

Arellano Ferro A., et al., 2013, Monthly Notices of the Royal Astronomical Society, 434, 1220

Baldwin J.E., Tubbs R.N., Cox G.C., Mackay C.D., Wilson R.W., Andersen M.I., 2001, Astronomy and Astrophysics, 368, L1

Balona L.A., Janes K., Upgren A.R., 1995, in: Philip A.G.D. ed., New Developments in Array Technology and Applications. p. 187

Baptista R., Horne K., Hilditch R.W., Mason K.O., Drew J.E., 1995, The Astrophysical Journal, 448, 395

Bayfordbury-Observatory, 5.9.2016. <u>http://bayfordbury.herts.ac.uk/about/telescopes.htm</u>, BBC, 6.10.2017. BBC,

Bergfors C., et al., 2013, Monthly Notices of the Royal Astronomical Society, 428, 182

Bertin E., Arnouts S., 1996, Astronomy and Astrophysics Supplement Series, 117, 393

Bessell M.S., 1990, Publications of the Astronomical Society of the Pacific, 102, 1181

Bessell M.S., 2000, Publications of the Astronomical Society of the Pacific, 112, 961

Bessell M.S., 2005, Annual Review of Astronomy and Astrophysics, 43, 293

Bramich D.M., 2008, Monthly Notices of the Royal Astronomical Society, 386, L77

Brown T.M., et al., 2013, PASP, 125, 1031

Budding E., Demircan O., 2007, in: Ellis R., Huchra J., Kahn S., Rieke G., Stetson P.B. eds., Cambridge Observing Handbooks for Research Astronomers. Cambridge University Press, University Press, Cambridge, UK,

Buffington A., Booth C.H., Hudson H.S., 1991, Publications of the Astronomical Society of the Pacific, 103, 685

Carrol B.W. O.D.A., 2007, ISBN 0-321-44284-9, 1278 plus appendices

Castellano T., Laughlin G., Terry R.S., Kaufman M., Hubbert S., Schelbert G.M., Bohler D., Rhodes R., 2004, Journal of the American Association of Variable Star Observers (JAAVSO), 33, 1

Charbonneau D., Brown T.M., Latham D.W., Mayor M., 2000, The Astrophysical Journal Letters, 529, L45

Collier Cameron A., et al., 2007, Monthly Notices of the Royal Astronomical Society, 380, 1230

Conroy K.E., Prsa A., Stassun K.G., Orosz J.A., Fabrycky D.C., Welsh W.F., 2013, ArXiv eprints. p. 512

Cooper W.A., et al., 2004, in: Norton A.J. ed., A Guide to Observational Astronomy and Planetary Science. Cambridge University Press, Cambridge, UK,

Cousins A.W.J., 1974, Monthly Notes of the Astronomical Society of South Africa, 33, 149

CyanogenImaging, 2016, http://diffractionlimited.com/product/maxim-dl/ 6.12.2016,

Czech A.S., 5.9.2016. <u>http://var2.astro.cz/ETD/predict_detail.php?STARNAME=HAT-P-8&PLANET=b&PER=&M=</u>,

Davenport J.R.A., West A.A., Matthiesen C.K., Schmieding M., Kobelski A., 2006, Publications of the Astronomical Society of the Pacific, 118, 1679

Davies R., Kasper M., 2012, Annual Review of Astronomy and Astrophysics, 50, 305

de Mooij E.J.W., Jayawardhana R., 2013, European Physical Journal Web of Conferences. p. 13001

de Mooij E.J.W.S., I.A.G., 2009, Astronomy and Astrophysics, 493, L35

Dmitrienko E.S., 1994, Astronomy Letters, 20, 104

Dravins D., Lindegren L., Mezey E., Young A.T., 1998, Publications of the Astronomical Society of the Pacific, 110, 610

Dravins D. L.L., Mezey M., 1997, Publications of the Astronomical Society of the Pacific, 109, 173

Ducci L.C., S.; Doroshenko, V. ; Mereghetti, S.; Sanatangelo, A.; Sasaki, M., 2016, Astronomy and Astrophysics, 538, 7

Durech J., et al., 2017,

- Eibe M.T., Cuesta L., Ullán A., Pérez-Verde A., Navas J., 2011, Monthly Notices of the Royal Astronomical Society, 412, 1181
- Eibe M.T., Cuesta L., Ullán A., Pérez-Verde A., Navas J., 2012, Astronomical Society of India Conference Series. p. 141
- Everett M.E., Howell S.B., 2001, Publications of the Astronomical Society of the Pacific, 113, 1428
- Faedi F., et al., 2013, Monthly Notices of the Royal Astronomical Society, 433, 2097
- Fernández Fernández J., Chou D.-Y., Pan Y.-C., Wang L.-H., 2012, Publications of the Astronomical Society of the Pacific, 124, 507
- Ferrero A., et al., 2010, Advances in Astronomy, 2010, 36
- Fried D.L., 1978, Journal of the Optical Society of America (1917-1983), 68, 1651
- Fukugita M., Ichikawa T., Gunn J.E., Doi M., Shimasaku K., Schneider D.P., 1996, The Astronomical Journal, 111, 1748
- Gallaway M., 2016, An Introduction to Observational Astrophysics. Springer,
- Gary B.L., Rappaport S., Kaye T.G., Alonso R., Hambschs F.-J., 2017, Monthly Notices of the Royal Astronomical Society, 465, 3267
- Gilliland R.L., Brown T.M., 1992, Publications of the Astronomical Society of the Pacific, 104, 582
- Gilliland R.L., et al., 1991, The Astronomical Journal, 101, 541
- Gursoytrak H., et al., 2013, Information Bulletin on Variable Stars, 6075, 1
- Guyon O., et al., 2011, in: Gajadhar S. ed., Telescopes from Afar. p. 26
- Hamden E.T., et al., 2016, Journal of Astronomical Telescopes, Instruments, and Systems, 2
- Hanno Rein M.-A.M., Planetaryscience, Andrew Tribick, Kenneth J Cott, Ryan Varley, Marc-Antoine, Tobias Mueller, Daveshoszowski, Allen Davis, Miguel De Val-Borro, James Gregory, Dave, Callum Rodwell, Anonymous, Darryl Hemsley, Chris Taylor 5.9.2016. www.openexoplanetcatalogue.com,
- Hardy L.K., Butterley T., Dhillon V.S., Littlefair S.P., Wilson R.W., 2015, MNRAS,
- Hartman J.D., Stanek K.Z., Gaudi B.S., Holman M.J., McLeod B.A., 2005, The Astronomical Journal, 130, 2241
- Haswell C.A., 2010, Transiting Exoplanets. Cambridge University Press,,
- Henry G.W., Marcy G.W., Butler R.P., Vogt S.S., 2000, The Astrophysical Journal Letters, 529, L41
- Herrero E.M., J.C.; Ribas, I.; Naves, R., 2011, Astronomy and Astrophysics, 526, L10 (2011), 4
- Holmes S., et al., 2011, PASP,
- Howell S., Koehn B, Bowell, E, 1996, The Astronomical Journal, 112
- Howell S.B., 2006, in: Ellis R.E. H.J. ed., Cambridge Observing Handbooks for Research Astronomers. Cambridge University Press, Cambridge, UK:,
- Im M., Choi C., Kim K., 2015, Korean Astronomical Society, 48
- Irwin M.J., 1985, Monthly Notices of the Royal Astronomical Society, 214, 575
- Janssen A.J.E.M., van Haver S., Dirksen P., Braat J.J.M., 2006, 43
- Jehin E., Manfroid J., Hutsemékers D., Gillon M., Magain P., 2011, EPSC-DPS Joint Meeting 2011. p. 1489
- Jenkins F.A., White, H.E., 1957,
- Johnson H.L., Morgan W.W., 1953, The Astrophysical Journal, 117, 313
- Jordi C., et al., 2010, Astronomy and Astrophysics, 523, 48
- Jordi K., Grebel E.K., Ammon K., 2006, Astronomy and Astrophysics, 460, 339
- Joye W.A., Mandell, E., 2003, ASP Conference Series, Astronomical Data Analysis Software and Systems XII, 295, 389
- Kannawadi, 2016, 18
- Kjeldsen H., Frandsen S., 1992, Publications of the Astronomical Society of the Pacific, 104, 413
- Kjurkchieva D.P., Marchev D.V., 1994, Information Bulletin on Variable Stars, 4122 KODAK, 1999,
- Kolb U., 2010, Extreme Environment Astrophysics. Cambridge University Press, Cambridge, UK,

Koppelman M., 2010, Journal of the American Association of Variable Star Observers (JAAVSO), 38, 236

Kozhevnikov V.P., 2012, Monthly Notices of the Royal Astronomical Society, 422, 1518

Kurtz D.W.C., C.; Cunha, M.S. Cunha; et al, 2005, Monthly Notices of the Royal Astronomical Society, 358, 651

La_Silla, 5.9.2016, http://www.eso.org/public/unitedkingdom/teles-instr/lasilla/,

Laher R., 2012, http://ascl.net/1208.003 6.12.2016,

Landolt A.U., 1992, The Astronomical Journal, 104, 340

Law N.M., 2007, The Observatory, 127, 71

Law N.M., Mackay C.D., Baldwin J.E., 2006, Astronomy and Astrophysics, 446, 739

Law N.M., et al., 2009, The Astrophysical Journal, 692, 924

Licchelli D., 2007, Memorie della Societa Astronomica Italiana Supplementi, 11, 211

López-Morales M., 2006, Publications of the Astronomical Society of the Pacific, 118, 716

Mackay C., 2013, Monthly Notices of the Royal Astronomical Society, 432, 702

Maddox S.J., Efstathiou G., Sutherland W.J., 1990, Monthly Notices of the Royal Astronomical Society, 246, 433

Mahajan V.N., 1982, Journal of the Optical Society of America (1917-1983), 72, 1258

Mancini L.S., J., 2015, Haute Provence Observatory Coloquium, 12

Mandel K.A., E., 2002, The Astronomical Journal, 580, LI171

Martioli E., Jablonski F., 2007, IAU Special Session, 5, 253

MASCARA, 2017. http://mascara.strw.leidenuniv.nl/,

Moutou C., et al., 2009, Astronomy and Astrophysics, 498, L5

NASA., 21.9.2016,

Naylor T., 1998, Monthly Notices of the Royal Astronomical Society, 296, 339

Neely A.W. J.J.R., 1993, Publications of the Astronomical Society of the Pacific, 105, 1330

Pal A., 2012, Monthly Notices of the Royal Astronomical Society, 421, 13

Pecker J.-C., 1970, Spinger Astrophysics and Space Science Library, 21

Pereyra A., Zevallos M.I., Ricra J., Tello J.C., 2017, ArXiv e-prints.

Pollacco D.L., et al., 2006, Publications of the Astronomical Society of the Pacific, 118, 1407 Rameau J., et al., 2013, The Astrophysical Journal Letters, 772, L15

Ryan P., Sandler D., 1998, Publications of the Astronomical Society of the Pacific, 110, 1235 Sada P.V., Ramón-Fox F.G., 2016, Publications of the Astronomical Society of the Pacific, 128, 024402

Samolyk G., 2013, Journal of the American Association of Variable Star Observers (JAAVSO), 41, 122

SBIG, 5.9.2016. http://www.sbig.com/products/adaptive-optics/,

SBIG, 12.10.2016,

SBIG, 2003. Santa barbara California, p. 82

SBIG;, 7.10.2016, https://www.sbig.com/products/cameras/stx/stx-16803/,

Scolinic D., et al., 2014, Astrophysical Journal, 795, 23

Seal Braun P., Baruch J.E.F., 2009, Astrophysics and Space Science, 321, 177

Snellen I.A.G.K., J.; van dr Burg, R.F.J.; Driezler, S.; Greiner, J.; de Hon, M.D.J.; Husser, T.O.; Kruhler, T.; Saglia, R.P.; Vuijsje, F.N., 2008, Astronomy and Astrophysics, 497, 545

Snodgrass C., et al., 2016, MNRAS,

Southworth J., et al., 2009, Monthly Notices of the Royal Astronomical Society, 396, 1023

Southworth J., et al., 2013, Monthly Notices of the Royal Astronomical Society, 434, 1300

Soutter J.H., J.; Pepper, J.; et al, 2015, Australian Space Research Conference, 13

Steele I.A., 2004, Astron. Nachr. / AN 325, No. 6–8, 519–521 (2004) / DOI 10.1002/asna.200410271,

Strassmeier K.G., et al., 2004,

Szabo R.P., A.; Sarneczky, K.; Szabo, G.M.; Molnar, L.; Kiss, L.L.; Hanyecz, O.; Plachy, E.; Kiss. C., 2016, Astronomy and Astrophysics, 9

Thompson S.J., et al., 2016,

Tinetti G., 2014, Philosophical Transactions of the Royal Society, A372

Tomaney A.B. C.P.S., 1996, Astrophysical Journal, 112, 24

Tyson R.K., 1998,

University-of-Hertfordshire, 2017. http://observatory.herts.ac.uk/wiki,

- Vanhuysse M., Cales J.-P., Technologie C., Santerne A., Moutou C., 2011, EPSC-DPS Joint Meeting 2011. p. 1456
- Vidal-Madjar A.L.d.E., A.; Desert, J.M.; Ballester, G.E.; Ferlet, R.; Hebrard, G.; Mayor, M., 2002, Nature, 143
- Villanueva S., Scott Gaudi B., Pogge W., Eastman D., Stassun G., Trueblood M., Trueblood P., 2017,
- Wahhaj Z., et al., 2013, The Astrophysical Journal, 773, 179
- Warner B.D., 2006,
- Watson A.M., et al., 2016, Argelander-Institut fur Astronomie (AlfA),
- Yamamoto K., et al., 2013, Publications of the Astronomical Society of Japan, 65, 90
- Young A.T., Dukes R.J., Jr., Adelman C.J., 1992, in: Adelman S.J. ed., Automated Telescopes for Photometry and Imaging. p. 73
- Zeilik M., Gregory S.A., 1998,
- Zolotukhin I., 20.10.2016. http://exoplanet.eu/,

ABBREVIATIONS

Abbreviation

Definition

ADC	Analogue to Digital Conversion
ADU	Analogue to Digital Unit
amsl	Above mean sea level
AO	Adaptive Optics
APT	Automatic Precision Telescopes
BBC	British Broadcasting Corporation
CCD	Charge Coupled Device
CKT	Chris Kitchen Telescope
COATLI	Corrector de Optica Activa y de Tilts al Limite de dIfraccion
CTE	Charge Transport Efficiency
CV	Cataclysmic Variable
DEMONEX	DEdicated MONitor of EXotransits and Transients
DIA	Difference Image Analysis
DS9	SAOImage DS9 (Joye 2003)
ESO	European Space Observatory
HDR	High Dynamic Range
FITS	Flexible Image Transport System
FOV	Field Of View
FWHM	Full Width Half Maximum
JHT	Jim Hough Telescope
KELT	Kilodegree Extremely Little Telescope
LCOGT	Las Cumbres Observatory Global Telescope Network
LSGT	Lee Sang Gak Telescope
mas	Milli arc seconds
MASCARA	Multi-Site All Sky Camera
MIT	Massachusetts Institute of Technology
nm	Nano meter
NOAU	National Optical Astronomy Observatory
ΟΤΑ	Orthogonal Transfer Array
Pan-STARRS	Panoramic Survey Telescope and Rapid Response System
PIRATE	Physics Innovations Robotic Astronomical Telescope Explorer
PMT	Photo Multiplier Tube
PSF	Point Spread Function
QE	Quantum Efficiency
REM	Rapid Eye Mount
RMS	Root Mean Square
RSS	Root of the Sum of Squares
RTML	Remote Telescope Markup Language
SBIG	Santa Barbara Instrument Group
SD	Standard Deviation
SDSS	Sloan Digital Sky Survey
SNR	Signal to Noise Ratio
SuperWASP	Super Wide Area Survey for Planets
TRAPPIST	TRAnsiting Planets and PlanetesImals Small Telescope
UBV	Ultra-violet (3500Å) Blue (4400Å) Visible (5500Å)
UBVRI	UBV Red (6700Å) Infrared (8000Å)
UCLO	University College of London Observatory
ugriz	u-band (355 ¹ Å) g-band (4686Å) r-band (6165Å) i-band (7481Å) z-
	band (8931A)
WIYN	Wisconsin Indiana Yale NOAO

7 ACKNOWLEDGEMENTS

Support is acknowledged from Dr M Gallaway, Dr P Lucas and Dr A Chrysostomou for the supervision and advice during the conduct of this project.

