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“There is grandeur in this view of life, with its several pow-

ers, having been originally breathed into a few forms or into one;

and that, whilst this planet has gone cycling on according to the

fixed law of gravity, from so simple a beginning endless forms most

beautiful and most wonderful have been, and are being, evolved.”

Charles Darwin — On the Origin of Species
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Abstract

Technology, nowadays, has given us huge computational potential, but

computer sciences have major problems tapping into this pool of resources.

One of the main issues is how to program and design distributed systems.

Biology has solved this issue about half a billion years ago, during the

Cambrian explosion: the evolution of multicellularity. The evolution of multi-

cellularity allowed cells to differentiate and so divide different tasks to different

groups of cells; this combined with evolution gives us a very good example of

how massively parallel distributed computational system can function and be

“programmed”.

However, the evolution of multicellularity is not very well understood,

and most traditional methodologies used in evolutionary theory are not apt to

address and model the whole transition to multicellularity.

In this thesis I develop and argue for new computational artificial life

methodologies for the study of the evolution of multicellularity that are able

to address the whole transition, give new insights, and complement existing

methods. I argue that these methodologies should have three main charac-

teristics: accessible across scientific disciplines, have potentiality for complex

behaviour, and be easy to analyse.

To design models, which possess those characteristics, I developed a

model of genetic regulatory networks (GRNs) that control artificial cells, which

I have used in multiple evolutionary experiments. The first experiment was

designed to present some of the engineering problems of evolving multicelled

systems (applied to graph-colouring), and to perfect my artificial cell model.

The two subsequent experiments demonstrate the characteristics listed above:

one model based on a genetic algorithm with an explicit two-level fitness func-

tion to evolve multicelled cooperative patterning, and one with freely evolving
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artificial cells that have evolved some multicelled cooperation as evidenced by

novel measures, and has the potential to evolve multicellularity. These experi-

ments show how artificial life models of evolution can discover and investigate

new hypotheses and behaviours that traditional methods cannot.
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Chapter 1

Introduction

“I have no doubt that in reality the future will be vastly more

surprising than anything I can imagine. Now my own suspicion is

that the Universe is not only queerer than we suppose, but queerer

than we can suppose.”

J. B. S. Haldane

If you look around you in the world, you can find complexity and amaze-

ment, from the eyes of a fly to the blue jewel that is our planet and further!

And when it comes to our planet, much credit is due to evolution. From what

once was a fiery Hades some 4 billion years ago has become an oasis of life.

In these aeons past, during the pre-Cambrian our unseen microscopic relatives

working hard to transform our planet, paving the way, without knowing it, for

us, had already evolved most of the tricks of the trades that we think are the

gifts of our higher taxa of the tree of life.

Bacteria and Archaea live in complex societies, different strains cohab-

iting in biofilms, each having their role in their micro-ecologies, their own

miniature cities. These societies still exist nowadays, in every puddle, in every

spadeful of mud, in your own gut. Microorganisms are not little cell-sized

loners going for the kill; many of them are much closer, in a sense, to us. Of

course they have no brain, no free will, they are just little cells containing an

extremely complicated set of chemical computations. But even being some of

the less complex creations of evolution, they can cooperate.

Cooperation is one of the cornerstones of evolution. At the origin of

life, those 4 billion years ago, some molecules of some sort worked together
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to create a work of ever evolving chemistry and interaction. I might give too

much agency to all those parts (to be honest any agency is too much), but

one cannot resist the lure of romanticizing Nature some times. Cooperation in

one form or the other is omni-present in this world, ecosystems survive only

through specialized species performing their role in the system, as does any

multicellular organism, where every cell performs its task. In a genome as

“selfish” as the genes might be, they still form a part of a cooperative unit, if

one goes rogue the survival of the whole is at stake. Kropotkin in his book,

Mutual Aid Kropotkin (1904), was one of the first to state the importance of

it, as idealistic as he was (and critical of the idea of “survival of the fittest”),

he looked around and he saw a well oiled system where in every interaction,

between species and inside species, survival was never the work of an organism

alone, everything influenced everything. Mutual aid, not necessarily conscious,

drove evolution, not mutual destruction.

Multicellularity, symbiosis, ecologies, societies, genomes, swarms, herds,

all are in a sense cooperation, mutual aid. The main question, as a scientist,

for me, is: “Is there an underlying, general, principle of cooperation?”. This

is of course a big question, and not one I can answer.

Cooperation under all its forms isn’t without its problems. Any kind of

cooperative system, has what is often called in the biology literature, “cheater”.

A “cheater” is an element in a cooperative system that will try to get the bene-

fits of the system, without having to pay the cost. In biology, most cooperative

systems have evolved safeguard mechanisms, self-policing technology, to limit

the damage such cheaters can do (Michod, 2003). At every possible level one

can find some: From the “police cells” of our immune system, to pleiotropy

(one gene with multiple functions) tricks in the genetic regulatory network of

cells Foster et al. (2004). But as much as cooperation is visible and quite well

understood the flip-side of it, the self-policing, tends to be difficult to detect

and is little studied as such.

Again as for cooperation there is more to the understanding of self-

policing, than just the biology of it. In modern sciences and technologies we

are moving more and more towards our first real von Neumann replicators

being robots on Mars or the moon, nano-bots in our bloodstream, or even

very advanced self-replicating software agents. Most of those machines, will

be programmed to do some specific task, but being self-replicating those ma-

chines will have the possibility to evolve and, depending on the system we are
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speaking about, this evolution could be extremely fast. As soon as a system is

enmeshed in the process of evolution it will run the risk of being hijacked by it,

turned away from its purposes by the pressures of evolution. Understanding

self-policing mechanisms, understanding the safeguards life on earth evolved

to protect itself from rogue elements is vital.

The research in this thesis, will of course, not aim to solve all these

problems, but I hope that it will, in a first place raise some awareness on some

of those issues, and secondly try to present some work I think goes towards

answering them.

A major trend in computer sciences in the last couple of years and

probably in the years to come, is toward massively parallel and/or distributed

systems. Of which probably the most well-known and established one is the

internet.

What is meant by massively parallel and distributed system is a systems

where a huge number of more or less simple processing units are connected

to each other (in a structured or non-structured manner) to perform some

computations. The computations those processors are performing do not have

to be directly connected (they do not have to perform a common task), but

computations performed on one processing unit can influence the rest of the

network.

These kinds of system are becoming more and more common: the in-

ternet, Beowulf clusters, robot swarms, and so forth. These systems are very

interesting because they have a very high potential processing power, yet tap-

ing efficiently into that power is very difficult because it is very difficult to

program such systems.

So one of the starting points of this work was to develop new methods

to design (possibly through evolution) what I will call a multicelled compu-

tational system: massively parallel distributed computing systems based on

organisational principles like those of multicellular life. But what became ap-

parent early on during this time was to evolve this kind of system, it had to

be considered differently to a “single-celled” computational system. The first

concept would have been to go towards the concept of developmental systems.

Developmental systems are systems based on the early cellular development

in multicellular (mostly eucaryotic) organisms, the idea being to start of with

one cell, which after a number of divisions, gets a complex structure and or-
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ganisation. The problem being that the evolution of development1 in biology

(and in theory) is still quite badly understood. Which brought me to push this

idea one step further: the modelling of the evolution of multicellularity and

one of the main hypothesis of this work: “to evolve good multicellular systems,

one needs first to evolve multicellularity”2. Hence the focus from this work

slowly shifted from the idea of developmental multicelled computer systems to

understanding the evolution of multicellularity.

The purpose was and still is, in part, to develop computer systems, but

I firmly believe that to use evolution efficiently for this purpose, much more

about the major transitions in evolution, cooperation, conflict mediation, and

multicellularity needs to be understood.

1.1 Thesis Statement

The work I will present in this thesis will first present an artificial life cell for

the study of evolution of multicelled systems. The goal being to design models

that could evolve multicellularity from single cells, without explicit fitness.

These kind of models would be complementary to more traditional models of

evolutionary theory and could help the computer science community to design

and build biology-inspired massively parallel computational systems.

1.2 Contribution

The main contributions to knowledge presented in this thesis are:

1. Presentation of an artificial cell model usable for a wide variety of models

and problems (Chapter 4)

2. Development of a graph colouring method using this artificial cell as the

base of a multicelled environment (Chapter 5)

3. A fitness-based model for the evolution of multicelled cooperation in a

“colony”-type environment, which shows the link between fixation of a

complex adaptation (such as multicelled cooperation) depending on the

environment (Chapter 6).

1Studied in the new-ish field of evo-devo (Evolution of Development)
2And then one can go to development, and to a good (whatever good is) system.
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4. Showed how the models I present can have behaviours that are not trivial

with mathematical modelling methods (Chapter 6).

5. Presentation of a cell-based model allowing free evolution of multicelled

cooperation (and potentially multicellularity) without explicit fitness.

1.3 Outline

For the rest of this thesis I will first introduce in Chapter 2 the state of re-

search in evolutionary theory, open questions, and how I hope my work can

contribute to this field. In the second part of my literature review (Chapter

3), I will present the computer science part of the background, mostly centred

on artificial life and more specifically multicelled artificial life (Section 3.4),

and evolutionary algorithms which I used for my experiments 4.2.

The rest of this thesis will be about the actual research I have done.

In Chapter 4, I presented my novel artificial life cell model, and some other

algorithms I have used throughout this work. In Chapter 5, I will present an

experiment in which I evolved a simple multicelled system to colour graphs.

This experiment shows how one can evolve a multicelled computing system for

classical optimization problems, and will explain and illustrate its problems

and shortfalls. In Chapter 6, I present a first simple model where an explicit

fitness model is present to model evolution of multicelled cooperation. This

experiment helps me to understand and clarify some concepts about complex

fitness landscape for multi-level systems. It shows as well how such a model can

show behaviours that would not have been possible to have in more classical

models of evolution. And in the last experiment (Chapter 7), I present an

implicit fitness model of bacterial-like evolution that evolved some multicelled

cooperation and has the potential for multicellularity.
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Chapter 2

Evolutionary Theory

“Any competent biologist is aware of a multitude of problems

yet unresolved and of questions yet unanswered.”

Dobzhansky (1973)

2.1 Evolution Theory: Introduction

The field of evolutionary theory has gone a long way ever since Darwin’s voyage

on the Beagle in the 1830s and the publication of The Origin of Species in 1859.

The insights of August Weismann leading to the demise of Lamarckism, the

addition of population dynamics and Mendelian genetics to create the modern

evolutionary synthesis in the first half of the 20th century, the extension of it

with modern molecular biology after the discovery of structure of DNA, all

the way to the resurgence of Lamarckism in the form of epigenetic inheritance

have shaped and improved our understanding of the process which have made

earth what it is nowadays. But still a large part of the process is badly and

even misunderstood, and not only by the layman.

Evolution is to biology what history is to political sciences: one cannot

understand the latter without understanding what brought it into being. But

where for history its effect on politics is probably weakening with time and so

mostly the latest part (of which we have the completest records) is important.

With evolution and biology it is mostly the reverse: all life comes from a com-

mon origin and that origin is very far away, and those origins and the evolution

during the earlier periods of life on earth are still extremely important yet very
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difficult to study.

Actually every part of evolution is difficult to study. The only accurate

and precise record we have is the snapshot of the life on earth right now. Even

though we carry a lot of evolutionary baggage in our genome (see section

2.3.1), it is a bit like studying history by only looking at the state of current

political affairs; you could study history, but it is greatly difficult, with a high

risk of inaccuracies, and chances of missing big events completely. The other

solutions are to study fossil records, but again this is not without problems.

Most importantly, the whole fossil record is greatly biased: mostly hard-shelled

and bony animals, and plants are represented; the bacterial and protist worlds

are almost not represented, and when they are, they are very difficult to study

for their lack of evident physiological characteristics. Hence the species found

in the fossil record represent only a tiny part of the history of life, and only

this part can be reasonably interpreted. Also in the cases where there are fossil

records, they are often incomplete, making an exact account near impossible.

But one can still study evolution and get a better understanding of its

underlying processes, in my opinion mostly through modelling methods.

This is due to one of the main features of the evolutionary process: it is

not only a practical process, evolution can be theoretically and mathematically

characterized. Any system showing a certain set of characteristics can evolve.

This principle has been extensively accepted since the founding of the modern

evolutionary synthesis and the use of mathematical modelling has since been

one of the main tools to study different processes and problems. Although it

has to be acknowledged that theoretical approaches to the study of evolution

are complementary to the experimental approaches, the theoretical approaches

are still very important because so much experimental evidence is open to

interpretation.

