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Abstract 
This thesis describes research into the score-level fusion process in multimodal 

biometrics. The emphasis of the research is on the fusion of face and voice biometrics in 

the two recognition modes of verification and open-set identification. 

The growing interest in the use of multiple modalities in biometrics is due to its potential 

capabilities for eradicating certain important limitations of unimodal biometrics. One of 

the factors important to the accuracy of a multimodal biometric system is the choice of 

the technique deployed for data fusion. To address this issue, investigations are carried 

out into the relative performance of several statistical data fusion techniques for 

combining the score information in both unimodal and multimodal biometrics (i.e. 

speaker and/ or face verification).  

Another important issue associated with any multimodal technique is that of variations in 

the biometric data. Such variations are reflected in the corresponding biometric scores, 

and can thereby adversely influence the overall effectiveness of multimodal biometric 

recognition. To address this problem, different methods are proposed and investigated.  

The first approach is based on estimating the relative quality aspects of the test scores 

and then passing them on into the fusion process either as features or weights. The 

approach provides the possibility of tackling the data variations based on adjusting the 

weights for each of the modalities involved according to its relative quality.  

Another approach considered for tackling the effects of data variations is based on the 

use of score normalisation mechanisms. Whilst score normalisation has been widely used 

in voice biometrics, its effectiveness in other biometrics has not been previously 

investigated. This method is shown to considerably improve the accuracy of multimodal 

biometrics by appropriately correcting the scores from degraded modalities prior to the 

fusion process.  

The investigations in this work are also extended to the combination of score 

normalisation with relative quality estimation. The experimental results show that, such a 

combination is more effective than the use of only one of these techniques with the 

fusion process. 

The thesis presents a thorough description of the research undertaken, details the 

experimental results and provides a comprehensive analysis of them. 
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Chapter 1 

Introduction 
 

The automatic verification of the identities of individuals is becoming an increasingly 

important requirement in a variety of applications, especially, those involving automatic 

access control. Examples of such applications are teleshopping, telebanking, physical 

access control, and the withdrawal of money from automatic telling machines (ATMs).  

Traditionally, passwords, personal cards, PIN-numbers and keys have been used in this 

context. However, security can easily be breached in these systems when a card or key is 

lost or stolen or when a password is compromised. Furthermore, difficult passwords may 

be hard to remember by a legitimate user and simple passwords are easy to guess by an 

impostor. The use of biometrics offers an alternative means of identification which helps 

avoid the problems associated with conventional methods. 

The word biometrics is defined as the recognition of an individual by checking the 

measurements of certain physical characteristics or personal traits against a database. 

Recognition could be by measurement of features in any of the three biometric 

categories: intrinsic; extrinsic; and hybrid. Intrinsic biometrics identifies the individual’s 

generic make-up (e.g. fingerprint or iris patterns). Extrinsic biometrics involves the 

individual’s learnt behaviour (e.g. signature or keystrokes). Finally, hybrid biometrics is 

based on a combination of the individual’s physical characteristics and personal traits 

(e.g. voice characteristics).  

A critical question is what biological (physical characteristics/ personal traits) 

measurements qualify to be a biometric. Any human trait can be considered as a 

biometric characteristic as long as it satisfies the following requirements[1, 2]: 

o Universality: each person should have the selected biometric identifier. 

o Distinctiveness: any two persons should be sufficiently different in terms of the 

selected biometric identifier. 

o Permanence: the biometric identifier should be sufficiently invariant over a given 

period of time. 

o Collectability: the biometric identifier should be measurable quantitatively. 
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In real life applications, there are a number of additional factors which should be 

considered:  

o Performance: which includes accuracy, speed and resource requirements; 

o Acceptability: the willingness of people to accept the biometric identifier in their 

daily lives; 

o Circumvention: it should be sufficiently robust to withstand various fraudulent 

practices. 

 

Biometric Systems 
 
A simple biometric system consists of four basic components (Figure 1.1)[3]: 

� Sensor module: this component is for acquiring the biometric data; 

� Feature extraction module: the data obtained from the sensor is used to compute a 

set of feature vectors; 

� Matching module: the feature vectors generated via the previous component are 

checked against those in the template; 

� Decision making module: to accept or reject the claimed identity or to establish a 

user’s identity. 

 
 
 
 
 
 
 
  
Figure 1.1: General scheme of a biometric system. 
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In general, a biometric recognition system involves two stages of operation. The first of 

these is the enrolment.  There are two general processes in this stage.  The first is 

acquisition of the user's biometric data, by means of a biometric reader appropriate to the 

data sought.   The second concerns storage of the biometric data for each user in a 

reference database. This can be in a variety of forms including a template or a statistical 

model generated using the raw data. Whichever method is used, the stored data is 

labelled according to user identity to facilitate subsequent authentication.   

The second stage of operation is termed testing.   In this stage, the test biometric data 

obtained from the user is checked against the reference database for the purpose of 

recognition.  A biometric recognition system can operate in one of the two modes of 

verification (also referred to as authentication in this thesis) and identification. In the 

verification mode, the user also makes an identity claim. In this case the test data is 

compared only against the reference data (e.g. template, statistical model) associated 

with the claimed identity. The result of this comparison is used to accept or reject the 

identity claim.  In identification, the test data is compared against the data for all the 

registered individuals to determine the identity of the user (p. 2117)[4]. Thus, 

verification and identification are two distinct issues having their own inherent 

complexities.  

Although this thesis is mainly focused on biometrics-based verification, Chapters 6 and 7 

discuss both biometrics-based verification and Open Set Identification (OSI). 

 

 Biometric System Errors 
 
Since this thesis discusses both biometric-based verification and Open-Set Identification, 

a brief discussion on the errors occurring in the verification process as well as those 

occurring in the identification process is presented below.  

A biometric recognition system may make two types of errors [1] : 1) False Acceptance 

(FA), occurring when the system accepts an impostor, and 2) False Rejection (FR), 

taking place when the system rejects a client. Other errors that may occur in a biometric 

system are Failure To Capture (FTC) and Failure To Enroll (FTE). The FTC occurs 

when the device is not able to locate a biometric signal of sufficient quality (e.g. an 
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extremely faint fingerprint) whilst the FTE takes place when a user is not able to enroll 

in the recognition system. The Equal Error Rate (EER: i.e. when FAR=FRR) is used in 

this thesis as the performance measure of an identity verification method. The task of 

Open Set Identification consists of two component processes of identification and 

verification. For the verification in Open Set Identification, the system performance is 

measured in terms of Open Set Identification Equal Error Rates (OSI-EER: i.e. when 

OSI-FAR=OSI-FRR). The identification performance, however, is measured in terms of 

Identification Error Rate (IER). This occurs when an individual in a database is 

incorrectly identified. More details about performance evaluation in biometric systems 

are given in Section 3.3. 

1.1. Motivation behind multimodal biometrics 
Despite considerable advances in recent years, there are still serious challenges in 

obtaining reliable authentication through unimodal biometric systems. These are due to a 

variety of reasons. For instance, there are problems with enrolment due to the non-

universal nature of relevant biometric traits. Non-universality means the possibility that a 

subset of users do not possess the biometric trait being acquired.   Equally troublesome is 

biometric spoofing. Biometric spoofing means that it is possible for unimodal systems to 

be fooled, e.g. through the use of contact lenses with copied patterns for iris recognition. 

Moreover, the environmental noise effects on the data acquisition process can lead to 

deficient accuracy which may disable systems, virtually from inception [5]. Speaker 

verification, for instance, degrades rapidly in noisy environments. Similarly, the 

effectiveness of face verification depends strongly on lighting conditions and on 

variations in the subject’s pose before the camera. Some of the limitations imposed by 

unimodal biometrics systems can be overcome by using multiple biometric modalities. 

Multiple evidence provision through multimodal biometric data acquisition may focus on 

multiple samples of a single biometric trait, designated as multi-sample biometrics.  It 

may also focus on samples of multiple biometric types.  This is termed multimodal 

biometrics. Higher accuracy and greater resistance to spoofing are basic advantages of 

multimodal biometrics over unimodal biometrics. Multimodal biometrics involves the 

use of complementary information as well as making it difficult for an intruder to spoof 

simultaneously the multiple biometric traits of a registered user. In addition, the problem 
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of non-universality is largely overcome, since multiple traits can ensure sufficient 

population coverage. Because of these advantages of multimodal biometrics, a 

multimodal biometric system is preferred over single modality even though the storage 

requirements, processing time and the computational demands of a multimodal biometric 

system are much higher.  

The fusion of the complementary information in multimodal biometric data has been a 

research area of considerable interest, as it plays a critical role in overcoming certain 

important limitations of unimodal systems. The efforts in this area are mainly focused on 

fusing the information obtained from a variety of independent modalities. For instance, a 

popular approach is to combine face and speech modalities to achieve a more reliable 

recognition of individuals. Through such an approach, separate information from 

different modalities is used to provide complementary evidence about the identity of the 

users. In such scenarios, fusion is normally at the score level. This is because the 

individual modalities provide different raw data types, and involve different 

classification methods for discrimination. To date, a number of score-level fusion 

techniques have been developed for this task [6]. These range from the use of different 

weighting schemes that assign weights to the information streams according to their 

information content, to support vector machines which use the principle of obtaining the 

best possible boundary for classification, according to the training data. Despite these 

developments, the literature lacks a thorough comparison of various fusion methods for 

multimodal biometrics.  

The purpose of the present work is to examine whether the performance of a biometric 

system can be improved by integrating complementary information which comes 

primarily from different modalities (multimodality). Another issue of concern in this 

thesis is the effect of data variation on the recognition performance of biometric systems. 

Such variations are reflected in the corresponding biometric scores, and thereby can 

adversely influence the overall effectiveness of biometric recognition. Therefore, an 

important requirement for the effective operation of a multimodal biometric system in 

practice is minimisation of the effects of variations in the data from the individual 

modalities deployed. This would allow maximisation of the recognition accuracy in the 

presence of variation (e.g. due to contamination) in some or all types of biometric data 
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involved.  However, this is a challenging requirement as the data variation can be due to 

a variety of reasons, and can have different characteristics.  Another aspect of difficulty 

in multimodal biometrics is the lack of information about the relative variation in the 

different types of biometric data.  

The term data variation, as used in this thesis, is now subdivided into two types. These 

are, variation in each data type arising from uncontrolled operating conditions, and 

variation in the relative degradation of data. The former variation can be due to operating 

in uncontrolled conditions (e.g. poor illumination of a user’s face in  face recognition, 

background noise in voice biometrics, etc.), or user generated (e.g. uncharacteristic 

sounds from speakers, carelessness in using the sensor for providing fingerprint samples, 

etc.)[1]. The variation in the relative degradation of data is due to the fact that in 

multimodal biometrics different data types are normally obtained through independent 

sensors and data capturing apparatus. Therefore, any data variation of the former type 

(discussed above) may in fact result in variation in the relative degradation (or goodness) 

of different biometric data deployed. Since, in practice, it may not be possible to fully 

compensate for the degradation in all biometric data types involved, the relative 

degradation of data appears as another important consideration in multimodal biometrics. 

This thesis reports a number of contributions to increasing the accuracy of multimodal 

biometrics in the presence of variation. These are based on investigating methods of 

tackling the effects of data degradation and estimating the relative quality of different 

biometric data. 

 

1.2. Aims and Objectives 
The main aim of this work is to investigate the effectiveness of fusion techniques for 

multimodal biometrics, with the following specific objectives:  

• A review of the existing approaches. 

• Investigations into effective fusion methods for selected types of biometrics ( i.e. 

face and voice). These involve 

o fusion of different types of biometrics (voice and face), and 
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o fusion of complementary information in unimodal biometrics (voice/ 

face). 

 

• Identification of the main issues and challenges in the use of fusion methods for 

multimodal biometrics. This involves  

o the effect of variation in relative degradation of data on the multimodal 

biometrics accuracy (i.e. face and voice). 

o the effect of variation arising due to uncontrolled operating conditions on 

the recognition   performance of biometric systems. 

 

1.3 Thesis Organisation 
The thesis is organised into eight chapters. An overview of these chapters is presented 

below. 

� Chapter 1 introduces the topic of multimodal biometric systems and gives the 

motivations for and outline of this PhD thesis. 

 

� Chapter 2 describes different architectures for information integration, and 

presents a review of previous investigations into multimodal biometrics and 

details the motivations for this thesis based on the previous works.  

� Chapter 3 identifies, based on the outcomes of the investigations carried out in 

the previous chapter, the more effective fusion methods and describes their 

principles in detail. The Chapter also introduces the most effective and widely 

used supporting techniques for multimodal biometrics reallocation and 

evaluation. 

� Chapter 4 presents a thorough experimental investigation, based on two types of 

biometrics (i.e. face and voice), into the effectiveness of various fusion 

approaches in both unimodal and multimodal biometrics. The scope of the 

investigation includes the use of verification scores obtained from different types 

of features extracted from biometric data. The Chapter presents the experimental 

results together with an analysis of them.  
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� Chapter 5 studies the application of relative quality-based score level fusion to 

reduce the effects of relative degradation in multimodal fusion.  The Chapter 

describes the experimental investigation and discusses the results.  

� Chapter 6 presents an investigation into the effects, on the accuracy of 

multimodal biometrics, of introducing appropriate normalisation into the score 

level fusion process. The experimental investigations involve the two recognition 

modes of verification and open-set identification, both in clean, mixed-quality, 

and in degraded data conditions. The Chapter presents the motivation for, and the 

potential advantages of, the proposed approach and details the experimental 

study. 

� Chapter 7 presents a qualitative fusion method using score normalisation to 

enhance the accuracy of multimodal biometrics. The Chapter introduces the 

motivation for the proposed approach and presents the experimental results 

together with an analysis of them.  

� Chapter 8 presents a summary of the work carried out and its important 

conclusions. The latter part of the Chapter presents suggestions for future work. 
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Chapter 2 

Literature Review 

2.1 Introduction 
 
This chapter focuses on various fusion methods for multimodal biometrics.  Section 2.2 

describes the categorisation of multimodal biometric systems into four architectures in 

accordance with the strategies used for information integration. Section 2.3 gives a 

summary of the main investigations carried out to date in the field of multimodal 

biometrics.  

2.2 Fusion Levels 
The literature shows that four possible levels of fusion are used for integrating data from 

two or more biometric systems[7, 8].  These are the sensor level, the feature level, the 

matching score level, and the decision level.  The sensor level and the feature level are 

referred to as pre-mapping fusion while the matching score level and the decision level 

are referred to as  post-mapping fusion [9]. In pre-mapping fusion, the data is integrated 

before any use of classifiers, while in post-mapping fusion, the data is integrated after 

mapping into matching score/ decision space. Figure 1 shows the four possible fusion 

levels. 

 

 

 

 

 

 

 

 

 

 

 

             Figure 2.1: Fusion levels in multimodal biometric fusion. 
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A. Pre-mapping fusion I: Fusion at the sensor level 
The raw data, acquired from sensing the same biometric characteristic with two or more 

sensors, is combined (Figure 1). An example of the sensor fusion level is sensing a 

speech signal simultaneously with two different microphones. Although fusion at such a 

level is expected to enhance the biometric recognition accuracy [7, 10], it can not be used 

for multimodal biometrics because of the incompatibility of data from different 

modalities [7].  

B. Pre-mapping fusion II: Fusion at the feature level 
Fusion at this level, as shown in Figure 1, can be applied to the extraction of different 

features from the same modality or different multimodalities [7]. An example of a 

unimodal system is the fusion of instantaneous and transitional spectral information for 

speaker recognition. On the other hand, concatenating the feature vectors extracted from 

face and fingerprint modalities is an example of a multimodal system. It is stated in [7, 

10] that fusion at the feature level is expected to perform better in comparison with 

fusion at the score level and decision level. The main reason is that the feature level 

contains richer information about the raw biometric data. However, such a fusion type is 

not always feasible [7, 10]. For example, in many cases the given features might not be 

compatible due to differences in the nature of modalities. Also such concatenation may 

lead to a feature vector with a very high dimensionality. This increases the computational 

load.  It is reported that a significantly more complex classifier design might be needed 

to operate on the concatenated data set at the feature level space[7].  

C. Post-mapping fusion I: Fusion at the matching score level 
At this level, it is possible to combine scores obtained from the same biometric 

characteristic or different ones. Such scores are obtained, for example, on the basis of the 

proximity of feature vectors to their corresponding reference material (Figure 1). The 

overall score is then sent to the decision module [4]. Currently, this appears to be the 

most useful fusion level because of its good performance and simplicity [11, 12] This 

fusion level can be divided into two categories: combination and classification.  In the 

former approach, a scalar fused score is obtained by normalising the input matching 
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scores into the same range and then combining such normalised scores. In the latter 

approach, the input matching scores are considered as input features for a second level 

pattern classification problem between the two classes of client and the Impostor [13]. 

 

 D. Post-mapping fusion II: Fusion at the decision level 
In this approach, as shown in Figure 1, a separate decision is taken for each biometric 

type at a very late stage.  This seriously limits the basis for enhancing the system 

accuracy through the fusion process. Thus, fusion at such a level is the least powerful 

[14]. 

2.3 Previous research into multimodal biometrics 
This section provides a review of the outcomes of the investigations carried out to date in 

the area of multimodal biometric fusion. Due to the advantages offered by the score level 

fusion, the discussions are focused on this type of fusion. In literature, the score level 

fusion techniques are divided into two main categories of fixed rules (rule-based) and 

trained rules (learning-based)[15, 16]. The fixed rules are also referred to as the non-

parametric rules while the trained rules are referred to as the parametric rules [17]. The 

main reason for categorising the fusion techniques in this way is that trained rules require 

sample outputs from the individual modalities to train the pattern classifiers. In other 

words, they use development data to calculate some required parameters. These 

parameters are then used to appropriately fuse the score data in the test phase. Examples 

of the trained rules are Weighted Sum rule and Weighted Product rule (Section 2.3.2). 

On the other hand, fixed rules are applied directly to fuse the given test scores for 

different modalities. In other words, the contribution of each modality is fixed a priori. 

Examples of fixed rules are AND rule, OR rule, Maximum, Minimum and Majority 

voting (Section 2.3.1). The next three sections discuss the previous research into fixed 

rules, trained rules, and a comparison between them. 

 

 



 12 

2.3.1 Fusion based on fixed rules 
This section provides a review of the recent work in the area of fixed-rule based 

biometric score fusion. The emphasis of the discussions is on the most popular methods 

in this category.  

The discussions include both decision level fusion techniques (e.g. AND, rule, OR rule, 

Majority voting rule) and score level fusion techniques (e.g. Maximum rule, Minimum 

rule, Sum rule, Product rule, Mean rule). The next section has a brief description of such 

rules. 

2.3.1.1 Fixed rules 
A.  AND fusion 

In AND fusion, the outputs of different classifiers are thresholded. An acceptance 

decision is reached only when all the classifiers agree [18, 19]. 

 

B. OR fusion 

In OR fusion, again the outputs of different classifiers are compared to a preset 

threshold. A positive decision is made as soon as one of the classifiers makes an 

acceptance decision [18, 19]. 

 

C. Majority voting rule 

In Majority voting rule, the outputs of different classifiers are thresholded. In this case, 

reaching a decision is based on having the majority of the classifiers declaring the same 

decision [20-22]. To prevent ties, for a two class classification task, the number of 

classifiers must be odd and greater than two. The number of votes determines the 

security level of the system: the more the votes, the higher the security level. 

 

For the fixed and trained rules presented in this thesis, f  is the fused score, mx  is the 

score of the mth matcher, m=1,2,…, M 
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D. Maximum rule 

Maximum rule method selects the score having the largest value amongst the modalities 

involved. It is defined mathematically as [23, 24]: 

( )Mxxxf ,...,,max 21=                                                                                                   (2.1) 

 

E. Minimum rule 

In the Minimum rule, the match-score mx represents the distance score. Minimum rule 

method chooses the score having the least value of the modalities involved. It is defined 

as [23, 24]: 

( )Mxxxf ,...,,min 21=                                                                                                   (2.2) 

 

 

F. Sum rule 

In Sum rule, the fused score is computed by adding the scores for all modalities 

involved. The computation here is defined as [23, 24]: 

 
1

�
=

=
M

m
mxf                                                                                                                     (2.3) 

 

G. Product rule 

In Product rule, the fused score is calculated by multiplying the scores for all modalities 

involved. It is mathematically defined as [25]: 

 
1
xm

M

m
f Π

=
=                                                                                                                                                            (2.4) 

 

H. Arithmetic Mean Rule 

In the Arithmetic Mean rule, the fused score is obtained by first adding the scores for all 

modalities, and then dividing the result by the number of modalities involved. It is also 

known as the simple mean rule. Mathematically,  the Arithmetic Mean rule is defined as 

[26]: 

  /)(
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=
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2.3.1.2 Recent work on biometric fusion using fixed rules 
 

This section contains a summary of the recent work on biometric fusion based on fixed 

rules. 