Support is also acknowledged from Mr D Campbell and Dr S Rolfe (staff at the Bayfordbury Observatory) in resolving various technical issues.

This research has made use of SAOImage DS9 (Joye 2003) (developed by Smithsonian Astrophysical Observatory), APT (Laher 2012), and Python for the analysis of data.

The Czech website (Czech 5.9.2016) has been invaluable in identifying suitable exoplanet targets and for fitting transit curves to the data.

THIS PAGE INTENTIONALLY LEFT BLANK

Telescope Name	Camera	CCD Chip	Full Well Capacity (e ⁻)	Pixel Array Size	FOV	Anti-blooming	Image Size (mm)	Pixel Size (µm)	Full Frame Download (s)
Meade =DAT	SBIG STL-1301E (see SBIG, 2003)	Kodak Enhanced KAF- 1301E	150,000	1280x1024	23.4'x15.6'	Not Standard	20.5x16.4	16x16	3
INT	Starlight Xpress SXVR-H18 (see Starlght Xpress SXVR-18 manual)	Kodak Enhanced KAF- 8300M (See Truesense Imaging PS- 0029)	25,500	3366x2504	26.1'x19.6'	Yes 1000xsaturation exposure	17.96x13.52	5.4x5.4	N/A
СКТ	SBIG STL-6303E	Kodak Enhanced KAF- 6303E	100,000	3060x2040	23.4'x15.6'	Not Standard	27.5x18.4	9x9	14
Video	None								
New Meade =RPT	SBIG STX-16803 (see SBIG, 2003)	Kodak Enhanced KAF- 16803 (See Truesense Imaging PS- 0029)	100,000	4096x4096	31.2'x31.2'	100xsaturation exposure	36.86x36.86	9x9	13
Paramount =JHT	SBIG STL-6303E (see SBIG, 2003)	Kodak Enhanced KAF- 6303E	100,000	3060x2040	23.4'x15.6'	Not Standard	27.5x18.4	9x9	14

Appendix A Telescopes and Cameras Available at Bayfordbury

 Table of Telescopes and the Characteristics of their Cameras at Bayfordbury

Appendix B Submitting Robotically Controlled Observations at Bayfordbury Observatory

An outline description of how to conduct robotic observing at the Bayfordbury Observatory is provided by their wiki (University-of-Hertfordshire 2017).

Observing plans are submitted using instructions in the Remote Telescope Markup Language (RTML). A web based RTML editor is usually used to generate observing plans. This editor readily allows the user to create observing plans that go through various checks before being added to the observing queue. The user typically supplies the following information for submitting a plan:-

- (a) Telescope name.
- (b) Target name (and select 'find coordinates').
- (c) Filter type.
- (d) Exposure time.
- (e) Number of exposures.
- (f) Pixel binning.
- (g) Earliest time for taking exposures
- (h) Latest time for taking exposures.

The RTML editor is designed as a general tool, as opposed for submitting transit observation plans. Consequently one needs to submit several plans of up to one hour duration to capture as many images as possible during the period of interest. However, the telescope might automatically refocus after each hour session that will introduce a delay and potentially a change to the size of the FWHM.

Appendix C Location of Digital Copies of Image Data

All images reported in this thesis are available by arrangement from the web site of University of Hertfordshire Bayfordbury Observatory (University-of-Hertfordshire 2017).

Appendix D Proprietary and Free Issue Software Packages Used

APT[©] (Laher 2012) DS9[©] (Joye 2003) MaximDL^{™©} (CyanogenImaging 2016) Microsoft EXCEL^{™©}, Microsoft WORD^{™©} Python

Appendix E 'Union Jack' Flat Field Results

Results: UX UMa 60s Images

Start Image	15140	15150	15160	15338	15348	15358
End Image	15149	15159	15169	15347	15357	15367
Diagonal 1	0.002761356	0.002295688	-0.005168133	0.001867319	-0.001496012	-0.005296454
Diagonal 2	5.17E-05	0.001123157	-0.00139064	-0.001143393	-0.00132356	-0.002968669
Vertical	0.002183792	0.001101702	0.001078084	0.002496692	0.001015809	0.00018662
New Diagonal 1	0.001650509	0.001333412	-0.002834888	0.000692487	-0.000719668	-0.003811388
New Diagonal 2	9.80E-05	0.000544059	-0.000958172	-0.000303917	-0.001054133	-0.001853031
Horizontal	0.000672479	0.000619387	-0.001992601	5.84E-05	-0.001288123	-0.002605931

Table 7 Trend Line Slopes for ADU Count v Pixel Number For Various Cuts Through Imagewith 60s Exposure Time

Figure 18 Histogram of Gradients with a Sample UX UMa Images

Start Image	14859	14872	14884	14897	14910	14923	14936	14949	14961
End Image	14871	4871 14883 1489		14909	14922	14935	14947	14960	14973
Diagonal 1	0.00144532	0.0019563	0.00151357	0.00143561	0.00170773	0.00182599	0.00267113	0.00218934	-0.0002555
Diagonal 2	-0.0003839	-0.0005412	-0.0012142	-0.001399	-0.0004171	-0.0010621	0.00068183	-0.0005732	-0.0010007
Vertical	8.17E-05	0.00065488	0.00108738	0.00071754	0.00060707	0.00041652	0.00187016	0.00049119	0.00018385
New Diagonal 1	0.00051349	0.00094933	0.00105876	0.00063821	0.00121039	0.00075134	0.00122586	0.00137719	-0.0005119
New Diagonal 2	-0.0001707	-0.0007183	-0.0006265	-0.0006821	5.16E-05	-0.0005602	-7.65E-05	-0.0003997	-0.0004227
Horizontal	-0.0001519	0.00049785	0.00062998	0.00013491	-0.0003012	0.00050873	0.00026862	3.71E-05	-0.0008102

Results: V795 Her 60s Images

 Table 8 Trend Line Slopes for ADU Count v Pixel Number For Various Cuts Through Image

 with 60s Exposure Time

Figure 19 Histogram of Gradients with a Sample V795-Her Images with 60s Exposure Time

Start Image	14141	14159	14169	14180	14190	14200	14210	14229	14245
End Image	14158	14168	14179	14189	14199	14209	14228	14243	14254
D1	-0.00318	-0.0013	-0.0021	-0.0011	-0.003	-0.0015	-0.002237	-0.0079	-0.0168
D2	-0.0001	0.00019	0.00085	-0.0008	0.0009	0.00016	0.0020248	-0.0011	-0.0062
Vertical	0.000758	0.00252	0.00214	0.00253	0.00153	0.00218	0.0031064	0.00169	-0.004
New D 1	-0.00226	-0.0011	-0.0015	-0.0012	-0.0016	-0.0013	-0.001266	-0.0044	-0.0111
New D2	2.08E-05	-0.0002	0.0001	-0.0002	0.00069	0.00036	0.0006958	-0.0009	-0.0043
Horizontal	-0.00152	-0.0007	-0.001	-0.0005	-0.0003	-0.0005	-1.81E-05	-0.0026	-0.0068

Results: V795 Her 120s Images

Table 9 Trend Line Slopes for ADU Count v Pixel Number For Various Cuts Through Imagewith 120s Exposure Time

Figure 20 Histogram of Gradients with a Sample V795-Her Images with 120s Exposure Time

Appendix F Derivation of Relationship Between Instrument and Catalogue Magnitudes

Section 2.2.8 generated generic equation (2.2.8.5) to convert catalogue magnitude (m) to give the instrument magnitude for a 1s exposure and an air mass of 1.0 ($m'_{t=1s,X=1.0}$). Section 2.2.8 also generated the associated equation (2.2.8.4) to compensate for air mass (X) and 1s of exposure to give the instrument magnitude for any value of air mass ($m'_{t=1s,X=X}$).

This Appendix presents the derivation of the associated parameters for the CKT telescope operating with $2x^2$ hardware binning and with a V filter to initially populate equation (2.2.8.4) to give equation (3.2.6.2) and to then populate equation (2.2.8.5) to give equation (3.2.6.1).

It then goes on to verify the equations by inputting the catalogue magnitude, t_{exp} and X in a large sample of targets from Table 12 to back calculate the instrument magnitude to compare against the actual measurements. Finally the verified equations are then validated by using a large sample of targets (that are independent of those shown in Table 12) that explore the applicability of the equations over a wide range of catalogue magnitudes and values of air mass.

Target Intensity (*N_{target}*) Measurements

Two sources of reference stars have been used to derive a relationship between the measured instrument magnitudes (m') with the CKT telescope/camera operating with 2x2 binning and the corresponding catalogue magnitudes (m).

The first source was from specially taken single images for four stars in the Landolt catalogue since these are standard stars with well-defined magnitudes. One image per star has been obtained with Clear, V, B, U and R filters. The reference details are presented as Table 10. The reference magnitudes were obtained using the software package DS9 and the SIMBAD catalogue. Unfortunately, SIMBAD does not provide reference magnitudes for Clear filters.

STAR	RA	DEC	Time (s)	Tele- scope	Filter	Ref Mag	No. Runs	Image	U
0407.004					Clear	-	1	7739	
BD+001237	RA 89.604337	DEC 00 05 13.73	60	CKT	R	10.013	1	7741	12 24
GSC00117-01044 TYC 117-1044-1	RA 05 58 25.041	DEC 0.087147	00	CRT	В	12.151	1	7743	13.24
					V	10.787	1	8388 ²⁴	
SA98-185					Clear	-	1	7855, 8391, 8735	
HD292574 GSC04800-00923	RA 06 52 01.88 RA 103.007858	DEC -00 27 21.56 DEC 0.455989	60	СКТ	R	10.427	1	8738	10.851
					В	10.739	1	8740	
					V	10.537	1	8753	
					Clear	-	1	8744	
SA98-978 HD292561	RA 06 51 33.733	DEC -00 11 31.56	60	СКТ	R	10.226	1	8747	11 277
TYC4800-469-1	RA 102.890554	DEC -0.192100	00	onn	В	11.183	1	8750	
					V	10.574	1	8757	
					Clear	-	1	8056	
SA96-36	RA 04 51 42.399	DEC -00 10 09.39	60	СКТ	R	10.456	1	8057	10 954
TYC4736-1132-1	RA 72.926662	DEC -0.169275	60	UNI .	В	10.836	1	8059	10.334
					V	10.589	1	8289	

Table 10 Images Produced For Four Landolt Catalogue Stars

The second source of check stars was in a much larger sample of existing images for a spread of air masses taken on different days to obtain measurements taken under a range of observing conditions.

Both sets of images have been examined using APT to obtain measurements of the flux (N_{target}). Only the results for a V filter have been reviewed (however a similar process would provide equivalent results with R, B and clear filters). Table 11 presents the list of stars in ascending order of magnitude that have had images processed to generate the results presented

²⁴ Clouds in image – gave a lower ADU count than would be expected.

Appendix F

in Table 12. NB a completely separate set of stars shown in Table 14 were used for the validation exercise. All stars are assumed to be non-variable as they are all categorised as stars in the SIMBAD catalogue. Some images have been used to provide results for a number of stars to maximise the use of the images. Care had to be taken to avoid stars with background galaxy stars to avoid over compensating for the sky background.

All the stars from the Landolt catalogue, as would be expected, had high values of air mass (X) and consequently the observations experienced significant atmospheric attenuation.