Evolution is first and foremost a purely theoretically identified process,

not necessarily a biological one. Evolution will happen in any system exhibit-

ing certain properties. The exact formulation of these properties vary slightly

depending on whom you read but basically all are variants and precisions on

the same theme, the first time it was explicitly identified was in (Lewontin,

1970) as:

• phenotypic variation

• differential fitness
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• heritability

Any system exhibiting these properties will have the mean of its indi-

vidual fitnesses increase over time (in most circumstances).

Let me try to clarify this kind of system more in depth. An evolutionary

system is composed of a population ε of entities . Hereditary reproduction

means that each entity of ε can make a “copy” of itself into ε, and with variation

is meant that that copy can be different to some extent from its original.

Yet there are differences in fitness between every entity in ε (differences in

reproduction rate or survival, or others), but as the offspring (“copy”) of any

entity is correlated to its parent, their fitness will be too. So to simplify again:

entities with a higher fitness might have more offspring of better quality, hence

they will have more chances to survive and reproduce themselves, and so forth.

Evolution can be confusing in a certain sense by these simple required

properties: even though it is a theoretical framework applicable to any kind of

system possessing certain properties, the implementation details of evolution

in nature are discussed by human observers describing what they think they

see (what is the fitness, who is the individual, what is the population, is a group

structure relevant...). The details will often depend on the type of problems

and systems that are addressed or observed, and the way they will be studied

by said human scientist.

I will, in the next section, first describe the gene-centred view of evolu-

tion, the most used framework in which evolution is studied, then describe the

main methodologies with which, and in a last section describe more specifi-

cally issues and frameworks linked to my specific field of interest: evolution of

cooperation and multicellularity.

2.2 Dawkins and the Gene-centred view of Evo-

lution

The gene-centred view of evolution is based on the works of Hamilton (1964a,b),

Williams (1996), and later popularised by Dawkins (1976). This ”view” of evo-

lution is more or less directly the result of the modern-evolutionary synthesis,

meeting the newly discovered central dogma of molecular biology (Crick, 1958).

The premise of the gene-centred view is that for selection to be able to act

upon some entity, this entity needs to be persistent through generations in the
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same form. If not it would not be possible for heritable changes on that entity

to accumulate. With the newly discovered structure of DNA in 1953, the can-

didate to be such an entity was closer than ever. The cell or the organism is

not constant enough, it does not persist in time, but the nucleotide sequences

of the DNA included in every cell (or organism) are kept from generation to

generation and can have a cumulative effect on the survival of the cell (or

organism).

Richard Dawkins in his book The Selfish Gene(Dawkins, 1976) defines

his genes on which selection is happening in an almost tautological way. His

statement starts with the fact that in sexual organisms crossovers break and

recombine the chromosomes of the mother and the father, hence the chromo-

somes are not persistent enough to be the units of selection (nor is the whole

genome either, for that matter, as chromosomes are picked randomly from

each of the parents). But you can imagine any stretch of nucleotides small

enough not to be broken by cross-over all that often (so that it can persist

in a lineage), such a stretch of DNA he calls “gene”. This stretch of DNA

can be arbitrarily short but if it is too small becomes uninformative so for the

purposes of modelling, they need to be of a “reasonable length”.

This “gene” should not be confused with the biological gene. In biology,

a gene is roughly defined as a stretch of DNA that codes for a protein sequence

(and a certain stretch around with promoter, and regulatory sites). Dawkins’

“gene” can be any stretch of genome, with any number of biological genes

or none at all. The only thing counting is for it to have the capacity to be

persistent in the lineage. To avoid any confusion I will use the term genetic

replicators, introduced by Dawkins in The Extended Phenotype, when I speak

about Dawkinsian “genes”.

To clarify a bit, a (sexual diploidic) organism’s genome is composed of

two sets of equivalent genetic replicators; by equivalent I mean each genetic

replicator in one set has an alternative form in the other set (with some ex-

ceptions of course, like the X and Y chromosomes, and mitochondrial DNA)

. Each set got inherited from one of the organism’s parents, the organism’s

brother and sister share half of your genetic replicators, and so on. So genetic

replicators are kept alive throughout generations (by definition, remember a

genetic replicator is a stretch of DNA not destroyed by cross-over). So if a

certain genetic replicator at a specific place in a genome is “better” (by, for

example, replicating more) then another genetic replicator at the same spot,
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this genetic replicator’s proportion in a population1 of organism will increase.

So any adaptation can be seen as ultimately benefiting the replicator.

2.3 Methodology and Modelling in Evolution-

ary Sciences

The study of evolution is to a certain degree a historical science, we want

to understand the history of life itself. But evolution is also a process: a

process that acts on any system implementing Lewontin’s three rules. Hence

evolutionary models can often be viewed through two lenses: one focussing

on understanding the history of life and explaining biology through evolution;

and the other on understanding the evolutionary process and discovering the

main principles underlying it. Some models and methods might be only useful

for one approach, and some might seem to be relevant for both but should

not, hence caution and critique is to be had when looking at specific models

as to which part of the study of evolution it is relevant to.

2.3.1 Phylogeny and Comparative Molecular Biology

The discovery of the structure of DNA and the advances in sequencing tech-

nology has allowed huge leaps of knowledge about evolution, of which phy-

logeny has probably contributed to most. Phylogeny is the part of biology

that concerns itself with building “trees of life”. It was probably the first way

of studying evolution and modelling its instance with life on earth. The first

real phylogenies were based on purely physiological characteristics2, and this

is still done nowadays with increasing precision. But the arrival of genomic

and proteomic data has increased the possibilities in this fields by orders of

magnitude.

One of the difficulties of physiological phylogeny is that one needs com-

parable characteristics for the organisms we want to build a tree for: it is very

difficult to compare a bush with a bat. Genomic data gave us the necessary

similarity measures. For example, all genomes that we know of on earth share

1The notion of population can be problematic, and is often anthropocentrically defined.
2One could for example build a phylogeny of the evolution of birds by comparing forms

of beaks, and to each pair of beaks give a similarity score, and out of the matrix of “beak
similarity” draw a tree.
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genes for different tRNAs3, these are strings of bases which we can then com-

pare automatically (which is also an advantage compared to the “old school

methods”) across all species (for which we have sequenced the tRNAs), and

so build a phylogeny of “all” life on earth.

These methodologies more than anything (should) have dissipated last

doubts about the theory of evolution. Also these methods of comparing ge-

nomic and proteomic data across species and organisms, called comparative

biology, are the main methodology to study evolution the experimental way.

These methods have allowed us to have a much better picture of evo-

lution, and how it happened on earth. It allowed us to separate Bacteria and

Archaea into two different domains, confirmed the endosymbiotic theory4,or

showed us just how close we are to our closest animal relatives, the apes.

These methods can have a very surprising precision: lately one was able to

track early human migrations (around 100 thousand years ago), by building

phylogenies with data from secluded hunter-gatherer societies.

There are some limitations with these experimental methodologies. It

is in a sense a purely historical science, it only can tell the story from a result

point of view. It is very hard (if not impossible) to get any kind of mechanistic

or theoretical result from these. One can build a “who is the cousin of whom”,

but we cannot really say why and how. This is the realm of different approaches

to the study of evolution.

2.3.2 Mathematical Modelling

In the first half of the 20th century, a new way of understanding and study-

ing evolution emerged. This new way of looking at evolution, led by Fisher,

Wright, and Haldane (and many others), would become known by the name of

modern evolutionary synthesis. It combines evolutionary theory, with Medelian

genetics, and population dynamics. The modern evolutionary synthesis paved

the way for most of what has been discovered about evolution since then, and

3tRNAs are part of the essential transcription machinery, they do the “translation” from
RNA to protein.

4The endosymbiotic theory (Margulis, 1981) says, that the mitochondria in our cells
were the descendants of actual bacteria that lived in symbiosis with other bacteria (around
1 billion years ago, during the late pre-Cambrian), that actually got internalised and now
cannot live alone any more (neither the host, by the way). This was proven when doing the
phylogenies of the little genetic material left in the mitochondria.
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led to new methodologies.

One of these methodologies is to study evolution with mathematics.

The modern synthesis itself is partly born out of mathematics, when in the

early 20th R. A. Fisher proved mathematically that the sum of the effects

of Mendelian genes, if there are many of them with small effects, can give

a continuous spectrum of variety. This proved that Mendel’s genetics are

consistent with the theory of evolution.

Ever since then many diverse mathematical models have been in the

centre of the study of evolution. There exists a plethora of models, most

of them very problem specific. I will describe shortly how these are usually

structured.

2.3.2.1 Classical Population Dynamic-like Models

Most of the mathematical models of evolution are directly derived from the

gene-centred view of evolution, even its “opposition” start usually from there,

but add other effects on top of it. So most models are sets of equations

describing the spread of different genetic replicators situated on the same locus

of the genome of individuals in a population, there are multiple alleles for this

replicator in the population so their is one equation describing the spread of

this allele depending of its own frequency, the frequency of the other alleles

and a set of parameters describing the interaction of the different alleles at

that locus. These models mostly originate from population dynamics, and use

similar methodology. So in a case of a generation based model with t different

phenotypes for generation n + 1 one would have a proportion of phenotype i

described by some predefined function fi:

pn+1
i = fi(p

n
0 , p

n
1 , ..., p

n
t )

. For the case of a differential equation based model one would get the rate of

change of the proportion of allele i in the population defined as:

ṗi = fi(p0, p1, ..., pt)

. These functions can be defined as any possible function, but traditionally

they are polynomial function, because of the great difficulty of analysis of any

other differential equation systems. Often also the degree of the polynomials

(hence interactions) does not exceed two. So traditionally for a system with
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two phenotypes for example, one would have a system of equations of this

type: {
ṗ0 = a00 · p20 + a11 · p21 + a01 · p0p1 + a0 · p0 + a1 · p1 + a

ṗ1 = b00 · p20 + b11 · p21 + b01 · p0p1 + b0 · p0 + b1 · p1 + b

, where the a and b parameters are, in a broad sense similar to the parameters

in the pay-off matrices for the game theoretical models (Section 2.3.2.3). They

represent the effect of the interactions (or lack thereof) they are linked too.

These equation systems can then be studied with classical dynamical

systems methods to find stable points and analyse their stability. They can

be use for a wide variety of studies, which range from host-parasite evolution

(Mode, 1958) to plant-resistances.

2.3.2.2 Price’s Equation

Price’s Equation is another approach often used for mathematical models of

evolution. It has been developed by Price (1972), it is an algebraic result that

describes the evolution of a population from on generation to the next. In a

population of entities each parent entity i possesses a measurable phenotypic

character zi (the character in which we are interested), the average of all z’s

is z̄, also the fitness of entity i is wi and the average of all of those is w̄. From

those quantities one can derive that

w̄∆z̄ = Cov(wi, zi) + E(wi∆zi)

, where ∆z̄ is the change of average character from one generation, Cov(wi, zi)

the covariance of fitness and character, E(wi∆zi) the expected value, and ∆zi
is the difference of character between the entity i and its offspring(s). If we

introduce relative fitness as ωi =
wi

w̄
, and if we divide both sides of this equation

with w̄ we get:

∆z̄ = Cov(ω, z) + Ew(∆z)

, where Cov(ω, z) is the covariance between zi and ωi, and Ew(∆z) is the

fitness-weighted Expected value of ∆zi.

I will not go in depth into the interpretation of this equation but, just

show how it differs from the type of modelling described in the previous section.

The second form of the equation is reasonably easy to visualize. The

LHS represents the change of a characteristic over time, and this change can

be decomposed into two quantities, Cov(ω, z) which represents the correlation
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between the fitness and the characteristic (basically the idea of natural selec-

tion: if tall animals are fitter, size will increase), and Ew(∆z) represents the

transmission-bias of the characteristic, the copying fidelity so to say.

So basically this equation gives a decomposition (purely mathematical)

of the change of a characteristic over time, into two quantities that seam bi-

ologically relevant. This decomposition has been used mostly in multi-level

selection theory (Okasha, 2006), mostly because the covariance can be decom-

posed over and over again, and each decomposition can represent a different

level of selection.

It is to note that this decomposition is purely algebraic, so even though

the quantities of the decomposition show resemblance to biological quantities,

the decomposition of ∆z̄ is not unique, and there are other ways to do this

kind of decomposition (for example, contextual analysis (Goodnight, 2005)).