The use of hybrid biometric person authentication based on face and voice features has  

been explored in a study presented in [27]. Although a simple logical AND scheme is 

used for the purposes of fusion, the experimental results have confirmed that a 

multimodal approach is better than any single modality. 

The combination of scores for noisy speech and clean handwriting is the subject of 

investigations in [28]. The chosen fusion method in this study is the Sum rule. The 

results show that fusion of more than one modality could lead to better results compared 

with the use of only one modality. 

Another study [29]considers two different fusion methods of integrating the scores or 

decisions for face, speech and lip movement. The methods considered are the Sum rule 

(score level) and Majority voting (decision level). Majority voting requires the 

agreement of two traits out of the three, although, for a higher security level, the system 

can demand the agreement of all three traits. It has been found that the combined system 

could provide more security than each of the individual systems involved. 

The combination of face and gait cues for identification purposes has been studied in  

[30] and in this case the fusion process takes place at either the score level or the 

decision level. Four different score-level fusion methods and one decision-level fusion 

method are empirically compared in that study. These are the Product rule, Sum rule, 

Maximum rule, Minimum rule and Majority voting rule. The Product rule has shown the 

best performance out of all the fusion methods considered. The Minimum and Maximum 

rules demonstrate poor performance because of the high degree of overlap of the 

distribution of client and impostor scores. That has proved them to be less robust than 

Sum and Product rules. 

An automatic person identification system is proposed in [31]. This system is based on 

the integration of the scores for clean face and fingerprint by simply multiplying the 
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scores obtained from the two. The results have shown that the integrated system could 

overcome even the best modality involved in that study. 

There have been some experimental studies on the fusion of face and gait for a single 

camera case [32]. On this occasion two different scenarios are used in order to fuse the 

scores for face and gait.  The first scenario involves the use of a gait classifier [33] as a 

filter in order to pass a smaller number of candidates to the more accurate face classifier 

[34]. In the second scenario the matching scores for the two considered modalities are 

directly combined. This is based on the Sum rule, Minimum rule and Product rule. 

Although both scenarios have shown overall systems performance improvement, the 

second scenario is preferred if the requirement from the fusion is that of accuracy as 

against computational speed.  

Based on the above studies, it can be concluded that fusion techniques based on fixed 

rules have some advantages. These include the fact that such techniques usually show 

better performance when compared to single modalities involved (at least in the above-

mentioned studies). Secondly, they are very simple techniques to implement. However, 

in another study [35], it has been indicated that the advantage of obtaining better 

performance based on the fixed rules might not be held when the ensembles of involved 

modalities are not exhibiting similar performance [35]. Unfortunately, one of the main 

problems that is related to multimodal biometrics fusion is that individual biometrics 

often show significantly different performance [35, 36]. Thus, using fixed rules for 

multimodal biometric fusion might degrade the performance of the fused system 

compared to the performance of the best individual modality involved. Hence, trained 

rules are introduced for multimodal biometric fusion as an alternative approach to the 

fixed rules. 

2.3.2 Fusion based on trained rules 
A description of the important multimodal biometric fusion methods based on trained 

rules is presented in this section. These are Weighted Sum rule, Weighted Product rule, 

Fisher Linear Discriminant, Quadratic Discriminant Analysis, Logistic Regression, 

Support Vector Machine, Multi-Layer Perceptrons and Bayesian classifier. This is 

followed by a summary of the recent work in this field.  
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2.3.2.1 Trained rules 
 

A.  Weighted Sum rule 

This is also known as the weighted average rule (see Section 3.4.1). In this technique, the 

fused score is obtained through a two-stage task. Firstly, each score is multiplied by the 

corresponding weight of its modality. Secondly, the multiplication results are added 

together in order to produce the fused score. This is mathematically represented as: 

m

M

m
mxwf �

=
=

1
                                                                                                                  (2.6) 

where f  is the fused score, M is the number of matching streams, mx  is the match 

score from the mth matcher and mw  is the corresponding weight (obtained on some 

development data) in the interval of 0 to 1, with the condition   

1
1

=�
=

M

m
mw                                                             (2.7)  

There are several sub-classes of this scheme, which differ primarily in the method used 

for the estimation of weight values (e.g. Brute force Search, Matcher Weighting, User 

Weighting [12]). More details about Weighted Sum rule are given in Section 3.4.1. 

 

B.  Weighted Product rule 

Like the Weighted Sum rule, the Weighted Product rule is also a two-stage task. 

However, the Weighted Product rule differs from the Weighted Sum rule in the second 

stage. In this case, the products of the weight and score from each modality are multiplied 

instead of being added. Mathematically, the scores from M modalities are combined as 

follows [26, 37]: 

mm

M

m
xwf   

1
Π

=
=                                                                                                                                                    (2.8) 

 where f  is the fused score, M is the number of matching streams, mx  is the  match 

score from the mth matcher and mw  is the corresponding weight. It should be noted that 

mw is computed on development data. 
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C.  Fisher Linear Discriminant 

Fisher Linear Discriminant (FLD) is a simple linear projection of the input vector. It is 

defined as: 

bh T += xwx)(                                                                                                         (2.9) 

where T indicates the transpose operation and the estimated output )(xh is a function of 

the input vector X as well as the parameters w and b. Such parameters are obtained 

through an appropriate training procedure (see Section 3.4.2) 

 

D.  Quadratic Discriminant Analysis  

Quadratic Discriminant Analysis (QDA) is similar to FLD but is based on forming a 

boundary between two classes using a quadratic equation. More details about this 

technique are given in Section 3.4.3. 

 

E.  Logistic Regression   

The Logistic Regression method classifies the data based on using two functions: logistic 

regression function (2.10) and logit transformation (2.11) as follows: 

( )
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e
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+

=
1

|                                                                                                 (2.10) 

where, ( )x|YE  is the conditional probability for the binary output variable Y where the 

M-dimensional input vector x exists, with: 

( ) MMwwwg xxx ⋅++⋅+= ....110                                                                                  (2.11) 

where mw is the weight for the mth  modality. Such weights are calculated during the 

development stage. More details about LR can be found in Section 3.4.4. 

 

F.  Support Vector Machine 

Support Vector Machine (SVM) is based on the principle of Structural Risk Minimisation 

(SRM) which aims to find the optimal separating hyper-plane that has the largest margin 

to the closest data points in the two classes being separated. SVM is simply defined for 

the linearly separable data as:  
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0w =+⋅ bi
T x                                                                                                               (2.12) 

where w is a weight (coefficient) vector, x is an input vector consisting of the scores for 

different modalities and b is a bias estimated on the development set. This definition 

could be then generalised for non-linearly separable data. This is achieved through some 

non-linear functions (e.g. Radial Basis Function Support Vector Machine, Polynomial 

kernel function). More details about SVM are given in Section 3.4.5. 

 

G.  Multi-Layer Perceptrons  

A Multi-Layer Perceptrons (MLP) is a particular architecture of artificial neural 

networks [38, 39]. The MLP architecture should have an input layer, hidden layer(s) and 

an output layer. With no hidden layer, the perceptron can only perform linear tasks. 

Classification in MLP is achieved by processing the input scores through successive 

layers of "neurons". For a two-class problem (c=1,2), an example of a MLP with one 

hidden layer can be written mathematically as: 
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where cy is the cth output, jiw are the input-to-hidden weights, cjw are the hidden-to-

output weights, ix is the ith input, IM and HM are the number of input and hidden nodes 

respectively, and hf and of are the sigmoid activation functions for the hidden and output 

layers respectively. The weights in MLP are calculated using the development data 

through an appropriate training procedure [38, 39].  

 

 

H.  Bayesian classifier 

The Bayesian classifier is a simple classification method. In the Bayesian classifier, the 

classification requires the estimation of many conditional distributions [40, 41]. This in 

turn requires large amounts of training data. The Bayesian classifier, in the case of a two-

class problem (C for clients and I for impostors, or iC , i=1,2), can be described as 
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follows: let x be M-dimensional input vector. The a posteriori probability )/( xiCp  can 

be computed as: 

 

)(
)()/(
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x

xx
p

CpCp
Cp ii

i
⋅=                                                                                       (2.14) 

where )( iCp and )(xp are the a priori probabilities of iC  and x respectively, and 

)/( iCp x  is the conditional probability of x, given iC . Since )(xp does not depend on the 

class index, the maximum a posteriori decision only depends on the numerator of the 

right-hand side of equation (2.14) [41]. 

)()/(max ii
i

CpCpMAP ⋅= x                                                                                         (2.15) 

where )( iCp  is computed on the development data.  

2.3.2.2 Recent work on biometric fusion using trained rules 
 

A review of recent work carried out on biometric fusion based on trained rules is 

presented below. 

A multimodal biometric user-identification system is proposed in [42]. The system is 

based on combining the scores for hand geometry, palm and fingerprint. The Weighted 

Sum rule is used as the fusion technique. Results of this experiment show that the 

Weighted Sum rule provides better performance than even the best individual modality. 

In another study [43] the integration of fingerprint, face and hand geometry at the score 

level is explored. That study demonstrates that user independent Weighted Linear 

combination of similarity scores can be enhanced by using either user dependent weights 

or user dependent decision thresholds. Weights and thresholds are computed by 

exhaustive search on the development data. It has been found that using thresholds 

improves the performance by about 2%, whilst the use of weights improves it by about 

3%.  

In [44], the face and speaker identification techniques are tested on data collected in 

uncontrolled environments using inexpensive sound and image capture hardware. 

Despite the fact that the system performance can be harmed under these circumstances, it 

has been proved that using a combination of biometric modalities can improve the 
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robustness and accuracy of the person identification task. Simple Brute Force Search is 

used for the fusion process in that study too. It has been shown that through this 

approach the fused biometrics outperforms the two individual modalities involved.  

Another multimodal person verification system (based on facial profile views and 

features extracted from speech), which integrates the scores obtained from the two 

biometrics using the Weighted Sum rule, is considered in [45]. The results of a study on 

that system have shown that the improvement gained through the integration of scores is 

particularly noticeable when operating under noisy conditions. 

A demonstration biologin system, with bimodal (face and speech) authentication system, 

is proposed in [46]. The scores for face and speech modalities are combined using a 

Weighted Sum rule. The experimental results show that the fusion has led to better 

performance compared to the individual modalities involved.   

In another study [4] the integration of face, fingerprint and hand geometry at the score 

level is explored. The results of the study show that using Weighted Sum rule as the 

fusion process has led to considerable improvement. 

A multimodal identity verification system based on the integration of the scores for face 

image and text independent speech data of a person [47] has used Multi-Layered 

Perceptron and Weighted Average for the fusion purpose. In a study of that system it has 

been found that the text independent speaker verification algorithm is more robust 

compared to the face verification algorithm. Nevertheless, fusion of these two modalities 

has led to considerable improvement. 

Two different speaker verification algorithms have been discussed in another study 

which considers a robust person verification system based on speech and facial images 

[48].  These are a text independent method using a second order statistical measure and a 

text dependent method based on hidden Markov modeling. As a unimodal verification 

system, text dependent has shown the best performance compared to face and text 

independent modules. Support Vector Machine is used to integrate the scores for the 

different recognition modules and it has been found that the combination of different 

modalities outperforms even the best individual modality involved. Results have also 

shown that the combination of the two modules with the lowest performance (face and 
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text independent) leads to better performance than the best single modality (text 

dependent). 

In another study [49] a trained supervisor based on Bayesian statistics has been used to 

combine scores from face and speaker voice, using the modulus of complex Gabor 

responses [50] as a face feature, and representing speech using LPC (linear predictive 

coding) features [51]. The results of that study have shown that the proposed system 

outperforms the aggregation of the individual modalities by averaging.  

Audio-visual person verification based on frontal face image and speech has been 

considered in [52]. In doing this, Linear Weighted and SVM are used as fusion 

techniques and the results have shown that the performance of the system is increased by 

combining the two modalities. The Linear Weighted classifier has outperformed the 

Linear SVM, but the SVM is demonstrated to have possessed an advantage in combining 

potentially any number of modalities at the same computational cost with very good 

fusion results (1999, p. 8)[52].  

A study which proposes an adaptive multimodal person verification system based on 

speech and face images has found that the system adapts to noise present in the speech 

signal by modifying the parameters of the fusion method  [53]. A set of parameters for 

different Peak Signal to Noise Ratio (PSNR) of the speech signal is calculated a priori 

during the development stage. Then, during the test stage, the estimation of the PSNR of 

the given speech signal takes place and parameters most closely corresponding to that 

PSNR are used by Linear and SVM fusion methods. The results have demonstrated that 

the adaptive system significantly outperforms the non-adaptive one. 

2.3.3 Comparison of fixed rules and trained rules 
As indicated earlier, the main aim of this chapter is to provide a direct comparison 

between fixed rules and trained rules in the field of multimodal biometric fusion. 

However, any direct comparison between the results of the above studies would be 

meaningless. This is due to the fact that the work reviewed above is based on using 

different databases and/or different experimental setup (e.g. modalities and performance 

measures). Therefore, this section aims to compare the effectiveness of fixed rules and 

trained rules based on studies involving the same database (same population and size).  
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In [12], five different score fusion methods (Matcher Weighting, User Weighting, Sum 

rule, Minimum rule, Maximum rule) are used to combine the scores obtained from 

fingerprint and face data. Different range-normalisation techniques are also introduced: 

Min-Max, Z-score, Tanh and Quadric-Line-Quadric [12]. The study has shown that 

trained rules, particularly through User Weighting scheme, lead to the best performance, 

whilst Minimum rule (fixed rule) leads to the worst. 

In another study[26, 54], the combination of scores or decisions obtained from face and 

speaker voice has been considered. The fusion methods used are the Weighted Sum rule, 

Weighted Product rule, Maximum rule, Minimum rule, Majority voting rule and Median 

rule. Results in this case show that the Weighted Sum rule has outperformed the other 

fusion methods. The robustness of Weighted Sum rule in term of errors made by 

individual classifiers is shown to account for the better performance. 

The integration of speaker voice and frontal face image by using trained-rule and fixed-

rule fusion methods is considered in [16]. The study has shown that the advantages of 

trained rules depend strongly on the quality and size of the development set. It has also 

been found that the performance of both fixed and trained rules is affected by the 

correlation between the outputs of the different features. For example, fixed rules have 

performed well for modalities exhibiting a similar correlation while it has shown that 

trained rules should handle modalities exhibiting different correlation more effectively 

[35, 55]. However, it has not been completely clear under which conditions of 

performance imbalance trained rules can significantly outperform fixed rules. 

Two other studies which have provided a direct comparison between the rule-based 

fusion with learning-based (or trained) fusion are presented in [15, 56]. In both studies, 

Sum rule and Radial Basis Function Support Vector Machine (RBF SVM) are used to 

combine the scores for face, fingerprint and online signature. The experimental results of 

these studies have shown that appropriate selection of parameters for a learning-based 

scheme (RBF SVM) leads to a fusion strategy that clearly outperforms the rule-based 

strategy (Sum rule).  

A two-level fusion strategy for audio-visual biometric authentication is proposed in [57]. 

The fusion is performed sequentially, first at intramodal fusion level, and then at 

intermodal fusion level. At the intramodal fusion level, the scores of multiple samples 
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(e.g. utterances or video shots) obtained from the same modality are linearly integrated, 

and this can be done either by assigning equal weights or different weights to different 

scores [57]. The process is followed by intermodal fusion. At the intermodal fusion level, 

the intramodal fused scores obtained from different modalities are combined by using the 

Sum rule or second-degree polynomial SVM. The experimental results have shown that 

the two level fusion (intramodal and intermodal) are complementary to each other and 

that the intermodal fusion is best realised through SVM. 

In [58], another comparison of trained rules and fixed rules is presented. In that study, 

the effectiveness of Arithmetic Mean Rule (AMR) and SVM are compared in a 

multimodal biometric score fusion based on the integration of the scores for speech and 

online signature modalities in two different experimental conditions. It is shown that in 

the first case, clean speech and clean online signature data, AMR with Min-Max gives 

the best performance, while in the second (noisy) case, with degraded speech data and 

clean online signatures, SVM gives performance equivalent to those obtained with AMR 

after score range-normalisation via a Bayes normalisation [58]. Such results are much 

better than those given by the AMR with Min-Max and Tanh Estimator. For the fusion 

by AMR, three score range-normalisation methods are used, Min-Max, Tanh Estimator 

and Bayes normalisation. For the SVM no range-normalisation is used.  

The development of a prototype for a multimodal biometric system by using single 

sensor [59] has shown that Radial Basis Function Support Vector Machine (RBF SVM)  

outperforms other combined and individual classifiers. Sum rule, Weighted Sum rule and 

RBF SVM are used in this case to integrate the scores for hand geometry and palm print.  

The comparison of  13 different classifier-combination methods based on the fingerprint 

and voiceprint matching scores for both identification and verification [60] has shown 

that SVM leads to the best performance out of a wide range of different fusion methods. 

A study using Mean rule, Linear Support Vector Machines and Radial Basis Function 

Support Vector Machines for fusing the scores for fingerprint and iris biometrics has 

been presented in [61]. The study demonstrates the benefit of integrating the scores for 

fingerprint and iris modalities. The two SVM approaches outperform the simple Mean 

rule, and it is shown that a multimodal integration of iris and fingerprints can offer 
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substantial performance gain that may not be possible with a single biometric indicator 

alone [61].   

The integration of face and speaker voice by using parametric and non-parametric fusion 

methods is considered in [17]. The experimental results have shown that multimodal 

verification derived from Logistic Regression works best, although it is indicated that 

answering the question of which fusion method should be chosen is much more difficult. 

It has been found that having a large representative database is very important in order to 

choose a number of potentially powerful fusion paradigms. 

The demonstration that multimodal biometric recognition is best realised through trained 

rules, particularly through the Bayesian method and SVM  in [62], involves the 

combination of four different modalities (fingerprint, face, voice and signature). The 

fusion methods used in that study include trained rules (represented by Logistic 

Regression, Multi-Layer Perceptrons, Quadratic Classifiers, Linear Classifiers, SVM, 

Bayesian classifier) and fixed rules (represented by AND rule, OR rule, majority voting). 

The results have shown that the Bayesian approach, although considered optimal, 

requires far more data. However, the data quantity is far less of a concern in the SVM 

paradigm.   

The integration of profile image, frontal image and voice by using parametric and non-

parametric fusion methods is considered in [63]. The binary classifier derived from 

Logistic Regression has produced a more balanced approach and positive indications: a 

low level of computing time and good results. 

In another study, a multimodal identity verification system is proposed using expert 

fusion to integrate the results obtained from vocal and visual biometric modalities [64]. 

Paradigms of parametric (Logistic Regression, Quadratic Classifier, Linear classifier and 

Multi-Layer Perceptrons) and non-parametric (AND rule and OR rule) classes of 

techniques are used as fusion algorithms. Logistic Regression has seemed to give the 

overall best performance. Also, results have shown that the parametric methods 

outperform the non-parametric schemes. 

Based on the above investigations, it can be concluded that an accurate design of the best 

reported trained rules usually outperform the fixed rules even though some examples 

have been reported in the literatures where the Sum rule has outperformed other trained 
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rule approaches [4]. However, trained rules still have some disadvantages that may result 

in degrading the overall accuracy for the combined system. One of the main 

disadvantages of the trained rules is their rather high degree of complexity [65]. Another 

disadvantage of trained rules is the scarcity of multimodal data [65] especially because of  

the trained rules’ strong dependence on the quality and size of the development set. 

Some of the limitations (disadvantages) of trained rules can be overcome by 

incorporating the quality of the biometric modalities involved in the fusion process 

(Section 2.3.4). 

2.3.4 Quality-Based Fusion 
Several studies have shown that the quality of a unimodal biometric sample plays a 

significant role in the overall system performance [66, 67]. In those studies, poor quality 

of biometric samples leads to a significant reduction in the accuracy of a unimodal 

biometric system. As said earlier multimodal biometric systems can overcome this 

challenge to some extent by integrating the evidence provided by a number of different 

biometrics. However, one of the important problems associated with score-level fusion 

for multimodal biometrics is the unpredicted variations in the evidence captured in the 

scores. Such variation can arise from anomalies such as background noise, 

communication channel and uncharacteristic disturbances in the modalities. One of the 

approaches to tackling such anomalies is based on explicit estimation of the quality 

aspects of the generated scores. This section presents a review of the recent work on the 

incorporation of quality measures in multimodal biometric systems. 

One straightforward way to introduce the quality measures of the input biometric data 

into the score level fusion approach is through including weights in simple combination 

approaches (for instances, Weighted Sum rule, Fisher Linear Discriminant). The weights 

in these approaches can be calculated heuristically, by exhaustive search in order to 

minimise certain error criterion on a development set (e.g. Brute Force Search), or by 

using a trained approach based on linear classifiers. After calculating the weights mw , mq  

can be obtained as: 

mm wq =                                                                                                                        (2.16) 

and the quality-based score fusion function is achieved as follows: 
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                                                                                                                (2.17) 

where f  is the fused score, M is the number of matchers, mx  is the  match score from 

the mth matcher and mq  is the quality measure of the score mx  and mw  is the weight 

of the score mx . 