STAD		PRIMARY STAR BEING
STAR	VMAGNITUDE	OBSERVED
HR 946	6.038	HIP 14748
HD 16966	8.51	HIP 12753
BD+42 645	8.95	HIP 13434
BD-00 789	8.98	SA96-36 (Landolt Catalogue)
TYC 1794-441-1	9.66	HIP 14259
BD+42 643	9.67	HIP 13434
TYC 1791-4-1	9.77	HIP 14748
BD+52 1722	9.97	UX UMa
BD+50 615	10.08	HIP 12753
TYC 3308-1034-1	10.11	HIP 12753
SA98-185/ HD292574	10.537	SA98-185 (Landolt Catalogue)
SA98-978/ HD292561	10.574	SA98-978 (Landolt Catalogue)
SA96-36/ TYC 4736-1132-1	10.589	SA96-36 (Landolt Catalogue)
TYC 1791-188-1	10.68	HIP 14748
TYC 4736-1153-1	10.7	SA96-36 (Landolt Catalogue)
TYC 3308-476-1	10.73	HIP 12753
BD-00 791	10.9	SA96-36
TYC 4736-1196-1	10.9	SA96-36
TYC 4736-1027-1	11.2	SA96-36
TYC 4736-1080-1	11.3	SA96-36
TYC 3455-842-1	11.42	M106
TYC 4504-1564-1	11.44	RORF 0014 813
TYC-4504-1050-1	11.51	RORF 0014 813
TYC 4504-860-1	11.57	RORF 0014 813
TYC 3469-516-1	11.61	UX UMa
TYC 4039-481-1	11.81	PN G1266+013
TYC 4383-593-1	12.1	M82
GPM149.442737+69.731284	12.3	M82
TYC 4039-650-1	12.33	PN G1266+013
2MASS J12181678+1424176	12.6	M99
2MASS J12181647+1419292	12.7	M99
2MASS J12180786+1432113	12.8	M99
GPM148.725971+69.615345	13.2	M82
2MASS J12190080+1428397	13.4	M99
2MASS J12183329+1429325	13.5	M99
2MASS J09540368+6941167	13.5	M82
2MASS J12190855+1421235	13.5	M99
2MASS J09545340+6939298	14	M82
2MASS J12184019+1420260	14.3	M99
2MASS J13365496 +5155247	15.287	UX UMa
[HH95]UX Uma-2	15.46	UX UMa
2MASS J09573616+6941183	15.5	M82

Table 11 Stars, Catalogue Magnitudes and Image Sources

Appendix F

Derivation of Parameter ϵ in Equation (2.2.8.4) to Give Equation (3.2.6.2)

Each image has been analysed using APT to generate $(N_{target})_{t=t_{exp},X=X}$. This term needs to be scaled to give the count rate in 1s, as defined by equation (2.2.7.3):-

(2.2.7.3)

(2.2.8.7)

(2.2.8.1)

$$(N_{target})_{t=1s,X=X} = \frac{1}{t_{arr}} (N_{target})_{t=t_{exp},X=X}$$

The corresponding measured instrumental magnitude for a 1s exposure time is consequently given by:-

$$m'_{t=1s,X=X} = -2.5 \log_{10}[(N_{target})_{t=1s,X=X}]$$

The relationship to compensate for air mass is defined by equation (2.2.8.1):-

$$m'_{t=1s,X=X} - m = \epsilon X + \zeta$$

The extinction coefficient (ϵ) has been obtained from a plot of (m'-m) plotted against X: Figure 21 presents the plot produced for the reference star BD+52 1722 obtained on 30.4.2013 (with t_{exp}=60s, but scaled for 1s exposure).

Figure 21 (m'- m) v Air Mass for BD+52 1722 on 30.4.2013 with a V Filter

The best fit slope shows an extinction coefficient (ϵ) derived by Excel of 0.6224. It is recognised that ϵ will change from night to night, however a typical value of 0.62 is probably the best that one can use. Consequently, substituting for ϵ in equation (2.2.8.4):-

$$m'_{t=1s,X=1.0} = m'_{t=1s,X=X} + \epsilon(1.0 - X)$$
(2.2.8.4)

gives the predicted value for m' with a 1s exposure time and an air mass of X=X:-

$$[m'_{t=1s,X=X}]_{predicted} = [m'_{t=1s,X=1.0}]_{predicted} - 0.62(1.0 - X)$$
 (3.2.6.2)

Alternatively:-

I

 $[m'_{t=1s,X=1.0}]_{\text{predicted}} = [m'_{t=1s,X=X}]_{\text{predicted}} + 0.62(1.0 - X)$ (3.2.6.3)

Derivation of Parameters for Equation (2.2.8.5) to Give Equation (3.2.6.1)

The predicted instrumentation magnitude for a star that has a catalogue magnitude of m (that is observed with an air mass of 1.0 and a 1s exposure) is defined by equation(2.2.8.5) as the best straight line fit of a plot of observed magnitude versus catalogue magnitude:-

 $[m'_{t=1s,X=1.0}]_{predicted} = gradient * m + Bias$

(2.2.8.5)

Where 'gradient' and 'bias' can be extracted from a plot of $m'_{t=1s,X=1.0}$ versus m. The corresponding predicted highest count rate has also been generated for information purposes using equation (2.2.8.9).

$$[(N_{target})_{t=1s,X=1.0}]_{predicted} = 10^{-[m'_{t=1s,X=1.0}]_{predicted}/2.5}$$
(2.2.8.9)

Table 12 presents data obtained using APT from a wide range of images. The column headings are as follows:-

Date	is the date when the image was taken.
Image	is the image number in the Bayfordbury Observatory archive.
Star	is the chosen target within an image.
Ref Mag (m)	is the catalogue magnitude (m) for the star as indicated in Table 11.
Quality	is a measure of the accuracy of m as defined by the SIMBAD database.
(quality	Quality has "A" for the best quality down to "E" for the worst quality. "~" is unknown quality.
/error)	Error is the value of the error on the quoted magnitude.
Peak Aperture	is the peak value in a slice through the aperture, as given by APT.
Slice Value	
Measured Idc (no	sky) is the sky subtracted target flux count $[(N_{target})_{t=t_{exp},X=X}]$ as measured using APT.
Sky	is the sky count per pixel as measured by APT. A high value indicates poor sky conditions/ high air mass. (For information only).
t _{exp}	is the image exposure time in seconds.
X	is the air mass from the Flexible Image Transport System (FITS) header of each image.
m' Inst mag	is the instrument magnitude for t=1s and X=X, where $m'_{t=1s,X=X}$ is calculated from equations (2.2.7.3).
t _{exp} =1s,X=X	and (2.2.8.7)
m' Inst mag	is the instrument magnitude (m' _{t=1s,X=X}) normalised for air mass at X=1.0, where m' _{t=1s,X=1.0} is derived
texp =1s X=1.0	using equation (3.2.6.3).
Idat 1aV 1 (λ is the value of (N λ) count for ω/λ obtained using equation (2.2.0.0)

Date	Image	Star	Ref Mag (m)	Qı (qı ei	uality uality/ rror)	Peak Aperture Slice Value	Measured I _{dc} (no sky)	Sky	t _{exp}	x	m [·] Inst mag t _{exp} =1s, X=X Eq (2.2.8.7) Eq (2.2.7.3)	m' Inst mag t _{exp} =1s X=1.0 Eq (3.2.6.3)	ldc t _{exp} =1s X=1.0 Eq (2.2.8.9)
21.12.2012	4447	HR 946	6.038	C~	0	45000	745415	111	2	1.11490	-13.9284	-14.000	397983
1.12.2012	5000	HD16966	8.51	D	0.01	10000	213604	100	5	1.03547	-11.5766	-11.599	43595
22.11.2012	4504	BD+42 645	8.95	D	0.05	4900	125416	100	5	1.07095	-10.9985	-11.042	26120
22.11.2012	4502	BD+42 645	8.95	D	0.05	2600	49509	98	2	1.06959	-10.9841	-11.027	25758
5.3.2014	8289	BD-00 789	8.98	C~	0	61000	1212000	531	60	1.75809	-10.7634	-11.233	31143
22.11.2012	4476	TYC 1794-441-1	9.66	D	0.03	2750	66949	102	5	1.11513	-10.3169	-10.388	14300
22.11.2012	4480	TYC 1794-441-1	9.66	D	0.03	25300	798877	236	60	1.11934	-10.3108	-10.385	14254
22.11.2012	4504	BD+42 643	9.67	D	0.04	2504	63608	101	5	1.07095	-10.2614	-10.305	13248
22.11.2012	4502	BD+42 643	9.67	D	0.04	1260	25778	97	2	1.06959	-10.2755	-10.319	13412
21.12.2012	4447	TYC 1791-4-1	9.77	D	0.04	1000	24245	98	2	1.11490	-10.2090	-10.280	12945
21.12.2012	4448	TYC 1791-4-1	9.77	D	0.04	2800	58479	103	5	1.11581	-10.1701	-10.242	12495
21.12.2012	4453	TYC 1791-4-1	9.77	D	0.04	20800	696095	246	60	1.11932	-10.1613	-10.235	12420
30.4.2013	10862	BD+52 1722	9.97	C~	0	16000	600516	222	60	1.03058	-10.0009	-10.020	10185
30.4.2013	10904	BD+52 1722	9.97	C~	0	8500	571014	251	60	1.09964	-9.9462	-10.008	10074
30.4.2013	10961	BD+52 1722	9.97	C~	0	15000	540983	301	60	1.22308	-9.8876	-10.026	10241
3.6.2013	12011	BD+52 1722	9.97	C~	0	16000	1422000	389	120	1.03533	-10.1843	-10.206	12092
4.6.2013	12021	BD+52 1722	9.97	C~	0	12000	1418000	335	120	1.08021	-10.1812	-10.231	12371
4.6.2013	12031	BD+52 1722	9.97	C~	0	12500	1409000	338	120	1.11533	-10.1743	-10.246	12541
4.6.2013	12041	BD+52 1722	9.97	C~	0	14200	1391000	344	120	1.15875	-10.1604	-10.259	12692
4.6.2013	12045	BD+52 1722	9.97	C~	0	18100	1385000	357	120	1.17818	-10.1557	-10.266	12778
4.6.2013	12050	BD+52 1722	9.97	C~	0	29000	1410000	343	120	1.20539	-10.1751	-10.302	13212
6.9.2013	15140	BD+52 1722	9.97	C~	0	11500	572252	311	60	1.52136	-9.9486	-10.272	12845
6.9.2013	15169	BD+52 1722	9.97	C~	0	12000	476837	273	60	1.71465	-9.7505	-10.194	11952
9.9.2013	15627	BD+52 1722	9.97	C~	0	33000	627058	293	60	1.52321	-10.0479	-10.372	14090

Idc t_{exp} =1s X=1.0 is the value of $(N_{target})_{t=1s,X=1.0}$ count for $m'_{t=1s,X=1.0}$ obtained using equation (2.2.8.9).

Appendix F

Date	Image	Star	Ref Mag (m)	Qı (qı e	uality uality/ rror)	Peak Aperture Slice Value	Measured I _{dc} (no sky)	Sky	t _{exp}	x	m' Inst mag t _{exp} =1s, X=X Eq (2.2.8.7)	m' Inst mag t _{exp} =1s X=1.0 Eq (3.2.6.3)	Idc t _{exp} =1s X=1.0 Eq (2.2.8.9)
1 12 2012	5000	BD+50 615	10.08	D	0.03	3500	56006	105	5	1.03547	-10.1232	-10.145	11430
1.12.2012	5000	TYC 3308-1034-1	10.11	D	0.04	3000	48432	105	5	1.03547	-9.9654	-9.987	9885
1.4.2013	8753	HD292574	10.537	В	0.001	19000	336982	427	60	1.93543	-9.3736	-9.954	9582
1.4.2013	8757	HD292561	10.574	В	3E-04	23000	316598	415	60	1.93497	-9.3059	-9.886	9000
5.3.2013	8289	TYC 4736-1132-1	10.589	В	5E-04	18000	283831	523	60	1.75809	-9.1873	-9.657	7293
21.12.2012	4453	TYC 1791-188-1	10.68	D	0.08	12700	313078	240	60	1.11932	-9.2938	-9.368	5586
21.12.2012	4451	TYC 1791-188-1	10.68	D	0.08	7000	156381	164	30	1.11780	-9.2927	-9.366	5575
5.3.2013	8289	TYC 4736-1153-1	10.7	C~	0	17500	273600	525	60	1.75809	-9.1474	-9.617	7030
1.12.2012	5000	TYC 3308-476-1	10.73	D	0.06	1500	24643	104	5	1.03547	-9.2318	-9.254	5029
5.3.2013	8289	BD-00 791	10.9	C~	0	11300	222902	525	60	1.75809	-8.9249	-9.395	5728
5.3.2013	8289	TYC 4736-1196-1	10.9	D~	0	11000	188898	524	60	1.75809	-8.7452	-9.215	4854
5.3.2013	8289	TYC 4736-1027-1	11.2	C~	0	11200	210874	526	60	1.75809	-8.8647	-9.335	5419
5.3.2013	8289	TYC 4736-1080-1	11.3	C~	0	10500	188191	527	60	1.75809	-8.7411	-9.211	4836
7.5.2013	11593	TYC 3455-842-1	11.42	D	0.11	27500	574323	1223	240	1.18182	-8.4474	-8.560	2655
29.10.2013	17489	TYC 4504-1564-1	11.44	D	0.09	56000	905229	796	300	1.15492	-8.6991	-8.795	3297
29.10.2013	17489	TYC 4504-1050-1	11.51	D	0.09	55000	796425	784	300	1.15492	-8.5601	-8.656	2900
29.10.2013	17489	TYC 4504-860-1	11.57	D	0.1	42000	784715	793	300	1.15492	-8.5440	-8.640	2858
30.4.2013	10862	TYC 3469-516-1	11.61	D	0.12	3600	167500	217	60	1.03058	-8.6147	-8.634	2841
30.4.2013	10904	TYC 3469-516-1	11.61	D	0.12	2400	156991	237	60	1.09964	-8.5443	-8.606	2770
30.4.2013	10961	TYC 3469-516-1	11.61	D	0.12	3250	149415	295	60	1.22308	-8.4906	-8.629	2829
3.6.2013	12011	TYC 3469-516-1	11.61	D	0.12	4500	393518	383	120	1.03533	-8.7895	-8.811	3346
4.6.2013	12021	TYC 3469-516-1	11.61	D	0.12	3600	391964	323	120	1.08021	-8.7852	-8.835	3419
4.6.2013	12031	TYC 3469-516-1	11.61	D	0.12	3250	391490	323	120	1.11533	-8.7838	-8.855	3485
4.6.2013	12041	TYC 3469-516-1	11.61	D	0.12	3900	385447	331	120	1.15875	-8.7670	-8.865	3517
4.6.2013	12045	TYC 3469-516-1	11.61	D	0.12	4700	380352	337	120	1.17818	-8.7525	-8.863	3509
4.6.2013	12050	TYC 3469-516-1	11.61	D	0.12	7600	384634	336	120	1.20539	-8.7647	-8.892	3604
6.9.2013	15140	TYC 3469-516-1	11.61	D	0.12	3100	157543	302	60	1.52136	-8.5481	-8.871	3536
6.9.2013	15169	TYC 3469-516-1	11.61	D	0.12	3000	128524	273	60 8.0	1.71465	-8.3271	-8.770	3222
9.9.2013	15627	TYC 3469-516-1	11.61	D	0.12	8400	1/3615	287	60	1.52321	-8.6536	-8.978	3901
1.2.2012	2732	TYC 4039-481-1	11.81	D	0.13	32000	552575	1521	300	1.40761	-8.1632	-8.416	2325
21.2.2014	20032	TYC 4383-593-1	12.1	D	0.13	25000	387773	716	240	1.15441	-8.0209	-8.117	1765
21.2.2014	20032	GPM149.442737+69.731284	12.3	D~	0 15	14800	265171	1510	240	1.15441	-7.6083	-7.704	1207
1.2.2012	2732	TYC 4039-650-1	12.33		0.15	21000	1247000	1010	300	1.40701	-7.9719	-0.225	1949
2.2.2013	2733	TYC 4039-650-1	12.33	D	0.15	52000	1347000	4909	900	1.20734	-1.9310	-0.110	1704
3.2.2012	2734	TYC 4039-650-1	12.33	D	0.15	50000	1322000	2080	900	1.00923	-7.9303	-8.202	1047
18.2.2012	2735	TYC 4039-650-1	12.00	D	0.15	27600	1385000	2303	900	1.45302	-7.9680	-0.202	1603
19.2.2012	2736	TYC 4039-650-1	12.00	D	0.15	46000	1166000	8805	900	1.10000	-7 7811	-0.070	1740
0.3.2012	20656	2MASS 112181678+1424176	12.00	D~	0.10	13000	170178	4101	240	1.67407	-7 1267	-7 545	1042
11.3.2014	20050	2MASS J12181678+1424176	12.0	D~	0	13400	171815	4056	240	1.64722	-7 1371	-7 538	1036
11.3.2014	20057	2MASS 112181647+1419292	12.7	D~	0	12000	161615	4079	240	1.67407	-7.0707	-7,489	990
11.3.2014	20657	2MASS J12181647+1419292	12.7	- D~	0	12200	162181	4041	240	1.64722	-7.0745	-7.476	978
11.3.2014	20657	2MASS J12180786+1432113	12.8	- D~	0	10300	151932	4046	240	1.64722	-7.0036	-7.405	916
21.2.2014	20032	GPM148.725971+69.615345	13.2	D~	0	8500	114016	716	240	1.15441	-6.6919	-6.788	519
11.3.2014	20656	2MASS J12190080+1428397	13.4	D~	0	8700	68013	4177	240	1.67407	-6.1310	-6.549	416
11.3.2014	20657	2MASS J12190080+1428397	13.4	D~	0	8300	67161	4126	240	1.64722	-6.1173	-6.519	405
11.3.2014	20656	2MASS J12183329+1429325	13.5	D~	0	8200	70935	4146	240	1.67407	-6.1766	-6.595	434
11.3.2014	20657	2MASS J12183329+1429325	13.5	D~	0	8300	69588	4097	240	1.64722	-6.1558	-6.557	420
21.2.2014	20032	2MASS J09540368+6941167	13.5	D~	0	4300	74766	708	240	1.15441	-6.2337	-6.329	340
11.3.2014	20656	2MASS J12190855+1421235	13.5	D~	0	7500	48739	4163	240	1.67407	-5.7692	-6.187	298
11.3.2014	20657	2MASS J12190855+1421235	13.5	D~	0	7200	49129	4108	240	1.64722	-5.7778	-6.179	296
21.2.2014	20032	2MASS J09545340+6939298	14	D~	0	4400	51535	712	240	1.15441	-5.8297	-5.925	235
11.3.2014	20656	2MASS J12184019+1420260	14.3	D~	0	6300	31974	4136	240	1.67407	-5.3115	-5.729	196
11.3.2014	20657	2MASS J12184019+1420260	14.3	D~	0	6100	31128	4079	240	1.64722	-5.2823	-5.684	188
30.4.2013	10862	2MASS J13365496+5155247	15.287	D~	0	290	4460	216	60	1.03058	-4.6780	-4.697	76
30.4.2013	10904	2MASS J13365496+5155247	15.287	D~	0	280	3900	235	60	1.09964	-4.5323	-4.594	69
3.6.2013	12011	2MASS J13365496+5155247	15.287	D~	0	500	9939.7	384	120	1.03533	-4.7955	-4.817	85
3.6.2013	12021	2MASS J13365496+5155247	15.287	D~	0	430	10783	323	120	1.08021	-4.8839	-4.934	94