2.3.2.3 Game theory and Evolution

During the second half of the 20th century, R.C. Lewontin (Lewontin, 1961)

developed a new type of models to study evolution, these new models came

from the world of economics, and are known as game theoretical models (Ax-

elrod, 1985; Smith, 1982). These kinds of models consider every entity of an

interaction as a player in a game, in which usually the player needs to win.

The classical game theory models consist of iterative games where two or more

players interact one after the other. So if they are only two players, they play

a first round of the game, check who wins, then another round, and so forth

(iterative games).

In this kind of setup usually the games are modelled by a “pay-off”

matrix. This matrix will have as many dimensions as players, and lines for

every possible strategy for every player. Each field of the matrix will contain

the “pay-off” for each of the players according to their chosen strategy. The

“pay-off”, in the case of economy, would be monetary, and for evolutionary

models it would often be fitness, or resources.

In Table 2.1, I present a pay-off matrix for the hawk and dove game

which is often used as example in the biological literature, and which was used

by Smith and Price (1973) in their seminal paper. In this game two animals

fight over a resource, each animal has two (possibly genetically determined)

possible behaviours: Hawk and Dove. In the case of the hawk behaviour,

the animal will fight until defeat (or the enemy retreats), and for the dove
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Hawk Dove
Hawk −10/−10 20/0
Dove 0/20 10/10

Table 2.1: A Pay-off matrix for the hawk and dove game

behaviour, the animal will always retreat if he meets a hawk, and if two doves

meet one random one will. Fighting has a cost (the animal gets hurt). So we

can see, in the pay-off matrix, that if a hawk meets a dove, the hawk gets all

the resources (20 units), if two doves meet they share5 the resource. In the

case of two hawks meeting, both hawks get hurt (cost of 20 resource units) but

one wins the resources randomly (so ends up even), so on average they both

lose 10 units of resources ((0− 20)/2).

This example has been used by John Maynard Smith and Price to

present the concept of Evolutionarily Stable Strategy (ESS), which is one of

the main reasons game theory has become so popular in evolutionary theory.

The concept of ESS is related to the concept of Nash equilibria (Nash, 1950).

An ESS is a strategy that cannot be invaded by any other strategy adopted

by a small proportion of the population.

In the example of the hawk and dove game the dove strategy, neither

“all dove”, nor “all hawk”6 are ESSs, because each of them can be invaded by

the other behaviour. There is however an ESS, which is mixed (there is a ratio

of the population of doves and hawks that is stable, e.g. can not be invaded).

The concept of ESS is probably responsible for the big success of evo-

lutionary game theory, it gives a simple framework to model evolution of be-

haviours, and a criteria for stability.

5Actually, the game supposes that the resource is indivisible so, the winner is taken
randomly, meaning that half of the time one dove will get the resource, the other half of the
time the other one.

6All dove and all hawk meaning that the whole population behaves according to one or
the other strategy
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2.4 Theories and Concepts for the Evolution

of Cooperation and Multicellularity

As Kropotkin and other 19th century naturalists recognized already, coop-

eration (Kropotkin used the term mutual aid) of some degree or another is

extremely omnipresent throughout the animal kingdom, and if one think of

cooperation in a wider sense (including symbiosis for example) you can find

cooperation in all kingdoms of life: association of plants and fungi (for nitrogen

fixation), social bacteria “hunting in packs”, diverse species of birds flocking

together to migrate... The number of examples of cooperation in Nature is

uncountable. Hence the need to understand cooperation at an evolutionary

level. A number of theories have been proposed to explain diverse degree of

cooperation and Multicellularity.

2.4.1 Notes on Vocabulary

Before discussing further on I will first clarify three terms I will use consistently

throughout this thesis: cooperation, multicelled interaction, and multicellular-

ity.

Cooperation: I use in this thesis the term cooperation with a very wide definition

that will incorporate the two other concepts I define here, as well as

others. I will call cooperation any kind of interaction between two or

more entities that is benefic to at least one of them (at the replicator OR

vehicle level). This is purposefully a very inclusive definition including

almost any kind of interaction between individuals of the same species

or different species: altruism, parasitism, symbiosis, pack behaviour,

commensalism, societies, even feeding. The notion of “benefic” in this

definition is also kept broad so as to allow for any definition of fitness at

any level of selection and organisation, or indirect benefit. For example,

an interaction without which one of the interacting entities is penalized

is also considered “cooperation” with this definition.

Multicelled cooperation: I will call multicelled interaction any kind of cooperation between very

related cells. This could be multicellularity (as defined here) or pack

behaviour, bacterial biofilms (with only one type of bacteria), sponges,
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algae ... I will use this term as a somewhat lesser form of early multicellu-

larity, where differentiation has not evolved yet, or is not obvious. I will

also use similarly multicelled system, any system that shows multicelled

cooperation.

Multicellularity: I define multicellularity as a type of multicelled cooperation. The main

characteristic of it being that certain cells of the set are differentiated,

e.g. performing other tasks, different physiologically ... Multicellularity

as defined here includes, for example, mammals, trees, slime moulds

during their budding phase, social insects, and many more.

I will use those terms throughout this thesis as defined here. The way

cooperation is defined here means that cooperation does not necessarily ac-

tively evolves, a cow and beetles cooperate because the beetle uses nutrients

of the cow dung, yet this cooperation has not evolved, it probably has driven

somehow the evolution of the beetle but the interaction itself has not evolved.

However certain types of interaction such as multicellular interaction and mul-

ticellularity have evolved actively.

2.4.2 Kinship Selection

Kinship selection is a concept first formalized by Hamilton in (Hamilton,

1964a,b), but was already hinted to by Fisher and Haldane. Kinship selection

is very widely used to explain and model evolution of altruism7 and eusocial

behaviour in the animal kingdom, and is widely accepted as the main drive

for the evolution of these.

This concept, deeply linked to the gene-centred view of evolution, states

that a genetic replicator will be able to spread in a population if its fitness

gain for the carrier and all its related vehicle (weighted by their relatedness,

this is called inclusive fitness) is higher than the fitness cost of that trait to

the carrier. Formally Hamilton expressed it in the well-known Hamilton rule:

rB > C (2.1)

where r is the relatedness between the recipient of the genetic replicator and

the carrier, B is the benefit to the recipient, and C the cost to the carrier.

7Altruism is a type of cooperation where one or more entities benefit at the expense of
the others.
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Relatedness often refers to the probability of the recipient and the car-

rier share this specific genetic replicator. So for animal, for example, two

siblings (or parents and offspring) share half of their genetic replicators, hence

have a relatedness r = 0.5, cousins will share an eighth of their genetic repli-

cators, hence have a relatedness of r = 0.1258.

For example, to take an example attributed to Haldane, who said he

would happily give up his life to save three of his brothers. As we saw be-

fore, each brother shares half of his genetic replicators with him, so a genetic

replicator which would “push you” to save three of your brothers, would on

average save 1.5 copies of itself. So sacrificing one copy to save 1.5 copies

is a ‘fair deal’. So basically, Haldane would sacrifice himself for three of his

brothers (but not two). In terms of Hamilton’s equation, we would have the

following genetic replicator for this behaviour, r = 0.5, B = 3 (three siblings

live), C = 1 (Haldane sacrificing himself), hence 0.5 ∗ 3 > 1, which is true, so

this genetic replicator could theoretically spread.

One of the main issues with kinship selection is that the carrier of the

genetic replicator (let’s say an “altruistic” genetic replicator) needs to “know”

how related (what the relatedness r is) he is to the recipient. I will just mention

here two mechanisms: “green beard genes” and spatial effects.

The green-beard effect, first mentioned by Hamilton (1964a,b) and

named by Dawkins (1976), is linked to a genetic replicator who has an ef-

fect on three specific phenotypic aspects:

• a signalling phenotype

• an effect recognizing that specific signal

• a special treatment of that phenotype

The carriers of that genetic replicator will hence be able to recognize

other carriers of the same replicator (which will mean, that they are probably

highly related, at least for that replicator), and cooperate altruistically with it.

This will ensure that the relatedness in equation (2.1) is always high and hence

allow the genetic replicator of altruism (the “green-beard gene”) to spread.

Another way to achieve high relatedness, is through simple spatial ef-

fects. This is mostly connected to the concept of viscosity : the distance and

8This is for the case of diploid sexual animals.
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speed of dispersal of offspring from their parents. Being it because of be-

havioural reasons or simply because the physiology of the organism limits

their movement, if offspring stay close to their parents the probability of any

altruistic behaviour being beneficial to a closely related individual will be log-

ically high (if the local ecosystem and environment is ‘right’), since related

individuals are nearby.

Even though kinship selection is widely recognized as a main driving

force for the evolution of altruism and certain other cooperative behaviours,

it has to be realized that it only explains these certain kind of specific cases.

Kinship selection will be hard pressed to explain the multitude of non-kin

cooperation like symbiosis or human society for example. Another issue is

instability, in many situations kin-selected cooperation can easily be destroyed

by invading cheaters, cheaters being genetic replicators trying to benefit from

the cooperators without ‘paying’. Hence, often the evolution of some kind of

self-policing is necessary 9. For most of the theoretical and field work this

problem can be safely ignored, especially when the studied population that

are already stable and highly evolved, but as mentioned in Section 2.4.4, if

one works on the transitions from one vehicle to another, this issue becomes

major.

For kinship to explain altruism, it is vital to know which vehicle will

likely benefit from the cooperative behaviour; different genetic replicators

might try to favour different vehicles, and hence conflict on who is the re-

cipient vehicles (or levels). For stable organisms, usually all (at least most)

of the genetic replicators will favour the same vehicle, but this is an already

evolved characteristic, it probably was not the case at the beginning of its evo-

lutionary trajectory; the majority of genetic replicators probably favoured the

lower-level vehicle. To explain the evolution of this “union” of genetic repli-

cators to favour the same vehicle is one of the main challenges of evolutionary

theory which will be addressed more in depth in Section 2.4.3.

2.4.3 Major Transitions in Evolution

Whatever school of thought you adopt as an evolutionary theorist (and there

is almost as many as people), it is almost universally recognized that different

9The green-beard effect can be seen as such a system, as the same genetic replicator is
responsible for the cooperation and the recognition.
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levels of organization exist in biology. Every animal is composed of cells, every

eucaryotic cell is composed of organelles, every ecology is composed of different

organisms, and so on. Not only are their different levels of organization but

also different evolutionary events linked with certain levels of organization.

During the history of life on earth some levels of organization evolved, they

are themselves results of evolution.

One of the most famous descriptions of these processes is John May-

nard Smith and Eörs Szathmáry’s book Major Transitions in Evolution. They

confine their major transitions to the ones where the way information is trans-

mitted from generation to generation change. They list them as follows:

evolution of the protocell: from the replicating molecule to a population

of molecules in compartment

evolution of the genome: from independent genetic replicators to joined

replicators

evolution of the genetic code: from the RNA world to the DNA/protein

world

evolution of the eucaryotic cell: from a procaryotic cell to an endosymbi-

otic compartmentalized cell

evolution of sex: from the asexual clonal reproduction to a sexual reproduc-

tion

evolution of differentiation: from the protists to the animals, plants and

fungi

evolution of non-reproductive castes: from solitary individuals to colonies

evolution of language: from primates to human societies

I will here not detail most of those transitions here but will concentrate

on the one I am particularly interested for this work. For more information I

greatly advise to read John Maynard Smith and Eörs Szathmáry’s book.

The main focus of this thesis will be evolution of multicellularity (and

its lesser form: multicelled interactions). I will not stick to the evolution of the

higher phyla from the protists, but I will consider the general idea of evolution
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of multicellularity more generally. There is strong evidence for some degree of

multicellularity in numerous species of Eubacteria and Archaea (West et al.,

2007), Protists, and obviously the higher Eucaryotic phyla. One could also

consider evolution of insect societies as an analogue of this kind of transition.

Basically this work is motivated by the study of evolution of division of labour.

My models will be mostly motivated by microbiological systems, but hopefully

some of the conclusions and methods could be readily applied to the other

aforementioned processes and possibly wider.

John Maynard Smith and Eörs Szathmáry are (or at least were) very

much in the genes-eyed view of evolution, so why be interested in these transi-

tions, if every selection boils down to genetic replicators? First because even if

selection acts on genetic replicators, this selection acts through their vehicles,

and understanding how the vehicles evolved can help understand the “hidden”

level. Second, is the problem of the individual (Buss, 1987). The notion of

individual in most evolutionary problems is a premise (e.g. the cell is the

individual, or the bear is the individual, or the group is the individual), what

the individual is is not questioned. The evolutionary game (of the genetic

replicators, or whatever) is played through those specified individuals. But

(mostly during transition of evolution) those games are rarely played at only

one level at the time.