 

In another study [68], it has been proposed to use the margin between impostor and 

client score distributions as a quality measure. In other words, the quality is derived 

based on a function of False Acceptance (FA) and False Rejection (FR) Rates, which 

themselves are estimated at the development stage. A commonly used point to examine 

the quality of performance is to calculate the point “threshold” of Equal Error Rate 

(EER), which assumes that the cost of FA and FR are equal. This determines simply how 

confident a score is. The further the score is from the threshold “decision boundary”, the 

more confident it is. For the fusion purpose, a quality-weighted sum rule is used. The 

study has shown that fusion using margin information is superior to fusion without the 

margin information.  

The use of confidence measures for multimodal (face and voice) identity verification has 

also been considered in [69]. A discussion on the influence of using the confidence of 

unimodal scores on three different fusion techniques: MLP, SVM and Bayesian classifier 

as density estimators, is carried out in that study. The confidence over a score is 

estimated based on three different methods: Gaussian hypothesis of the score 

distribution; Non Parametric Estimation; and the Model Adequacy.  

In the Gaussian hypothesis, the measure of confidence for a given score x is the distance 

between the probability that the score x is from a client and the probability that the score 

x is from an impostor. This is calculated, under the assumption that all the scores x from 

clients have been generated by the same Gaussian distribution ( )ccN σµ ,,x  and all the 

scores x from impostors have been generated by another Gaussian 

distribution ( )iiN σµ ,,x , as follows: 

( ) ( )iicc NNxm σµσµ ,,x,,x)( −=                                                                               (2.18) 
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where )(xm is the measure of confidence for the score x, ( )σµ ,,xN is the hypothesised 

Gaussian, cµ and cσ are the mean and variance for the client scores and iµ and iσ  are the 

mean and variance for the impostor scores. All these parameters are computed using the 

development scores. 

In Non-Parametric Estimation, the space of the development scores is partitioned into k 

distinct subspaces, where each partition contains the same number of development 

scores. Then, the number of errors that occurred in each partition for the development 

data (FA and FR), divided by the total number of scores in that subspace is computed as 

follows[69]: 

k

kk
km

accesses) of(number 
 FRs) ofnumber (FAs) of(number 

)x(
+=                                                        (2.19) 

 where km )x( is the confidence measure for the kth subspace. This number gives a simple 

confidence on the quality of the development scores in corresponding subspace. 

However, at the test stage, a confidence of a given score x is obtained by finding the 

subspace corresponding to the given score and returning the associated confidence 

measure. 

In the case of Model Adequacy approach, it is proposed to calculate the gradient of a 

simple measure of confidence of the decision of the model given an access with respect 

to each parameter in the model. This is based on the fact that most unimodal verification 

systems are based on some kind of gradient method optimising a given criterion (e.g. in 

speaker verification, GMMs are trained to maximise the likelihood while in face 

verification, MLPs are trained to minimise the mean square error). The average 

amplitude of such gradient leads to an idea of the adequacy of the parameters to explain 

the confidence of the model on the access. This is computed as[69]: 

�
=

=
N

i i

f
N

m
1 0

x)(1
x)(                                                                                                       (2.20) 

where x)(m is a global confidence measure for the current model, i0 is one of the N 

parameters of the model and x)(f is a simple measure of confidence of the model given 

access x. 
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Experimental results have shown that all three fusion methods provide better 

performance than even the best individual modality involved (in this case, voice 

modality). It has been found that SVM leads to slightly better performance compared to 

the other two fusion techniques.  It has also been found that the performance of both 

SVM and MLP has been enhanced further through the use of Model Adequacy as a 

confidence measure. However, the two other confidence methods have not appeared to 

improve the performance of SVM and MLP significantly. On the other hand, none of the 

confidence methods has been able to enhance the performance when the Bayesian 

classifier is used as the fusion technique. 

 

2.4 Summary 
Four possible levels of fusion are used for integrating data from two or more biometric 

systems or sources.   These levels are: the sensor level; the feature level; the matching 

score level; and the decision level. Fusion at the matching score level has been viewed as 

the most prevalent and useful technique for the integration of biometric data. The score 

level fusion in multimodal biometrics can be obtained by two different approaches: fixed 

rules and trained rules. The results of earlier investigations suggest that Multimodal 

biometric recognition is best realised through trained rules.  The investigations have also 

indicated that the accuracy of multimodal biometric system can be further improved by 

incorporating quality in the score level fusion. Such incorporation can be achieved by 

first estimating the quality of the biometric samples and then adaptively weighting the 

individual biometric scores based on the quality values. 

Since the focus of this study is the performance of the fusion methods, the rest of this 

study concentrates on the trained rules only. Based on the earlier investigations, Support 

Vector Machines and Logistic regression have shown better performance among the 

trained rules. The theories of these two techniques plus other various fusion methods are 

discussed in the next chapter. 
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Chapter 3 

Fusion Techniques for Multimodal Biometrics 

3.1 Introduction 
The previous chapter indicated that trained rules should lead to better performance than 

fixed rules. This chapter provides a further description of the trained rules-based fusion 

methods identified in Section 2.3 as the best performers. Since the description of the 

fusion methods considered involves range-normalisation techniques as well as the 

measures used for evaluating identity recognition performance, these are introduced in 

the first part of the chapter as follows. Section 3.2 discusses the most effective and 

widely used score range-normalisation techniques. Section 3.3 describes the commonly 

used measures (those adopted in this study) for evaluating identity recognition 

performance. 

3.2 Range-Normalisation Techniques 
Range-normalisation is also known as score normalisation [11, 23, 70-73]. The term 

range-normalisation is used throughout this thesis to define the task of bringing raw 

scores from different matchers to the same range. On the other hand, the term score 

normalisation is used in this thesis to define the process of enhancing the scores from the 

degraded modalities (see Chapters 6 and 7).  

Range-normalisation is a necessary step in any fusion system, as fusing the scores 

without such normalisation would de-emphasise the contribution of the matcher having a 

lower range of scores. A number of comparative studies in the literature have discussed 

the effects of range-normalisation prior to fusion. For example, it is indicated in [70] that 

range-normalisation is a necessary task because scores from different systems are 

incomparable. Another study [71] states that in the case of using linear fusion techniques 

to integrate the scores of the individual modalities, score incomparability affects the 

system performance.  The study concluded that range-normalisation is a necessary task 

before fusion. The influence of range-normalisation techniques prior to fusion in 

biometric authentication tasks is also explored in detail in [11, 23, 72, 73]. According to 

the literature, there are various well-known range-normalisation techniques (i.e. Min-

Max, Z-score, Tanh, Median-MAD, Double-sigmoid). Min-Max and Z-score (in most 
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cases) have shown to be amongst the most effective and widely used methods for this 

purpose [23, 73].  

3.2.1 Min-Max Normalisation (MM) 
This linear technique maps the raw scores into the range of [0 1]. Min-Max 

normalisation conserves the distribution of scores before and after normalisation (Figure 

3.1(a and b)). This method uses the following equation 

minmax
min
−

−= n
x

                                      (3.1)
                                                                             
where, x is the normalised score, n is the raw score, and max and min functions specify 

the maximum and minimum end-points of the score range respectively and are obtained 

on some development data.  

3.2.2 Z-score Normalisation (ZS) 
Z-score normalisation converts the scores to a distribution with the mean of 0 and 

standard deviation of 1. Like Min-Max normalisation, Z-score normalisation also retains 

the original distribution of the scores (Figure 3.1(a and c)). However, the numerical 

range after Z-score normalisation is not fixed. Z-score normalisation is given as 

 

σ
µ−= n

x
                                   (3.2)                                                                        

Where, n is any raw score, and µ  and σ  are the mean and standard deviation of the 

stream specific scores and are computed on some development data. 
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Figure 3.1: Effects of Min-Max and Z-score on the distributions of original face and 
voice scores. 

 

In Figure 3.1, the subfigure (a) represents the original distributions of face and voice 

scores whilst the other subfigures (b and c) illustrate the effects of applying Min-Max 

and Z-score range normalisation techniques respectively. Comparing Figure 3.1(a) with 

the Figure 3.1(b and c) further illustrates the fact that Min-Max and Z-score 

normalisation techniques retain the original distribution of the scores. Furthermore, the 

subfigures show that Min-Max maps the scores in the range of [0 1]. On the other hand, 

the numerical range after Z-score normalisation is not fixed. 

3.3 Evaluation Criteria for identity recognition 
As said earlier, a biometric recognition system can operate in one of the two modes of 

verification and identification. In the verification mode, the user makes an identity claim. 

In this case the test data is compared only against the reference data (e.g. template, 

statistical model) associated with the claimed identity. The outcome of this is used to 

accept or reject the identity claim.  In identification, the test data is compared with the 

data for all the registered individuals to determine the identity of the user.  The following 
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subsections discuss the evaluation criteria for the verification and identification 

processes. 

3.3.1 Evaluation Criterion for identity verification 
In the task of verification, there are four different decisions that could be taken in 

response to a person claiming an identity. These decisions are [1, 39]: 

• Accept a client 

• Accept an impostor 

• Reject a client 

• Reject an impostor 

Thus, the verification system may make two types of errors: 

• False acceptance (FA): when the system accepts an impostor. 

• False rejection (FR): when the system rejects a client 

The performance of the system can be measured in terms of these two different errors as 

follows: 

FAR=
accessesimpostor  ofnumber 

FAs ofnumber 
                                                                             (3.3)                                                              

FRR=
accessesclient  ofnumber 

FRs ofnumber 
                                                                                   (3.4)                                                               

In practice, a perfect identity verification (FAR=0 and FRR=0) is unachievable. 

However, changing the decision threshold can reduce any of the two (FAR, FRR) to an 

arbitrary small value with the drawback of increasing the other one. The trade-off 

between FAR and FRR can be graphically represented by a Receiver Operating 

Characteristics (ROC) plot or a Detection Error Trade-off (DET) plot which is 

considered in this thesis [74]. This is because the DET plot is on a log scale which can 

enhance the visual appearance of the curves, whereas the ROC plot is on a linear scale. 

In a DET plot, the horizontal axis shows the normal deviate of the False Acceptance Rate 

(in%). The vertical axis of the DET plot represents normal deviate of the False Rejection 

Rate (in%). In the DET plot, the curves move away from the lower left when 

performance is low. Each point on a DET curve corresponds with a particular decision 

threshold. 
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In order to quantify the system performance into a single number, the verification 

performance is obtained in terms of Equal Error Rates (EER). EER is obtained when the 

FAR and FRR are the same at some decision threshold. Another performance measure 

can be obtained once EER is calculated. This is the so-called Relative Improvement (RI). 

The Relative Improvement is a measure of performance-enhancement achieved through 

fusion techniques. In other words, the measure determines the extent to which a fusion 

approach increases or decreases the biometric verification error rate compared with the 

best achievable performance without fusion. Mathematically, RI is expressed as [38]: 

( )
( )M

fM

EER,.....,EER,EERmin

EEREER,.....,EER,EERmin
RI

21

21 −
=  (3.5) 

where MEER,.....EER,EER 21  are the equal error rates (EERs) resulting from M 

individual unimodal biometric verification schemes, and fEER  is the EER obtained 

through the fusion of these. With reference to equation (3.5) it is evident that RI can have 

a maximum value of one, indicating the fusion scheme adopted has resulted in a zero 

EER.  On the other hand, a zero RI reflects the fact that there has been no improvement 

through the fusion used over the best individual biometric scheme. Finally, when the 

fusion adopted leads to the degradation of the verification accuracy, this is reflected by a 

negative RI. Therefore, for a fusion scheme to be beneficial, RI should be positive, and 

the closer it is to 1, the better is the effectiveness of fusion.   

3.3.2 Evaluation Criterion for identification 
Identification can be subdivided into two further categories of Closed-Set and Open-Set 

Identification problems. The Closed-Set Identification is to identify a person from a 

group of known (registered) people. On the other hand, in the Open-Set Identification 

problem, the person to be identified may or may not be one of the known (registered) 

people. Among these two categories, the Thesis focuses only on the Open-Set 

Identification problem. 

Open-Set Identification consists of two stages of identification and verification. The 

performance of the verification process is evaluated as discussed in Subsection 3.3.1. In 

this case, the verification performance is expressed in terms of Open-Set Identification 
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Equal Error Rates (OSI-EER). On the other hand, the identification performance is 

expressed in terms of Identification Error Rate (IER) which is evaluated as follows: 

IER =
accessesclient  ofnumber 

clients classifiedy incorrectl ofnumber 
    * 100       %                                      (3.6) 

3.4 Effective fusion techniques 
This section discusses the most effective trained rules-based fusion methods as identified 

in Section 2.3. These are Weighted Average, Fisher Linear Discriminant (FLD), 

Quadratic Discriminant Analysis (QDA), Logistic Regression (LR) and Support Vector 

Machines (SVM). 

3.4.1 Weighted Average Fusion 

In weighted average schemes, the fused score for each class (e.g. client or impostor) is 

computed as a weighted combination of the scores obtained from M matching streams as 

follows:  
 

m

M

m
mxwf �

=
=

1
                                                  (3.7)      

where f  is the fused score, mx  is the normalised match score from the mth matcher 

and mw  is the corresponding weight (obtained on some development data) in the 

interval of 0 to 1, with the condition         

1
1

=�
=

M

m
mw                                                         (3.8)

  

As indicated earlier, there are three sub-classes of this scheme, which differ primarily in 

the method used for the estimation of weight values. These are described below. 

3.4.1.1 Brute Force Search (BFS) 

This fusion technique can be used in the case of having two matcher types only. The 

approach is based on using the following equation[75]. 

)1(21 wxwxf −+=                                                                                         (3.9) 

where f  is the fused score, mx  is the normalised score of the  mth matcher, m=1 or 2  

and w is a weighting (combination) factor in the range 0 to 1. The weight (w) is 
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calculated heuristically, by exhaustive search in order to minimise the Equal Error Rate 

on the given development data.  

 

3.4.1.2 Matcher Weighting using False Acceptance Rate and False Rejection 
Rate (MW – FAR/FRR) 
 

This fusion technique can be used again in the case of having two matcher types only. In 

this technique the performance of the individual matchers determines the weights so that 

smaller error rates result in larger weights. The performance of the system is measured 

by False Acceptance Rate (FAR) and False Rejection Rate (FRR). These two types of 

errors are computed at different thresholds. The threshold that minimises the absolute 

difference between FAR and FRR on the development set is then taken into 

consideration. The weights for the respective matchers are computed as follows [76]. 
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+−=                       (3.10)                                                           

 

and 

( )
( )2211

22
2 2

1
FRRFARFRRFAR

FRRFAR
w

+++−
+−=                                                                                             (3.11) 

 

where 11, FRRFAR and 1w are the false acceptance rate, false rejection rate and the weight 

for one matcher  and 22 , FRRFAR  are the false acceptance rate, false rejection rate for 

the other matcher with the weight 2w . Note that the weight (obtained on some 

development data) is in the interval of 0 and 1,  with the constraint  121 =+ ww  

The fused score using different matchers is given as 

2211 xwxwf +=                                                                                                      (3.12)   

                                                                                                             

where, mx is the normalised score of matcher m and f  is the fused score.  
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3.4.1.3 Matcher Weighting based on Equal Error Rate (MW - EER) 
The matcher weights in this case depend on the Equal Error Rates (EER) of the intended 

matchers for fusion. These EERs are computed using the given development data. EER 

of matcher m is represented as mE , m=1,2,…,M and the weight mw  associated 

with matcher m is computed as [12]. 
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1

1
                                     (3.13)                                                                                  

Note that 10 ≤≤ mw , with the constraint given in (3.8). It is apparent that the weights 

are inversely proportional to the corresponding errors in the individual matchers. The 

weights for less accurate matchers are lower than those of more accurate matchers.  The 

fused score is calculated in the same way as in equation (3.7).   

                                                                                                        

3.4.2 Fisher Linear Discriminant (FLD) 
FLD is a simple linear projection of the input vector x onto a uni-dimensional space so 

that a linear boundary between classes can be satisfactorily obtained. The Equation for 

the linear boundary is given as [38, 39, 77-79] 

bh T += xwx)(                                                               (3.14) 

where, w is a transformation vector obtained on the development data using a Fisher 

criterion (described in the next section), T is the transpose operation, and b is a threshold 

determined on the development data to give the minimum error of classification in 

respective classes. The rule for class allocation of any data vector is given by 

{ { 0if1
2

>
<+∈ bTC

C xwx  (3.15) 

where, 
21 , CC  are the client and impostor classes respectively. 
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3.4.2.1. Fisher Linear Discriminant for the Data from Two Classes 
Given a set of N1 points for class 

1C  and N2 points for class 
2C , with the statistics 

21],,[ andiii ∈S� , where iS  and i�  are the scatter (covariance) matrix  and mean for 

the particular class i obtained on the development data, the scatter matrix is given as [38, 

39, 77-79] 

( )( )Tik
Ck

iki
i

�x�xS −−= �
∈

                                                                                     (3.16) 

where, T indicates the transpose operation. 

 

The overall within class scatter matrix WS  is given by 

�
=

=
2

1i
iW SS                                                                                                               (3.17) 

The transformation vector w is obtained using the equation 

( )12
1

��Sw −= −
W                                                                                                      (3.18) 

 

3.4.3 Quadratic Discriminant Analysis (QDA) 
This technique is similar to FLD but is based on forming a boundary between two classes 

using a quadratic equation given as [80] 

cBh TT ++= xAxxx)(                                                                 (3.19)
                                                

For training data 1 and 2 from two different classes, which are distributed as  

M 21],,[ andiii ∈S� , the transformation parameters A and B can be obtained on the 

development data as: 

( )1
2

1
12

1 −− −−= SSA
                                                                                                  (3.20)

                                                

2
1

21
1

1   �� SS −− −=B                                                                  (3.21) 
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c is a constant that depends on the mean vectors and covariance matrices and is 

computed as follows: 

2

1ln2
1-
221

1-
11 S

S
�S��S� +−= TTc                                                                                     (3.22) 

 

3.4.4 Logistic Regression (LR) 
Another simple classification method can be used in the case of a two-class problem 

(Clients / Impostors) is that based on the principles of logistic regression [65, 81-83]. As 

indicated in the previous chapter the Logistic Regression method classifies the data based 

on using two functions: logistic regression function (3.23) and logit transformation (3.24) 

as follows: 

( )
( )

( )x

x

x g

g

e
e

YE
+

=
1

|                                                                                                 (3.23) 

where, ( )x|YE  is the conditional probability for the binary output variable Y and where 

the M-dimensional input vector ( )Mxxxx ,....,, 21=  exists and )(xg is defined as: 

( ) MMwwwg xxx ⋅++⋅+= ....110                                                                                                            (3.24)                                                                      

where mw is the weight for the mth  modality. Due to the fact that each mw with 

0≠i multiplies one of the M modalities, it is evaluated as the level of the importance of 

that modality in the fusion process. A high mw  shows an important modality whilst a low 

mw  shows a modality not contributing a great deal. 
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Parameters in the above equation ( )Mwww ,...,, 10 can be calculated with the maximum 

likelihood approach with an iterative optimisation scheme on some development data as 

[38]:  

);(
1

wpLH i

n

i
x

=
Π=                                                                                                         (3.25) 

where LH denotes the maximum likelihood function, p(x i ; w) is a density function with 

one parameter w for each modality, and a corresponding set of n sample values x i . In 

this equation, the maximum likelihood approach associates with each training set a value 

of w which maximise LH. 

When the alternate parameters mw  have been worked out on the development data, an 

unknown test pattern is classified by evaluating ( )x|YE . The outcome is thus compared 

with optimal threshold calculated on the development data. 

 

 

3.4.5 Support Vector Machines (SVM) 
 
SVM is another effective classification technique which can be used in the case of a two-

class problem (Clients/ Impostors). It is a new classification technique in the field of 

Statistical Learning Theory (SLT) [84-89]. SVM is based on the principle of Structural 

Risk Minimisation (SRM) which aims to find the optimal separating hyper-plane that 

should classify not only the development data, but also unknown test data. Inversely 

classical learning approaches are designed to minimise the so-called empirical risk (i.e. 

error on the development set) based on the Empirical Risk Minimisation (ERM) 

principle. 