Appendix F

Date	Image	Star	Ref Mag (m)	Qı (qı ei	uality uality/ rror)	Peak Aperture Slice Value	Measured I _{dc} (no sky)	Sky	t _{exp}	x	m' Inst mag t _{exp} =1s, X=X Eq (2.2.8.7) Eq (2.2.7.3)	m' Inst mag t _{exp} =1s X=1.0 Eq (3.2.6.3)	ldc t _{exp} =1s X=1.0 Eq (2.2.8.9)
3.6.2013	12031	2MASS J13365496+5155247	15.287	D~	0	445	10156	325	120	1.11533	-4.8189	-4.890	90
3.6.2013	12041	2MASS J13365496+5155247	15.287	D~	0	460	10211	330	120	1.15875	-4.8247	-4.923	93
4.6.2013	12045	2MASS J13365496+5155247	15.287	D~	0	520	10278	335	120	1.17818	-4.8318	-4.942	95
4.6.2013	12050	2MASS J13365496+5155247	15.287	D~	0	620	10985	339	120	1.20539	-4.9040	-5.031	103
3.6.2013	12011	[HH95]UX UMa-2	15.46	D~	0	475	8868	384	120	1.03533	-4.6716	-4.694	75
3.6.2013	12021	[HH95]UX UMa-2	15.46	D~	0	420	9169.7	323	120	1.08021	-4.7079	-4.758	80
3.6.2013	12041	[HH95]UX UMa-2	15.46	D~	0	430	8378.2	330	120	1.15875	-4.6099	-4.708	76
3.6.2013	12031	[HH95]UX UMa-2	15.46	D~	0	430	8521.3	324	120	1.11533	-4.6283	-4.700	76
4.6.2013	12050	[HH95]UX UMa-2	15.46	D~	0	550	9358.1	339	120	1.20539	-4.7300	-4.857	88
21.2.2014	20032	2MASS J09573616+6941183	15.5	D~	0	1900	20306	710	240	1.15441	-4.8185	-4.914	92

Table 12 Derivation of $(m'_{t=1s,X=1.0})$ From Measured $I_{dc}=(N_{target})_{t=t_{exp},X=X}$

Figure 22 presents the normalised measured instrument target magnitude $m'_{t=1s,X=1.0}$ plotted against catalogue magnitude (m) using the data presented in Table 12. The horizontal error bars illustrate the variation in the catalogue magnitude for each target (where known) from Table 12. The vertical error bars are the calculated SD values from the derived values of $m'_{t=1s,X=1.0}$ for each target presented in Table 12. An error bar is set to zero if the catalogue magnitude error is unknown or if only one star sample is available with the same magnitude and t_{exp} .

Figure 22 also presents a linear trend line with its associated equation that has been fitted by Excel. The observed slope of 1.0023 is consistent with theory (see p54, Equation (5.5) in Warner) which states that the slope is nominally 1.0. The constant term of -20.2122 is a composite term of the zero point, the extinction with an air mass of 1.0, and a colour index contribution. It was noted that the equation parameters did not significantly change as additional images were processed.

Figure 22 Plot of Instrument Magnitude $(m'_{t=1s,X=1.0})$ Versus Catalogue Magnitude (m)

Thus the predicted instrumentation magnitude for a star, with a catalogue magnitude of m, that is observed with an air mass of 1.0 and a 1s exposure, is defined by the best fit line shown in Figure 22. Substituting the values derived using Excel of *gradient* and *Bias* in equation (2.2.8.5) gives:-

 $[m'_{t=1s,X=1.0}]_{predicted} = 1.0023m - 20.2122$

Verification of Parameters

The verification of the formulation has been achieved by back calculating predicted values for instrument magnitude for the values of t_{exp} , X and m for each image. These back calculated values of instrument magnitude are ideally identical to the measured values and consequently the calculated value of the magnitude difference ($\Delta m'$) provides an estimate of the accuracy of the predictions. Verification was considered to have been achieved if there was a good match between the predicted and the actual observed results. Consequently, this section calculates the predicted instrument magnitude $[m'_{t=t_{exp},X=X}]_{predicted}$ and in turn $\Delta m'$ for each image. One benefit of this process is that these errors provide an estimate of the expected magnitude errors of any new measurement (existing or planned).

Table 13 presents the derivation of $\Delta m'$ for a sample of the measured values presented in Table 12. The derivation of $\Delta m'$ was by using the equations identified by the column headers and as summarised below:-

Values for $[m'_{t=t_{exp},X=X}]_{predicted}$ have been calculated for each image based on their respective values for m, X and t_{exp} by using equation (3.2.6.1) to calculate $[m'_{t=1s,X=1.0}]_{predicted}$ and by equation (3.2.6.2) to compensate for air mass. Equations (2.2.8.8), (2.2.7.4) and (2.2.8.10) were then used to scale for exposure time:-

$[m'_{t=1s,X=1.0}]_{predicted} = 1.0023m - 20.2122$	(3.2.6.1)
$[m'_{t=1s,X=X}]_{predicted} = [m'_{t=1s,X=1.0}]_{predicted} - 0.62(1.0 - X)$	(3.2.6.2)
$[(N_{target})_{t=1s,X=X}]_{predicted} = 10^{-[m'_{t=1s,X=X}]_{predicted}/2.5}$	(2.2.8.8)
$[(N_{target})_{t=t_{exp},X=X}]_{predicted} = t_{exp}[(N_{target})_{t=1s,X=X}]_{predicted}$	(2.2.7.4)
$[m'_{t=t_{exp},X=X}]_{measured} = -2.5log_{10}[(N_{target})_{t=t_{exp},X=X}]_{predicted}$	(2.2.8.10)

The actual measured values of $[(N_{target})_{t=t_{exp},X=X}]_{measured}$ have been extracted from Table 12 to give $[m'_{t=t_{exp},X=X}]_{measured}$:-

$$[m'_{t=t_{exp},X=X}]_{measured} = -2.5\log_{10}[(N_{target})_{t=t_{exp},X=X}]_{measured}$$
(2.2.8.11)

These predicted values of instrument magnitude have then been compared against $[m'_{t=t_{exp},X=X}]_{measured}$ to give the error $(\Delta m')$:-

$$\Delta m' = [m'_{t=t_{exp},X=X}]_{predicted} - [m'_{t=t_{exp},X=X}]_{measured}$$
(2.2.8.12)

Note equations (3.2.6.2) and (3.2.6.1) are only valid for a V filter with 2x2 hardware binning, and have only been proven for target magnitudes in the range 6<m<15.5.