One of the biggest challenges of modern medicine, cancer, is exactly

that. Some cells in your body for one reason or another (usually oxygen

mutating some gene), tries to make it all alone without the help of the rest of

the body, and in most cases loses all.

Between different levels of organisation evolution will have different

“goals”, and often those goals will be conflictual, and understanding the evo-

lution of those conflicts and their policing is important for biology, medicine,

as well as computer sciences.

The understanding of the evolution of these different levels of organisa-

tion, as well as the dynamics of these, is one of the main goals of the models

of multi-level selection theory.

2.4.4 Multi-Level Selection Theory

Multi-level selection theory is more a set of open questions in evolutionary

theory than an actual theory. The intrinsically hierarchical nature of biology
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has long fascinated scientists, and the different models and frameworks of

multi-level selection theory are interested in the evolution and the workings of

evolution in such a hierarchical world.

One of the main interests of this is how selection acts at different levels

of hierarchy, and how the selections processes at different levels interact. Often

there is conflict between selection at different hierarchical levels (think cancer

cells in a multicellular entity). These questions do not necessarily contradict

the gene-centred view of evolution. Even if selection is ultimately to the benefit

of the genes, different genes can be favoured at different hierarchical levels, so

in this view it is often about the conflict between different genes that get their

fitness from different levels of selection.

2.4.4.1 Conflict Mediation and Policing

One of the main issues in a hierarchical system is the issue of conflict between

the different levels. What is “good” for one level does not have to be good

for the other level. In Eörs Szathmáry and John Maynard Smith ’ Major

Transitions of Evolution, they are more interested in the definition and pos-

sible evolution of the different levels, where traditionally the issue of conflict

is more of an issue of persistence: if evolution of a new level of organisation

has happened, how can it survive? But nowadays it becomes more and more

obvious that the issue of conflict is an integral part at every step of the evo-

lution of a new level of organisation. As much as cooperation is the driving

force of the transitions, conflict is the main aspect that holds it back. For this

reason during the course of the transition, conflict (also often called defection,

mostly in the context of game theoretical models) needs to be mediated and

methods of policing need to evolve.

In Darwinian Dynamics, (Michod, 1999) presents multiple models (us-

ing the types of mathematics described in Sections 2.3.2.1 and 2.3.2.2) showing

how conflict mediation is sufficient to increase heritability of fitness, which is

necessary for the evolution of a new level of organisation. Different types of

cooperation, as he states in his work, trades fitness at a lower level of or-

ganisation (cost) for an increase in fitness at a higher level (benefit), conflict

mediation ensures, by increasing the heritability of fitness, that the lower level

entities share the costs. Without conflict mediation or policing a group of

cooperating entities could be invaded by any new defecting mutation in the

population that would destroy the newly acquired cooperation (or any higher
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level of organization).

In biology the examples of policing are numerous, from the immune

system protecting the animal body from internal and external threats, to the

separation of soma and germ lines to reduce the effect of any defection in the

soma to be transmitted, over pleiotropy that tries to render any mutation to

a vital part of the genetics of cooperation deadly to the cell (Foster et al.,

2004). These are just examples that show that conflict mediation and policing

is found not only in the equations of Michod, but also in every biological

system we know of, from the smallest of the units and their conflict mediation

mechanism: genes and pleiotropy (Foster et al., 2007) to the largest organisms

and the immune system, or if we stretch it societies and police forces.

2.5 Contribution of my Research

In this thesis I will present a novel model of artificial cell that has been used to

study some of the questions presented in this chapter. This artificial cell has

one linear genome that encodes a genetic regulatory network. This artificial

cell, if put into an (computational) environment in which it can reproduce

with mutation, and some differential reproductive success is ensured, will be

able to evolve. Depending on the problem to be studied the evolutionary

environment can be changed and adapted. This kind of model allows for a

much wider variety of behaviours than more classical approaches. Different

selective pressures can have very more complex impacts on the evolution of

the system.

In chapter 7, for example, I present an experiment in which artificial

cells evolve freely in an environment allowing communication, there is no ex-

plicit fitness, and given the cell and its genetic system, evolution is solely driven

by the design of the environment. This kind of system might allow one to study

the open-ended evolution of different phenomena (in this example evolution

of multicelled interactions). The precise implementation of the cooperation is

not predefined, if multicelled interaction evolves it has not been defined in the

system to start with (the environment has been set-up in a way for it to be

possible though). This could allow us to “see” adaptations evolve in silico, and

once they evolved the artificial life system can be examined at every possible

level of its hierarchy (expression patterns, communications, network evolution,

phylogenies, population dynamics...). These multi-level analyses would allow
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one to observe much more in detail what has driven certain adaptations, and

hopefully to find new hypothesis to unsolved questions.

Many scientists have studied these much more open-ended models of

evolution in the field of Artificial Life. I will present some of these in the next

chapter.

My studies present an abstract framework to study low-level evolution

(as opposed to high-level behavioural evolution), yet this abstract framework

will serve to be a good metaphor of biological life so to ease transfer of knowl-

edge from the artificial-life field to biology (and the inverse), and will have a

complex internal structure to allow the evolution of complex adaptations (like

multicelled interaction and multicellularity).
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Chapter 3

Artificial Life and Bio-inspired

Computing

“Life is a process which can be abstracted away from any par-

ticular medium.”

John von Neumann

3.1 Biology and Computer Sciences

Ever since engineers existed they have been fascinated by the power of biology,

and tried to imitate its prowess. During the 19th century clockwork builders

built automata looking like animals, and tinkerers have tried to build flying

machines inspired by birds and bats. This is true even more so since the

discovery of evolution and the invention of computers. Computer scientists

have designed a plethora of algorithms inspired by biological systems: Genetic

Algorithms (GAs), Neural Networks (NNs), swarm systems, Artificial Genetic

Regulatory Networks (AGRNs)... Biology fuelled by the ingenuity of evolution

has produced remarkably complex, reliable, robust, and efficient systems, that

any engineer would have only dreamed of designing.

Turing (1950) saw this already in the 50s, when he invented the so-

called “Turing test”, when he had the forethought that computers one day

would be indiscernible from humans. We are, of course, not there (except in

very specific fields), yet. But we are getting closer and closer, with newer and

better technology appearing every year.
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The advances in computing power allow the design of huge networks of

processors (being for computation or robot control, for example). These will

need new ways of programming, our standard programming paradigms being

mostly not suitable for this kind of systems.

Yet, we don’t have yet a very good understanding of complex dynamical

systems, neither on the design side, nor on the control.

Biology has been showing us the way into the right direction, and the

start is in evolution. Evolution has created an amazing array of complex

dynamical system, including the control mechanism, and engineers that have

used and/or designed bio-inspired systems, would probably agree with me.

In this section I will present bio-inspired and artificial life systems that

I have used and/or have informed my experiments. First I will present Evo-

lutionary algorithms, a method to “harness” evolution to solve problems and

create designs. In a second part I will present Artificial Genetic Regulatory

Networks (AGRNs). These are the algorithmic backbone of my systems. I

will also present other artificial life models that have looked at the evolution

of multicelled systems and multicellularity.

3.2 Evolutionary Computation

Early on in the history of computer sciences, engineers saw the advantages of

evolution for difficult optimization problem. During the sixties independently,

Lawrence Fogel, with Evolutionary Programming, John Holland, with Genetic

Algorithms, and Hans-Paul Schwefel, with Evolutionary Strategies, developed

methods of using Darwinian evolution for engineering problems. These three

methods are now all subsets of what is known as Evolutionary Computing.

The general principle of these methods is to use the Darwinian principles to

“evolve” solutions to problems.

The idea is that a population of solutions to a specified problem are en-

coded in computational genomes, the quality of each genome is then measured

by a fitness (or objective) function specific to the problem to be solved. Then

a selection routine is run that makes copies of some of the solutions in certain

proportions according to their fitness value. And each of those is modified to

some extent. For more details to my exact implementation see Section 4.2.

This kind of metaheuristics is now widely used in high-dimensional op-

timization problems. They are easy to adapt to a wide variety of problems,

26



easy to implement, and the need for in-depth knowledge about the problem

(such as needed for specialized optimization algorithms) is reduced. They

main structure of any GA (Figure 3.1) is directly based on the three main

properties necessary for the evolutionary process to happen (see Section 2.1):

• hereditary reproduction

• variation

• differences in fitness

Those properties are of course implemented differently than in nature,

and in a much more controlled environment.

To start with the problem to be optimised by a GA needs to be encoded

into a representation on which the algorithm evolution can than act. Tradi-

tionally this representation will be some artificial genome or a tree structure,

but could be any structure encoding the solution to a problem that one can

copy, mutate and execute (with an appropriate interpreter). Once the problem

has been encoded one can run a GA using it. A population of representation

will be chosen for the start, then each of the representations will be executed

and the quality of the solutions will be measured (the so-called fitness func-

tion). The next step is to ‘reproduce’ the fittest representations. A number of

reproduction routines are used, but the general idea is that the representations

with the highest fitness will get copied most, also each copy can be modified

(so-as to have variation). Once the reproduction routine is finished, one starts

again by evaluating the quality of the new representation and so on.

3.3 Artificial Genetic Regulatory Networks

3.3.1 GRNs in Biology

In every cell of a living organism is the genetic material needed to build the

whole, yet cells tend to use only a small subset of the information available

to them in their genome. Cells need to have mechanisms to regulate the

expression of their genetic material: a Genetic Regulatory Network.

The genome of every living organism is composed of elements called

genes, each gene normally controls the production of one protein, and proteins
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Genetic Algorithm

for i← 0 to length[Pop]
do Pop[i]← random genome

repeat
for i← 0 to length[Pop]

do Fitness[i]← Fitness(Pop[i])
Pop← Reproduce(Pop, F itness)
Mutate(Pop)

until termination condition

Figure 3.1: Pseudo-code for a Genetic Algorithm

are the functional molecules that compose most of the cell’s chemical reaction

network. Each gene contains a DNA code that can be transcribed into the

protein sequence it produces (the coding sequence). The GRN of a cell regulate

this transcription process.

The transcription process is started when the RNA-polymerase enzyme

binds to a promoter sequence upstream of the coding sequence. However,

the binding of the RNA-polymerase is usually not simple, some specific en-

zymes (transcription factors) need to bind to the polymerase and to other

sites (cis-regulatory sites) upstream so that the polymerase can bind to the

promoter sequence. Also these enzymes that bind to cis-regulatory sites have

to be produced by other genes (or the environment) and these genes are regu-

lated as well, often by proteins that they regulate, thus creating a network of

transcription regulation (Figure 3.2).

These networks can become very complex, the enzymes binding to cis-

regulatory sites can be complexes of multiple proteins that need to be all

present for that site to have an effect on transcription, multiple cis-sites can

interact or negate their effects, or a single simple enzyme can stop the tran-

scription all together.

Cis-sites in the regulatory region of genes are composed by enzyme-

specific binding sites, that bind only one specific enzyme or type of enzyme,

and multiple binding sites interact. Each cis-site is usually categorized as either

activatory if they have the tendency to help the binding of the polymerase (so

increasing the production of the protein), or inhibitory if the have the tendency
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Figure 3.2: Simplified diagram of a gene

to reduce the binding characteristics of it (and so decreasing the production

of the protein).

This great variety, and the omnipresence of GRNs in biology have in-

spired computer scientists to use them for many applications.

3.3.2 Modelling GRNs

GRNs are modelled in biology through a plethora of methodologies, using very

different levels of abstraction and realism depending on intended purpose. I

will here present a few approaches, for a good overview of GRN modelling

methodologies see (de Jong, 2002). Two great approaches to the study of

GRNs can be differentiated: quantitative approaches that try to design models

that can predict biological gene expressions, and qualitative ones that desire

to model more system wide qualities of regulation networks.

The first models of GRNs where sets of Ordinary Differential Equations

(ODEs), these are mathematical models widely used in biology to model reac-

tion kinetics (Jacob and Monod, 1961), as well as population dynamics, and

many more. These methods mostly model biological GRNs quantitatively. In

ODE-based models each equation of a set describes the variation of a certain

chemical (protein normally in the case of GRNs) as a function of a number of

other molecules. The solution to the set of equation describes the behaviour of

the chemical concentrations in the cell. The parameters of these models usu-
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ally are the kinetic characteristics of the chemicals involved, these can to some

extent be acquired experimentally, and theoretically the models can directly

be fitted against real chemical reactions.