3.4.5.1 Linear SVM for linearly separable data  
In this case, a linear SVM is trained on linearly separable data. The main aim in this case 

is to find the optimal hyper-plane which exactly separates the two classes from each 

other. This optimal separating hyper-plane, as indicated earlier, should classify not only 
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the development data, but also any unknown data in each class. The said hyper-plane is 

mathematically presented as: 

0w =+⋅ bT x                                                                                                                                                   (3.26) 

where w is a weight (coefficient) vector, T is the transpose operation, x is a training 

vector consisting of the scores for different modalities and b is a bias term estimated on 

the development set. Using the equation (3.26) leads to a straight line decision boundary 

(this refers to hyper-plane) that classifies the scores correctly. In this case the error is 

zero. However, there is actually an infinite number of hyper-planes that could partition 

the data into two classes (-1 or +1), see Figure 3.2. According to SRM principle, the line 

that is located half way between the two classes is the intuitive choice for the optimal 

hyper-plane. This is shown in Figure 3.3. The dashed lines in Figure 3.2 represent some 

of the possible hyper-planes that can separate the two class data while the solid line in 

Figure 3.3 is the optimal separating hyper-plane for that data.   

 

 
Figure 3.2: Possible separating hyper-planes 
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Figure 3.3: Optimal separating hyper-pane. 

 

Assuming that d1 and d2 are the shortest distance from the separating hyper-plane to the 

closest points of each class; d1+d2 defines the margin of the optimal separating hyper-

plane.  

This margin is mathematically expressed as follows: 

w

w bi
T +x

                                                                                                                    (3.27) 

For the linearly separable case, the maximal margin can be found by minimising wwT  

with the constraints [84], 

( ) i  ,1w ∀≥+⋅ by T
ii x                                                                                                        (3.28)                                                                    

where iy  is 1 if x i belongs to one set (e.g. Clients) and -1 if x i belongs to the other set 

(Impostors).  

This conditional optimisation is accomplished by Lagrange’s method as follows: 

( ) ( )( )� −+⋅−=
i

T
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T
i byaabL 1www

2
1

,w, x                                                                                   (3.29) 

where ia  are the solutions of the Lagrange’s method L.  
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Differentiation with respect to w and b leads to [84, 85]: 

� =
i

ii ya 0                                                                                                                                                            (3.30) 

and 

�=
i

iii ya xw                                                                                                                                                      (3.31) 

Substituting (3.30) and (3.31) into (3.29) leads to: 

� ��−=
i i j

T
ijijiii yyaaaabL j2

1
),(w, xx                                                                                            (3.32) 

This optimisation is reduced to a quadratic programming problem as follows: 

� ��−
i i j

T
ijijii yyaaa j2

1
 imisemax xx                                                                        (3.33) 

subject to  

� =
i

ii ya 0                                                                                                                     (3.34) 

and 

0≥ia                                                                                                                            (3.35) 

 

In the resulting solution, most ia  are equal to zero, which refer to the development data 

that are not on the margin. The training examples with non-zero ia  are called support 

vectors, which are the input vectors that lie on the edge of the margin (Figure 3.3). 

Introducing new data outside of the margin will not change the hyper-plane as long as 

the new data are not on the margin or misclassified. Therefore, the classifier must 

remember those vectors which define the hyper-plane.  

3.4.5.2 Linear SVM for non-linearly separable data 
In order to enable linear SVM to classify non-linearly separable data, the formulation in 

equation (3.28) must be adjusted. A cost for violating the separation constraints (3.28) 

must be introduced. To achieve this, slack variables are introduced into the inequalities 

relaxing them so that some points are allowed to lie within the margin or even be 

misclassified.  

( ) i  ,- 1w ∀≥+⋅ i
T

ii by ξx                                                                                                                             (3.36) 
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For a point to be misclassified, the corresponding iξ must exceed unity, so �i iξ is an 

upper bound for the number of classification errors. Hence a logical way to assign an 

extra cost for errors is to �+
i

i
T C ξw   wminimise                                                                                                              

where C is a parameter to be chosen by the user, a larger C corresponding to assigning a 

higher penalty to errors. Note that the generalised optimal separating hyper-plane is 

obtained by minimising �+
i

i
T C ξww  with the constraints of equation (3.36). This is still 

a quadratic programming problem. 

 

3.4.5.3 Non-linear SVM 
In this case, the data is mapped from the input space into a higher dimensional space by a 

non-linear transformation. The transformation can be performed through the use of 

kernel functions. Such functions can have different forms [85-87]. The fundamental 

concept of kernel functions is to deform the vector space itself to a higher dimensional 

space. This is as shown in Figure 3.4. 

 

 

Figure 3.4: Transformation to higher dimension space(Asano(2004)[84]). 

 

Figure 3.4(a) shows an example of the linearly non-separable data. In Figure 3.4, the 

two-dimensional space (Figure 3.4(a)) is transformed to the three-dimensional one 

(Figure 3.4(b)). This transformation is applied in order to linearly separate the “black” 
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vectors from the “white” vectors. Without such an approach, the said vectors can not be 

linearly separated.  

In this case, the kernel function is defined as:  

( ) )()(, '' xxxx ΦΦ= Tk                                                                                                                                (3.37) 

where Φ is a transformation to a higher dimensional space.  

Equation (3.37) indicates that the kernel function can be represented as the distance 

between x and 'x  measured in the higher dimensional space transformed by Φ . In this 

case, the boundary (in the transformed space) is obtained as: 

0)(w =+Φ⋅ bT x                                                                                                                                             (3.38) 

and substituting (3.31) into (3.38) leads to: 

�� =+=+ΦΦ
i

iii
i

T
iii bkyabya 0),()()( xxxx                                                              (3.39) 

Consequently, the optimisation function of equation (3.33) in the transformed space is 

obtained by substituting j
T
i xx  with ),( jik xx in that equation. Thus, the whole calculation 

can be accomplished based on ),( jik xx only. This implies that there is no need to know 

what Φ  or the transformed space actually is.  

In this work, linear, radial basis function, and polynomial kernel functions with a degree 

of 2 (quadratic) are used. These are given by the following equations 

( ) '',: xxxx TkLinear =                                                                           (3.40) 

                                                               

( ) ( )2'' 1,: += xxxx TkQuadratic                                                                (3.41) 

 

( ) 2

2' ||||

',: dekRBF

xx

xx

−−

=                                                                                      (3.42)                                     

where d is a constant that defines the kernel width. 

3.5 Summary 
Based on the previous studies regarding the range-normalisation techniques, it is 

concluded that bringing raw scores from different modalities to the same range is a 

necessary step in any fusion system. The chapter has given a brief description about two 
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of the most effective and widely used range-normalisation techniques.  These are Min-

Max and Z-score range-normalisation techniques. Then, the evaluation criteria for 

identity recognition systems in both cases verification and identification have been 

discussed. After that, the theories of the currently most effective fusion approaches have 

been presented. The techniques covered have ranged from weighting schemes that assign 

weights to the information streams according to their information content, to support 

vector machines which use the principle of obtaining the best possible boundary for 

classification according to the development data. The next chapter discusses the results of 

applying the fusion methods considered in two different cases. The first of these 

examines the usefulness of fusion in a unimodal biometrics scenario. The second case, on 

the other hand, involves fusing scores for two different types of biometrics of face and 

voice. 
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Chapter 4 

Score-level Fusion in Biometric Verification 
 

4.1 Introduction 
In the previous chapter, the effective multimodal biometrics fusion techniques were 

discussed. This chapter details the investigations into the effectiveness of various fusion 

approaches in both unimodal and multimodal biometrics. In particular, two types of 

biometrics (i.e. face and voice) are considered in the investigations. The fusion process is 

performed at the score level.  The scores for face and voice biometrics are based on the 

use of different features extracted from the XM2VTS database[90]. These scores are 

provided by IDIAP Research Institute [91]. The following section discusses the 

XM2VTS and gives a brief description of the classifiers used in computing the voice and 

face verification scores. Section 4.3 details the fusion experiments and provides an 

analysis of the results. 

4.2 Speech and Face data 
The XM2VTS database, used for the purpose of this study, is a bimodal database 

containing synchronised image and speech data from two hundred and ninety five 

subjects, recorded during four sessions at one month intervals [90]. In each session, two 

recordings were made, each consisting of a speech shot and a head shot. The speech shot 

consisted of frontal face and speech recordings of each subject during the recital of a 

sentence.  

The subjects in the database are divided into three sets. These are a set of two hundred 

clients, a set of twenty five development impostors and a set of seventy test impostors. 

Two different methods of partitioning the database are in existence. They are called 

Lausanne Protocols I and II (denoted as LP1 and LP2). As described below, the 

difference between these two protocols is due to the number of bimodal samples per 

client used for training and development. In this study, only the scores obtained through 

LP1 are considered. 

In total, there are eight bimodal biometric samples (utterance and face image) per client 

in the XM2VTS database. The samples are used in the following way. Three are used in 
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the training phase (i.e. for extracting reference features) in LP1 (and four in LP2). Three 

samples are for development in LP1 (and only two in LP2). Finally, both LP1 and LP2 

involve two samples for testing. Table 4.1 summarises the structures of the two protocols 

(Norman and Sami (2005) [90]). It should be noted that the number of accesses given are 

per modality. 

 

Lausanne Protocols Data sets 
LP1 LP2 

Training samples (bimodal) 
per client  

3 4 

Development client accesses 600 (i.e. 3 × 200) 400 (i.e. 2 × 200) 
Development impostor 
accesses 

40,000 (i.e. 25 × 8 × 200) 

Test client accesses 400 (i.e. 2 ×200) 
Test impostor accesses 112,000 (i.e. 70 × 8 × 200) 

Table 4.1: Lausanne Protocols for the XM2VTS database.   
 

4.2.1 Classifiers and features 
The unimodal verification scores with this database are based on the use of GMM 

(Gaussian Mixture Models) for voice and GMM as well as MLPs (Multi-Layer 

Perceptrons) for face.  

Three different types of features are used for face biometrics. These are normalised Face 

image concatenated with its RBG Histogram (FH) and two types of Discrete Cosine 

Transform (DCT): DCTs and DCTb. s in DCTs indicates the use of small images with a 

size of 40×32 (rows×columns) pixels, whilst b in DCTb indicates the use of bigger 

images with size of 80×64 pixels. 

For voice verification, Linear Filter-bank Cepstral Coefficients (LFCC), Phase Auto-

Correlation (PAC), and Spectral Subband Centriod (SSC) are used as the three different 

voice feature types. In total, 5 sets of scores are obtained for face verification and three 

sets for voice verification [90]. The feature types and classifiers used to extract these are 

summarised in Table 4.2. 

Having different features/classifiers for face and voice modalities leads to critical 

questions. Such questions are “Are these features complementary to each other at the 

unimodal level?” and “Would combining the scores for features obtained from the same 
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sensing modality outperform the best individual feature involved?”.  For the purpose of 

addressing such questions, investigations into the effectiveness of various fusion 

approaches (e.g. Weighted Average, FLD, QDA, LR and SVM) in unimodal biometrics 

(face or voice) are presented in this chapter.  

In the present study, the scores in the development access sets are used to compute the 

appropriate parameters for various fusion methods. For this purpose, the client and 

impostor scores from the chosen features are pooled and then range-normalised 

according to the chosen range-normalisation scheme. The parameters obtained in the 

development stage are then used in the test phase to fuse the normalised test scores 

according to the scheme deployed. The verification performance is then obtained on the 

fused scores in terms of equal error rates (EER).  

4.3 Experimental investigations and discussions  
This section discusses the results of fusing face and voice scores obtained using the 

feature and classifier types described above. Nine fusion schemes are used in this study. 

These are BFS, MW-(FAR/FRR), MW-EER, FLD, QDA, LR, Linear SVM, Poly SVM, 

and RBF SVM. Details of these fusion schemes can be found in Section 3.4. Each of 

these is used once with the MM range-normalisation method, and again with ZS range-

normalisation. Table 4.2 presents the baseline EERs for the eight combinations of 

features and classifiers in unimodal verification. The Table shows that FH gives the best 

EER compared to the other face features, whilst LFCC leads to the lowest EER 

compared to the other speech features. 

 
Table 4.2: Baseline EERs computed using the unimodal verification scores in various 
cases. The best performance in each of the face and voice modalities is shown in italics. 

4.3.1 Score fusion in unimodal biometrics based on multiple matching 
algorithms 
This section presents investigations into the performance of the fusion techniques for 

combining the score information obtained from the same sensing modality. Since the 
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scores from two different features are fused at each time, there are thirteen different 

results for each fusion method with each of the two range-normalisation methods. Ten of 

them are formed by using the scores for face features and the other three are based on the 

use of scores for voice features.  

4.3.1.1 Score-level fusion results based on MM range-normalisation 
The first set of experiments with fusion methods is based on the use of the MM range-

normalisation method. Tables 4.3 and 4.4 present the results in terms of EERs for all the 

possible feature/classifier combinations for face and voice features respectively.  

 
 

Table 4.3: Unimodal face verification results in terms of EER (%), based on score-level 
fusion with MM range-normalisation.   
 

Table 4.4: Unimodal voice verification results in terms of EER (%), based on score-level 
fusion with MM range-normalisation.   
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1 [FH , DCTs-GMM] 1.44 1.29 1.75 1.87 1.67 3.74 3.91 3.92 3.83 
2 [FH , DCTb-GMM] 1.25 1.43 1.43 1.94 1.52 1.07 2.12 2.36 2.41 
3 [FH , DCTs-MLP] 1.63 1.50 1.72 1.63 1.63 1.58 1.50 1.65 1.72 
4 [FH , DCTb-MLP] 1.81 1.77 2.00 1.94 1.83 1.80 1.64 2.15 2.19 
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6 [DCTs-GMM , DCTs-MLP] 2.67 2.50 2.59 3.62 3.27 2.98 4.65 4.61 4.71 
7 [DCTs-GMM , DCTb-MLP] 4.91 4.25 4.02 7.57 4.35 6.01 4.70 4.68 4.43 
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10 [DCTs-MLP , DCTb-MLP] 2.79 3.25 2.98 2.87 3.23 3.11 3.02 2.78 2.69 
Average EER 2.08 2.42 2.21 2.96 2.44 2.75 3.07 3.13 3.13 
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1 [LFCC , PAC] 1.06 1.78 1.00 3.81 1.19 2.89 2.27 2.30 2.49 
2 [LFCC , SSC] 1.00 1.23 0.96 2.96 1.22 2.61 2.74 2.76 2.91 
3 [PAC , SSC] 3.78 4.53 4.25 4.32 4.72 4.32 4.48 4.63 4.51 

Average EER 1.95 2.51 2.07 3.70 2.38 3.27 3.16 3.23 3.30 



 50 

The above results clearly show that achieving improvements through the unimodal score-

level fusion not only depends on the fusion method adopted but also on the choice of 

face/voice score combination. Each combination, as stated earlier, differs from the other 

in terms of feature and/ or classifier for the chosen modality.  

Comparing the results in Tables 4.3 and 4.4 with the baseline EERs for face and voice 

scores in Table 4.2, it is observed that the unimodal score-level fusion based on MM 

range-normalisation (in most cases) leads to the degradation of the verification accuracy. 

In some cases though, this type of fusion results in EERs which are just slightly better 

than the EER offered by the best single feature involved.  

Tables 4.5 and 4.6, on the other hand, present the relative effectiveness of various 

methods (with MM range-normalisation), for fusing the scores obtained with face and 

voice features at the unimodal level, through the use of RI. As stated earlier (Section 

3.3.1) that this type of measure can have a maximum value of one, indicating the fusion 

scheme adopted has resulted in a zero EER.  On the other hand, a zero RI reflects the fact 

that there has been no improvement through the fusion used over the best individual 

feature involved. Finally, when the fusion adopted leads to the degradation of the 

verification accuracy, this is reflected as a negative RI. Therefore, for a fusion scheme to 

be beneficial, RI should be positive, and the closer it is to 1, the better is the 

effectiveness of fusion.  Unfortunately, an examination of the results (e.g. RI) in tables 

4.5 and 4.6 shows that, through the adopted fusion method, most of the RI values are 

negative. Such behaviour indicates that (in most cases) fusing the scores obtained from 

the same sensing modality (with MM range-normalisation) is not capable of enhancing 

the verification accuracy.  

It can be seen from the average RI that a positive RI is obtained only by BFS (i.e. 

RI=0.10) in the case of unimodal fusion for face features (Table 4.5), and BFS (i.e. 

RI=0.09) and MW-EER (i.e. RI=0.08) in the case of unimodal fusion for voice features 

(Table 4.6). However, these positive RI values are very close to zero which indicates that 

there has been inconsiderable improvement.  
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Table 4.5: Relative improvements (RI) for the unimodal face features using various 
fusion schemes based on MM range-normalisation.  
 

Table 4.6: Relative improvements (RI) for the unimodal voice features using various 
fusion schemes based on MM range-normalisation.  
 

4.3.1.2 Score-level fusion results based on ZS range-normalisation 
In this set of experiments, the considered fusion methods are applied based on the use of 

the ZS range-normalisation technique. Tables 4.7 and 4.8 present the results in terms of 

EERs again for all the possible feature/classifier combinations for face and voice features 

respectively. Their corresponding relative improvements are presented in tables 4.9 and 

4.10 respectively. 
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2 [LFCC , SSC] 0.07 -0.14 0.11 -1.74 -0.13 -1.42 -1.54 -1.55 -1.69 
3 [PAC , SSC] 0.17 0.01 0.07 0.06 -0.03 0.06 0.02 -0.01 0.02 

Average EER 0.09 -0.26 0.08 -1.40 -0.09 -1.01 -0.87 -0.90 -0.99 
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Table 4.7: Unimodal face verification results in terms of EER (%), based on score-level 
fusion with ZS range-normalisation.   
 

Table 4.8: Unimodal voice verification results in terms of EER (%), based on score-level 
fusion with ZS range-normalisation.   
 

Table 4.9: Relative improvements (RI) for the unimodal face features using various 
fusion schemes based on ZS range-normalisation.  
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1 [FH , DCTs-GMM] 0.20 0.10 -0.08 -0.42 0.11 0.09 0.01 -0.02 -0.09 
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Table 4.10: Relative improvements (RI) for the unimodal voice features using various 
fusion schemes based on ZS range-normalisation.  
 

By comparing the results (e.g. average EER and average RI) for the MM range-

normalisation method (Tables 4.3-4.6) with the corresponding results for ZS range-

normalisation (Tables 4.7-4.10) it is evident that better performance can be obtained with 

the latter. However, it is observed (Tables 4.9 and 4.10) that, the average RIs obtained 

(using ZS) are still either negative or very small positive values with all fusion methods. 

For example, the most significant RI for the unimodal face verification is obtained with 

BFS (i.e. RI=0.16). This level of performance is closely followed by that of the MW-

EER fusion method. For the unimodal voice verification, on the other hand, the best 

result of RI=0.08 is obtained with MW-EER. It can be seen from these results that fusing 

scores coming from the same modality cannot lead to considerably lower EERs, even 

through the use of ZS range-normalisation, compared with the best results without fusion. 

However, it is believed that with the considered methods of score-level fusion, more 

benefit can be achieved from the complementary information of the face and voice 

features at the multimodal level.  

4.3.2 Multimodal fusion 
This section discusses the results of fusing face and voice scores obtained using the 

feature and classifier types described in Section 4.2.1. Since the scores from two 

different modalities are fused each time, there are fifteen different results for each fusion 

method with each of the two range-normalisation methods.  

Tables 4.11 and 4.13 present the results for all the fifteen feature/classifier combinations 

based on the MM and ZS normalisation techniques respectively. The relative 

improvements for various fusion methods (with MM and ZS normalisation techniques) 

are presented in tables 4.12 and 4.14 respectively.  
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Average EER 0.07 -0.21 0.08 -0.17 0.05 0.01 0.03 0.02 0.06 
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Table 4.11: Bimodal verification results in terms of EER (%), based on score-level 
fusion with MM normalisation.   
 

Table 4.12: Relative improvements (RI) for various fusion schemes based on MM range-
normalisation. 
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14 PAC 2.63 3.77 4.11 5.18 3.12 2.43 2.36 2.29 2.34 
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SSC 1.92 3.92 3.65 5.27 2.62 1.85 2.27 2.49 2.40 
Average EER 1.08 1.49 1.49 3.04 2.21 1.68 1.92 1.91 1.96 
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 55 

Table 4.13: Bimodal verification results in terms of EER (%), based on score-level 
fusion with ZS range-normalisation. 
 

Table 4.14: Relative improvements (RI) for various fusion schemes based on ZS range-
normalisation.  
 

The above results are in agreement with the earlier observation that achieving 

improvements through the score-level fusion not only depends on the fusion method 

adopted but also on the choice of face-voice score combination. Each combination, as 
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stated earlier, differs from the other in terms of feature and/ or classifier for one modality 

or both modalities.  

By comparing the results (e.g. average EER and average RI) for the MM range-

normalisation method (Tables 4.11 and 4.12) with the corresponding results for ZS 

range-normalisation (Tables 4.13 and 4.14) it is evident that considerably better 

performance can be obtained with the latter. Since the focus of this study is the 

performance of the fusion methods, the discussions presented below, concentrate on the 

experimental results obtained with the ZS method only. 