Appendix F

Date	Star	Image	Ref Mag (m)	$\begin{array}{c} \mbox{Predicted} \\ m^{'}{}_{t=1s,X=1.0} \\ \mbox{Eq} \mbox{ (3.2.6.1)} \end{array}$	x	Predicted <i>m'</i> _{<i>t</i>=1<i>s</i>,<i>X</i>=<i>X</i>} Eq (3.2.6.2)	$\begin{array}{c} \text{Predicted} \\ \left(N_{target} \right)_{t=1s,X=} \\ \text{Eq (2.2.8.8)} \end{array}$	t _{exp}	Predicted $(N_{target})_{t=t_{exp},X=X}$ Eq (2.2.7.4)	Predicted m' _{t=texp,X=X} Eq (2.2.8.10)	Measured $(N_{target})_{t=t_{exp},X=X}$	Measured m' _{t=texp,X=X} Eq (2.2.8.11)	Δm' Eq (2.2.8.12)
21.12.2012	HR 946	4447	6.038	-14.16031	1.114904	-14.08907	432144	2	864289	-14.8416	745415	-14.6810	-0.16065
1.12.2012	HD16966	5000	8.51	-11.68263	1.035475	-11.66063	46159	5	230793	-13.4081	213604	-13.3240	-0.08403
22.11.2012	BD+42 645	4504	8.95	-11.24162	1.070956	-11.19762	30133	5	150667	-12.9450	125416	-12.7459	-0.19916
22.11.2012	BD-00 789	4502	8.95	-11.24162	1.069593	-10.74153	19798	2 60	1187852	-11.9510	49509	-11.7367	-0.21433
5.3.2014	TYC 1794-441-1	8289	8.98	-10.52998	1.115133	-10.45860	15256	5	76280	-12.2060	66949	-12.0644	-0.14166
22.11.2012	TYC 1794-441-1	4470	9.66	-10.52998	1.119349	-10.45599	15219	60	913157	-14.9014	798877	-14.7562	-0.14516
22.11.2012	BD+42 643	4504	9.67	-10.51996	1.070956	-10.47597	15502	5	77510	-12.2234	63608	-12.0088	-0.21461
22.11.2012	BD+42 643	4502	9.67	-10.51996	1.069593	-10.47681	15514	2	31028	-11.2294	25778	-11.0281	-0.20126
21.12.2012	TYC 1791-4-1	4447	9.77	-10.41973	1.114904	-10.34849	13785	2	27569	-11.1011	24245	-10.9616	-0.13951
21.12.2012	TYC 1791-4-1	4448	9.77	-10.41973	1.115812	-10.34793	13777	5	68887	-12.0954	58479	-11.9175	-0.17785
21.12.2012	TYC 1791-4-1	4453	9.77	-10.41973	1.119328	-10.34575	13750	60	824992	-14.7911	696095	-14.6067	-0.18445
30.4.2013	BD+52 1722 BD+52 1722	10862	9.97	-10.21927	1.030581	-10.20031	12026	60	693660	-14.6457	571022	-14.4610	-0.18467
30.4.2013	BD+52 1722 BD+52 1722	10904	9.97	-10.21927	1.223087	-10.08096	10774	60	646448	-14.5263	540977	-14.3310	-0.19339
36 2013	BD+52 1722	12011	9.97	-10.21927	1.035330	-10.19736	11993	120	1439219	-15.3953	1422000	-15.3822	-0.01307
4.6.2013	BD+52 1722	12011	9.97	-10.21927	1.080219	-10.16953	11690	120	1402796	-15.3675	1419000	-15.3800	0.01247
4.6.2013	BD+52 1722	12031	9.97	-10.21927	1.115338	-10.14776	11458	120	1374944	-15.3457	1409000	-15.3723	0.02656
4.6.2013	BD+52 1722	12041	9.97	-10.21927	1.158752	-10.12084	11177	120	1341276	-15.3188	1391000	-15.3583	0.03952
4.6.2013	BD+52 1722	12045	9.97	-10.21927	1.178182	-10.10880	11054	120	1326477	-15.3067	1367000	-15.3394	0.03267
4.6.2013	BD+52 1722	12050	9.97	-10.21927	1.205397	-10.09192	10884	120	1306022	-15.2899	1410000	-15.3730	0.08317
6.9.2013	BD+52 1722	15140	9.97	-10.21927	1.521363	-9.89602	9087	60	545206	-14.3414	572188	-14.3938	0.05244
6.9.2013	BD+52 1722 BD+52 1722	15169	9.97	-10.21927	1.714656	-9.77618	8137	60	488230	-14.2216	476755	-14.1957	-0.02582
9.9.2013	BD+50 615	15627	9.97	-10.21927	1.523218	-9.89487	9077	60 E	544629	-14.3403	627151	-14.4934	0.15318
1.12.2012	TYC 3308-1034-1	5000	10.08	-10.10902	1.035475	-10.08702	10539	5	52693	-11.8044	48432	-11.8706	-0.09155
1.4.2013	HD292574	8753	10.537	-9.65096	1.935435	-9.07099	4250	60	255005	-13.5164	336982	-13.8190	0.30264
1.4.2013	HD292561	8757	10.574	-9.61388	1.934977	-9.03419	4108	60	246507	-13.4796	316598	-13.7513	0.27170
5.3.2013	TYC 4736-1132-1	8289	10.589	-9.59885	1.758094	-9.12883	4483	60	268956	-13.5742	283831	-13.6326	0.05844
21.12.2012	TYC 1791-188-1	4453	10.68	-9.50764	1.119328	-9.43365	5936	60	356133	-13.8790	313078	-13.7391	-0.13990
21.12.2012	TYC 1791-188-1	4451	10.68	-9.50764	1.117809	-9.43459	5941	30	178221	-13.1274	156381	-12.9855	-0.14194
5.3.2013	TYC 4/36-1153-1	8289	10.7	-9.48759	1.758094	-9.01757	4046	60	242762	-13.4629	273600	-13.5928	0.12984
1.12.2012	BD-00 791	5000	10.73	-9.45752	1.035475	-9.43553	5946	5	29729	-11.1830	24643	-10.9792	-0.20372
5.3.2013	TYC 4736-1196-1	8289	10.9	-9.28713	1.758094	-8.81711	3364	60	201835	-13.2625	188808	-13.3703	0.10780
5.3.2013	TYC 4736-1027-1	8289	11.2	-9.20713	1.758094	-8.51642	2550	60	153010	-12.9618	210874	-13.3101	0.34826
5.3.2013	TYC 4736-1080-1	8289	11.3	-8.88621	1.758094	-8.41619	2325	60	139517	-12.8616	188191	-13.1865	0.32493
7.5.2013	TYC 3455-842-1	11593	11.42	-8.76593	1.181820	-8.65321	2893	240	694214	-14.6037	574323	-14.3979	-0.20584
29.10.2013	TYC 4504-1564-1	17489	11.44	-8.74589	1.154927	-8.64983	2884	300	865076	-14.8426	905229	-14.8919	0.04926
29.10.2013	TYC 4504-1050-1	17489	11.51	-8.67573	1.154927	-8.57967	2703	300	810943	-14.7725	796425	-14.7529	-0.01961
29.10.2013	TYC 4504-860-1	17489	11.57	-8.61559	1.154927	-8.51953	2557	300	767246	-14.7123	784715	-14.7368	0.02444
30.4.2013	TYC 3469-516-1	10862	11.61	-8.57550	1.030581	-8.55654	2646	60	158769	-13.0019	167500	-13.0600	0.05812
30.4.2013	TYC 3469-516-1	10904	11.61	-8.57550	1.099647	-8.51372	2544	60	152629	-12.9591	156991	-12.9897	0.03059
36 2013	TYC 3469-516-1	12011	11.61	-8.57550	1.223087	-8.43718	2639	120	316678	-12.0020	393518	-12.9300	0.05342
4.6.2013	TYC 3469-516-1	12011	11.61	-8.57550	1.080219	-8.52576	2572	120	308664	-13.7237	391964	-13.9831	0.25940
4.6.2013	TYC 3469-516-1	12031	11.61	-8.57550	1.115338	-8.50399	2521	120	302535	-13.7019	391490	-13.9818	0.27986
4.6.2013	TYC 3469-516-1	12041	11.61	-8.57550	1.158752	-8.47707	2459	120	295127	-13.6750	385447	-13.9649	0.28989
4.6.2013	TYC 3469-516-1	12045	11.61	-8.57550	1.178182	-8.46502	2432	120	291871	-13.6630	380352	-13.9505	0.28749
4.6.2013	TYC 3469-516-1	12050	11.61	-8.57550	1.205397	-8.44815	2395	120	287370	-13.6461	384634	-13.9626	0.31652
6.9.2013	TYC 3469-516-1	15140	11.61	-8.57550	1.521363	-8.25225	1999	60	119964	-12.6976	157543	-12.9935	0.29587
6.9.2013	TYC 3469-516-1	15169	11.61	-8.57550	1.714656	-8.13241	1790	60	107427	-12.5778	128524	-12.7725	0.19467
9.9.2013	TYC 4039-481-1	15627	11.61	-8.57550	1.523218	-8.25110	1997	300	532165	-12.6965	173615	-13.0990	0.40249
21 2 2014	TYC 4383-593-1	20032	12.1	-8.08437	1.407019	-7 98863	1774	240	376413	-13 9392	387773	-13 9714	0.04088
21.2.2014	GPM149.442737+69.731284	20032	12.3	-7.88391	1.154416	-7.78817	1304	240	312954	-13.7387	265171	-13.5588	-0.17989
1.2.2012	TYC 4039-650-1	2732	12.33	-7.85384	1.407619	-7.60112	1098	300	329282	-13.7939	463324	-14.1647	0.37079
2.2.2013	TYC 4039-650-1	2733	12.33	-7.85384	1.287545	-7.67556	1176	900	1057957	-15.0612	1347000	-15.3234	0.26225
3.2.2012	TYC 4039-650-1	2734	12.33	-7.85384	1.069259	-7.81090	1332	900	1198402	-15.1965	1338000	-15.3161	0.11963
18.2.2012	TYC 4039-650-1	2735	12.33	-7.85384	1.459021	-7.56925	1066	900	959272	-14.9549	1322000	-15.3031	0.34822
19.2.2012	TYC 4039-650-1	2736	12.33	-7.85384	1.165068	-7.75150	1261	900	1134598	-15.1371	1385000	-15.3536	0.21652
8.3.2012	2MASS J12181678+1424176	2737	12.33	-7.85384	1.516133	-7.53384	1032	900	928491	-14.9194	1166000	-15.1667	0.24730
11.3.2014	2MASS J12181678+1424176	20657	12.6	-7.58322	1.0/40/7	-7.16529	735	240	170056	-13.1158	171815	-13.07/3	-0.03856
11.3.2014	2MASS J12181647+1419292	20037	12.0	-7.48299	1.674077	-7,06506	670	240	160782	-13.0156	161615	-13.0212	0,00561
11.3.2014	2MASS J12181647+1419292	20657	12.7	-7.48299	1.647223	-7.08171	680	240	163266	-13.0322	162181	-13.0250	-0.00724
11.3.2014	2MASS J12180786+1432113	20657	12.8	-7.38276	1.647223	-6.98148	620	240	148869	-12.9320	151932	-12.9541	0.02211
21.2.2014	GPM148.725971+69.615345	20032	13.2	-6.98184	1.154416	-6.88610	568	240	136349	-12.8366	114016	-12.6424	-0.19422
11.3.2014	2MASS J12190080+1428397	20656	13.4	-6.78138	1.674077	-6.36345	351	240	84254	-12.3140	68013	-12.0815	-0.23250
11.3.2014	2MASS J12190080+1428397	20657	13.4	-6.78138	1.647223	-6.38010	356	240	85556	-12.3306	67161	-12.0678	-0.26284
11.3.2014	2MASS J12183329+1429325	20656	13.5	-6.68115	1.674077	-6.26322	320	240	76825	-12.2138	70935	-12.1272	-0.08660
11.3.2014	2MASS J12183329+1429325	20657	13.5	-6.68115	1.647223	-6.27987	325	240	78012	-12.2304	69588	-12.1063	-0.12406

Appendix F

Date	Star	Image	Ref Mag (m)	Predicted m' _{t=1s,X=1.0} Eq (3.2.6.1)	x	Predicted $m'_{t=1s,X=X}$ Eq (3.2.6.2)	Predicted $(N_{target})_{t=1s,X=}$ Eq (2.2.8.8)	t _{exp}	Predicted $(N_{target})_{t=t_{exp},X=X}$ Eq (2.2.7.4)	Predicted $m'_{t=texp,X=X}$ Eq (2.2.8.10)	Measured $(N_{target})_{t=t_{exp},X=X}$	Measured <i>m'</i> _{<i>t</i>=<i>t</i>=<i>x</i>p,<i>X</i>=<i>X</i>} Eq (2.2.8.11)	Δm' Eq (2.2.8.12)
21.2.2014	2MASS J09540368+6941167	20032	13.5	-6.68115	1.154416	-6.58541	431	240	103366	-12.5359	74766	-12.1843	-0.35168
11.3.2014	2MASS J12190855+1421235	20656	13.5	-6.68115	1.674077	-6.26322	320	240	76825	-12.2138	48739	-11.7197	-0.49406
11.3.2014	2MASS J12190855+1421235	20657	13.5	-6.68115	1.647223	-6.27987	325	240	78012	-12.2304	49129	-11.7283	-0.50206
21.2.2014	2MASS J09545340+6939298	20032	14	-6.18000	1.154416	-6.08426	271	240	65150	-12.0348	51535	-11.7803	-0.25453
11.3.2014	2MASS J12184019+1420260	20656	14.3	-5.87931	1.674077	-5.46138	153	240	36708	-11.4119	31974	-11.2620	-0.14992
11.3.2014	2MASS J12184019+1420260	20657	14.3	-5.87931	1.647223	-5.47803	155	240	37276	-11.4286	31128	-11.2329	-0.19568
30.4.2013	2MASS J13365496+5155247	10862	15.287	-4.89004	1.030581	-4.87108	89	60	5328	-9.3165	4460	-9.1233	-0.19312
30.4.2013	2MASS J13365496+5155247	10904	15.287	-4.89004	1.099647	-4.82826	85	60	5122	-9.2736	3900	-8.9777	-0.29598
3.6.2013	2MASS J13365496+5155247	12011	15.287	-4.89004	1.035330	-4.86814	89	120	10628	-10.0661	9939.7	-9.9934	-0.07266
3.6.2013	2MASS J13365496+5155247	12021	15.287	-4.89004	1.080219	-4.84030	86	120	10359	-10.0383	10783	-10.0818	0.04359
3.6.2013	2MASS J13365496+5155247	12031	15.287	-4.89004	1.115338	-4.81853	85	120	10153	-10.0165	10156	-10.0168	0.00032
3.6.2013	2MASS J13365496+5155247	12041	15.287	-4.89004	1.158752	-4.79161	83	120	9904	-9.9896	10211	-10.0227	0.03310
4.6.2013	2MASS J13365496+5155247	12045	15.287	-4.89004	1.178182	-4.77957	82	120	9795	-9.9775	10278	-10.0298	0.05225
4.6.2013	2MASS J13365496+5155247	12050	15.287	-4.89004	1.205397	-4.76269	80	120	9644	-9.9606	10985	-10.1020	0.14135
3.6.2013	[HH95]UX UMa-2	12011	15.46	-4.71664	1.035330	-4.69474	75	120	9059	-9.8927	8868	-9.8696	-0.02313
3.6.2013	[HH95]UX UMa-2	12021	15.46	-4.71664	1.080219	-4.66691	74	120	8830	-9.8649	9169.7	-9.9059	0.04103
3.6.2013	[HH95]UX UMa-2	12041	15.46	-4.71664	1.158752	-4.61822	70	120	8442	-9.8162	8378.2	-9.8079	-0.00829
3.6.2013	[HH95]UX UMa-2	12031	15.46	-4.71664	1.115338	-4.64513	72	120	8654	-9.8431	8521.3	-9.8263	-0.01682
4.6.2013	[HH95]UX UMa-2	12050	15.46	-4.71664	1.205397	-4.58930	69	120	8221	-9.7872	9358.1	-9.9280	0.14072
21.2.2014	2MASS J09573616+6941183	20032	15.5	-4.67655	1.154416	-4.58081	68	240	16313	-10.5313	20306	-10.7691	0.23772

Table 13 Verification by Comparison Between Predicted and Measured Target CountsUsing Reference Images

Figure 23 presents a plot of both measured and predicted values of m' against catalogue magnitude to show the range of conditions covered. The predicted and measured instrument magnitudes are shown to be similar for a wide range of catalogue magnitudes, t_{exp} and X.

Figure 23 Predicted and Measured $(m'_{t=t_{exp},X=X})$ V Catalogue Magnitude (m)
Figure 24 presents a plot of $\Delta m'$ against catalogue magnitude. The distribution is fairly central about the x axis. As would be expected, there is a wider spread as the magnitude increases (ie the signal strength reduces). The average and standard deviation of the values of $\Delta m'$ presented in Table 13 and Figure 24 were calculated by Excel as 0.00045 and 0.195 respectively. These values define the expected variation²⁵ between the predicted and expected instrument magnitudes due to factors such as the limitations of the formulation, the variation in the sky condition, catalogue measurement errors and the precision of the differential photometry process.

Figure 24 Magnitude Error ($\Delta m'$) V Catalogue Magnitude (m)

It is consequently considered that the verification exercise has demonstrated that the formulation functions correctly using catalogue magnitude m, t_{exp} and X to predict values for the measured values of magnitude (m'). The standard deviation (0.20) for the term $\Delta m'$ provides an indication of the expected variation between the expected and measured results over a wide range of catalogue magnitudes, air mass and exposure time. The mean value of 0.0005 indicates that the errors are reasonably evenly spread about the X axis.

²⁵ A measure of the goodness of fit (for the predicted values of m' against the measured values of m') has been obtained using the x^2 test and Excel gave a value for P=1.0. ie the observed values are from the same data set as p>0.05.

Validation

Validation of the formulation has been achieved by a similar process employed in the verification process, but instead using different images from the Bayfordbury Observatory archive (see Appendix C) for a new range of stars that had **not** previously been used to derive the parameters for the equations. Good quality images were carefully selected to give a wide range of non-variable star magnitudes, exposure times and air masses to exercise the formulation over the expected full operational range of the APT telescope. The equations defined in Section 3.2.6 were supplied with m, t_{exp} and X for each reference star in the new images to generate predicted values for the instrumental magnitude $[m'_{t=t_{exp},X=X}]_{predicted}$ which were then compared with the measured magnitude values of $[m'_{t=t_{exp},X=X}]_{measured}$ obtained from these images using APT.