These models have been used to model wide varieties of biochemical

reactions (Voit, 2000). In the context of GRNs, they have been used to ac-

curately model some of the best known regulatory systems in biology like the

cro-cl switch of phage λ in E. coli (McAdams and Arkin, 1998), the expression

of the lac operon in E. coli (Wong et al., 1997), the expression of HIV (Ham-

mond, 1993), or the modelling of circadian rhythms (Liu et al., 2007). Even

though this kind of models has been used since the 40s, there has been a lack

of adequate data to fit the models in the early years of the study of GRNs.

The arrival of DNA chips and other massively automated biological data re-

trieving systems allows increased use of this kind of systems. An other issue

with ODE-based systems is the complexity of the mathematical tools need for

their analysis, rarely can analytical solutions be found to solve the equation

systems, so numerical simulations have to be used, and these often limit the

number of equations that can be used, hence the study of the characteristics

of large networks is difficult.

To alleviate the need of difficult-to-get biological data, and to be able

to study the qualities and characteristics of large regulatory network qualita-

tive models have been used from early on. The earliest, and probably most

well known of these models is Kauffman’s (1969) Random Boolean Networks

(RBNs). This formalism is a very simple abstraction of biological GRNs, it ab-

stracts all protein concentrations to Boolean states; either a protein is present,

or absent. Each node of a RBN represents one of n genes, each of those genes

has k input connection, corresponding to the output of other (or the same)

genes. The k inputs are used to compute the output of that gene (which repre-

sents a protein). The functions used to compute the outputs are any Boolean

function with k inputs and one output. Each node (gene) can have a different

k and a different computation. A RBN is traditionally run synchronously,

meaning that at each time step the outputs of all genes are computed by using

the outputs of previous time step. This process is deterministic and finite, so

the trajectory of the protein will settle into an attractor (possibly cyclic). The

attractor is fully defined by the initial condition. The simplicity of the RBN

formalism allows in depth study of the networks, their characteristics and their

dynamics, this allows the study of global properties of GRNs. To achieve this,
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random Boolean networks are generated with fixed local properties (for exam-

ple fixing k and n) and studying global properties of the network (number of

attractors, for example). One of the most famous results Kauffman presented

in his seminal paper (Kauffman, 1969) is that with a low k and certain choices

of Boolean functions for the inputs, the number of attractors was empirically

found to be about
√
n. The number of attractors of the network can be in-

terpreted as the number of cell types in a multicellular organism, Kauffman

argues that this is in accordance to observations in biology where the number

of cell-types seem proportional to the square roots of the number of genes as

well.

RBNs are still widely used due to their simplicity, a comprehensive

overview is presented in Kauffman’s book ((1993)). The artificial cell my model

I present in chapter 4 will use a GRN model largely based on the Boolean

network framework. A notable part of the most recent RBN experiments

have been using evolutionary algorithms to study the evolvability of this kind

of networks (Kauffman and Smith, 1986; Iguchi et al., 2005). Also Boolean

networks have been more and more used to actual modelling of real biological

systems (Bornholdt, 2008).

The simplicity of the model gives many advantages to the RBN formal-

ism, such as speed of computation and simplicity of analysis, but many ap-

plications and research topics need more granularity of the simulation, hence

many other models of GRNs have been developed over the last 40 years. An

extension of Kauffman’s model is the generalized logical method from Thomas

and colleagues (Thomas, 1991), which allows variables with more then two

levels and state transitions that are asynchronous. For even more granularity,

many formalisms inspired by and related to artificial neural networks mod-

els have been developed (Mjolsness et al., 1991; Vohradsky, 2001). The GRN

models here are recurrent networks with continuous variables, where each gene

has a transfer function between the inputs from the regulator proteins and the

output. These kind of models have been used extensively to model biological

phenomena, but not only, they have been used as well for more abstract studies

(Reil, 1999; Banzhaf, 2004; Knabe et al., 2006), and as controller for diverse

software and hardware agents (Eggenberger-Hotz, 1997; Bongard, 2002; Quick

et al., 2003; Kumar, 2005).
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3.4 Artificial Life

Artificial Life (ALife) is the area of computer sciences purposed to implement

computer systems that exhibit some characteristic of life, and study them.

As opposed to biology (or computational biology), which study life-as-it-is,

Artificial Life (Langton, 1995) studies life-as-it-could-be (Swan, 2009). It tries

to extract from a diversity of models fundamental principles of life and its most

important processes. Some of the most studied processes being self-replication,

autopoiesis, and of course evolution. It also tries to study processes that are

impossible or at least very difficult to study in the ‘life-as-it-is” realm, such as

the origin of life (Takeuchi and Hogeweg (2008), for example).

Artificial life was born almost at the same time as the computer sciences

themselves. John von Neumann, through his universal constructor, showed

high interests in self-replicating systems (von Neumann, 1953), and Alan Tur-

ing worked on morphogenesis (Turing, 1952). They could be called the fathers

of the modern Artificial Life field, as well as fathers of modern computer sci-

ences.

ALife is a very broad field of research, almost any area of Biology has

been looked at to some extent by ALife researchers, from the origin of life to

theory of mind, from biochemistry to ecosystems. The main idea is to design

a model that shares some characteristics with the phenomena or system one

wants to study, and run that model in silico multiple time while studying the

effect of certain parameters, and invariants and characteristics.

This field of research has not only helped biology but also furthered en-

gineering sciences. Many bio-inspired algorithms such as genetic algorithms,

neural networks, and swarm optimization have sprung out of an effort to un-

derstand their biological counterpart through ALife.

A classical example of an artificial life model is Tierra, developed in

the 90s by a biologist, Thomas Ray. Its purpose was to study evolutionary

and ecological dynamics in an artificial environment as unconstrained as pos-

sible (Ray, 1991). Ray’s organisms are based on computers and programs

rather then on biology per se. So organisms in Tierra are pieces of code on

a shared memory, and all organisms have their own virtual central processing

unit (CPU).

One of Ray’s goals was to create a model with implicit (or ecological)

32



fitness1 that could evolve freely, in which he could study diverse ecological

and evolutionary phenomena. He was able to discover that his model evolved

diverse levels of parasitism, and he was also able to study some characteristics

of punctuated equilibria.

Similar models of computer models have been used (like Avida (Adami

and Brown, 1994) and Physis (Egri-Nagy and Nehaniv, 2003)).

3.4.1 Multicellularity and Artificial Life

All of life on earth is composed by cells, which can be considered as small

extremely complex computational units. They can interact in a huge multitude

of ways, to perform just as many tasks. It would be very helpful if somehow we

could use some more of the lessons from nature and apply them to engineering.

Many multicelled and multicellular systems have been studied in arti-

ficial life. Cooperation in a broad sense is pervasive in many ALife modes,

one can for example consider the evolved parasites in Tierra as cooperating

(certainly with my definition of cooperation), or boid flocks (Reynolds, 1987).

More explicit studies of cooperation have been done, with a large body of re-

search on the prisoner’s dilemma (Hoffmann, 2000), for example. Also more

biologically realist models of cooperation have been studied. For example,

Takeuchi and Hogeweg (2008) in this model studies evolution of cooperating

RNA-like agents replication cycles. Each agent in this simulation is a string,

which represents an RNA molecule, each string has a secondary structure com-

puted from the string with actual biological modelling tools. An RNA strand

can bind with a neighbouring strand depending on how well the dangling ends

of both strands match, and if they are bound one can replicate the other if

its secondary structure matches a certain pre-defined (biologically relevant)

pattern. Added to this, each RNA strand has a probability of decay and can

move randomly to an empty adjacent square. All these are not yet models

of multicellularity but represent somehow the first step to the evolution of

multicellularity: the evolution of multicelled cooperation.

Another aspect widely studied in artificial life related to multicellularity

is the study of developmental systems (Stanley and Miikkulainen, 2003). This

1Implicit fitness means that one could calculate a fitness a posteriori, but the amount of
offspring does not depend directly from the fitness, as opposed to GAs for example, with its
à priori defined explicit fitness function
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is the study of systems that develop a body plan and/or differentiate similarly

to multicellular organism. For this kind of systems one usually starts from a

seed cell and one lets the system “grow” into a certain shape, or functionality.

One of the simplest and most famous developmental system is Lynden-

meyer’s L-system (Lindenmayer, 1968a,b). For this system a lexical rule is used

to build a fractal shape starting from a root word. This systems and varia-

tions of it have been used extensively in computer graphics to generate complex

plant-like structure, and to study the morphogenesis of plants (Rozenberg and

Salomaa, 1992). These kinds of model traditionally use grammatical rewrit-

ing rules to generate patterns. Another type of models called cell chemistry

approaches in Stanley and Miikkulainen (2003) are more biological realistic.

The earliest model of this type is presented in (Turing, 1952), in which he

uses reaction-diffusion dynamics to model development. Cell chemistry mod-

els, as the name implies, model the developmental chemistry of biological cells

to build systems that develop similarly to eucaryotic multicellular organisms.

For this, traditionally, are used genetic regulatory network models, these being

used in biology to control development.

Developmental systems are used mainly for two purposes: engineering

multi-celled systems, and studying characteristic of differentiation. Engineer-

ing approaches of this type have mostly concentrated on evolving artificial

creatures/robots, in simulation (Sims, 1994; Hornby and Pollack, 2001), and

also physical environment (Lipson and Pollack, 2000), using biological develop-

ment as a direct inspiration for “robot development”. Also other, less direct,

applications of developmental systems have been studied such as “develop-

ment” of buildings (Kicinger, 2006). Some other artificial life model that have

made heavy use of artificial cells similar to mine are the models presented in

Marée (2000), and Hogeweg, P. (2000). They have used artificial cells and

simple adhesion physics to build models of multicellular slime-molds.

Most models of multicellularity and multicelled systems have been used

to model development or distributed problems, but very few have been used

to study the actual evolution of multicelled systems. Noticeably an extension

(Ray, 2000) of the Tierra model presented shortly in section 3.4, has been used

to study the evolution tissue differentiation, in this system the environment

was seeded with a handmade ancestor that is already differentiated (two CPU-

“cells” each copying half of their tierra code). The number of cells of the

multicelled tierra-organism can evolve and so change the level of parallelism
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(and efficiency) of that organism.

3.5 Contribution of my Research

In this chapter I have discussed some models inspired by biology used in com-

puter sciences. I have presented the computer science approaches to multi-

celled systems and multicellularity and the evolution of those. The goal of my

work is to further the understanding of the evolution of multicellularity for the

design of computational systems. I will present a computational artificial cell

that will have some characteristics that will share some characteristics from

the GRN and RBN based artificial cells presented here. I will then use this

cell model to study explicitly the evolution of multicelled systems. In the next

chapters I will present models that will address the issues discussed here and

the previous chapter, computational models designed to study the evolution

of multicellularity.
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Chapter 4

Methods

“You can only predict things after they have happened.”

Eugene Ionesco

The main purpose of this chapter is to present a set of tools and methods

to study varied questions on evolutionary theory, more specifically, evolution

of multicelled cooperation and multicellularity. All the experiments presented

later on will use the same algorithmic backbone: a GRN-controlled artificial

cell.

In a diverse set of experiments, networks of artificial cells will be evolved

for different goals and research questions.

In this section we will detail the working of the artificial cell model we

use, as well as the GRN controlling it, and the genetic algorithm that will be

also used across all the experiments to evolve the cells.

4.1 Artificial Cell

The core part of all this thesis’ experiments is an artificial cell model. Four

characteristics were important in the choice of the model’s design: complexity,

flexibility, efficiency and clarity. We wanted the cell to have potentially very

complex behaviours and evolutionary dynamics, and to be usable in very dif-

ferent contexts. It also had to be computationally simple enough for it to run

in silico efficiently, and easy enough to be understood without going into the

details of the implementation.
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These artificial cells are intended to expand the possible complexity of

behaviour (number of possible behaviours), so as to be able to observe effects

that cannot be observed easily in traditional models of evolution. To achieve

this, the cells implement a complex genotype-phenotype mapping, and the

control network (the GRN, encoded by the genotype) will have a wide range

of possible behaviours.

Compromises have to be made in the search of complexity. One of

them, issues of computational power, is purely practical. The more one makes

a model complicated, the slower it will run on any given computer. Since the

experiments will be involving evolutionary time scales, the cell has to run fast,

or the experiments will take too long. This is one of the reasons we chose a

Boolean valued GRN implementation rather than a slower continuous-valued

one (Section 3.3.2). A second consideration, which is especially important

in interdisciplinary research, is an issue of clarity. Many artificial life models

studying evolution have a tendency towards the abstract, but in a field like this

it is also important to make models with which biologists can relate without

going through implementation details. We have tried to design an artificial life

model, which abstracts the most relevant aspects from real biology as possible

(a linear genome, a regulatory network, cells and communication proteins).