It can be seen from the average EERs in Table 4.13 that the worst fusion technique in 

this experiment setup (using ZS) is FLD with an average EER of 3.54%. QDA shows 

reasonable performance as compared to FLD with an average EER of 1.65%. However, 

it is observed (Table 4.14) that, with this fusion approach, negative RI’s are obtained in a 

number of cases. The remaining seven fusion methods (i.e. BFS, MW-(FAR/FRR), MW-

EER, LR, Linear SVM, Poly SVM, and RBF SVM) appear as the best performers with 

positive RI’s in all cases. In other words, with these fusion methods, the bimodal 

verification results consistently outperform those for the best single modalities. Based on 

the average RI’s given in Table 4.14 it can be said that, although LR appear as the best 

method, comparable performance is offered by the other six fusion approaches. 

Observing the RI values in Table 4.14 for the top seven fusion methods, it is noted that 

the best results are obtained when DCTs is used as the face feature. However, Table 4.14 

also confirms the earlier suggestion that, in general, the effectiveness of each fusion 

method varies with the choice of feature and classifier used for each modality. 

Another important outcome of the experimental investigations can be observed by 

considering the results in Section 4.3.2 together with those in Section 4.3.1. Based on 

these results, it is clearly seen that fusing the scores obtained from the same sensing 

modality may not necessarily exceed the verification accuracy offered by the best single 

feature involved. The results in these two sections indicate that higher accuracy is the 

basic advantage of multimodal biometrics over unimodal biometrics. The reason for such 

findings is that separate information from different modalities is used to provide 

complementary evidence about the identity of the users. A direct comparison of the 
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average RIs, obtained using the fusion methods (with ZS), for the unimodal and 

multimodal verification is given in Figure 4.1. 

 

Figure 4.1: Comparison of RIs for the unimodal and multimodal verification 
experiments based on ZS range-normalisation. 
 

Figure 4.1 clearly shows that, in most cases, combining the score information in the 

unimodal biometrics (face/ voice) provides comparable performance. However, it is 

apparent from Figure 4.1 that (in most cases) multimodal biometrics is exhibiting more 

effectiveness than the unimodal approach. This confirms the earlier suggestion that more 

benefit can be achieved from the complementary information of the face and voice 

features for biometric recognition. 

Figure 4.2 presents a direct comparison of the effectiveness of multimodal biometrics 

with those of the individual modalities involved (face and voice) as DET (Detection 

Error Trade-off) plots. The fusion approach in this case is that of LR, the face and voice 

features are based on DCTb and LFCC respectively, and the classifier type is GMM. 

These plots further confirm the advantage in terms of improving the accuracy offered by 

biometric fusion. It is noted that in this case, the best EER offered by a single modality 

(voice) is about 1% whereas the EER obtained through the fusion process is around 

0.4%. 
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Figure 4.2: Relative performance of fused biometrics (based on LR) and individual 
modalities (face and voice). 
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4.4 Summary  
The chapter has presented investigations into the performance of the fusion techniques 

for combining the score information in both unimodal and multimodal biometrics 

(speaker and face verification). The individual modality scores are obtained using the 

XM2VTS database. The scores are based on eight baseline systems. Five of the eight 

baseline systems involve face features and the other three are for speech features. In each 

experiment, the scores to be fused are subjected to the range-equalisation process prior to 

fusion. This is based on MM or ZS range-normalisation techniques. 

Based on the experimental results presented in this chapter, it has been concluded that 

higher accuracy is the basic advantage of multimodal biometrics over unimodal 

biometrics. The reason of such findings is that separate information from different 

modalities is used to provide complementary evidence about the identity of the users. It 

is also concluded that, ZS range-normalisation exhibits more effectiveness than MM 

range-normalisation. With ZS range-normalisation, the fusion process (in most cases) 

improves the performance beyond that obtainable with the better of the two individual 

modalities involved. In particular, the seven top fusion methods considered in the 

multimodal scenario are found to provide consistent improvement regardless of the 

choice of face-voice score combination. Based on the results it is noted that the 

usefulness of each fusion method varies with the choice of feature and classifier used for 

each modality. Next chapter discusses the unpredicted variations problem in the evidence 

captured in the scores. It proposes a technique to reduce the effects of such variations in 

multimodal fusion based on estimating the quality aspect of the test scores.  
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Chapter 5 

Multimodal Authentication using Qualitative Support Vector 
Machines 

5.1 Introduction 
Fusion techniques can be subdivided into adaptive and non-adaptive ones. Non-adaptive 

fusion techniques are those where all the fusion parameters are found using the 

development set, as seen in the previous chapter. With adaptive fusion techniques, all the 

parameters, or some of them, are found based on the test set. From the definition of the 

non-adaptive fusion technique, it can be seen that the drawback of this technique is the 

possible mismatch between the relative variation of the biometric modalities involved in 

the development and test data respectively. For example, if one modality (e.g. voice) 

leads to good performance in the development stage, compared to the other modality 

(e.g. face), but does not retain the same relative performance at the test stage, this can 

adversely affect the outcome of multimodal biometrics. To tackle this problem, it would 

be logical to consider the relative levels of contamination in different biometric data not 

only in the development phase, but also at the test stage.  

This chapter presents an adaptive approach to reduce the effects of such relative 

degradation in multimodal fusion. The proposed approach is based on adjusting the 

weights for each of the two modalities according to their relative quality. This is 

performed by estimating the relative quality aspects of the test scores and then passing 

them on into the Support Vector Machine either as features or weights. The use of SVM 

is based on earlier investigations (Chapter 4) and other earlier studies which report it as 

one of the most effective methods for multimodal biometric fusion [1, 87]. Since the 

fusion process is based on the learning classifier of the Support Vector Machine, the 

technique is termed Support Vector Machine with Relative Quality Measurement (SVM-

RQM). The experimental investigation is conducted using the scores for face and speech 

modalities. These scores are based on the use of different features extracted from the 

XM2VTS database. The rest of the Chapter is organised as follows. Section 5.2 provides 

details of the proposed schemes. Section 5.3 describes the experimental investigation and 

discusses the results, and Section 5.4 gives the overall conclusions. 
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5.2 Proposed approach 
Improving fusion with a quality learning process has already been examined by several 

studies [53, 68, 69]. The experimental results for these studies have all verified that 

quality-based fusion schemes outperform those raw fusion strategies with no 

consideration of quality of input biometric data. However, these techniques still have 

some limitations which might adversely influence the overall effectiveness of biometric 

recognition. For example, quality estimation in [53, 68, 69] is derived from labeled 

(development) data. In other words, the parameters of the fusion technique are adopted 

based on the quality of the development data with no consideration of the possible 

mismatch between the relative degradation of the biometric modalities involved in the 

development and test data respectively. Therefore, this technique might be less effective 

in real-applications.  

As indicated earlier, such limitations might adversely affect the overall accuracy of a 

multimodal biometrics system. Therefore, it is suggested that the relative quality aspect 

of the development as well as test data be incorporated in the fusion process. Such an 

approach should ideally tackle the effect of the possible mismatch between the relative 

quality in the biometric data. This, as indicated earlier, is because the approach is 

believed to provide a useful means of adjusting appropriately the weights for each of the 

two modalities according to their relative quality.  

In this technique the quality aspect of the test samples is quantified and then passed on 

into a SVM. This process involves estimating the quality of the development data by 

measuring some parameters for the development score data and then incorporating these 

parameters in the quality estimation of the test scores. This quantification is similar to 

that described in [9] and is described as follows: 

in the case of a two-class problem (Clients / Impostors), let ( )sfM /  be the development 

scores for face or speech, (where ( )sf /  is used to denote that a measure is applied to 

either face or speech modality) and let the client and impostor scores from each modality 

be given as 
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where ( )
C

sfM /µ  and ( )
C

sfM /σ  are the mean and variance for the client scores from each 

modality - face or speech, ( )
I

sfM /µ  and ( )
I

sfM /σ  are the mean and variance for the 

impostor scores from each modality - face or speech.  

The quality of samples of a modality (face or speech in this chapter) is determined by the 

characteristics of the scores obtained with the development and test samples of that 

modality. The quality of the face scores ( )fQ  and speech scores ( )sQ  are calculated as 

follows: 

))/(1/)/(()/()/( sfEsfEsfMsf TDQ ×=                                                                                               (5.3) 

where ( )sfQ /  is the quality for face or speech, D is the quality of the development data, T 

is the quality of the test (sample) data, ( )sfE /  is the subset of scores from the test data 

which is used to determine the quality of the test samples and ( )sfE /1 is the rest of the 

scores from the test data which is used to investigate the performance for the proposed 

scheme.  

Based on the equation (5.3), the computation for the quality of samples is divided into 

two steps. These are described in the following sections. 

5.2.1. Estimation of the quality aspects for the development data 
samples  

)/( sfMD  in equation (5.3) denotes the quality of the development data for face or speech 

scores. It is computed based on the scores obtained in the development phase as follows. 
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where C
sfMN )/( is the total number of clients in the development data for each modality - 

face or speech, and  I
sfMN )/(  is the total number of impostors in the development data for 

each modality - face or speech. 

 

5.2.2. Estimation of the quality aspects for the test data samples 
)/( sfET  in equation (5.3) represents the quality of the test data for face or speech scores. 

These quality aspects are calculated using a subset of the test data as follows                                                         
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where )/( sfEk  is computed during the test phase as follows 
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In the test phase, )/(1 sfET is computed same as )/( sfET  but using the test data E1.  

The quality measurements for face scores fQ  and speech scores sQ  are passed to a 

SVM using two different approaches. These two approaches and the motivation behind 

them are discussed in the next section. 
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5.2.3. Methods of passing the quality aspects to SVM 
In this chapter, two approaches for passing the relative quality of the test scores to SVM 

have been studied. The first approach is based on passing relative quality aspects in the 

individual modality as a separate feature for SVM. In the second approach, relative 

quality aspects in each of the modalities are fused with the respective scores and then the 

combined scores are passed as a feature to support vector machine. These approaches are 

described in the following subsections. 

5.2.3.1. Relative quality aspects as independent features (RQ-IF) 
In this approach, SVM is fed with four input vectors/ data values, two of these (vectors/ 

data values) present the actual individual biometric scores (face/ speech) based on the 

current stage (development/ test) whilst the other two present the relative quality of both 

the development and test data, as shown in Figures 5.1 and 5.2. 

During the development stage, as indicated above, the estimation of the quality of the 

face and speech scores ( )sf QQ ,  is passed on into the SVM as new features alongside the 

actual development scores ( )sf MM , . The SVM uses these four input vectors 

(particularly the former two input vectors) to generate prior knowledge of the expected 

level of degradation of each biometric data type involved (in the test phase). This helps 

SVM to tune its parameters to fit the incoming test data.  

In the test stage, four input data values are passed on into the classifier (fusion stage), 

with two of them presenting the quality of the test data ( )
ii sf QQ , . These are computed 

based on the parameters obtained from the development data (Equation 5.3). The other 

two data values present the test data itself ( )
ii sf EE 1,1 . In the fusion stage, the four input 

data values are combined and then classified based on the tuned SVM parameters 

obtained from the development stage. 
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Figure 5.1: Proposed Scheme of SVM-RQM using quality aspect as separate 
features in the development stage. 

 

Figure 5.2: Proposed Scheme of SVM-RQM using quality aspect as separate features in 
the test stage. 

5.2.3.2. Modality specific fusion of relative quality aspects (RQ-MSF) 
In this approach, the quality of face and speech scores is considered as weights. These 

weights must be in the interval of 0 and 1 with the condition of ( )� = 1/ sfQ . To achieve 
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this, the quality obtained from equation (5.3) is normalised using the following two 

steps.   

ii sfi QQS +=                                                                                                                (5.10)                                                                                                    

where iS  is the summation of the thi  face quality 
if

Q and its corresponding  thi  speech 

quality
isQ . The weight for the thi  face or speech scores ( )isfW /  is obtained as, 

( )
( )

i

sf
sf S

Q
W i

i

/
/ =                                                                                                            (5.11) 

These weights for face or speech scores, which are computed based on their respective 

test (sample) scores, are then multiplied by their corresponding face or speech scores, 

respectively.  

In the development phase (Figure 5.3), the results of the above multiplications, two 

weighted input vectors, are used in order to optimise (tune) the parameters of SVM. This 

is because these parameters are believed to provide useful information about the relative 

degradation in the different types of biometric data in the test phase since they are partly 

based on the test sample scores.  

In the test phase, weights for face or speech scores, which are computed based on their 

respective test scores, are multiplied by their corresponding face or speech scores, 

respectively (Figure 5.4). The resulted two weighted input data values are fused and then 

classified (in the fusion stage) based on the tuned SVM parameters obtained in the 

previous phase.  
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Figure 5.3: Proposed Scheme of SVM-RQM using quality aspect as weights at the 
development stage. 
  

 

 
Figure 5.4: Proposed Scheme of SVM-RQM using quality aspect as weights at the test 
stage. 
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5.3. Experimental Investigation 
 

5.3.1. Speech and Face data 
Experiments are conducted using a subset of the XM2VTS database [90]. This database, 

as indicated earlier, is a multi-session database containing synchronised image and 

speech data obtained from 295 subjects, recorded during four sessions which are taken at 

one month intervals [90]. For the purpose of this study, the subjects in the database are 

divided into the following sets: the training set is used to train client models; the 

development set as well as a subset of the test set which is denoted as E in equation 5.3 

are used to obtain various parameters in the proposed schemes and the test set E1 is used 

to investigate the performance. The training set consists of 200 client subjects, the 

development set consists of 25 non-client subjects and the test set consists of 70 non-

client subjects. The total number of 200 client tests and 40000 non-client tests is used 

from the development data while the total number of client and non-client tests used in 

finding the relative quality of the test data is 200 and 40000 respectively. The rest of the 

test set, 200 client tests and 72000 non-client tests, is used to investigate the performance 

for the proposed scheme. This division is based on the framework of Lausanne protocol 

which is further described in [90].  

The experiments in this chapter are conducted using the same features and classifiers as 

in the previous chapter (Section 4.2.1). More details about the XM2VTS database are 

given in Section 4.2.  

5.3.2. Testing with Fusion 
In the XM2VTS database, the complementary verification scores are based on eight 

baseline systems which are all included in the configuration 1 of the Lausanne Protocol. 

Five of the eight baseline systems involve face features and the other three are for speech 

features. The testing procedure involves combining the scores obtained from two 

different modalities at each time. In other words, the scores for a face feature are fused 

with the scores for a speech feature at each time. Therefore, there are fifteen different 

combinations of features for the fusion purpose. In each experiment, the individual 

biometric score types involved are subjected to the range equalisation process using the 
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ZS normalisation [12]. In this work, the fusion process is based on using SVM 

classifiers. The use of SVM in this chapter is based on earlier investigations (Chapter 4) 

as well as earlier studies reporting it as one of the most effective methods for multimodal 

biometrics fusion [1, 87]. The tests are conducted with and without learning the relative 

quality aspect of the test data.  

5.3.3. Results and Discussions 
In this study, the results obtained for the authentication tests are given in terms of Equal 

Error Rate (EER%). Table 5.1 shows the baseline results obtained using the individual 

features. The Table shows that FH gives the best EER compared to the other face 

features, whilst LFCC leads to the lowest EER compared to the other speech features. 

Feature Classifier  EER%  
FH MLP 1.78  

DCTs GMM 4.15  
DCTb GMM 1.87  
DCTs MLP 3.50  

 
 

face 

DCTb     MLP 6.49  
LFCC GMM 1.06  
PAC GMM 6.56  

 
speech 

SSC GMM 4.53  
 

Table 5.1: Baseline EERs computed using the unimodal verification scores in various 
cases. The best performance in each of the face and voice modalities is shown in italics. 
 

As the experimental results show in Table 5.1, the accuracy rates for the individual 

modalities in this chapter are observed to be different from the corresponding ones in the 

previous chapter (Table 4.2). The reason for such behaviour is due to the use of different 

size of the XM2VTS database for each chapter. This also leads to different results in the 

fusion stage compared to the corresponding results (using linear SVM) in the previous 

chapter (Table 4.13). The results for the fusion exercise with and without learning the 

relative quality of face and speech scores are presented in Table 5.2 in terms of Equal 

Error Rate (EER%). On the other hand, Table 5.3 presents the Relative Improvements 

(RI) for the fusion process again with and without learning the relative quality. 
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Table 5.2: Bi-modal authentication results in terms of EER (%), with and without 
relative quality learning. 
 

Table 5.3: Relative improvements for the bi-modal authentication with and without 
relative quality learning. 
 

By comparing the results (e.g. EERs and RIs) for the linear SVM in Tables 4.13 and 4.14 

with the corresponding results in Tables 5.2 and 5.3, it can be noticed that such results 

are not the same although the classifier (linear SVM) is the same in these experiments. 

This, as indicated earlier, is due to the use of a different size XM2VTS database for each 

chapter. It is observed from the results in Tables 5.2 and 5.3 that the fusion processes 

(with and without relative quality learning process) which have been considered 

 
Fusion candidates 

 
SVM-RQM 

 
No. 

Face Voice 

 
SVM (without 

RQM) 
RQ-IF RQ-MSF 

1 LFCC 0.46  0.34  0.41  
2 PAC 0.99  0.86  0.83  
3 

 
FH 

SSC 0.93  0.65  0.75  
4 LFCC 0.92  0.53  0.48  
5 PAC 1.76  1.45  1.42  
6 

 
DCTs - GMM 

SSC 1.17 0.79  1.00  
7 LFCC 0.65  0.38  0.22  
8 PAC 1.22  0.35  0.43  
9 

 
DCTb-GMM 

SSC 1.05  0.36  0.35  
10 LFCC 0.57  0.41   0.29  
11 PAC 1.02  0.98  0.77  
12 

 
DCTs-MLP 

SSC 1.34  1.16  0.86  
13 LFCC 0.64  0.44  0.49  
14 PAC 2.24  1.79  1.37  
15 

 
DCTb-MLP 

SSC 1.84 1.41  1.50  
Average EER 1.12 0.79 0.74 

 
Fusion candidates 

 
SVM-RQM 

 
No. 

Face Voice 

 
SVM (without 

RQM) 
RQ-IF RQ-MSF 

1 LFCC 0.57 0.68 0.61 
2 PAC 0.44 0.52 0.53 
3 

 
FH 

SSC 0.48 0.64 0.58 
4 LFCC 0.13 0.50 0.55 
5 PAC 0.58 0.65 0.66 
6 

 
DCTs - GMM 

SSC 0.72 0.81 0.76 
7 LFCC 0.39 0.64 0.79 
8 PAC 0.35 0.81 0.77 
9 

 
DCTb-GMM 

SSC 0.44 0.81 0.81 
10 LFCC 0.46 0.61 0.73 
11 PAC 0.71 0.72 0.78 
12 

 
DCTs-MLP 

SSC 0.62 0.67 0.75 
13 LFCC 0.40 0.58 0.54 
14 PAC 0.65 0.72 0.79 
15 

 
DCTb-MLP 

SSC 0.59 0.69 0.67 
Average RI 0.50 0.67 0.69 



 71 

consistently improve the performance beyond that obtainable with the better of the two 

individual modalities involved. It is also apparent from the results that, in all cases, 

incorporating the relative quality learning process into the fusion scheme exhibits greater 

effectiveness than using the fusion process without the relative quality having been 

learnt. The results also clearly show that the choice of face-voice score combination can 

have significant impact on the final result. Each combination differs, as stated earlier, 

from the other in terms of feature and/ or classifier for one modality or both modalities. 

Based on the EER and RI values in Tables 5.2 and 5.3, it is worth noting that the 

capabilities of the relative quality-based fusion process in decreasing the verification 

error rates is considerably higher when DCTb-GMM is used as the face feature. Thus, 

the discussion presented hereafter concentrates on the experimental results obtained 

when DCTb-GMM is used as the face feature. 

It can be observed that the best results where no relative quality learning process has 

taken place are obtained by combining the scores obtained from DCTb and LFCC 

feature. It can also be observed that the reduction in EER obtained by learning the 

relative quality of the data is quite significant. The lowest EER (0.22%) is observed in 

the case of DCTb-LFCC combination with SVM-RQM. Such a result is observed when 

the relative quality is passed to the SVM as weights. The EER reduction in this case is 

66% compared with the best result obtained without relative quality learning. 

These results clearly show that learning the relative quality information of a score is 

useful for improving the performance of the multimodal authentication systems. A direct 

comparison of the results obtained using fusion with and without relative quality 

learning, together with the baseline results for each of the two cases of DCTb and LFCC 

is given in terms of DET (Detection Error Trade-off) plots in Figure 5.5. 
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Figure 5.5: DET plots for SVM fusion with and without relative quality learning in bi-
modal fusion together with the baseline performers. 
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Figure 5.6 gives a direct comparison of the RIs obtained using the fusion method (SVM) 

with and without learning the relative quality of face and speech scores. 
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Figure 5.6: Relative improvements for the bi-modal authentication with and without 
relative quality learning. 
 