A summary of the results obtained are presented as Table 14. These results are equivalent to the results presented as Table 13 but instead with the validation data. The column entitled "star" records the names of the target stars that are all different to those used previously (see Table 12). The mean and standard deviation of $\Delta m'$ for the data presented in Table 14 are 0.0687 and 0.136 respectively. The Excel χ^2 test gave a p value of 1.0 confirming that the measured values are consistent with the predicted values.

Date	Image	Star	Ref Mag (m)	Predicted m' _{t=1s,X=1.0} Eq (2.2.6.1)	x	Predicted <i>m'</i> _{<i>t</i>=1<i>s</i>,<i>X</i>=<i>X</i>} Eq (2.2.6.2)	Predicted $(N_{target})_{t=1s,X=X}$ Eq (2.2.8.8)	t _{exp}	$\begin{array}{c} \textbf{Predicted} \\ \left(N_{target} \right)_{t=t_{exp},X=X} \\ \textbf{Eq (2.2.7.4)} \end{array}$	Predicted $m'_{t=texp,X=X}$ Eq (2.2.8.10)	Measured $(N_{target})_{t=t_{exp},X=}$	Measured <i>m'</i> _{<i>t=texp,X=X</i>} Eq (2.2.8.11)	Δm' Eq (2.2.8.12)
_							=q (=====)						
20.8.2012	2185	*phi Cas	4.98	-15.22075	1.21601	-15.0868	1083249	1	1083249	-15.0868	966235	-14.9627	-0.1241
20.8.2012	2186	*phi Cas	4.98	-15.22075	1.24418	-15.0694	1065962	1	1065962	-15.0694	1062000	-15.0653	-0.0040
20.8.2012	2189	*phi Cas	4.98	-15.22075	1.21601	-15.0868	1083249	1	1083249	-15.0868	966235	-14.9627	-0.1241
1.12.2012	4944	*g Per	5.04	-15.10001	1.04700	-15 1313	1128587	0.1	564293	-12.0311	549702	-12.7455	-0.0284
1.12.2012	1961	ng Per	5.04	-15.10001	1.04721	-14 9385	944955	1	944955	-14.3700	909156	-14.3303	-0.0204
26.7.2012	1962	HR 9013	5.048	-15 15259	1.34320	-15.0036	1003336	1	1003336	-14.9303	912530	-14.0300	-0.1030
1 12 2012	5074	*24 Tau	5.046 6.28	-13.91776	1.18097	-13.8056	332829	1	332829	-13.8056	322118	-13,7700	-0.0355
1.12.2012	5075	24 Tau	7 569	-12.62579	1.17982	-12.5143	101326	5	506629	-14.2617	436010	-14.0987	-0.1630
5 11 2012	4005	HD 14827	7.505	-12.56465	1.31231	-12.3710	88799	2	177598	-13.1236	191863	-13.2075	0.0839
1.12.2012	5074	HD 23479	7.96	-12.23389	1.18097	-12.1217	70579	1	70579	-12.1217	70075	-12.1139	-0.0078
1.12.2012	5075	HD 23479	7.96	-12.23389	1.17982	-12.1224	70625	5	353127	-13.8698	345915	-13.8474	-0.0224
1.11.2012	4941	HD 15397	7.99	-12.20382	1.05302	-12.1709	73855	2	147710	-12.9235	135335	-12.8285	-0.0950
1.12.2012	4971	HD 15397	7.99	-12.20382	1.05181	-12.1717	73906	2	147812	-12.9243	136542	-12.8382	-0.0861
1.12.2012	4972	HD 15397	7.99	-12.20382	1.05181	-12.1717	73906	5	369530	-13.9191	343663	-13.8403	-0.0788
9.10.2013	16976	HD 163128	8.6	-11.59242	1.33074	-11.3874	35888	30	1076631	-15.0802	1278000	-15.2663	0.1862
9.10.2013	16978	HD 163128	8.6	-11.59242	1.33558	-11.3844	35789	30	1073656	-15.0772	1275000	-15.2638	0.1866
9.10.2013	16985	HD 163128	8.6	-11.59242	1.36074	-11.3688	35278	30	1058340	-15.0616	1283000	-15.2706	0.2090
1.4.2013	8842	HD38978	8.61	-11.58240	1.60750	-11.2057	30360	4	121439	-12.7109	129477	-12.7805	0.0696
1.4.2013	8839	HD38978	8.61	-11.58240	1.60076	-11.2099	30477	1	30477	-11.2099	31807	-11.2563	0.0464
21.11.2012	4380	HD 15325	8.63	-11.56235	1.00516	-11.5592	42040	5	210199	-13.3066	197454	-13.2387	-0.0679
6.2.2013	7293	HD31001	8.65	-11.54231	1.42475	-11.2790	32478	15	487165	-14.2192	554841	-14.3604	0.1412
6.2.2013	7292	HD31001	8.65	-11.54231	1.42054	-11.2816	32556	1	32556	-11.2816	37379	-11.4316	0.1500
1.4.2013	8842	HD39136	8.77	-11.42203	1.60750	-11.0454	26191	4	104764	-12.5505	111764	-12.6208	0.0702
1.4.2013	8839	HD39136	8.77	-11.42203	1.60076	-11.0496	26292	1	26292	-11.0496	27455	-11.0966	0.0470
9.10.2013	16976	BD+37 2968	8.86	-11.33182	1.33074	-11.1268	28230	30	846891	-14.8196	1007000	-15.0076	0.1880
9.10.2013	16978	BD+37 2968	8.86	-11.33182	1.33558	-11.1238	28152	30	844551	-14.8166	1001000	-15.0011	0.1845
9.10.2013	16985	BD+37 2968	8.86	-11.33182	1.36074	-11.1082	27750	30	832504	-14.8010	1007000	-15.0076	0.2066
5.3.2013	8289	BD-00 789	8.98	-11.21155	1.75809	-10.7415	19798	60	1187852	-15.1869	1212000	-15.2088	0.0219
2.12.2012	5246	HD113562	9.28	-10.91086	1.27515	-10.7403	19775	10	197745	-13.2403	194799	-13.2240	-0.0163
1.12.2012	4944	HD 232582	9.28	-10.91086	1.04760	-10.8813	22518	0.1	2252	-8.3813	2629.2	-8.5496	0.1682
1.12.2012	4945	HD 232582	9.28	-10.91086	1.04/21	-10.8816	22523	0.5	11262	-10.1290	10828	-10.0864	-0.0426
1.12.2012	4925	BD +57 249	9.96	-10.22929	1.03076	-10.2102	12136	1	12136	-10.2102	12100	-10.2070	-0.0033
20.8.2012	2180	BD +57 249	9.96	-10.22929	1.21601	-10.0954	10918	1	10918	-10.0954	10142	-10.0153	-0.0801
20.8.2012	2100	BD +57 249	9.96	-10.22929	1.24410	10.0054	10744	1	10744	10.0054	10142	10.0152	0.2243
20.8.2012	2109	BD +57 249	9.96	-10.22929	1.21001	10.0934	10918	1	21997	10.0904	20802	10.0155	-0.0601
20.8.2012	2107	BD +57 249	9.96	-0.05867	1.21193	- 10.0979	7004	2 1	21007	- 10.0303	20092	-10.0000	-0.0303
26.7.2012	1962	TYC 4479-720-1	10.23	-9.95867	1.34320	-9.8097	8392	1	8392	-9.7440	6676.1	-9.0207	-0.2484
26.7.2012	13427	1 FC 4479-720-1	10.23	-9.89853	1.15206	-9 8043	8350	' 300	2505091	-15 9971	2306000	-15 9071	-0.0899
6 2 2012	7293	HD 345448	10.29	-9.85844	1.42475	-9.5951	6887	15	103307	-12.5353	99587	-12,4955	-0.0398
6.2.2013	7292	HD283949	10.33	-9.85844	1.42054	-9.5977	6904	1	6904	-9.5977	6575	-9.5447	-0.0530
12 7 2013	13427	HD 345450	10.33	-9.84842	1.15206	-9.7541	7974	300	2392090	-15.9469	2414000	-15.9568	0.0099
1 12 2012	4971	TYC 3299-970-1	10.34	-9.84842	1.05181	-9.8163	8443	2	16887	-10.5689	16998	-10.5760	0.0071
1 12 2012	4972	TYC 3299-970-1	10.34	-9.84842	1.05181	-9.8163	8443	5	42217	-11.5637	43260	-11.5902	0.0265
21.11.2012	4380	TYC 3695-1932-1	10.52	-9.66800	1.00516	-9.6648	7344	5	36719	-11.4122	33727	-11.3199	-0.0923
2.12.2012	5246	BD+28 2177	10.71	-9.47757	1.27515	-9.3070	5282	10	52819	-11.8070	53372	-11.8183	0.0113
12.7.2013	13427	HD 345451	10.75	-9.43748	1.15206	-9.3432	5461	300	1638326	-15.5360	1851000	-15.6685	0.1325
8.3.2012	2207	TYC 2667-338-1	10.8	-9.38736	1.34249	-9.1750	4677	300	1403230	-15.3678	1199000	-15.1970	-0.1708
8.3.2012	2208	TYC 2667-338-1	10.8	-9.38736	1.32336	-9.1869	4729	300	1418640	-15.3797	1216000	-15.2123	-0.1673
26.7.2012	1961	TYC 4479-781-1	10.8	-9.38736	1.34526	-9.1733	4670	1	4670	-9.1733	5357.8	-9.3225	0.1492
26.7.2012	1962	TYC 4479-781-1	10.8	-9.38736	1.24028	-9.2384	4959	1	4959	-9.2384	5320.1	-9.3148	0.0764
26.7.2012	1961	TYC 4479-1038-1	10.85	-9.33725	1.34526	-9.1232	4459	1	4459	-9.1232	4427.5	-9.1154	-0.0078
26.7.2012	1962	TYC 4479-1038-1	10.85	-9.33725	1.24028	-9.1883	4735	1	4735	-9.1883	4717.2	-9.1842	-0.0041
10.11.2012	4166	HD282625	10.95	-9.23702	1.55546	-8.8926	3606	30	108187	-12.5854	150660	-12.9450	0.3596
11.11.2012	4189	HD282625	10.95	-9.23702	1.11478	-9.1659	4638	30	139143	-12.8587	162394	-13.0264	0.1678
1.1.2013	6545	HD282625	10.95	-9.23702	1.11566	-9.1653	4636	30	139073	-12.8581	166994	-13.0568	0.1986
4.2.2013	7117	HD282625	10.95	-9.23702	1.12156	-9.1616	4620	30	138605	-12.8545	143218	-12.8900	0.0355