The principle behind the experiments can be discussed in order to improve

cooperation and mutual acceptance across disciplines.

The general setup of our artificial life model (see pseudo-code in Fig-

ure 4.1) is reasonably simple and composed of two main elements: a genome

and a genetic regulatory network, the genome encoding the network. The

genome will encode for the GRN with bio-inspired fashion, and the GRN will

be updated at every time step of a simulation to express different ‘proteins’. In

addition to this, certain proteins of the GRN will be used for different purposes

(depending on the context), mainly for communication, but also for specific

tasks.

4.1.1 Genetic Regulatory Network

The GRNs used for all the experiments operate as Boolean control networks.

The same model has been used in (Buck and Nehaniv, 2006a, 2007), and

is similar to Kauffman’s random Boolean networks (Kauffman, 1993). Our

networks interact continually with their ambient environment (cf. (Quick et al.,
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Generic Simulation

for i← 0 to length(Cells)
do

GRN [i]← Build GRN(Genome[i])
repeat

for i← 0 to length(Cells)
do Handle Environment(Cells[i], Environment, Cells)

for i← 0 to length(Cells)
do Update GRN(GRN [i])

for i← 0 to length(Cells)
do

for j ← 0 to length(Neighbourhood[i])
do Communication(GRN [i], GRN [Neighbour[i]])

until termination condition

Figure 4.1: Pseudo-code for any generic simulation: Cells is an array of all
the cells in the system; the Handle Environment procedure takes information
from the system and passes it on to the cells, it can also add or remove cells;
the Update GRN procedure updates the protein levels of the GRN according
to the system described in Section 4.1.1; the Communication procedure takes
the communication information from neighbouring cells and updates the GRN
of the cell accordingly.

Vector of free proteins

Genome : Vector of Genes

Gene : Vector of cis sites + gene product

cis site : vector of binding sites

product

And( )

Or +/- +/- +/- +/-( ) +/-

Figure 4.2: Schematic of the Boolean genetic regulatory network model
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2003; West-Eberhard, 2003)), and the GRN-controlled cells interact with each

other in a manner similar to that in Bull and Alonso-Sanz (2008) and many

others. The GRN model is inspired by the models presented in Section 3.3.2,

the layered input function we will present here are inspired by the formation

of protein complexes as we describe in Section 3.3.1.

The structure of a single genome is shown in Figure 4.2. Inside a cell

there are n different proteins, the level of each protein is modelled by a Boolean

value reflecting its presence (true) or absence (false). The network structure

is derived from the genome as described in section 4.1.2. The cell’s genome

consists of a string of genes, with each gene composed of a regulatory part

and a part specifying its protein product as in nature (Watson et al., 2003;

Davidson, 2001b).We use a two-level genetic regulatory structure (see Schilstra

and Nehaniv (2008) for other models of genetic control logic). The regulatory

part represents the inbound connections of the gene in the network whereas

the product part represents the outbound. The inbound part (regulatory part)

is structured in so-called cis-sites, which themselves each consist of a number

of binding sites. A binding site returns a Boolean value depending on the

presence in the cell of the protein it is supposed to bind. The values returned

by all the binding sites of a cis-site are joined by an AND operator. The

obtained value is then negated if the cis-site is an inhibitory one. Then all

the values returned by the cis-sites of a gene are joined by an OR operator.

This value is then finally negated if the gene is default on, if the final value of

this operation is true then the protein encoded by the gene will be produced,

i.e. the value indicating the presence of this protein in the cell will be set to

true. If more than one gene can produce the same protein, to set the value

for that protein to true for the cell, any one of them suffices. The system has

a one-timestep ‘memory’; at every simulation time step it takes the protein

state vector of the cell in the previous step and creates a new protein state

vector for the next time step using the genetic regulatory network.

Formally, for each gene of a cell’s genome, we have for each protein-

binding site i, potentially binding some protein p`, the present binding value

bi,

bi =

{
true if binding protein p` is present

false if binding protein p` is not present.
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The expression value cj of a cis-site j,

cj =


∧
all i

bi if j is activatory

¬
∧
all i

bi if j is inhibitory

where the logical AND-operation is taken over all binding sites bi of the given

cis-site cj. The final protein production pk of the gene k is

pk =


∨
all j

cj if k is default off

¬
∨
all j

cj if k is default on

where the logical OR-operation is taken over all cis-sites cj of gene k. The

new value of pk for the cell will be true if and only if at least one gene produces

pk. It can be shown that this system is complete in the sense of combinatorial

logic: given a Boolean vector of size n (the vector of the n proteins of the cell)

there always exists at least one network computing every one of the (2n)(2
n)

possible Boolean functions. (This can be easily seen by writing the logical

function to determine the presence or absence of each protein in conjunctive

normal form as function of the activation levels of all proteins in the cell, and

translating this form into a genome with n default-on genes.).

4.1.2 Encoding

The encoding we chose for the networks is a highly simplified version of the en-

coding of GRNs in real biology (Hawkins, 1996; Davidson, 2001a). We wanted

to keep a certain number of characteristics of the double-stranded DNA helix,

which encodes the regulatory networks of all living organisms on earth. Our

genome as in biology is composed by a very small alphabet: in nature the four

nucleotides: adenine, thymine, guanine and cytosine; in our genome only two

bases, 0 and 1. Our genome is sectioned as in biology by different tags that

are recognised by the cellular machinery: certain combinations of bases have

a certain specific meaning for the genome. There are some main differences

between the encoding we use and the natural one. First our encoding is de-

terministic. In biology different parts of the genome can be used differently

at different moments during its lifetime whereas our genome always represents
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the same network. The second is the fact that the biological genome is situated

in a three dimensions, which can bring a high amount of modulation into the

expression patterns. Another point to notice that our genome is of the single

stranded sort. Of course there are many more differences but these are some

structural differences which actually could be addressed in later research.

The genome is sectioned in genes. A gene is tagged by a so-called gene

tag a pattern composed by four ones (‘1111’). This tag is followed by one

bit to set the type of gene (‘1’ for default on, ‘0’ for default off gene) and

a certain amount of bits to define the produced protein (in our experiment

we used a 64 protein system so six bits are necessary to encode the binary

representation for each protein). Preceding a gene tag is the regulatory region

of that gene, that region is separated into cis-sites each one of those starting

with a cis-site start pattern consisting of a triple zero (‘000’) followed by a bit

for the type (inhibitory or activatory) and a certain number of binding sites

(each of six bits to characterise the protein to bind at the site). Using a certain

set of predetermined rules (see the pseudo-code in Figure 4.3) we can give to

each bit of the genome a certain unequivocal function (even if this is merely

to identify the bit as uninterpretable other than as “junk”) so as to build the

GRN represented by that genome. This structure allows a genetic regulatory

network to be unambiguously constructed from the genome.

The encoding is illustrated in Figure 4.4, which shows the encoding of

a single gene. A genome consists of a string of such genes. The number and

lengths of genes may vary between genomes in the evolving population. In the

present model a gene encodes only one protein product (which can be linked

to specific functions of the cell).

4.2 The Genetic Algorithm

In all three of the experiments a genetic algorithm (GA) will hold a central

part; in the two first experiments (Chapter 5 and 6, it will actually be the

evolutionary ‘engine’ of the experiments, and in the last experiment (Chapter

7) it will be used to design an artificial cell used as seed-cell for the main part

of the experiment.

The genetic algorithm we used to evolve the single cell is a relatively

standard one. It is generational, in the sense that no individuals from one

time-step of the GA are carried forward to the next. The population is com-
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Tagging Genome(Bitstring)

repeat
positionGene← Find Next(GeneTagTemplate)
Tag Bits(positionGene, LengthOfGeneTag, “GeneTag”)
Tag Bits(positionGene, 1, “DefaultActivity”)
Tag Bits(positionGene, LengthOfGene, “Product”)
positionCis← Find Next(CisTagTemplate)
while positionCis ≤ positionGene

do
Tag Bits(positionCis, LengthOfCisTag, “CisTag”)
Tag Bits(positionCis, 1, “DefaultActivation′′)
positionNxtCis← Find Next(CisTagTemplate)
Tag Bindings(positionCis, positionNxtCis, LengthOfGene)
positionCis← positionNxtCis

until End of Genome

Figure 4.3: How to tag the bits of the genome: The
Find Next(Bitstring template) procedure returns the position of
the next untagged appearance of template (the gene tag or the cis-start
pattern); the Tag Bits(int pos, int size, type) procedure tags the
next untagged block of size size after position pos with the tag type; the
Tag Bindings(int positionStart, int positionEnd) procedure tags
the sub-string between positionStart and positionEnd with the type
“BindingSite” in multiples of the length of genes and the left-over bits, if any,
with the type “Junk”.
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Figure 4.4: Example of the gene structure. This gene encodes a product
protein 1111 and has a two cis-site regulatory region. The first cis-site is ac-
tivatory and comprised of two binding sites, while the second is inhibitory
and has a single binding site. The gene is off by default. Genomes are con-
catenations of such genes. The logical function computed by this example is
pt+1
15 = (p10

t ∩ pt3) ∪ ¬(pt12), where pti is the Boolean value attributed to the
protein i at time step t.
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posed by binary genomes representing GRNs. The fitness of each of these

GRNs is measured as described later. A tournament-based selection is used

throughout this experiment (for each pair of cells in the new generation, n

individuals of the old generation are randomly selected and the best two are

chosen to reproduce). For variability we use a bit-flip mutation with a con-

stant probability (each bit of a genome has a probability p of being flipped)

and for certain experiments a two-point crossover.

Various fitness functions will be used across all the experimental setups

to evaluate the quality of individual genomes. We will describe them in detail

in the various sections, we will here only describe the main principle of them.

In each experiment the genome will represent the artificial cell used. For

the fitness functions we will always run the artificial cell or rather a network

of cells with the same genome for a number of time steps. Some measures will

be taken during those runs and used as fitness function. The actual measure

(or measures for that matter) will depend on what the network of cells is

supposed to achieve: in chapter 5 we will use an explicit fitness function fitting

the quality of a colouring, in chapter 6 a two-level fitness function modelling

two levels of selection, and in chapter 7 we use a an explicit fitness function

to evolve “viable” cells that then will evolve freely in an environment, only

constrained by implicit fitness.

4.3 Conclusion

The algorithms presented here will be used as a toolbox to be assemble different

experiments for the specific problems we will address.

The two main tools in this toolbox are the artificial cell and the GA.

Each is an approximation of one of the two biological components of this

research.

The cell (the GRN and the genome it is mapped to) is an approximation

of the a biological cell and its metabolism. The GRN as presented here will be

our only approximation of the cell we use in this research, but one could have

used a number of other models (see Section 3.3.2), such as neural networks

approaches, or differential equation-based GRN models. We chose a Boolean

GRN for multiple reasons. First, because of its intuitive, easily understood

structure. A second reason being a reasonable speed of computation. The

GRN model we use shares many characteristics with RBNs but its very low-
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level encoding allows evolution to manipulate the network more diversely then

traditional RBN encodings.

The second tool, the GA, will be used in all the experiments too. But

not for the same purpose in each experiment. In the first experiment (Chap-

ter 5), it will be used purely as an optimisation method: to optimise the

GRN for a specific multicelled task. In the second experiment (Chapter 6), it

will represent a gross approximation of natural evolution, it will be directed

by a multi-dimensional fitness function to study the fitness landscape and

genotype-phenotype mapping of a simple setup for the study of evolution of

multicellularity. In the third and last setup (Chapter 7); A GA will be used as

a design tool to evolve a working cell to be used in an implicit fitness driven

system.

In the three next chapters we will explore in detail the implementation,

and results of these three experiments using the techniques described in this

section.
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Chapter 5

Graph Colouring in a

Multicelled Environment

“Colour, if I may say so, is biological. Colour is alive and colour

alone makes things come alive...”

Paul Cézanne

This work is an exploratory investigation to study the computational

power of my multicelled artificial cell model, and will also be used to study

different inter-cellular communication protocols. Another aspect studied is

how scalable our artificial cell model is in respect to the number of proteins

controlling the GRN.

We wanted to get an idea of what cells could achieve in a multicelled

setup using classic optimization problems to create problem specific cells. In

this setup we will use an optimised cell at each node of the network we want to

colour. Each cell will have the same genome (hence GRN). Then the simulation

is run and certain proteins of the GRNs will represent the colour of the cell.