It was indicated in Section 3.3.1 that for a fusion scheme to be beneficial, RI should be 

positive, and the closer it is to 1, the better is the effectiveness of fusion.  Based on the 

above statement it can be observed from Figure 5.6 that amongst the two fusion schemes 

considered (SVM and SVM-RQM), SVM-RQM scheme has appeared to provide better 

performance in terms of reducing error rates. Such results prove that Linear SVM can 

benefit from the relative quality of the testing data in order to decrease the system error 

rates. However, the choice of face-voice score and quality combination can have 

significant impact on the final result, as shown in Figure 5.6. 
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5.4 Summary  
The chapter has proposed an approach to enhancing the accuracy of multimodal 

biometrics (speaker and face verification). The proposed approach is based on adjusting 

the weights for each of the two modalities according to their relative quality. This is 

performed by passing the relative quality aspects of the test scores into the Support 

Vector Machine either as features or weights. Such features and weights provide prior 

information about the relative degradation in the different types of test biometric data. 

Such information helps SVM to optimise its parameters to fit the test data. This approach 

is termed Support Vector Machine with Relative Quality Measurement (SVM-RQM). 

The chapter has compared such an approach to the linear SVM. Experimental 

comparisons of fusion schemes as well as quality measures have been carried out using 

the XM2VTS database. It is concluded from this chapter that the combination of 

complementary information from the face and speech can improve the performance over 

single-modality. Amongst the two fusion schemes considered (SVM and SVM-RQM), 

SVM-RQM scheme has appeared to provide better performance in terms of reducing 

error rates. Such results prove that Linear SVM can benefit from the relative quality of 

the testing data in order to decrease the system error rates. The next chapter presents 

discussions about the unpredicted variations problem in the evidence captured in the 

scores. The discussion includes an investigation into the effects, on the accuracy of 

multimodal biometrics, of introducing score normalisation into the score level fusion 

process. 
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Chapter 6 

Enhancement of Multimodal Biometric Accuracy 

6.1 Introduction 
The previous chapter was concerned with the effects, on the accuracy of multimodal 

biometrics, of relative degradation of the individual biometric modalities involved. An 

adaptive approach, based on adjusting the weights for each of the two modalities 

according to their relative quality, was introduced and investigated. This was by 

estimating the quality of the development data by measuring some parameters for the 

development score data and then incorporating these parameters in the quality estimation 

of the test scores.  

This chapter proposes an approach to enhancing the accuracy of multimodal biometrics 

in uncontrolled environments. In general, one of the important problems associated with 

any multimodal or unimodal technique is the undesired variations in the biometric data. 

Such variations are reflected in the corresponding biometric scores, and thereby can 

adversely influence the overall effectiveness of biometric recognition. The said 

variations can arise due to the effects of data capturing apparatus and various non-ideal 

operating conditions such as background noise and ambient lighting effects.  

The chapter presents investigations into the enhancement of the accuracy of multimodal 

biometrics, through the introduction of unconstrained cohort normalisation (UCN) into 

the field. Whilst score normalisation has been widely used in voice biometrics [92, 93], 

its effectiveness in other biometrics has not been previously investigated. The chapter 

aims to explore the potential usefulness of the said score normalisation technique in face 

as well as voice biometrics and to investigate its effectiveness for enhancing the accuracy 

of multimodal biometrics. The fusion process is performed by SVM (support vector 

machine). The use of SVM is based on earlier investigations (Chapters 4 and 5) and 

other earlier studies which report it as one of the most effective methods for multimodal 

biometric fusion [1, 87]. However, because of the generality of the approach proposed in 

this chapter, the outcomes should be applicable to other fusion methods as well. The 

experimental investigations involve the two recognition modes of verification and open-

set identification in clean, degraded and mixed-quality data conditions. 
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The rest of the chapter is organised as follows. Section 6.2 introduces the proposed 

approach and discusses the motivation behind its use. The experimental investigations 

and an analysis of the results are presented in Section 6.3, and the overall summary is 

given in Section 6.4. 

6.2. Motivation and proposed approach 
An important requirement for the effective operation of a multimodal biometric system 

in practice is the existence of capability for minimising the effects of variations in the 

data from the individual modalities deployed. This then leads to maximisation of 

recognition accuracy in the presence of variation (e.g. due to contamination) in some or 

all of the types of biometric data involved.  In reality, however, this is a challenging 

requirement as data variation can be due to a variety of reasons, and can have different 

characteristics.  Another aspect of difficulty in multimodal biometrics is the lack of 

information about the relative variation in the different types of biometric data.  

In recent years, there has been considerable research into methods for dealing with data 

quality in fusion based biometrics [68, 94-98]. However, the work carried out to date 

has, in general, been concerned with adjusting the balance of weighting in fusion in 

favour of modalities of better quality. In other words, emphasising or deemphasising the 

scores for the individual biometric modalities in the fusion process, based on an estimate 

of their relative degradation.  The results of these studies have all verified that the 

introduction of an appropriate weighting scheme can be beneficial in multimodal fusion. 

However, it is believed that the effectiveness of multimodal biometrics can be further 

improved if, through some means, the scores from the degraded modalities can be 

corrected appropriately. According to the literature, an approach with the potential for 

offering the above desired capability is that of score normalisation. To date, this method 

has been used only in the context of speaker recognition [92, 93]. The approach is based 

on the concept that if anomalous events in the test utterance cause a speaker’s score 

against his (her) own model to degrade, then the scores obtained for the same speaker 

against certain other background models are also affected in the same way. As a result, 

the ratio of the score for the target model to a statistic of scores for the considered 

background models remains relatively unchanged. The use of this ratio instead of the 
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absolute score for the target model has been shown to improve the verification 

performance.  

The development of the concept of score normalisation in speaker recognition has been 

based on the fact that the statistical speaker classifiers provide the verification score as 

the probability of the observed test utterance x, given the target model λ . In other words, 

they compute the probability for the target model producing the observed utterance. 

However, since the observed test material is in fact the test utterance, what is required to 

be computed is the probability of the target model, given the test utterance. These two 

properties are related through the Bayes’ theorem as [93, 99] 

)(
)()|(

)|(
xp

pxp
xp

λλλ = ,                                                                                          (6.1)                                                                                                                                   

where p(.) is the probability function. In this equation, the speaker model probability, 

)(λp , can be assumed equal for all speakers, and therefore ignored. )(xp , on the other 

hand, will need to be approximated. To date, diverse approximation approaches have 

been introduced for this purpose, leading to different score normalisation methods [92, 

93, 100]. A slightly different approach to score normalisation in speaker recognition is 

that based on the standardisation of score distributions, which aims to facilitate the use of 

a single threshold for all registered speakers [92]. A major difficulty in setting a global 

threshold in speaker verification (SV) is that both impostor score distribution and true 

speaker score distribution have different characteristics for different registered speakers. 

An approach to tackling this issue is that of fixing the characteristics of one of the score 

distribution types for all registered speakers. Currently, the common practice is to focus 

on standardising the impostor score distributions. The main reason for operating on the 

impostor score distributions, rather than on the true speaker score distributions, is the 

unavailability of sufficient data (in the existing databases) for reliable estimation of the 

standardisation parameters in the latter approach. The different methods in these two 

categories of score normalisation (i.e. Bayesian and standardisation) have already been 

subjected to thorough comparative evaluations in the context of speaker recognition [99, 

101].  The normalisation methods considered for this purpose are Cohort Normalisation 

(CN), Unconstrained Cohort Normalisation (UCN), Universal Background Model 

(UBM) Normalisation, T-norm and Z-norm. The outcomes, which have been based on 
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the use of decoupled reference modelling, have indicated UCN as the best performing 

normalisation technique. The study has also shown that whilst T-norm is amongst the 

best performers in speaker verification, it provides one of the worst results in the 

verification stage of open-set identification, even when combined with Z-norm.  

The current state-of-the-art in speaker recognition, involves the use of GMM-UBM [74]. 

The advantage of this approach is twofold. First, it helps alleviate the adverse effects of 

unseen data. Second, it provides a useful means for score normalisation. However, the 

method requires the use of UBM-based adapted modelling which is developed 

specifically for speaker recognition, and is not applicable to other biometric modalities. 

According to the study in [101], T-norm is extremely effective for open-set speaker 

identification as well as speaker verification, only when speaker models are obtained by 

appropriately adapting a universal background model (UBM). Since such adapted 

modelling is only feasible in the context of speaker recognition, for the purpose of 

consistency, both biometric modalities considered in this study are based on decoupled 

reference material.  In this case, UCN appears as the best choice for the purpose of score 

normalisation, and is therefore deployed in this study. It should be pointed out that, in 

general, such consistency across different modalities involved is not essential. In other 

words, in multimodal biometrics involving voice, the speaker representation can be 

based on adapted models, whilst the decoupled representation approach is used for other 

modalities. In such a scenario, certain other established methods may also be considered 

for the normalisation of speaker recognition scores, but UCN is still the most appropriate 

choice for modalities involving decoupled reference material. 

In UCN, )(xp  in equation (6.1) is approximated as [99, 101]:  
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where ( ) Kkxp k ,...1 , =λ , are the top K probabilities obtained for the observation, using  

a set of M background speaker models (M > K). These top scoring models are called 

competing models and their selection is carried out dynamically based on their closeness 

to the observed utterance in the test phase.  

Based on the above, the normalised score can be expressed in the log domain as: 
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)()|(log xLxpSUCN −= λ ,                                                                                       (6.3)                                                                   

where L(.) = log p(.).  

This equation suggests that the effects of data degradation can be significantly reduced if 

these are reflected similarly in ( )xL  and the target model score. As already shown in 

[102], this approach works effectively regardless of whether the operating framework is 

probabilistic or non-probabilistic. Therefore, provided UCN exhibits similar 

characteristics with other types of biometrics, its application to multimodal biometric 

fusion can be of considerable value for enhancing the reliability of the process in 

uncontrolled/varied operational conditions. This is because the approach provides a 

useful means for appropriately adjusting the individual biometric scores for a client, 

without any prior knowledge of the level of degradation of each biometric data type 

involved. However, to date, there have been no reported investigations into the use of 

UCN with any biometrics other than voice. The aim of this chapter is therefore to 

explore the potential usefulness of score normalisation in an additional modality (i.e. 

face biometrics) and to investigate its effectiveness for enhancing the accuracy of 

multimodal biometrics.  Figure 6.1 illustrates the concept of deploying UCN in a 

multimodal biometric recognition scenario. As observed in this figure, the given test 

tokens for the individual modalities (e.g. voice, face) are compared against the 

corresponding reference models for the target identity to produce unimodal scores. For 

each modality, the test token is also compared against a set of (M) corresponding 

background models. The top N (<M) background model scores obtained (in the case of 

each modality) are transferred into the log domain and then averaged together to produce 

the normalisation term for the considered modality. The normalised score for each 

modality ( ( )Vxl  or ( )Fxl in Figure 6.1) is then obtained by subtracting the relevant 

normalisation term from the logarithm of the score for the target model. The resultant 

normalised scores for the individual modalities are subsequently fused together through 

SVM to produce the final multimodal score.        

Another interesting and beneficial aspect of using UCN in multimodal biometrics is that 

it can potentially facilitate the separation of the scores for a given client from those for 

impostors targeting that client. This is based on the suppression of all the individual 
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biometric scores for the latter in relation to those for the former.  The reason is that, for a 

given type of biometrics and an adequately large set of background models, an impostor 

targeting a particular client model is likely to match one or few of the background 

models more closely. As a result, the application of UCN can result in reducing the 

impostor biometric scores relative to those of the client. The combination of the above 

two characteristics of UCN suggests that the technique can help enhance the biometrics’ 

reliability in both clean and adverse conditions. It is also thought that these capabilities 

should significantly increase the multimodal biometric accuracy. This is because the 

technique operates on the individual biometric scores involved independently, and the 

accuracy of the final fused score in multimodal recognition can benefit from the 

enhancement achieved in all these individual scores.  
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Figure 6.1: Unconstrained cohort normalisation of scores in multimodal biometric 
fusion. 
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6.3. Experimental investigations and results 
 
The experimental studies are concerned with the fusion of face and voice biometrics in 

the two recognition modes of verification and open-set identification. The modelling and 

pattern matching approaches used with each modality are not discussed here, as these are 

outside the scope of this study. The investigations in each mode involve four different 

data conditions. Two of them are based on the use of scores for clean face images 

together with scores for either clean or degraded utterances. The other two are based on 

the use of scores for degraded face images together with scores for either clean or 

degraded utterances. 

In each experiment, the individual biometric score types involved are subjected to the 

range equalisation process using the ZS normalisation [12]. The process of score-level 

fusion is based on the use of linear support vector machine (SVM) [85]. The fusion 

process is applied to the biometric scores with and without subjecting them to the UCN 

process. This is to determine the level of effectiveness enhancement offered by 

unconstrained cohort normalisation. The competing models required for UCN are 

selected from within the set of registered users during the test phase. The cohort size of 

the competing models is set to 1 and 3 in the cases of clean and degraded data 

respectively. This is in agreement with the findings in some earlier studies [93, 99]. The 

procedures for speech feature extraction and speaker classification are as detailed in [99, 

101]. The face recognition scores are based on the approaches detailed in [103, 104]. 

 

6.3.1. Fusion under Clean Data Conditions 
 
The aim of the experiments in this part of the chapter is to investigate the effectiveness 

of UCN in enhancing the reliability of multimodal fusion when the biometric datasets are 

free from degradation. The datasets considered for the face and voice modalities in this 

investigation are extracted from the XM2VTS and TIMIT databases respectively [103, 

105]. Using these biometric datasets, a total of 235 chimerical identities are formed. 

These consist of 140 clients, 25 development impostors and 70 test impostors. The 
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development data comprises 140 and 22960 (i.e. 140×{25+[140-1]}) score tokens from 

the same-users and impostors (including cross-users) respectively. The corresponding 

score tokens used in the testing phase are 140 and 29260 (i.e. 140×{70+[140-1]}) 

respectively.  

The results for the verification experiments in this part of the chapter are presented as 

equal error rates (EERs) in Table 6.1. As observed, the use of UCN has resulted in 

reduction of the verification EERs for the individual modalities and for the fused 

biometrics. These outcomes confirm the earlier suggestion (Section 6.2) that the use of 

UCN in clean data conditions is still beneficial. The effectiveness of UCN under such an 

operating condition is due to its ability to suppress the scores for impostors in relation to 

those for true users. It is noted that the usefulness of UCN in fused biometrics is mostly 

due to its performance with the voice modality. However, the corrective effect that UCN 

has on the face modality is also seen to be considerable. This in turn has helped further 

enhance the accuracy of classification based on the fused data. It should be emphasised 

that this is the first time that the use of UCN with face biometrics has been investigated 

and its effectiveness demonstrated. 

 

 

 
 
 

 
 
Table 6.1:  Effectiveness of UCN in Multimodal verification based on clean biometric 
data. 

 
 

Table 6.2 presents the results of open-set identification (OSI) experiments with clean 

data. These are expressed in terms of IER (identification error rate) and OSI-EER that 

occur in the first and second stages of the process respectively.  An interesting aspect of 

these results is that the use of UCN does not change the IER for any of the single 

modalities, whilst it successfully reduces IER (to zero in this case) for the fused 

biometrics. The reason for this phenomenon can be described as follows. Firstly, like any 

Modality EER% 
(Without UCN) 

 EER% 
(With UCN) 

Voice (TIMIT) 2.61 0.05 
Face (XM2VTS) 3.57 2.86 
Fused: voice and face 0.11 ≈0.00 
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other score normalisation method, UCN cannot be expected to correct any 

misidentification occurring in the first stage of unimodal OSI [101]. However, what is 

achieved through UCN is the suppression of the scores which lead to the 

misidentification in the individual modalities in relation to the scores for the correct 

identities. Although this does not lead to the re-ranking of the unimodal identity scores, it 

facilitates the reduction of misidentification in the fusion stage. It is also interesting to 

note that, in this case, the use of UCN appears to ensure that the lowest error rates are 

obtained through the fused biometrics. 

 

 

 

Without UCN With UCN  Modality  
IER% OSI-EER% IER% OSI-EER% 

Voice (TIMIT) ≈0.00 17.14 ≈0.00 2.86 
Face (XM2VTS) 9.29 12.86 9.29 8.57 
Fused: voice and face 0.71 2.86 ≈0.00 ≈0.00 

Table 6.2: Experimental results for open-set identification based on clean biometric data. 
 
The results in Tables 6.1 and 6.2 indicate that the OSI-EERs in unimodal biometrics are 

considerably larger than the EERs for the verification experiments. This is due to the fact 

that the verification stage in open-set identification is more challenging than the standard 

biometric verification [99]. The reason is that in the former process, each unknown 

(unregistered) user will need to be discriminated from his/her best matched registered 

user. In other words, the verification stage in open-set identification can be considered as 

a specific (but unlikely) scenario in the standard verification process in which each 

impostor targets only his or her closest model in the registered set.  

In multimodal biometrics, however, it is very unlikely that different biometric modalities 

of an impostor are best matched to the corresponding modalities of an individual 

registered user. Consequently (as the experimental results show), fusing the biometric 

scores leads to a significant improvement in the verification accuracy. The use of UCN 

in this case is observed to maximise the fused biometrics accuracy as well as 

considerably to reduce the OSI-EER for each of the modalities involved. As indicated 
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earlier, this is achieved through UCN suppressing the scores for unknown users in 

relation to those of registered users.   

 

6.3.2. Fusion under Varied Data Quality Conditions 
The purpose of the experiments presented in this section is to investigate the usefulness 

of UCN in multimodal fusion when the qualities of the biometric data types differ 

considerably.  

6.3.2.1. Fusion under clean face data and degraded voice data 
The datasets considered for the face and voice modalities in this case are extracted from 

the XM2VTS (clean images) [103] and from the 1-speaker detection task of the NIST 

Speaker Recognition Evaluation 2003 (degraded speech) databases respectively [101]. 

Using these datasets, again a total of 235 chimerical identities are formed. These consist 

of the same number of clients, development impostors and test impostors as in the 

previous experiments (Section 6.3.1). The development and test datasets also consist of 

the same number of score tokens from the same-users and impostors as those considered 

in the previous section.   

The results of verification and open-set identification in this case are presented in Tables 

6.3 and 6.4 respectively. It is noted that whilst the error rates for the face modality are 

exactly the same as those in the previous investigation, due to the use of a degraded 

speech database, the accuracy rates for the voice modality are in this case lower than the 

corresponding ones in Section 6.3.1.  

 

 
 
 

 
 
 
 
Table 6.3: Performance of UCN in biometric verification based on mixed-quality data 
(clean face data and degraded voice data). 
 

Modality EER% 
(Without UCN) 

EER% 
(With UCN) 

Voice (NIST) 26.24 10.00 
Face (XM2VTS) 3.57 2.86 
Fused: voice and face 2.86 0.78 
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The results in Table 6.3 demonstrate the capability of UCN in reducing the verification 

error rate, particularly that in fused biometrics. UCN achieves this by a combination of 

enhancing the client scores when these are affected by data degradation, and suppressing 

the impostor scores in relation to the client ones. It is noted that without UCN, the fusion 

process results in improving the EER associated with the better modality by about 20%. 

According to the results, this reduced EER (2.86%) is further decreased by about 73% 

through the use of UCN. 

 

Without UCN With UCN Modality 
IER% OSI-EER% IER% OSI-EER% 

Voice (NIST) 40 45.71 40 15.71 
Face (XM2VTS) 9.29 12.86 9.29 8.57 
Fused: voice and face 6.43 12.86 4.29 5.71 

Table 6.4: Experimental results for open-set identification based on mixed-quality data 
(clean face data and degraded voice data). 
 

It is observed from the results in Table 6.4 that the use of fusion process, in this case, 

leads to reducing the lowest IER offered by unimodal biometrics. However, it is also 

seen that this capability of fused biometrics is considerably improved through UCN. On 

the other hand, it is observed that, in this case, the fusion process can only reduce the 

OSI-EER% when used together with UCN. The reduction in OSI-EER achieved with 

such a combination is in excess of 55%.   

Another important outcome of the experimental investigations can be observed by 

considering the results in Table 6.4 together with those in Table 6.2. Based on these 

results, it is clear that the fusion process on its own may not necessarily lead to the 

reduction of IER or OSI-EER offered by the best single biometric modality involved. 

The results in these two tables indicate that it is by the deployment of UCN that the fused 

biometrics consistently outperforms unimodal biometrics. 

6.3.2.2. Fusion under degraded face data and clean voice data 
The datasets considered for the face and voice modalities in this investigation are 

extracted from the BANCA (degraded images) and TIMIT (clean speech) databases 

respectively [104, 105]. Using these biometric datasets, a total of 52 chimerical identities 

consisting of 26 clients and 26 impostors is formed. The face recognition scores are 
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obtained based on images captured in a single session, and affected by two different 

forms of distortion [104]. Based on these and the corresponding score data for TIMIT, a 

development score dataset is formed for the experiments. This consists of 26 and 1326 

(i.e. 26×{26+[26-1]}) score tokens from the same-users and impostors (including cross-

users) respectively. The corresponding score tokens used in the testing phase are also 26 

and 1326 (i.e. 26×{26+[26-1]}) respectively. 