Date	Image	Star	Ref Mag (m)	Predicted m' _{t=1s,X=1.0} Eq (2.2.6.1)	x	Predicted $m'_{t=1s,X=X}$ Eq (2.2.6.2)	$\begin{array}{c} \text{Predicted} \\ \left(N_{target} \right)_{t=1s,X=X} \\ \text{Eq (2.2.8.8)} \end{array}$	t _{exp}	Predicted (N _{target}) _{t=texp,X=X} Eq (2.2.7.4)	Predicted <i>m'</i> _{<i>t</i>=<i>t</i>=<i>x</i>p,X=X} Eq (2.2.8.10)	Measured $(N_{target})_{t=t_{exp},X=1}$	Measured $m'_{t=texp,X=X}$ Eq (2.2.8.11)	Δm' Eq (2.2.8.12)
3.3.2013	8161	HD282625	10.95	-9.23702	1.10995	-9.1688	4651	30	139527	-12.8616	131788	-12.7997	-0.0620
3.3.2013	8174	HD282625	10.95	-9.23702	1.34943	-9.0204	4056	30	121694	-12.7132	123153	-12.7261	0.0129
1.4.2013	8959	BD+30 2443	10.99	-9.19692	1.11357	-9.1265	4473	60	268383	-13.5719	241437	-13.4570	-0.1149
1.4.2013	8842	TYC 2409-1268-1	11	-9.18690	1.60750	-8.8102	3343	4	13371	-10.3154	14284	-10.3871	0.0717
1.4.2013	8839	TYC 2409-1268-1	11	-9.18690	1.60076	-8.8144	3356	1	3356	-8.8144	3626.3	-8.8987	0.0842
8.3.2012	2207	TYC 2667-746-1	11	-9.18690	1.34249	-8.9746	3889	300	1166661	-15.1674	1265000	-15.2552	0.0879
8.3.2012	2208	TYC 2667-746-1	11	-9.18690	1.32336	-8.9864	3932	300	1179473	-15.1792	1265000	-15.2552	0.0760
5.8.2013	14141	TYC 2595-1498-1	11.03	-9.15683	1.07799	-9.1085	4399	120	527926	-14.3064	609241	-14.4620	0.1555
7.9.2013	15370	TYC 2595-1498-1	11.03	-9.10083	1.25739	-8.9972	3971	60	236259	12 2545	263359	13.0300	0.1662
7.9.2013	15657	TYC 2595-1498-1	11.03	-9.15683	1.22104	-9.0198	4054	60	243258	-13.4652	269162	-13.5750	0.2042
9.9.2015 6 2 2013	7293	HD283951	11.05	-9.12676	1.42475	-8.8634	3510	15	52657	-11.8036	58841	-11.9242	0.1206
6.2.2013	7292	HD283951	11.00	-9.12676	1.42054	-8.8660	3519	1	3519	-8.8660	3795.7	-8.9482	0.0822
5.8.2013	14141	TYC 2595-666-1	11.00	-9.11674	1.07799	-9.0684	4240	120	508787	-14.2663	558128	-14.3668	0.1005
5.8.2013	14141	TYC 2595-725-1	11.07	-9.11674	1.07799	-9.0684	4240	120	508787	-14.2663	671062	-14.5669	0.3006
7.9.2013	15370	TYC 2595-666-1	11.07	-9.11674	1.25739	-8.9572	3827	60	229622	-13.4025	257303	-13.5261	0.1236
7.9.2013	15370	TYC 2595-725-1	11.07	-9.11674	1.25739	-8.9572	3827	60	229622	-13.4025	310085	-13.7287	0.3262
7.9.2013	15400	TYC 2595-666-1	11.07	-9.11674	1.39947	-8.8691	3529	60	211729	-13.3144	240385	-13.4523	0.1378
7.9.2013	15400	TYC 2595-725-1	11.07	-9.11674	1.39947	-8.8691	3529	60	211729	-13.3144	287253	-13.6457	0.3312
9.9.2013	15657	TYC 2595-666-1	11.07	-9.11674	1.22104	-8.9797	3907	60	234439	-13.4251	246993	-13.4817	0.0566
9.9.2013	15657	TYC 2595-725-1	11.07	-9.11674	1.22104	-8.9797	3907	60	234439	-13.4251	296748	-13.6810	0.2559
1.4.2013	8842	HD248227	11.09	-9.09669	1.60750	-8.7200	3076	4	12305	-10.2252	13682	-10.3404	0.1152
1.4.2013	8839	HD248227	11.09	-9.09669	1.60076	-8.7242	3088	1	3088	-8.7242	3299.6	-8.7962	0.0719
8.3.2012	2207	TYC 2667-853-1	11.16	-9.02053	1.34249	-8.8260	3302	300	1006463	-15.0070	1139000	-15.1413	0.1343
8.3.2012	14141	TYC 2667-853-1	11.16	-9.02003	1.32330	-8.0200	3760	120	1017313	-10.0109	545391	-10.1201	0.1013
5.8.2013	15370	TYC 2595-575-1	11.2	-8.98644	1.07739	-8.8269	3394	60	203654	-13 2722	253295	-13 5091	0.2007
7.9.2015	15400	TYC 2595-575-1	11.2	-8.98644	1.39947	-8.7388	3130	60	187785	-13.1841	235507	-13.4300	0.2459
9 9 2013	15657	TYC 2595-575-1	11.2	-8.98644	1.22104	-8.8494	3465	60	207927	-13.2948	241228	-13.4561	0.1613
19.4.2012	20977	TYC 878-573-1	11.27	-8.91628	1.41353	-8.6599	2910	120	349250	-13.8578	362592	-13.8985	0.0407
19.4.2012	20978	TYC 878-573-1	11.27	-8.91628	1.40810	-8.6633	2919	120	350335	-13.8612	366381	-13.9098	0.0486
19.4.2012	20979	TYC 878-573-1	11.27	-8.91628	1.40283	-8.6665	2928	120	351391	-13.8645	373635	-13.9311	0.0666
19.4.2012	20980	TYC 878-573-1	11.27	-8.91628	1.39771	-8.6697	2937	120	352420	-13.8677	368254	-13.9154	0.0477
19.4.2012	20981	TYC 878-573-1	11.27	-8.91628	1.39286	-8.6727	2945	120	353398	-13.8707	373425	-13.9305	0.0598
1.4.2013	8959	TYC 2005-989-1	11.28	-8.90626	1.11357	-8.8358	3422	60	205347	-13.2812	173471	-13.0981	-0.1832
8.3.2012	2207	TYC 2667-858-1	11.33	-8.85614	1.34249	-8.6438	2868	300	860283	-14.8366	962769	-14.9588	0.1222
8.3.2012	2208	TYC 2667-858-1	11.33	-8.85614	1.32336	-8.6557	2899	300	869730	-14.8485	939746	-14.9325	0.0841
19.7.2013	13561	TYC 3063-2354-1	11.36	-8.82607	1.28954	-8.6466	2875	300	862470	-14.8394	1104000	-15.1074	0.2681
19.7.2013	13565	TYC 3063-2354-1	11.36	-8.82607	1.30644	-8.6361	2847	300	854185	-14.8289	1103000	-15.1064	0.2776
8.3.2012	2218	TYC 2667-69-1	11.38	-8.80603	1.32655	-8.6036	2763	300	828988	-14.7964	962185	-14.9581	0.1618
8.3.2012	2207	TYC 2667-698-1	11.4	-8.78598	1.34249	-8.5/36	2688	300	806449	-14.7664	928209	-14.9191	0.1527
8.3.2012	4543	TYC 2667-698-1	11.4	-8.7506	1.32330	-8.5855	2/18	500	815305	-14.7783	12209	-14.8945	0.1162
19.4.2012	2218	2mass j13072064+2731144	11.41	-8.73587	1.32655	-8.5334	2590	300	777113	-10.2070	1002000	-10.2107	0.2760
8.3.2012	2218	TYC 2667-835-1	11.45	-8.70580	1.32655	-8.5033	2520	300	755886	-14.6961	711716	-14.6308	-0.0654
19.7.2013	13561	TYC 3063-50-1	11.5	-8.68575	1.28954	-8.5062	2526	300	757906	-14.6990	969103	-14.9659	0.2669
19.7.2013	13565	TYC 3063-50-1	11.5	-8.68575	1.30644	-8.4958	2502	300	750625	-14.6886	974736	-14.9722	0.2837
8.3.2012	2207	TYC 2667-819-1	11.5	-8.68575	1.34249	-8.4734	2451	300	735334	-14.6662	736372	-14.6677	0.0015
8.3.2012	2208	TYC 2667-819-1	11.5	-8.68575	1.32336	-8.4853	2478	300	743410	-14.6781	719496	-14.6426	-0.0355
5.8.2013	14141	TYC 2595-1515-1	11.51	-8.67573	1.07799	-8.6274	2825	120	338946	-13.8253	323090	-13.7733	-0.0520
7.9.2013	15370	TYC 2595-1515-1	11.51	-8.67573	1.25739	-8.5161	2550	60	152971	-12.9615	148351	-12.9282	-0.0333
7.9.2013	15400	TYC 2595-1515-1	11.51	-8.67573	1.39947	-8.4281	2351	60	141050	-12.8734	139653	-12.8626	-0.0108
9.9.2013	15657	TYC 2595-1515-1	11.51	-8.67573	1.22104	-8.5387	2603	60	156180	-12.9841	142697	-12.8860	-0.0980
8.3.2012	2218	TYC 2667-878-1	11.51	-8.67573	1.32655	-8.4733	2451	300	735239	-14.6661	724281	-14.6498	-0.0163
1.4.2013	8842	TYC 2410-948-1	11.54	-8.64566	1.60750	-8.2690	2030	4	8122	-9.7742	8/12.2	-9.8503	0.0762
1.4.2013	4592	TYC 2410-948-1	11.54	-0.04500	1.000/6	-0.2/32	2030	1	2030 137252	-0.2/32	∠130 155726	-0.3235 -12.0910	0.0503
23.11.2012	4082	TYC 1994-2237-1	11.56	-0.02001 -8.62561	1.30044	-0.3904	2200	30	68346	-12.0438	78181	-12.9010 -12.2328	0.1372
23.11.2012	4580	TVC 1994-2237-1	11.50	-8.62561	1.37924	-8.3905	2271	10	22709	-10.8905	25971	-11.0362	0.1457
23.11.2012	4578	TYC 1994-2237-1	11.50	-8.62561	1.38380	-8.3877	2265	5	11325	-10.1351	12931	-10.2791	0.1440
23.11.2012	4576	TYC 1994-2237-1	11.56	-8.62561	1.38796	-8.3851	2260	2	4519	-9.1377	4946.2	-9.2357	0.0980
11 12 2012	6036	TYC 1994-2237-1	11.50	-8.62561	1.53623	-8.2931	2076	30	62285	-11.9860	65364	-12.0383	0.0524
11.12.2012	6035	TYC 1994-2237-1	11.56	-8.62561	1.54268	-8.2891	2069	10	20685	-10.7891	22143	-10.8631	0.0739
19.4.2012	4543	TYC 1995-2195-1	11.64	-8.54543	1.38000	-8.3098	2108	5	10541	-10.0573	13513	-10.3269	0.2696
8.3.2012	2207	TYC 2667-49-1	11.68	-8.50534	1.34249	-8.2930	2076	300	622758	-14.4858	895317	-14.8799	0.3941
8.3.2012	2208	TYC 2667-49-1	11.68	-8.50534	1.32336	-8.3049	2099	300	629597	-14.4977	876511	-14.8569	0.3592
10.11.2012	4166	HD282626	11.7	-8.48529	1.55546	-8.1409	1805	30	54136	-11.8337	75537	-12.1954	0.3617
11.11.2012	4189	HD282626	11.7	-8.48529	1.11478	-8.4141	2321	30	69626	-12.1069	77544	-12.2239	0.1169
1.1.2013	6545	HD282626	11.7	-8.48529	1.11566	-8.4136	2320	30	69591	-12.1064	83354	-12.3023	0.1959
4.2.2013	7117	HD282626	11.7	-8.48529	1.12156	-8.4099	2312	30	69357	-12.1027	77981	-12.2300	0.1272
3.3.2013	8161	HD282626	11.7	-8.48529	1.10995	-8.4171	2327	30	69818	-12.1099	71369	-12.1338	0.0239
3.3.2013	8174	HD282626	11.7	-8.48529	1.34943	-8.2686	2030	30	60894	-11.9614	66474	-12.0566	0.0952
5.8.2013	14141	TYC 2595-733-1	11.72	-8.46524	1.07799	-8.4169	2327	120	279214	-13.6148	226440	-13.3874	-0.2275
7.9.2013	15370	TYC 2595-733-1	11.72	-8.46524	1.25/39	-8.3057	2100	6U 20	126013	-12.7510	106259	-12.5659	-0.1851
9.10.2013	109/0	TYC 3089-995-1	11.72	-0.40524	1.33074	-0.2002	2014	30	60422	-11.9530	00000	-12.0462	0.0932
9.10.2013	16978	TYC 3089-1111-1	11.72	-8.46524	1.33074	-8.2572	2014	30	60255	-11.9030	65159	-12.0094	0.1304
9.10.2013	16978	TVC 3089-1111-1	11.72	-8.46524	1.33558	-8.2572	2009	30	60255	-11.9500	68212	-12.0847	0.1347
9.10.2013	16985	TYC 3089-995-1	11.72	-8.46524	1.36074	-8.2416	1980	30	59396	-11.9344	65871	-12.0467	0.1123
	1					1		1.1					