The experiment is not designed to find very good solutions nor to chal-

lenge any other algorithm performing similar computation. It will be used as

a proof of concept: to prove that in a quite general kind of setup we can evolve

multicelled behaviours. The opportunity is also used to study communication

protocols, as all our experiments are in a multicelled environment, cells need

to communicate. There are multiple possible choices for how this communica-

tion is implemented: problem specific or general protocols, addressed or not.
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Wanting to have a cell model usable in diverse setups, with variable connec-

tivity (see Section 4.1), we did not study addressed protocols. Even though

we did consider one problem specific protocol, so we could compare it with the

two general purpose protocols we were actually interested in.

All three communication protocols will be studied in setups with dif-

ferent number of proteins in the GRN. If our cells are to be used in further

studies, one needs to know how the number of proteins controlling the GRN

impacts on the evolvability of the cells. An increase in the number of protein

gives potentially a higher computational power to the cell, but it can also re-

duce dramatically the ease in which this computational power can be used and

evolved. So this experiment is also used to get an idea of the behaviour of the

system with increased number of proteins.

In Schwefel and Kursawe (1998), the authors present some of the ad-

vantages for using multicellularity for optimization. They do however use

self-adaptation of mutation rates. We have not used this due to the great

plasticity of our genome. One bit does not represent, in our model, a fixed

attribute (like a single gene) and does not directly link to the fitness such as

in Schwefel’s model. It would be however interesting in the future to devise a

complex self-adaptation system for the mutation rate, that could for example

reduce the mutation rates of important regulatory hubs in the network.

Once an idea of the computational power, scalability and some reason-

ably satisfying communication protocols have been established further exper-

iments on the main questions of this thesis can be studied in the following

chapters.

5.1 Extension of the Methods

5.1.1 The Graph Colouring Problem

The graph colouring problem is a very well known combinatorial NP-complete

problem. To colour a graph each node of the graph has a colour assigned to

it and none of its immediate neighbours is allowed to have the same colour.

To decide whether there is a way to colour an arbitrary graph using k colours

is NP-complete for k ≥ 3. It is in fact one of the 21 NP-complete problems

described by Karp (Karp, 1972). This problem is important for numerous real

life applications including: map colouring, radio frequency allocation, regis-
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ter allocation in compilers (Mueller, 1993) or scheduling (Marx, 2004). This

problem has been approached with numerous different types of algorithms

(Biggs, 1990; Costa and hertz, 1997; Prestwich, 1998; Shawe-Taylor and Ze-

rovnik, 1995), mostly heuristic local optimisation algorithms, with most of

these methods being far more effective than our approach to it. But the goal

of our work is not to make an especially effective method to solve this prob-

lem; rather, we will use the graph colouring as a first test bed for a new cell

based computational model and study the evolvability of different cell-to-cell

communication protocols.

The graph colouring problem is very adapted to our investigations in

being simple to understand but still combinatorially complex. Also its inher-

ent local nature is very suited to the structure of a multicellular distributed

approach.

5.1.2 Simulation

As benchmark graph colouring problem instances, the simulation environment

can use any graph, we will use the myciel7.col and miles250.col graphs (191

nodes, 2360 links; and 128 nodes, 774 links, respectively) which we retrieved

from the COLOR04 website1 and which both can be perfectly coloured with

a minimum of 8 different colours. Each node (artificial cell) of a graph is

controlled by the same GRN; all the cells are initialized to the same state

(protein levels all set to 0 (false/absent) in our case). The simulation has its

own time frame independent from the evolutionary time frame. It is updated

randomly: every cell of the simulation space is updated once per time step

but at each time step in a different random order. This is the only stochastic

part of the graph colouring simulation therefore very important for the setting

up of patterns. With all the cells being initialised to the same state at the

start of a simulation run, we need some randomness for them to achieve colour

differentiation. Each cell is updated in the same way following a specific order

of events :

Update of the GRN: the GRN in each cell is updated by one time step and

new values for the protein levels in that cell are computed following the

system dynamics described in section 4.1.1

1http://mat.gsia.cmu.edu/COLOR04/
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Handle communication: the levels of communication proteins are checked

and associated protein levels accessible to neighbours are updated (see

section 5.1.2.1)

Update of states: the colour of the cell is updated (the state of a certain

number of proteins taken together encode the number representing the

colour)

Each of those steps will be repeated for each cell in the simulation space

for the number of time steps required by the simulation.

5.1.2.1 Communication

For this set of experiments we will use three different types of communication

protocols between our artificial cells.

The OR-unconstrained protocol: Each cell has a set of m different emit-

ting proteins and m corresponding receptor proteins. If one of the emit-

ting proteins is set to true then the receptor protein value of all its direct

neighbours is set to true, if a receptor protein of the neighbours is set to

true already it stays in that state. Thus the new value of receptor pro-

tein of the number is the logical OR of its current value and the emitter’s

value for that protein.

With this communication protocol the system can evolve relatively freely

the way it uses a certain number of predetermined communication pro-

teins. It is also totally problem independent, so if the same system would

be used in other environments this communication protocol can still be

used. It is inspired by the close range diffusion and receptor systems

existing in biology.

The XOR-unconstrained protocol: This protocol is very similar to the

previous one. It is virtually the same except for the last step: if a neigh-

bour’s receptor protein is already set to true it is switched to false. Thus

the new value of receptor protein of the number is the exclusive XOR

of its current value and the emitter’s value for that protein. Accord-

ing to information theory this protocol should have a higher information
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transmission capacity2, and hence perhaps able to evolve more complex

communication.

Constrained protocol: This communication protocol is problem specific and

the cell already transmits encoded information. The cells here have only

eight receptor proteins. A cell transmits to its neighbour directly its

colour i.e. switches to true the receptor protein of all its neighbouring

cells corresponding to the emitting cell’s colour.

We have made a conscious choice of not using any addressing protocols.

With the number of neighbours not being the same for all the cells, the system

would otherwise lose too much of its generality.

5.1.3 Genetic Algorithm

The genetic algorithm used is a relatively standard one. The population is

composed by binary genomes representing GRNs (section 4.1.2). The fitness

of each of these GRNs is measured (section 6.1.1.1) by running colonies of

GRN-controlled cells in the simulation environment described in section 5.1.2.

A tournament-based selection is used throughout this experiment (for each pair

of the new generation 5 individuals of the old generation are randomly selected

and the best two are chosen to reproduce). For variability we use a bit-flip

mutation with a constant probability (each bit of a genome has a probability

of 0.002 of being flipped) and a two-point crossover (section 5.1.3.1).

5.1.3.1 Crossover

The crossover operator (providing recombination of genetic material from two

genomes) is always a subject of discussion in evolutionary computation (Jansen

and Wegener, 2005). The difficulty is to give to the crossover a sense, where

this sense usually has to do with structure in the genome. In an unstruc-

tured genome, where each bit of the genome has no functional relationship

to the neighbouring bit, swapping stretches of genetic information from one

individual to another makes little sense as exchanges are likely to disrupt any

possibility for evolved structure in the genetic encoding. On the other hand, if

2The XOR loses less information then the OR.
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the genome is structured and that the stretches of information passed are struc-

tured meaningfully, then it can be useful to recombine meaningful stretches of

genetic information.

Our genome being structured we chose to include a crossover operator.

We chose to use a two-point crossover, meaning that we choose two points

at random in the genomes of the two parents and switch the piece of genetic

information between those points between the two parents to create two off-

spring. Actually the points chosen are not totally random: to make the pieces

of information sensible the points have to be either a gene tag or a cis-site

start tag. We chose a two-point crossover as the way it has been implemented

it enables one to emulate a variety of biologically plausible scenarios like gene

duplication, gene transfer or one-point crossover, which are important in evo-

lution (Ohno, 1970). Moreover the way our GRN model is implemented, a

gene duplication is not deleterious (which it may well be in other GRN mod-

els, especially in the continuous ones cited earlier), therefore it seems possible

that it could help facilitate interesting courses of evolution.

5.1.3.2 Fitness

The fitness of a specific GRN is measured with the run of a certain number

of simulation steps on the network graph. Every cell of the graph is endowed

with that GRN and then run for a certain number of time steps. At each time

step, each cell gets a cell-fitness of one if all of its neighbours are in a different

colour than itself, otherwise it gets a value of zero. A network-fitness is then

computed by averaging all the cell-fitnesses and represents the fraction of cells

whose colour differs from all of their neighbours. The best network-fitness over

all the time steps, representing the best colouring achieved by the genome for

the graph over the run, is the fitness of the genome for that run. To lower

slightly the effect of the randomness the fitness of five simulation runs are

averaged to finally compute the fitness of that GRN at this generation of the

evolution.

5.2 Experiments

We will in this set of experiments study the reaction of our system to the

different communication protocols as well as to different number of proteins
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on the two graphs we chose (myciel7 and miles250, both of which can be

coloured with 8 colours). The number of proteins contributes to determining

the size of the search space of different possible behaviours the GRNs can

have; the more proteins in the system the more complicated the behaviour of

the GRN can be; this influences also the way a multicelled colony can use the

information gathered by the (local) communication system.

The base experimental conditions for the genetic algorithm are: pop-

ulation size of 50, tournament size of 5, 1000 evolutionary generations, 250

simulation time steps, mutation rate of 0.002 and crossover rate of 0.3.

We have 9 (times two) experimental set-ups, for each set-up we have 9

evolutionary run, two for each of the 3 communication protocols (8 emitting

and receiving proteins, only 8 receiving for the constrained protocol), each

with 32, 64, 128 and 512 different proteins in each cell, less then 32 proteins is

not possible as already 21 proteins are reserved (8 for emitting, 8 for receiving,

3 for the colour).

We run t-tests to quantify the effect of the increase of protein, so the p-

values in Tables 5.1 and 5.2 represent the significance of the increase of proteins

from the previous column (if the p-value is smaller then 5% the increase of

number of proteins since the previous column is significant).

A test run for each parameter set has also been run. The test runs are

similar in construction to the normal runs, but the GA has been replaced by

a random search algorithm (in our case the GA with a mutation rate of 0.5,

e.g. randomising the new genomes entirely).

5.3 Results
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The results of the experiments are compiled in figures 5.1 to 5.2. The

values for each experimental setup are the average of the best fitness achieved

by each 9 evolutionary runs. The max line values are the best fitness achieved

over all the 9 evolutionary runs in a given experimental condition.

Overall the OR-unconstrained and the constrained protocols have quali-

tatively similar results and showing similar up-scaling issues. TheOR-unconstrained

protocol being slightly better for the miles250 graph and the constrained one

in the myciel7 graph. These differences might be an issue in a pure optimisa-

tion approach but not in our problem. These differences are largely outweighed

by the greater usability and versatility of the OR-unconstrained protocol.

The XOR-unconstrained protocol performs very well on the miles250

graph, but its performance for the myciel7 graph was poor, even with its

higher informational content. This protocol can be very good in specific graph

topologies, or very bad in others, which is not a desirable characteristic for the

desired versatility we are looking for.

For all cases, except the constrained protocol in miles250.col, there is no

significant difference between the use of 32 and 64 proteins. Also in all cases,

except the XOR-unconstrained, there are significant differences between 64

and 128 proteins, and in all cases between 128 and 512.

5.4 Conclusion

In this study we have used the graph colouring problem to study the evolv-

ability of different communication protocols and scalability of my artificial cell

in a multicellular computational environment.

The results show that, at least in this setting, the differences between

the constrained and the OR-unconstrained communication protocol are small

enough so as to be outweighed but the gain in generality. This allows us to

use the same (OR-unconstrained) communication protocol for all subsequent

experiments. Hence not restraining the cells with problem specific protocols.

Also the GRN model is quite robust to the increase in number of pro-

teins from 32 to 64, but there is a tendency of decreased quality on average

when the number increases to higher number.

A note of caution has to be stated here though. As the results with

XOR-unconstrained protocol show, only a change of topology of the network

(of the graph to be coloured) is enough for the results to drop dramatically.
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Figure 5.1: A graphical representation of the results of Table 5.1 (miles250.col
graph)
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Figure 5.2: A graphical representation of the results of Table 5.2 (myciel7.col
graph)
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This shows that even more general protocols can be in a certain sense highly

problem specific.

The fact that the communication protocols efficiency is dependent on

the topology of the problem highlights one of the major problems of these clas-

sical optimization algorithms: adaptive. Even though GAs and other meta-

heuristics, are adaptative in the sense that they can be easily adapted to a

variety of problems by just changing the fitness function (or its equivalent),

the solution of one evolutionary run for a specific problem will not work for

any other problem, or even the same problem with a different setup.