The results of verification and open-set identification in this case are presented in tables 

6.5 and 6.6 respectively.  

 
 
 
 
 
 
Table 6.5: Performance of UCN in biometric verification based on mixed-quality data 
(degraded face data and clean voice data). 
 

It can be seen in Table 6.5 that fusion without UCN leads to an EER which is just 

slightly better than the one offered by the best modality involved. However, the use of 

UCN appears to ensure that the lowest error rate is obtained through the fused 

biometrics. This outcome again demonstrates the capability of UCN in reducing the error 

rates for the fused biometrics through enhancing the separation of the scores for each one 

of the involved modalities.  

 

Without UCN With UCN  Modality  
IER% OSI-EER% IER% OSI-EER% 

Voice (TIMIT) ≈0.00 19.23 ≈0.00 3.85 
Face (BNACA) 30.77 26.92 30.77 23.08 

Fused: voice and face ≈0.00 11.54 ≈0.00 ≈0.00 
Table 6.6: Experimental results for open-set identification based on mixed-quality data 
(degraded face data and clean voice data). 
 

It is observed from the results in Table 6.6 that the use of UCN has resulted in reducing 

the verification OSI-EERs for the individual modalities as well as for the fused 

biometric. The results also show that, although the usefulness of UCN in fused 

biometrics is mostly due to its performance with the voice modality, its corrective effect 

Modality EER% 
(Without UCN) 

EER% 
(With UCN) 

Voice (TIMIT) 3.99 0.15 
Face (BANCA) 15.38 11.54 

Fused: voice and face 3.85 ≈0.00 
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on the face modality is also beneficial. This as shown has helped reduced OSI-EER (to 

zero) for the fused biometrics. For IER, the use of fusion process (with and without 

UCN) successfully reduces IER to zero. 

 

6.3.3. Fusion under degraded Data Conditions 
The experiments in this section investigate the effectiveness of UCN in enhancing the 

reliability of multimodal fusion when the two biometric data types adopted are both 

degraded. The dataset for the face modality in this investigation is extracted from the 

BANCA (degraded images) database [104] whilst the data for the speech modality is 

extracted from the 1-speaker detection task of the NIST Speaker Recognition Evaluation 

2003 (degraded speech) database [101]. Using these biometric datasets, a total of 52 

chimerical identities consisting of 26 clients and 26 impostors is formed. The face 

recognition scores are obtained based on images captured in four sessions, and affected 

by two different forms of distortion [104]. Based on these and the corresponding score 

data for NIST, a development score dataset is formed for the experiments. This consists 

of 104 (i.e. 4×26) and 5304 (i.e. 4×{26×[26+(26-1)]}) score tokens from the same-users 

and impostors (including cross-users) respectively. The corresponding score tokens used 

in the testing phase are also 104 (i.e. 4×26) and 5304 (i.e. 4×{26×[26+(26-1)]}) 

respectively. Tables 6.7 and 6.8 present the results obtained in this case for verification 

and open-set identification respectively. 

It can be seen from the experimental results in Table 6.7 that the use of UCN has again 

resulted in the reduction of the verification EERs for the individual modalities as well as 

for the fused biometrics. It can also be observed that the fusion process on its own 

outperforms the best individual modality involved. On the other hand, it is seen that the 

verification accuracy offered by fused biometrics increases significantly (by about 61%) 

through the use of UCN prior to fusion. It is worth noting that the accuracy of fused 

biometrics without UCN (Table 6.7) is below the accuracy obtained by using UCN with 

any of the two single modalities involved. These results are in agreement with the earlier 

suggestions (Section 6.2) that the use of UCN in degraded data conditions is beneficial. 

The effectiveness of UCN under such operating conditions is due to the twofold 

characteristic of UCN. Firstly it provides a means of enhancing the scores when the test 
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data is degraded, and secondly, it suppresses the scores from impostors in relation to 

those for clients.  

 

 

 

 

 

 

Table 6.7: Effectiveness of UCN in multimodal verification based on degraded data. 
 
 

Table 6.8: Experimental results for open-set identification based on degraded biometric 
data. 
 

 

In Table 6.8, it is observed that the fusion process results in an IER which is slightly 

better than the IER offered by the best unimodal biometrics. However, using UCN 

together with the fusion process leads to a considerably lower IER. It is also observed 

that, in this scenario, the fusion process reduces the OSI-EER only when used in 

conjunction with UCN. In fact, without UCN, the OSI-EER obtained with fused 

biometrics is worse than that for the better of the two modalities. The use of UCN is seen 

to reduce the OSI-EER for the fused biometrics by about 70%. Again it is noted that, in 

terms of OSI-EER, the performance of fused biometrics without UCN is well below that 

of either of the modalities with UCN. In brief, the results in this chapter indicate that it is 

only through the deployment of an appropriate score normalisation technique, in this 

case UCN, that the fused biometrics can consistently outperform the unimodal 

biometrics involved. 

Figures 6.2 and 6.3 further illustrate the results obtained for the verification and the 

second stage of open-set identification experiments in this part of the chapter 

Modality EER% 
(Without UCN) 

EER% 
(With UCN) 

Voice (NIST) 35.69 15.38 
Face (BANCA) 18.27 13.46 
Fused: voice and face 16.35 6.35 

Without UCN With UCN  Modality  
IER% OSI-EER% IER% OSI-EER% 

Voice (NIST) 26.92 48.08 26.92 15.38 
Face (BANCA) 38.46 30.77 38.46 25.00 
Fused: voice and face 25.00 31.73 18.27 9.62 
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respectively. Figure 6.2 clearly shows the significant increase in the reliability of fused 

biometrics obtained through the use of UCN. The plots in this figure also illustrate the 

considerable performance improvements achieved through the use of UCN with the 

individual modalities, which is the cause of the above mentioned enhancement in the 

accuracy of fused biometrics.  

 

 
Figure 6.2: DET plots for the verification experiments with degraded data. 
 

The DET plots in Figure 6.3 further emphasise the role of UCN in enhancing the 

reliability of fused biometrics. In fact, it is observed that, without UCN, the fused 

biometrics accuracy is highly influenced by the worse of the two modalities involved and 

does not even match the performance of the better of the two individual modalities. On 

the other hand, by applying UCN to the individual modalities, the fusion process is 

observed to provide the highest reliability in the experiments. 
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Figure 6.3: DET plots for the verification process in the second stage of open-set 
identification experiments with degraded data.  
Note: the plot for NIST dataset (without UCN) is mostly outside the scale due to the 
excessively high error rate in this case. 
 
 

6.4 Summary 
The chapter has proposed and investigated the usefulness of unconstrained cohort 

normalisation (UCN) in face biometrics and also in a multimodal biometric scenario. The 

experimental investigations have been concerned with the fusion of face and voice 

biometrics in the two recognition modes of verification and open-set identification. The 

investigations in each mode have involved four different data conditions.  

Based on the experimental investigations, it has been shown that UCN offers 

considerable improvements to the accuracy of multimodal biometrics in both degraded 

and clean data conditions. This is shown to be due to the twofold characteristic of this 

score normalisation method. Firstly it provides a means of enhancing the scores when the 

test data are degraded, and secondly, it aims to suppress the scores from impostors in 

relation to those from clients. The investigations have also confirmed the usefulness of 

UCN in face recognition as well as in speaker recognition for which the technique had 

originally been developed. Additionally, through a set of open-set identification 
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experiments, it has been shown that multimodal fusion can consistently outperform the 

accuracy offered by the best single modality performer when it is combined with UCN. 
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Chapter 7 

Combined Approach to Enhancing Multimodal Biometric 
Accuracy 

7.1 Introduction 
The previous two chapters presented two different techniques for tackling the effects of 

data variations on the fusion process (i.e. variation in relative degradation of data and 

variation arising from uncontrolled operating conditions). This chapter aims to explore 

the usefulness of combining UCN with relative quality learning mechanism for the 

purpose of enhancing accuracy in multimodal biometrics. A two-stage process is 

adapted. Firstly, the matching scores obtained for face and voice biometrics are 

normalised. Then, the quality of the normalised scores for each modality is measured. 

With this knowledge, score-level fusion using SVM (support vector machine) is carried 

out. The experimental investigations involve the two recognition modes of verification 

and open-set identification in clean, degraded and mixed-quality data conditions. 

The rest of the chapter is organised as follows. Section 7.2 introduces the proposed 

approach and discusses the motivation behind its use. The experimental investigations 

together with an analysis of them are presented in Section 7.3, and the overall summary 

is given in Section 7.4. 

 

7.2. Proposed approach 
As indicated earlier, data variations are considered one of the main problems in 

multimodal fusion. Such variations are reflected in the corresponding biometric scores, 

and can for this reason adversely influence the overall effectiveness of biometric 

recognition. As a result, there has been considerable research recently into ways of 

tackling the problem of data variations, through quality learning schemes [68, 94-98] or 

score normalisation [106] in fusion-based biometrics. As described in Chapter 5 the 

quality learning schemes are, in general, concerned with adjusting the balance of 

weighting in fusion in favour of better quality modalities. In other words, emphasising or 

deemphasising the scores for individual biometric modalities in the fusion process, 
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depending on an estimate of their relative degradation [68, 94-98].  On the other hand, it 

has been shown that the use of unconstrained cohort normalisation in fusion based 

biometrics helps  improve the robustness of multimodal biometrics [106]. This, as 

indicated earlier, is because the approach provides a useful means for appropriately 

adjusting the individual biometric scores for a client, without any prior knowledge of the 

level of degradation of each biometric data type involved. Another motivation for using 

UCN in multimodal biometrics is that it facilitates the suppression of all the individual 

biometric scores for impostors in relation to those for the clients. However, it is believed 

that the accuracy of multimodal biometrics can be further enhanced if the scores from the 

individual modalities involved are first subjected to UCN [106] and then passed on to the 

relative quality learning mechanism [98]. This process is expected to enhance the overall 

accuracy of score level fusion in multimodal biometrics due to the individual capabilities 

of each technique. The combined method should help enhance the multimodal biometrics 

reliability in clean, degraded and mixed-quality data conditions. Figure 7.1 illustrates the 

concept of deploying the proposed method in a multimodal biometric recognition 

scenario. 

7.3. Experimental investigations and results 
The fusion of face and voice biometrics in the two recognition modes of verification and 

open-set identification is again the subject of further experimental studies. The 

investigations in each mode involve three1 different data conditions. Two of them use 

scores for clean face images together with scores for either clean or degraded utterances. 

The third uses scores for degraded face images together with scores for degraded 

utterances. 

The individual biometric score types involved (in each experiment) are subjected to the 

range equalisation process using the ZS normalisation [12]. The fusion process is applied 

to the biometric scores with and without subjecting them to the UCN process. The fusion 

process, with UCN, is achieved via three different fusing configurations, as shown in 

Figure 7.1. In the first configuration, the normalised scores for face and voice are 

combined using the simple linear SVM. This approach is termed Support Vector 

                                                 
1 This chapter does not include the fusion of the scores for degraded face images with the scores for clean 
utterances because of the lack of sufficient amount of data. 
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Machine with Unconstrained Cohort Normalisation (SVM-UCN). However, in the other 

two configurations, the normalised scores for face and voice are passed on to SVM-

RQM (i.e. RQ-MSF or RQ-IF) in order to measure the relative quality aspects for the 

individual modalities. The structures and motivation behind RQ-MSF and RQ-IF are 

discussed in Chapter 5. Such fusing configurations are denoted as RQ-MSF-UCN and 

RQ-IF-UCN respectively. The competing models required for UCN are selected from 

within the set of registered users during the test phase. The cohort size of the competing 

models is set to 1 and 3 for clean and degraded data respectively (see Section 6.3). The 

experimental results (i.e. verification in both modes) are accompanied by a 95% 

confidence interval. 

7.3.1. Fusion under Clean Data Conditions 
The purpose of the experiments in this part of the study is to investigate the effectiveness 

of the proposed method in enhancing the reliability of multimodal fusion when the 

biometric datasets are free from degradation. The datasets considered for the face and 

voice modalities in this investigation are extracted from the XM2VTS and TIMIT 

databases respectively [103, 105]. The experimental investigations in this part of the 

study utilise a subset of the database described in Section 6.3.1. A total of 165 chimerical 

identities are formed in this section. These consist of 70 clients, 25 development 

impostors and 70 test impostors. 

The development data comprises 70 and 6580 (i.e. 70×{25+[70-1]})  tokens from the 

same-users and impostors (including cross-users) respectively whilst the total number of 

client and impostor tests used in finding the quality of the test data is 70 and 6580 (i.e. 

70×{25+[70-1]}) respectively. In order to investigate the performance of the proposed 

scheme, 70 client tests and 7980 (i.e. 70×{45+[70-1]}) impostor tests are used.  
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Note: F

TS and F
nS are the scores obtained for the target model ( )Tψ and background models respectively, using the test face image; 

RQ is the relative quality; IF and MSF are the two methods of passing on the relative quality to SVM (i.e. Independent Features, Modality Specific Fusion). 
 
Figure 7.1: Unconstrained cohort normalisation with relative quality learning of scores in multimodal biometric fusion. 
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The experimental results for this part of the study are presented as equal error rates 

(EERs) with a 95% confidence interval in Table 7.1. The second column in Table 7.1 

shows that the use of RQ-MSF and RQ-IF resulted in better performance than the best 

individual modalities and the fused biometrics with linear SVM. Moreover, it is observed 

that the use of UCN has resulted in a further reduction of EERs for the individual 

modalities and for the fused biometrics. It is also noted that the use of qualitative SVM 

with UCN successfully reduces the EER to zero for the fused biometrics which in this 

case is comparable to the results obtained using linear SVM with UCN. The advantages 

of performing quality measurements on the normalised data prior to fusion are not 

clearly visible in this case because of the use of clean datasets for both modalities.  

 

 

 

 
 
 
 
 
Table 7.1: Effectiveness of combining qualitative linear SVM with UCN based on clean 
biometric data. 
 
 
Table 7.2 presents the results of open-set identification (OSI) experiments with clean 

data. These are expressed in terms of IER (identification error rate) and OSI-EER that 

occur in the first and second stages of the process respectively. As before, the advantages 

of performing the proposed method on the scores for the biometric data involved are not 

clearly visible in the case of IER since the databases contain clean data. It is noted that, 

as in the verification scenario, the use of qualitative SVM results in better OSI-EER 

compared to linear SVM or the individual modalities involved. It is also observed that 

subjecting the individual biometric scores to UCN prior to fusion in each of the three 

different configurations effectively reduces the error rates of the fused scores to zero.  

 

 
 
 

Modality EER ± CI 95(%) 
(Without UCN) 

  EER ± CI 95(%) 
(With UCN) 

Voice (TIMIT) 2.86 ± 0.36 0.03 ± 0.04 
Face (XM2VTS) 3.44 ± 0.39 1.56 ± 0.27 
Fusing by SVM 0.16 ± 0.09 ≈0.00 ± 0 

RQ-MSF(2 inputs) 0.08 ± 0.06 ≈0.00 ± 0 
RQ-IF(4 inputs) 0.09 ± 0.07 ≈0.00 ± 0 
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Without UCN With UCN Modality 

IER% OSI-EER ± CI 95(%) IER% OSI-EER ± CI 95(%) 
Voice (TIMIT) ≈0.00 18.57 ± 0.85 ≈0.00 1.43 ± 0.26 

Face (XM2VTS) 12.86 11.11 ± 0.69 12.86 3.57 ± 0.41 
Fusing by SVM ≈0.00 4.28 ± 0.44 ≈0.00 ≈0.00 ± 0 

RQ-MSF(2 inputs) ≈0.00 2.86 ± 0.36 ≈0.00 ≈0.00 ± 0 
RQ-IF(4 inputs) ≈0.00 2.94 ± 0.37 ≈0.00 ≈0.00 ± 0 

Table 7.2: Experimental results for open-set identification based on clean biometric data. 

7.3.2 Fusion under Varied Data Conditions 
The purpose of the experiments presented in this section is to investigate the 

effectiveness of combining qualitative SVM with UCN when the biometric data types 

have different levels of quality. The datasets considered for the face and voice modalities 

in this case are extracted from the XM2VTS (clean images) and from the 1-speaker 

detection task of the NIST Speaker Recognition Evaluation 2003 (degraded speech) 

databases respectively [103, 101].  Using these datasets, again a total of 165 chimerical 

identities are formed, which consist of the same number of clients, development 

impostors and test impostors, as in the previous experiments (Section 7.3.1). The 

development and test datasets also consist of the same number of tokens from the same-

users and impostors as those considered in the previous section. 

The results of verification and open-set identification for this part of the study are 

presented in Tables 7.3 and 7.4 respectively. There are several observations to be made 

from these results. Firstly, it is noted that whilst the error rates for the face modality are 

exactly the same as those in the previous investigation, due to the use of degraded speech 

database, the accuracy rates for the voice modality in this case are lower than the 

corresponding ones in Section 7.3.1.  It is observed from the results in Table 7.3, that the 

fusion process (SVM) on its own may not necessarily lead to the reduction of EER 

offered by the best single biometric modality involved. However, it is noted that the use 

of SVM-RQM, particularly, using the quality aspects as independent features (RQ-IF), 

results in improvement of the EER associated with the better modality by about 17%. On 

the other hand, using linear SVM together with UCN reduces this EER by about 58%. It 

is interesting to note that the use of relative quality learning mechanisms (i.e. RQ-MSF 

and RQ-IF) together with UCN results in considerable improvement in the accuracy. A 
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reduction in EER of 75 % is obtained with such a combination, when the best qualitative 

SVM performer is RQ-IF.  

 

 

 

 
 
 
Table 7.3: Performance of UCN and quality learning in biometric verification based on 
mixed-quality data. 
 

Figure 7.2 presents a direct comparison of the EERs obtained using fusion based on 

SVM, RQ-MSF, RQ-IF, SVM-UCN, RQ-MSF-UCN and RQ-IF-UCN together with the 

EER for the best individual modality involved (face). 
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Figure 7.2: Comparison of EERs for various fusion methods with the baseline EER for 
face modality based on varied quality data.  
Recognition mode: Verification. 

 

It is observed from Figure 7.2 that the integration of scores for face and voice by SVM 

leads to a higher EER compared with the best result without fusion, i.e. face. The two 

methods of incorporating the quality of the biometric scores (RQ-MSF and RQ-IF) in the 

Modality EER ± CI 95(%) 
(Without UCN) 

EER ± CI 95(%) 
(With UCN) 

Voice (NIST) 30 ± 1.00 11.43 ± 0.70 
Face (XM2VTS) 3.44 ± 0.39 1.56 ± 0.27 
Fusing by SVM 3.69 ± 0.41 1.43 ± 0.26 

RQ-MSF(2 inputs) 3.32 ± 0.39 0.97 ± 0.21 
RQ-IF(4 inputs) 2.86 ± 0.36 0.86 ± 0.20 
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fusion process result in EERs which are just slightly better than the best baseline EER 

(face). The results obtained with SVM-UCN, RQ-MSF-UCN and RQ-IF-UCN are found 

to be very encouraging.   

It is observed from the results in Table 7.4 that the use of SVM and SVM-RQM leads to 

lower IERs than that offered by the unimodal biometrics. It is also seen that the 

capabilities of these fusion processes in decreasing the identification error rates, is 

considerably higher when combined with UCN. In the second stage of open-set 

identification, it is shown from the results in Table 7.4 that multimodal biometrics is 

exhibiting more effectiveness than the unimodal approach. However, the most significant 

improvement is obtained with RQ-MSF-UCN with an OSI-EER of 2.11%. This level of 

performance is closely followed by that of the RQ-IF-UCN fusion method.  This 

confirms the earlier suggestion that the combination of normalised biometric scores 

together with learning the relative quality of the data yields the best OSI-EER.  

 
 

Without UCN With UCN Modality 
IER% OSI-EER ± CI 95(%) IER% OSI-EER ± CI 95(%) 

Voice (NIST) 45.71 41.43 ± 1.08 45.71 15.56 ± 0.79 
Face (XM2VTS) 12.86 11.11 ± 0.69 12.86 3.57 ± 0.41 
Fusing by SVM 11.43 7.14 ± 0.56 5.71 2.66 ± 0.35 

RQ-MSF(2 inputs) 8.89 6.43 ± 0.54 4.33 2.11 ± 0.31 
RQ-IF(4 inputs) 8.57 6.67 ± 0.55 4.29 2.16 ± 0.32 

Table 7.4: Experimental results for open-set identification based on mixed-quality data. 
 
Figure 7.3 gives a visual representation of the OSI-EERs obtained using fusion based on 

SVM, RQ-MSF, RQ-IF, SVM-UCN, RQ-MSF-UCN and RQ-IF-UCN together with the 

error rate for the best individual modality (face).   
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Figure 7.3: Comparison of OSI-EERs for various fusion methods with the baseline OSI-
EER for face modality based on varied quality data. 
Recognition mode: Verification process in the second stage of open-set identification. 