Date	Image	Star	Ref Mag (m)	Predicted m' _{t=1s,X=1.0} Eq (2.2.6.1)	x	Predicted $m'_{t=1s,X=X}$ Eq (2.2.6.2)	Predicted $(N_{target})_{t=1s,X=X}$ Eq (2.2.8.8)	t _{exp}	Predicted (N _{target}) _{t=texp,X=X} Eq (2.2.7.4)	Predicted $m'_{t=texp,X=X}$ Eq (2.2.8.10)	Measured $(N_{target})_{t=t_{exp},X=.}$	Measured $m'_{t=texp,X=X}$ Eq (2.2.8.11)	Δm' Eq (2.2.8.12)
9.10.2013	16985	TYC 3089-1111-1	11.72	-8.46524	1.36074	-8.2416	1980	30	59396	-11.9344	68801	-12.0940	0.1596
8.3.2012	2218	TYC 2667-628-1	11.74	-8.44520	1.32655	-8.2427	1982	300	594589	-14.4355	801185	-14.7593	0.3238
8.3.2012	2207	TYC 2667-872-1	11.75	-8.43518	1.34249	-8.2228	1946	300	583788	-14.4156	691705	-14.5998	0.1842
8.3.2012	2208	TYC 2667-872-1	11.75	-8.43518	1.32336	-8.2347	1967	300	590199	-14.4275	675974	-14.5748	0.1473
8.3.2012	2207	TYC 2667-920-1	11.81	-8.37504	1.34249	-8.1627	1841	300	552331	-14.3555	514031	-14.2775	-0.0780
8.3.2012	2208	TYC 2667-920-1	11.81	-8.37304	1.32330	-8.1740	1470	300	5880	-14.3074	502741	-14.2034	-0.1140
1.4.2013	8839	TYC 2410-1184-1	11.89	-8.29485	1.60076	-7.9224	1476	4	1476	-7.9224	1797.8	-8.1369	0.2145
9 10 2013	16976	TYC 3089-885-1	11.09	-8.26478	1.33074	-8.0597	1675	30	50236	-11.7525	56141	-11.8732	0.1207
9.10.2013	16978	TYC 3089-885-1	11.92	-8.26478	1.33558	-8.0567	1670	30	50097	-11.7495	56730	-11.8845	0.1350
9.10.2013	16985	TYC 3089-885-1	11.92	-8.26478	1.36074	-8.0411	1646	30	49382	-11.7339	56640	-11.8828	0.1489
8.3.2012	2207	TYC 2667-140-1	11.98	-8.20465	1.34249	-7.9923	1574	300	472110	-14.1851	681893	-14.5843	0.3992
8.3.2012	2208	TYC 2667-140-1	11.98	-8.20465	1.32336	-8.0042	1591	300	477295	-14.1970	663812	-14.5551	0.3581
12.7.2013	13427	TYC 2141-1734-1	12	-8.18460	1.15206	-8.0903	1722	300	516714	-14.2831	679048	-14.5798	0.2966
10.11.2012	4166	TYC 2387-447-1	12.01	-8.17458	1.55546	-7.8302	1355	30	40663	-11.5230	49304	-11.7322	0.2092
11.11.2012	4189	TYC 2387-447-1	12.01	-8.17458	1.11478	-8.1034	1743	30	52298	-11.7962	52467	-11.7997	0.0035
1.1.2013	0040	TYC 2387-447-1	12.01	-8.17458	1.11566	-8.1029	1742	30	52272	-11.7957	55075	-11.8524	0.0567
4.2.2013	8161	TYC 2387-447-1	12.01	-8.17458	1.12130	-8.1064	1748	30	52030	-11.7920	48268	-11.7000	-0.0121
3.3.2013	8174	TYC 2387-447-1	12.01	-8.17458	1.34943	-7.9579	1525	30	45740	-11.6507	47523	-11.6923	0.0415
8.3.2012	2207	TYC 2667-849-1	12.02	-8.16455	1.34249	-7.9522	1517	300	454995	-14.1450	549893	-14.3507	0.2057
8.3.2012	2208	TYC 2667-849-1	12.02	-8.16455	1.32336	-7.9641	1533	300	459991	-14.1569	535414	-14.3217	0.1649
23.11.2012	4582	TYC 1994-201-1	12.09	-8.09439	1.36644	-7.8672	1402	60	84145	-12.3126	93520	-12.4273	0.1147
23.11.2012	4581	TYC 1994-201-1	12.09	-8.09439	1.37361	-7.8628	1397	30	41901	-11.5556	46794	-11.6755	0.1199
23.11.2012	4580	TYC 1994-201-1	12.09	-8.09439	1.37924	-7.8593	1392	10	13922	-10.3593	15419	-10.4701	0.1109
23.11.2012	4578	TYC 1994-201-1	12.09	-8.09439	1.38380	-7.8564	1389	5	6943	-9.6039	7616.4	-9.7044	0.1005
23.11.2012	4576	TYC 1994-201-1	12.09	-8.09439	1.38796	-7.8539	1385	2	2771	-8.6064	3030.3	-8.7037	0.0973
11.12.2012	6036	TYC 1994-201-1	12.09	-8.09439	1.53623	-7.7619	1273	30	38185	-11.4547	39139	-11.4815	0.0268
11.12.2012	6035	TYC 1994-201-1	12.09	-8.09439	1.54268	-7.7579	1268	10	12682	-10.2579	13325	-10.3117	0.0537
9.10.2013	16976	TYC 3089-703-1	12.09	-8.09439	1.33074	-7.8893	1431	30	42939	-11.5821	47505	-11.6918	0.1097
9.10.2013	16978	TYC 3089-703-1	12.09	-8.09439	1.33008	-7.8707	1427	30	42821	-11.5/91	47859	-11.6999	0.1208
9.10.2013	16976	I YC 3089-703-1	12.09	-7 78168	1.33074	-7.5766	1073	30	32194	-11 2694	39794	-11 4995	0.1202
9.10.2013	16978	NAME TrES-3 Parent Star	12.402	-7.78168	1.33558	-7.5736	1070	30	32105	-11.2664	39625	-11.4949	0.2285
9.10.2013	16985	NAME TrES-3 Parent Star	12.402	-7.78168	1.36074	-7.5580	1055	30	31647	-11.2508	39691	-11.4967	0.2459
8.3.2012	2207	TYC 2667-919-1	12.43	-7.75361	1.34249	-7.5413	1039	300	311623	-13.7341	350393	-13.8614	0.1273
8.3.2012	2208	TYC 2667-919-1	12.43	-7.75361	1.32336	-7.5531	1050	300	315045	-13.7459	342169	-13.8356	0.0897
1.4.2013	8842	TYC 2410-1405-1	12.62	-7.56317	1.60750	-7.1865	749	4	2997	-8.6917	2664	-8.5638	-0.1278
9.11.2013	17997	2MASS J02195438+5702037	13.67	-6.51076	1.12396	-6.4339	375	600	224757	-13.3793	201067	-13.2584	-0.1209
9.11.2013	17993	2MASS J02195438+5702037	13.67	-6.51076	1.11025	-6.4424	378	600	226523	-13.3878	200510	-13.2553	-0.1324
5.8.2013	14141	[HH95] V795 Her-2	13.767	-6.41354	1.07799	-6.3652	352	120	42194	-11.5631	47076	-11.6820	0.1189
7.9.2013	15370	[HH95] V795 Her-2	13.767	-6.41354	1.25739	-6.2540	317	60	19043	-10.6993	21724	-10.8423	0.1430
9.11.2013	17997	2MASS J02200834+5707122	13.791	-6.38948	1.12396	-6.3126	335	600	201002	-13.2580	184117	-13.1627	-0.0953
9.11.2013	17993	2MASS J02200834+5707122	13.791	-0.30940	1.11025	-6.0845	272	120	202362	-13.2003	36462	-13.1304	-0.1001
5.8.2013	15370	[PBS2006] V795 Her S3	14.047	-6.13289	1.25739	-5.9733	245	60	14705	-10.4187	17277	-10.5937	0.1221
5.8 2013	14141	[HH95] V795 Her-3	14.047	-5.74801	1.07799	-5.6997	190	120	22858	-10.8976	24525	-10.9740	0.0764
7.9.2013	15370	[HH95] V795 Her-3	14.431	-5.74801	1.25739	-5.5884	172	60	10316	-10.0338	11339	-10.1364	0.1026
5.8.2013	14141	[PBS2006] V795 Her S1	14.565	-5.61370	1.07799	-5.5653	168	120	20199	-10.7633	22906	-10.8999	0.1366
7.9.2013	15370	[PBS2006] V795 Her S1	14.565	-5.61370	1.25739	-5.4541	152	60	9116	-9.8995	10503	-10.0533	0.1538
9.11.2013	17997	2MASS J02184176+5702179	14.66	-5.51848	1.12396	-5.4416	150	600	90116	-12.3870	76635	-12.2111	-0.1759
9.11.2013	17993	2MASS J02184176+5702179	14.66	-5.51848	1.11025	-5.4501	151	600	90824	-12.3955	77613	-12.2248	-0.1707
5.8.2013	14141	[PBS2006] V795 Her S4	14.688	-5.49042	1.07799	-5.4421	150	120	18030	-10.6400	20576	-10.7834	0.1434
7.9.2013	15370	[PBS2006] V795 Her S4	14.688	-5.49042	1.25739	-5.3308	136	60	8137	-9.7762	9991	-9.9990	0.2228
9.11.2013	17997	2MASS J02175117+5713299	14.81	-5.36814	1.12396	-5.2913	131	600	78463	-12.2367	68482	-12.0889	-0.1477
9.11.2013	17993	2MASS J02175117+5713299	14.81	-5.36814	1.11025	-5.2998	132	600	79079	-12.2452	69585	-12.1063	-0.1389
5.8.2013	14141	[PBS2006] V795 Her S2	14.865	-5.31301	1.07799	-5.2047	128	120	6011	-10.4626	9372.5	-10.0172	0.1546
7.9.2013	17997	[PBS2006] V795 Her S2	14.865	-5.21779	1.23739	-5.1409	113	600	68316	-3.3300	61108	-11 9652	-0 1211
9.11.2013	17997	2MASS J02201860+5712331	14.96	-5.21779	1.12396	-5.1409	114	600	68316	-12.0863	57730	-11.9035	-0.1828
9.11.2013	17993	2MASS J02201880+5712331	14.90	-5.21779	1.11025	-5.1494	115	600	68853	-12.0948	60726	-11.9584	-0.1364
9.11.2013	17993	2MASS J02174011+5704271	14.96	-5.21779	1.11025	-5.1494	115	600	68853	-12.0948	57856	-11.9059	-0.1889
9.11.2013	17997	2MASS J02202166+5707215	15.09	-5.08749	1.12396	-5.0106	101	600	60591	-11.9560	54230	-11.8356	-0.1204
9.11.2013	17993	2MASS J02202166+5707215	15.09	-5.08749	1.110253	-5.0191	102	600	61067	-11.96451421	54860	-11.84813951	-0.1164
9.11.2013	17997	2MASS J02202146+5711276	15.1	-5.07747	1.123962	-5.0006	100	600	60034	-11.94599167	51728	-11.78431422	-0.1617
9.11.2013	17993	2MASS J02202146+5711276	15.1	-5.07747	1.110253	-5.0091	101	600	60506	-11.95449121	52180	-11.79376019	-0.1607
5.8.2013	14141	[HH95] V795 Her-9	15.495	-4.68156	1.077987	-4.6332	71	120	8560	-9.8312	9192	-9.9085	0.0774
7.9.2013	15370	[HH95] V795 Her-9	15.495	-4.68156	1.257393	-4.5220	64	60	3863	-8.9674	4002.3	-9.0058	0.0384
5.8.2013	14141	[HH95] V795 Her-18	15.918	-4.25759	1.077987	-4.2092	48	120	5793	-9.4072	6052	-9.4547	0.0476
7.9.2013	15370	[HH95] V795 Her-18	15.918	-4.25759	1.257393	-4.0980	44 4E	60	2614	-8.5434	3001.3	-8.6933	0.1499
9.11.2013	1/99/	2MASS J02175277+5701507	15.96	-4.21549	1.123962	-4.1386	40	120	∠/140 4654	-11.08401367	23031	-10.93370525	-0.1503
5.8.2013	15370	[mm95] V795 Her-13	16.155	-4 02004	1 257303	-3.8605	35	60	2101	-8.3058	2273	-8 3915	0.0857
9 3 2012	2218	[rmis0] V/30 H8F-13	10.100	-3.67425	1.326545	-3,4718	24	300	7342	-9.664594912	7761.4	-9.724850166	0.0603
0.0.2012			±0.J			1			-		1 · · ·		

 Table 14 Validation by Comparison Of Predicted and Measured Target Magnitudes

Figure 25 presents a plot of $[m'_{t=t_{exp},X=X}]_{predicted}$ and $[m'_{t=t_{exp},X=X}]_{measured}$ versus catalogue magnitude to show the range of conditions covered. This plot shows that the predicted and measured instrument magnitudes are similar for a wide range of catalogue magnitudes. Figure 25 also illustrates a good coverage of data points over a wide range of m from magnitude 5 to magnitude 16.5.

Figure 25 Predicted and Measured ($m'_{t=t_{exp},X=X}$) V Catalogue Magnitude (m)

Figure 26 presents a plot of $\Delta m'$ against catalogue magnitude. The distribution is shown to be fairly central about the x axis. As would be expected, there is a wider spread in $\Delta m'$ as the magnitude increases (ie the signal strength reduces).

Figure 26 Magnitude Error ($\Delta m'$) V Catalogue Magnitude (m)

The validation exercise with a completely new set of targets had an standard deviation of 0.0687 that is significantly lower than the value of 0.20 obtained with the verification exercise. It is consequently considered that the formulation is considered to have been validated.

Appendix G Recommended Formulation to be Used at Bayfordbury for Calculating a Maximum Exposure Time for any Given Target

The peak individual pixel count should not exceed the pixel's linearity. A series of flat field measurements with the CKT telescope were taken to identify the limit(s) by taking measurements with different exposure times and binning options²⁶. The results are presented as Figure 27.

Figure 27 Plot of Count Versus Exposure Time with Different Binning Options

This plot clearly shows that the linearity is held with 2x2 binning until the ADU count reaches approximately 40,000. If a value for FWHM is defined then (assuming a bivariate normal distribution) the total count in the target aperture can be derived for a peak pixel count of 40,000.

A sample value of total count has been input into a spread sheet with bivariate normal equations and fixed values of FWHM. By iteratively inputting different values of t_{exp} , a maximum value of t_{exp} was identified that could be used before the measurements lose linearity.

²⁶ In general the linear relationship of ADU count with light level will start to become non-linear before the saturation level is reached. However, the limiting value with different binning options is also influenced by factors that might not be immediately obvious. In particular, the hardware binning limit is approximately only twice the pixel limit (the vertical CCD capacity is 100,000 - 120,000 electrons whereas the summing floating diffusion charge capacity is only 220,000 to 240,000 electrons KODAK, 1999, consequently 2x2 hardware binning is limited by the floating diffusion charge limit.

Appendix H Light Curves of Non-Transiting Targets

Figure 28 WASP-10 Check Star 1213-0608720 of 13/14-9-2016 by CKT Telescope

Figure 30 WASP-52 Check Star TYC 1161-890-1 of 23/24-9-2016 by CKT Telescope

Figure 32 WASP-52 Check Star TYC 1161-890-1 of 30-9-2016 by CKT Telescope

Figure 36 WASP-52 Light Curve of 5-11-2016 by CKT Telescope

Figure 38 WASP-52 Check Star TYC 1161-728-1 of 5-11-2016 by CKT Telescope

Figure 40 COROT-1 Check Star COROT-102915842 of 19/20-1-2017 by CKT Telescope

Figure 41 COROT-1 Check Star COROT-102881564 of 19/20-1-2017 by CKT Telescope

Figure 42 HAT-P-4 Check Star BD+36 2594 of 8/9-4-2017 by CKT Telescope

Figure 43 HAT-P-4 Check Star TYC 2569-1501-1 of 8/9-4-2017 by CKT Telescope

Figure 44 HAT-P-4 Check Star TYC 2569-1230-1 of 8/9-4-2017 by CKT Telescope

Figure 45 HAT-P-4 Check Star TYC 2569-1310-1 of 8/9-4-2017 by CKT Telescope

Figure 46 WD 1145+017 Check Star UCAC4 458-051088 of 25/26-3-2017 by CKT Telescope

Figure 48 HAT-P-20 Check Star TYC 1910-361-1 of 24/25-11-2016 by JHT Telescope

Figure 49 HAT-P-22 Check Star TYC3441-370-1 of 28/29-11-2016 by JHT Telescope

Figure 50 WASP-10 Check Star 1213-0608720 of 17/18-10-2016 by RPT Telescope

Figure 52 WASP-52 Check Star TYC 1161-890-1 of 4-11-2016 by RPT Telescope

Figure 53 WASP-52 Check Star TYC 1161-728-1 of 4-11-2016 by RPT Telescope

Figure 54 HAT-P-22 Check Star TYC3441-370-1 of 27/28-3-2017 by RPT Telescope

Figure 55 HAT-P-22 Check Star TYC3441-1256-1 of 27/28-3-2017 by RPT Telescope

Figure 56 GJ 436 Check Star TYC 1984-1928-1 of 26/27-3-2017 by RPT Telescope

Figure 58 GJ 436 Check Star TYC 1984-1840-1 of 26/27-3-2017 by RPT Telescope

Figure 60 GJ 436 Check Star TYC 1984-1884-1 of 26/27-3-2017 by RPT Telescope

Appendix I Light Curves with Transits of Exo-Planets

Figure 62 WASP-10 Transit of 13/14-9-2016 by CKT Telescope

Appendix I

Figure 69 WD 1145+017 Transit of 25/26-3-2017 by CKT Telescope

Figure 74 HAT-P-22 Incomplete Transit of 27/28-3-2017 by RPT Telescope

Figure 75 GJ 436 Transit of 26/27-3-2017 by RPT Telescope

Appendix J Equation Fitted Exo-Planet Light Curves

Figure 76 WASP-10 Transit of 13/14-10-2016 With CKT Telescope and Equation Fitting

Figure 77 WASP-52 Transit of 23/24-9-2016 With CKT Telescope and Equation Fitting

Figure 78 WASP-52 Transit of 30-9-2016 With CKT Telescope and Equation Fitting

Figure 79 WASP-52 Transit of 4-11-2016 With CKT Telescope and Equation Fitting

Figure 80 HAT-P-20 Transit of 2-11-2016 Taken Using CKT Telescope and Equation Fitting

Figure 81 COROT-1 Transit of 19/20-1-2017 Taken Using CKT Telescope and Equation Fitting

Figure 82 HAT-P-4 Transit of 8/9-4-2017 Taken Using CKT Telescope and Equation Fitting

Figure 83 HAT-P-20 Transit of 24/25-11-2016 Taken Using JHT Telescope and Equation Fitting

Figure 84 HAT-P-22 Partial Transit of 28/29-11-2016 Taken Using JHT Telescope and Equation Fitting

Figure 85 WASP-10 Transit of 17/18-10-2016 With RPT Telescope and Equation Fitting

Figure 86 WASP-52 Transit of 4-11-2016 With RPT Telescope and Equation Fitting

Page 139

Figure 87 GJ 436 Transit of 26/27-3-2017 Taken Using RPT Telescope and Equation Fitting

Appendix K Eclipsing Binary Transit Light Curves

Figure 89 UX UMa Eclipse with V Filter on DAT Telescope on 21-6-2013

Figure 90 UX UMa Eclipse with V Filter on DAT Telescope on 18-7-2013

Figure 92 UX UMa Eclipse with V Filter on CKT Telescope on 9-9-2013

Figure 93 UX UMa with V Filter on JHT and RPT Telescopes on 27-5-2017