 

7.3.3 Fusion under Degraded Data Conditions 
The aim of the experiments in this part of the chapter is to investigate the effectiveness of 

combining qualitative SVM with UCN in enhancing the reliability of multimodal fusion 

when the biometric datasets are contaminated. The datasets considered for the face and 

voice modalities in this investigation are extracted from the BANCA [104] and NIST 

Speaker Recognition Evaluation 2003 [101] databases respectively. Using these 

biometric datasets, a total of 52 chimerical identities consisting of 26 clients and 26 

impostors are formed. The face recognition scores are obtained based on images captured 

in six sessions [104]. These sessions are separated as follows. Two sessions are used for 

the development data, while four sessions are used for the test data. Two of these four 

sessions are used to measure the relative quality of the test data whilst the other two are 

used to investigate the performance of the proposed scheme. Based on these and the 

corresponding score data for NIST, a development score dataset is formed for the 

experiments. This consists of 52 (i.e. 2×26) and 2652 (i.e. 2×{26×[26+(26-1)]}) score 

tokens from the same-users and impostors (including cross-users) respectively whilst the 

total number of score tokens from the same-users and impostors (including cross-users) 

used for finding the relative quality of the test data is 52 (i.e. 2×26) and 2652 (i.e. 
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2×{26×[26+(26-1)]}) respectively. In order to investigate the performance of the 

proposed scheme 52 (i.e. 2×26) client tests and 2652 (i.e. 2×{26×[26+(26-1)]})  impostor 

tests are used.  

The experimental results for the verification and open-set identification scenarios are 

presented in tables 7.5 and 7.6 respectively. The performances of the two recognition 

modes are measured in terms of EERs for the former and IERs and OSI-EERs for the 

latter.  

As the experimental results show in Table 7.5, the accuracy rates for the face modality 

are lower than the corresponding ones in the previous sections. This is due to the use of a 

degraded face database. On the other hand, although the speech database is degraded as 

in the previous section, the accuracy rates for the speech modality in this section are 

observed to be lower. The reason for such behaviour is the use of a different size subset 

of the NIST data in this case. It is noted that the use of SVM on its own does not lead to 

performance better than the best individual modality involved. This is also shown by the 

results in Section 7.3.2. The results in Table 7.5 demonstrate the capability of reducing 

the verification error rates by combining UCN with the qualitative SVM. This is thought 

to result from the three-fold characteristics of this combination. The first is that UCN 

provides a means for enhancing the scores when the test data is degraded; the second that 

it aims to suppress the scores for impostors in relation to those for clients; finally, that 

the use of relative quality measurements further facilitates the reduction in error rates. 

This is achieved by either assigning higher weights (RQ-MSF) to the best biometric 

scores or by feeding the SVM with new features (RQ-IF). A direct comparison of the 

performance (EERs) obtained using the various fusion techniques described above, 

together with baseline EER for face modality is given in Figure 7.4.  
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Table 7.5: Effectiveness of UCN and quality learning in verification based on degraded 
data. 
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Figure 7.4: Comparison of EERs for various fusing configurations with the baseline 
EER for face modality based on degraded data. 
Recognition mode: Verification. 

 
This figure clearly shows that the proposed technique significantly increases the 

reliability of fused biometrics.  

It can be seen from the results in Table 7.6 that the use of SVM alone results in an 

increase in both of the IER and OSI-EER obtained with the best single modality. The use 

of SVM-RQM (i.e. RQ-MSF and RQ-IF) on the other hand can not reduce both types of 

error together. This is in conflict with the results in Sections 7.3.1 and 7.3.2. The reason 

for such a phenomenon is that the two databases involved in this part of the study are 

much more degraded than in the previous sections. However, it should be emphasised 

Modality EER ± CI 95(%) 
(Without UCN) 

EER ± CI 95(%) 
(With UCN) 

Voice (NIST) 40.09 ± 1.85 11.98 ± 1.22 
Face (BANCA) 17.68 ± 1.44 13.46 ± 1.29 
Fusing by SVM 20.93 ± 1.53 5.42 ± 0.85 

RQ-MSF(2 inputs) 12.65 ± 1.25 4.15 ± 0.75 
RQ-IF(4 inputs) 14.78 ± 1.34 4.94 ± 0.82 
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that the combination of UCN with qualitative SVM, successfully reduces both the IER 

and OSI-EER.    

A performance assessment of the results in terms of OSI-EERs is presented in Figure 7.5. 

The results for each of the two individual modalities used in this investigation are given 

as baselines.  

 
Without UCN With UCN Modality 

IER% OSI-EER ± CI 95(%) IER% OSI-EER ± CI 95(%) 
Voice (NIST) 28.85 59.62 ± 1.85 28.85 15.38 ± 1.36 

Face (BANCA) 32.69 32.69 ± 1.77 32.69 25 ± 1.63 
Fusing by SVM 46.15 34.62 ± 1.79 19.23 7.69 ± 1.00 

RQ-MSF(2 inputs) 21.15 32.69 ± 1.77 19.23 5.77 ± 0.88 
RQ-IF(4 inputs) 32.69 30.77 ± 1.74 23.08 3.85 ± 0.72 

Table 7.6: Experimental results for open-set identification based on degraded data. 
 
 

 
Figure 7.5: DET plots showing the effects of qualitative SVM and UCN on the 
verification process in the second stage of open-set identification experiments with 
degraded data.  
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It can be observed from Figure 7.5 that combining UCN with the qualitative SVM 

appears to provide better performance in terms of reducing error rates (OSI-EERs). 

These outcomes confirm the earlier suggestion (Section 7.2) that the reliability of 

multimodal biometrics can be further increased if the scores from the individual 

modalities involved are first subjected to UCN and then passed on to the relative quality 

learning mechanism. 

Figure 7.6 gives a visual representation of the OSI-EERs obtained using fusion based on 

SVM, RQ-MSF, RQ-IF, SVM-UCN, RQ-MSF-UCN and RQ-IF-UCN together with the 

error rate for the best individual modality (face).   
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Figure 7.6: Comparison of OSI-EERs for various fusing configurations with the baseline 
OSI-EER for face modality based on degraded data. 
Recognition mode: Verification process in the second stage of open-set identification. 

 

As shown in Figure 7.6, a sharp drop in OSI-EERs is obtained with the fusion technique 

SVM-UCN. However, passing on the normalised face and voice scores to the relative 

quality learning mechanism further improves the accuracy of multimodal biometrics.  

Some important outcomes of the experimental investigations can be observed by 

considering the results in all the tables shown above. From these results, it is clearly seen 

that in all three data conditions, combining UCN with relative quality learning 

mechanism consistently lead to the best performance whether it is in verification or 
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open-set identification mode. It can also be seen that neither of RQ-IF and RQ-MSF 

appears to perform consistently better than the other. This is thought to be due to the 

different processes involved in passing on the quality of the scores to the SVM. Another 

possible reason for such behaviour is the biometric data conditions involved. It should 

also be pointed out that the error rates obtained in this chapter, for the individual 

modalities and the fused biometrics scores using non-qualitative SVM with or without 

UCN, differ from those obtained in the previous chapter. This is due to the use of 

different sizes of databases.   

 

7.4 Summary 
An investigation into the use of unconstrained cohort normalisation (UCN) combined 

with qualitative score-level fusion for multimodal biometrics has been presented. The 

experimental investigations have been carried out under three different data conditions. 

The experimental results have shown that, in the two cases of verification and open-set 

identification, the combination of UCN with relative quality learning measurements is 

more effective than either the best single modality performer or the use of only one of 

these techniques with SVM. The reason for this seems to relate to the individual 

characteristics of the two techniques: UCN aims to compensate for degraded scores and 

to suppress the impostor scores with respect to the client scores; whilst SVM-RQM 

makes use of the knowledge of the relative level of degradation of biometric data types 

involved (in the test phase). 
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Chapter 8 
 

Conclusions and Future work 

8.1 Summary and conclusions 
 

Combining multimodal data has shown to be a very promising trend, both in experiments 

and in real-life biometric authentication applications. Multimodal biometric systems can 

overcome some of the limitations of unimodal systems. For example, the problem of 

non-universality is addressed since multiple traits can ensure sufficient population 

coverage. Also, multimodal biometric systems make it difficult for an intruder to 

simultaneously spoof the multiple biometric traits of a registered user. The key to 

multimodal biometrics is the fusion of various biometric data. Fusion can occur at 

various levels, the most popular one is the score level where the scores output by the 

individual modalities are integrated.  

A critical question is how to integrate these scores. As part of this study, a review of 

well-established fusion methods has been carried out. The experimental investigations 

have included the use of fusion methods in both unimodal and multimodal biometrics. In 

particular, two types of biometrics (i.e. face and voice) have been considered in the 

investigations. The individual modality scores are obtained using the XM2VTS database. 

The scores are based on eight baseline systems. Five of the eight baseline systems 

involve face features and the other three are for speech features. In each experiment, the 

scores to be fused are subjected to the range-equalisation process prior to fusion (to 

achieve values in a common range). This is based on MM or ZS range-normalisation 

techniques. Nine fusion schemes are used in the fusion stage. These are BFS, MW-

(FAR/FRR), MW-EER, FLD, QDA, LR, Linear SVM, Poly SVM, and RBF SVM. These 

techniques are known as non-adaptive as they involve determining all the fusion 

parameters using the development set. 

Based on the baseline EERs computed using the unimodal verification scores, it is noted 

that, FH gives the best EER compared to the other face features, whilst LFCC leads to 

the lowest EER compared to the other speech features. By comparing the results obtained 
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for the two cases (i.e. unimodal and multimodal biometrics), it is evident that higher 

accuracy is a main advantage of multimodal biometrics over unimodal biometrics. The 

reason of such findings is that separate information from different modalities is used to 

provide complementary evidence about the identity of the users. On the other hand, 

comparing the results for the MM range-normalisation method with the corresponding 

results for ZS range-normalisation shows that better performance can be obtained with 

the latter normalisation method. With ZS range-normalisation, the fusion process (in 

most cases) improves the performance beyond that obtainable with the better of the two 

individual modalities involved. In particular, the seven top fusion methods (i.e. BFS, 

MW-(FAR/FRR), MW-EER, LR, Linear SVM, Poly SVM, and RBF SVM) considered 

in the multimodal scenario are found to provide consistent improvement regardless of the 

choice of face-voice features considered. For these seven fusion methods, it is noted that 

the best results are obtained when DCTs is used as the face feature. Based on the results 

it is noted that the usefulness of each fusion method varies with the choice of feature and 

classifier used for each modality. 

Another issue of concerns in this thesis is the effect of the data variation on the 

recognition performance of biometric systems. Such variations are reflected in the 

corresponding biometric scores, and thereby can adversely influence the overall 

effectiveness of biometric recognition. The term data variation, as used in this thesis, is 

subdivided into two types. These are, variation in each data type arising from 

uncontrolled operating conditions, and variation in the relative degradation of data. The 

former variation can be due to operating in uncontrolled conditions (e.g. poor 

illumination of a user’s face in face recognition), or user generated (e.g. carelessness in 

using the sensor for providing fingerprint samples). The variation in the relative 

degradation of data is due to the fact that in multimodal biometrics different data types 

are normally obtained through independent sensors and data capturing apparatus. 

Therefore, any data variation of the former type (discussed above) may in fact result in 

variation in the relative degradation (or goodness) of different biometric data deployed. 

The thesis has made a number of contributions aimed at tackling the above-mentioned 

variations. For the relative degradation problem, it was found from the definition of the 

non-adaptive fusion technique, that the drawback of this technique is the possible 
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mismatch between the relative variation of the biometric modalities involved in the 

development and test data respectively. For example, if one modality (e.g. voice) leads to 

good performance in the development stage, compared to the other modality (e.g. face), 

but does not retain the same relative performance at the test stage, this can adversely 

affect the outcome of multimodal biometrics. To tackle this problem, it would be logical 

to consider the relative levels of contamination in different biometric data not only in the 

development phase, but also at the test stage. Therefore, the thesis presents an adaptive 

approach to reduce the effects of such relative degradation in multimodal fusion. The 

proposed approach is based on adjusting the weights for each of the two modalities 

according to their relative quality. This is performed by estimating the relative quality 

aspects of the test scores and then passing them on into the Support Vector Machine 

either as features or weights. The former approach is based on passing the relative 

quality aspects in the individual modality as a separate feature for SVM. This technique 

is termed Relative Quality aspects as Independent Features (RQ-IF). In the latter 

approach, the relative quality aspects in each of the modalities are fused with the 

respective scores and then the combined scores are passed on as a feature to SVM. This 

is referred to as Modality Specific Fusion of Relative Quality aspects (RQ-MSF). Since 

the fusion process is based on the learning classifier of the Support Vector Machine, the 

technique is termed Support Vector Machine with Relative Quality Measurement (SVM-

RQM). Such an approach is compared with the linear SVM. Experimental comparisons 

of fusion schemes as well as quality measures have been carried out using the XM2VTS 

database. Amongst the two fusion schemes considered (SVM and SVM-RQM), SVM-

RQM scheme has appeared to provide better performance in terms of reducing error 

rates. Such results prove that Linear SVM can benefit from the relative quality of the 

testing data in order to decrease the system error rates. This is because SVM-RQM 

provides prior information about the relative degradation in the different types of test 

biometric data. Such information helps SVM to optimise its parameters to fit the test 

data.  

Although SVM-RQM has helped decrease the system error rates, it is believed that the 

effectiveness of multimodal biometrics can be further improved if, through some means, 

the scores from the degraded modality can be corrected appropriately. An approach with 
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the potential for offering the above desired capability is that of score normalisation. To 

date, this method has been used only in the context of speaker recognition. According to 

the literature, there have been different approximation approaches introduced for this 

purpose, leading to different score normalisation methods (i.e Cohort Normalisation 

(CN), Unconstrained Cohort Normalisation (UCN), Universal Background Model 

(UBM) Normalisation, T-norm and Z-norm). UCN appears as the best choice for the 

purpose of score normalisation, and therefore deployed in this thesis. This is because the 

approach provides a useful means for appropriately adjusting the individual biometric 

scores for a client, without any prior knowledge of the level of degradation of each 

biometric data type involved. However, to date, there have been no reported 

investigations into the use of UCN with any biometrics other than voice. Therefore, the 

thesis has explored the potential usefulness of UCN in face biometrics and investigated 

its effectiveness in enhancing the accuracy in a multimodal biometric scenario. The 

experimental investigations have been concerned with the fusion of face and voice 

biometrics in the two recognition modes of verification and open-set identification. The 

investigations in each mode have involved four different data conditions. Two of them 

are based on the use of scores for clean face images (XM2VTS) together with scores for 

either clean (TIMIT) or degraded utterances (NIST Speaker Recognition Evaluation 

2003). The other two are based on the use of scores for degraded face images (BANCA) 

together with scores for either clean (TIMIT) or degraded utterances (NIST Speaker 

Recognition Evaluation 2003). 

In each experiment, the individual biometric score types involved are subjected to the 

range equalisation process using the ZS normalisation. The linear support vector machine 

(SVM) is used for the purpose of fusion. The fusion process is applied to the biometric 

scores with and without subjecting them to the UCN process. This is to determine the 

level of effectiveness enhancement offered by unconstrained cohort normalisation. The 

fusion process, with UCN, is denoted as SVM-UCN. 

Based on the experimental investigations, it has been shown that UCN offers 

considerable improvements to the accuracy of multimodal biometrics in both degraded 

and clean data conditions. This is shown to be due to the twofold characteristic of this 

score normalisation method. Firstly it provides a means for enhancing the scores when 
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the test data is degraded, and secondly, it aims to suppress the impostor scores in relation 

to those for clients. The investigations have also confirmed the usefulness of UCN in 

face recognition as well as in speaker recognition for which the technique had originally 

been developed. Additionally, through a set of open-set identification experiments, it has 

been shown that multimodal fusion can consistently outperform the accuracy offered by 

the best single modality performer, when it is combined with UCN. 

The encouraging results of the previous techniques (i.e. SVM-RQM and SVM-UCN) 

motivate further research in order to introduce a new approach to enhancing the accuracy 

of multimodal fusion. Such an approach is based on a two-stage process. Firstly, the 

matching scores obtained for face and voice biometrics are normalised. Secondly, the 

quality of the normalised scores for each modality is then measured. Using this 

knowledge, score-level fusion is carried out using SVM. The experimental investigations 

have been carried out under three different data conditions. The experimental results 

have shown that, in the two cases of verification and open-set identification, the 

combination of UCN with relative quality learning measurements is more effective than 

either the best single modality performer or the approaches based on using only one of 

these techniques with SVM. This has been attributed to the individual characteristics of 

the two techniques: UCN aims to compensate for degraded scores and to suppress the 

impostor scores with respect to the client scores; whilst SVM-RQM makes use of the 

knowledge of the relative level of degradation of biometric data types involved (in the 

test phase). 
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8.2 Suggestions for future work 
 
The experimental investigations, in this thesis, involve the two recognition modes of 

verification and open-set identification, in clean, mixed-quality and degraded data 

conditions. The results show that the performance of biometric systems can benefit from 

score level fusion, but that this depends highly on the types of fusion technique as well as 

the range-normalisation method used. Hence, future work will focus on these two factors 

which play important roles in the effectiveness of multimodal biometric systems. An 

explanation of the nature of the problem of multimodal biometric systems (how these 

two factors can affect the performance) and suggested solutions to obtain an optimal 

multimodal biometric system is discussed in the rest of this section.  

 

8.2.1 Range-Normalisation 
 
Range-normalisation (Section 3.2) refers to the transformation of single modality scores 

into a common domain prior to combining them. Several studies have shown the 

significant influence of the range-normalisation techniques prior to fusion in biometric 

recognition task. For example, Srihari et al [70] claimed that range-normalisation is a 

necessary task because scores from different systems are incomparable. In [71] Altinay 

et al mentioned that in the case of using linear fusion techniques to integrate the scores of 

the individual modalities, score incomparability affects the system performance. 

Indovina et al. [12] evaluated the effects of range-normalisation techniques (Min-Max, 

Z-score, Tanh, Quadric-Line-Quadric) and fusion methods (Simple Sum, Min score, 

Max Score, Matcher Weighting, User Weighting) on the performance of a multimodal 

biometric system using face and fingerprint modalities. Their experiments showed that 

Min-Max and Quadric-Line-Quadric normalisation methods lead to the best performance 

except for Min score fusion technique. However, they do not offer any reasons for such a 

behavior. Although there exists a number of studies regarding range-normalisation, there 

still exist some questions to be addressed. These are, “Does range-normalisation affect 

the original score distribution for clients and impostors? What are the effects of linear 
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and non-linear range normalisation techniques on the performance of linear and non-

linear fusion methods?”. 

 

8.2.2 Fusion techniques 
 

The experimental results have shown that although non-adaptive fusion techniques (i.e. 

linear SVM) might lead to good performance in clean conditions, they fail in noisy 

conditions. This, as expected, is in agreement with the results presented in [9]. Sanderson 

et al [9] has indicated that in clean conditions, the integration of the scores for face and 

voice by SVM obtains performance better than either face or voice features. However, in 

high noise levels (SNR=-8dB) [9], the SVM performance has been found to be worse 

than the face feature. This is expected since SVM is a non-adaptive fusion technique. 

Therefore, the thesis has presented several approaches to help the fusion process (i.e. 

linear SVM) to enhance its performance regardless of the biometric data conditions. In 

keeping with this line of research, this section presents possible ways for future work. 

 

8.2.2.1 Quality estimation 
An important aspect of the future work is to investigate further methods for evaluating 

the quality of the testing data. The distance between a reference model and the model 

associated with a claimant can be useful for evaluating the quality of testing data. 

However, this area should be subjected to thorough investigations to identify the most 

appropriate approach. 

8.2.2.2 Unconstrained cohort normalisation at feature level 
Chapters 6 and 7 show that introducing UCN into the score level fusion process can 

improve the system performance. Since, for each modality, the biometric score is 

obtained by accumulating the feature scores, it would be interesting to investigate UCN 

usefulness at such a level. 
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8.2.2.3 Unconstrained cohort normalisation for other types of biometrics 
Whilst this thesis has confirmed the effectiveness of UCN for face modality as well as 

fused voice and face biometrics, further investigations are required to determine what 

other types of biometrics can benefit from such forms of score normalisation.   

8.2.2.4 Unconstrained fusion techniques 
In the opinion of the author, another area worth investigating is that of unconstrained 

fusion methods. These methods are defined here as the fusion approaches requiring no 

development data. In fact, unconstrained fusion methods can be defined as a subset of 

adaptive fusion methods. These should only require information about the quality of the 

test data in order to provide multimodal-based discrimination between the clients and 

impostors. The investigations into unconstrained fusion techniques will be carried out 

over clean and noisy databases and the results will be compared with these of other 

approaches.   
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