One of the main hopes in the development of highly distributed systems

is to create systems that can adapt to a variety of problems and topologies,

one solution would be of course to use a system similar to the one described

in this chapter and design a fitness function that combines the whole variety

of problems the system might encounter. For this, of course, we would need

to be able to predict what the system will encounter, this might not always

be the case.

The solution we interested in for the rest of this thesis is the idea of

having distributed systems similar to the ones find in biology: multicelled

entities. A cooperating colony of bacteria for example can adapt to its envi-

ronment through evolution, the problem then becomes how to evolve/design

such an artificial multicelled (or even multicellular) system? This has many

problems some of them being discussed in chapter 2, and these problems have

driven the rest of the research presented in this thesis.
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Chapter 6

Checkerboard Colony

“In the animal world we have seen that the vast majority of

species live in societies, and that they find in association the best

arms for the struggle for life: understood, of course, in its wide

Darwinian sense — not as a struggle for the sheer means of exis-

tence, but as a struggle against all natural conditions unfavourable

to the species.”

Peter Kropotkin

After having evolved a cooperating multicelled system and noted that

classical optimization methods are not perfect for the development of the kind

of systems we are interested in, we wanted to work more in detail on the

question of evolution of multicellularity and multicelled systems. And before

starting a fully-fledged open evolutionary system, we wanted to experiment

first in more constrained environments.

By more constrained environments we mean an explicit fitness driven

systems, like the GA in the previous chapter, but a GA tailored to the study of

the evolution of multicelled entities. These systems have one major advantage:

they are quantifiable. Due to the explicit nature of the fitness, runs can be

“judged” and compared and the effect of every parameter change can be stud-

ied easily. Also if a GA is used, another benefit is its speed of optimization,

they tend to be faster and more effective than ecological evolution.

We will hence use in this experiment a GA to evolve some sort of mul-

ticelled interaction starting from individualistic cells. We will also use this

experiment to explore a bit further the behaviour of our setup. We will use it
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to study the nature of the genotype-phenotype mapping of our artificial cell

model.

As a first approximation the nature of the evolution of multicellularity

is a classical problem of optimization (Kursawe, 1993; Schwefel and Kursawe,

1998). It can be represented as a fitness landscapes with two main fitness

peaks: one of individualistic cell behaviour, and one of cooperative cell be-

haviour (where cells need to interact to be fitter). The main question being:

“how to get from one peak to another?”. This depends a lot on the shape

of the fitness landscape, and the shape of the genotype-phenotype mapping.

The dependency on the fitness landscape is quite trivial, but the importance

of genotype-phenotype mapping might need some explanation.

What is meant by genotype-phenotype mapping? In our model the

genotype is a string of Booleans, and the phenotype is the protein levels of a

GRN over time. I will use this to illustrate the notion of phenotype-genotype

mapping. If one mutates Booleans in the genotype, it can have an impact

on the network, but not every mutation will have the same impact, and also

the way the genotype maps the phenotype influences the impact of mutations.

The effects can be of various amplitudes, changing the dynamics of the network

gradually or directly. Also their can be an imbalances in the effect of mutation:

the effects of mutations can be similar for every Boolean of the genotype, or

very different for certain positions. As the encoding we use for the artificial

cells encode also for the number of proteins and connection a single mutation

(breaking a gene-tag, for example) can have drastic changes.

The ease with which one can go from one fitness peak to the next

one depends directly on the shape of the fitness landscape and the genotype-

phenotype mapping. In this experiment, we implemented two levels of fitness,

one requiring a higher level of organization requiring inter-cellular cooperation

(the formation of a checkerboard pattern), and an individualistic behaviour.

The peak for individual behaviour will be very flat and lower (or equal, the

height of this peak will be a parameter) than the cooperative behaviour peak,

which is narrower and higher. In this situation if the genotype-phenotype

mapping is too “soft” (effect of mutations are small) evolution might never

leave the flat peak of individuality, whereas if it is to “rugged” (mutations

have dramatic effects), the risk is that evolution finds the peak but loses it

again before stabilizing correctly1. So we hope that our genotype-phenotype

1We have not put any elitism into the system, in nature the fittest individual is not kept
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mapping have some elements of both types: the capacity of moving around

across the fitness landscape with mutations that have a big effect on the phe-

notype, yet not every mutation should have these big effects so that the GA

can explore the area around interesting phenotypes without risking to lose the

peak.

To do this study, we will use a GA to evolve cells in a similar fashion

to the experiment in Chapter 5. To measure the fitness of a genome it will

control the GRN of cells in a grid. We will then use a two-level fitness function

to measure the quality of that genome, each of the two levels representing one

of the peaks in the fitness landscape. We will vary the height of the peaks and

the population size of the GA. With this setup we can find out under which

circumstances evolution will go towards the higher peak of cooperation and

when not, and also find out some useful information about the topology of the

genotype-mapping.

6.1 Extensions of the Methods

6.1.1 Simulation

The simulations takes place in a 2D toroidal grid, were each cell only considers

his four direct neighbours. Each position of the grid is occupied by an agent

(cell) controlled by a GRN. All of the cells in the grid have the same controlling

GRN. We use in this experiment GRNs with 32 different proteins, therefore

each cell can be in one of 232 different states, but not all of these proteins have

an actual effect on the environment most of them are internal states used to

control the cells.

This architecture gives the cells the potential to communicate. The

communications is the OR-unconstrained protocol from the previous section

with m = 4.

The cell can be in three possible “visual” states, two of them being

“cooperative” and one “individualistic” state. One protein controls the “in-

dividualistic” state, if it present in the cell this cell is in that state, if it is

not it is in one of the “cooperative” states. Those states are controlled by

another protein, if it is present the state will be “red” else “green” (these are

both two cooperative states). Those different states are independent of the

alive artificially either.
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communication, an “individualistic” cell can still communicate and receive

communication, the “visual” states are used during the computation of the

fitness function.

The regulation networks, the communication and the “visual” states are

updated in a random synchronistic way. The cells are updated in a random

order but each cell one and only one time during each time step. This is

the only non-deterministic component of the simulation. Each simulation will

have a finite fixed number of time steps.

6.1.1.1 Fitness

Developing an environment with a natural (implicit) fitness is not easy and

usually needs many parameters. Therefore we chose to work with an explicit

fitness function. This fitness here has the particularity to be actually two

fitness functions representing two levels of selection, one trying to reach a

high level goal needing multicelled interaction and one representing a low level

single cell goal, both goals being exclusive (computed independently), so both

goals are in competition.

The lower level fitness is simply to stay as long as possible in the “in-

dividualistic” state. We check for each cell in the grid which cell has stayed

longest in that state and normalise that time to 1. If tind(i) is the time cell i

has spend in the “individualistic” state, the “individualistic” fitness Find of a

GRN in a certain simulation is

Find =
max

all cells i
tind(i)

tsim
,

where tsim is the length of a simulation.

The higher-level goal is to create a checkerboard with the “red” and

“green” cells. At each time step of a simulation, for each cell of the grid in a

“cooperative” state we check the neighbourhood, for each of the neighbouring

cell which is in a different state but not individualistic that cell gets a score

of 0.25 (remark : 0.25 is 1 divided by the number of neighbours 4). So at

each time step each cell can get a score between 0 and 1. Those scores are

then summed for each time step over all cells and normalized to 1. If ni(j, t)

is equal to 0.25 if the jth neighbour of cell i is in the same state than cell i but
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not the individual one at time t, else 0, fcheck(i) the fitness of cell i is

fcheck(i) =


1

tsim

tsim∑
t=1

neighbours∑
j=1

ni(j, t) if i cooperative

0 if i individualistic

,

hence the higher level fitness of the GRN after a simulation Fgroup is the average

of fgroup over the colony

Fcheck =
1

ncells

∑
all cells i

fcheck(i),

where ncells is the total number of cells in the grid.

The final fitness of a GRN will be the maximum (For complete separa-

tion of the two level, we did not want a weighted system to limit the possible

of intermediate solutions) between the higher level and the lower level fitness

weighted by α ∈ [0, 1], a parameter weighting the advantage/disadvantage of

being individualistic. So the fitness F of a GRN lies in the interval [0, 1] and

is

F = max(Fcheck, α · Find).

6.2 Experimental Investigation

We have for this experiment run a 10 GAs (mutation rate: 0.002, cross-over

rate: 0.5, starting genome size: 1000 bits, size of tournament: 25, size of the

grid: 6 × 6, length of simulation: 30). The values of α studied were between

0 and 1 included in steps of 0.1, and the population sizes 125, 250, 500, and

1000. An α parameters set to zero meaning that there is no contribution

of to fitness from the individualistic fitness, the evolution is only driven by

the high level fitness. We have done the same experiment for three different

length of GA, 200 and 1000 generations, and an experiment with 200000 fitness

evaluations (which is equivalent to 1600 generations for population size 125,

800 for population size 250, 400 for population size 500, and 200 generations

for a population size of 1000).

The smaller α, the higher is the incentive for the cellular colonies to

evolve cooperation because the reward of cooperation is so much greater then

simple non-cooperation.
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Also we have used the OR-unconstrained communication protocol de-

scribed in Section 5.1.2.1.

In this experiment we are not directly interested in the actual fitness

achieved, rather we are interested in the local optimum in which an evolution-

ary run stabilizes. There are, as mentioned earlier, two local optima, one for

individual behaviour (shallow peak), and one for cooperative behaviour (steep

peak), the steep peak being always higher or equal to the shallow one. The

shallow peak’s height is characterized by the parameter α, so any GA run that

has stabilized on a fitness value above α has certainly achieved some degree of

multicellular cooperation. So for each set of 10 GA-runs we have computed the

proportion of runs that have achieved this, we will call this the proportion of

multicellularity, and this is the value plotted on the graphs of Figure 6.1 to 6.6.

This proportion of multicellularity is an approximation of the probability that

an evolutionary run with a set population size will stabilize on multicellular

behaviour in a set number of generations.

6.3 Results

Figures 6.1 to 6.6 are the results of this experimental setup, and figure 6.7

shows some picture of resulting behaviours.

The first remark is that for most of the plots one can notice a phase

transition. Only for the plots with a population size of 125 it is not obvi-

ous. This signifies that there is a tipping point at which the behaviour of the

evolutionary algorithm changes. Before that point evolution has a very high

probability of reaching a multicellularity and then, for a very small increase

of α this probability tends to zero. The dependence of the tipping point on

the population size is slightly unclear, in figures 6.1, 6.2, and 6.3, one can

see that the tipping points for population sizes 250 and 500 are very close,

yet for population sizes 125 and 1000 they are respectively lower and higher.

One has to be slightly careful, with the analysis of figures 6.1 and 6.2, be-

cause as the number of generations is fixed and the population size in not the

same for every line, the number of fitness evaluations for each line of the plots

are different. Naturally a GA with a smaller population size will take more

time (generation-wise) to explore the fitness landscape. For this purpose we

have included the results of figure 6.3, where all the GAs could take the same

amount of sample points in the fitness landscape (the same number of fitness
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evaluations), but one can see that the resulting plot is qualitatively similar to

the two previous ones.

In figures 6.4 and 6.5, we have presented some of the same results but

with a fixed population size, and varying number of generations. We can

see that qualitatively the lines are the same, hence the number of generations

does not matter for the phase transition, or at least for the explored parameter

space. This means that the minimum number of generations we have picked

(200) is enough for the GA to get to a stable point.

This result allows us to compute figure 6.6, which is a combination of

the previous graphs. We recomputed every point of the graph using the data

from figures 6.1 to 6.3, without considering the number of generations (basi-

cally, supposing that all the GA-runs had been stopped at the same number

of generation, or at stabilization). This allows figure 6.6 to have a better

definition on the vertical axis.

We can still, in figure 6.6, notice the phase transition, the two curves

for population sizes 250 and 500 that are very close, the line for a population

of 1000, that drops a bit later, and the one for a population of 125 that starts

to drop already for small values of α.

6.4 Conclusion

What can we conclude from these results? The results from this experiment

are a bit mitigated, but still can conclude a certain number of points.

First, there tends to be a clear phase transition for population sizes

above 1252, meaning that there is a non-linear shift of the evolutionary be-

haviours of the GAs. Both evolutionary attractors (individuality and coop-

eration) have clearly defined domains of attraction depending on α. We are

supposing that a colony’s fitness can always be higher if cooperating, than

if not, this transition shows, that even though the higher fitness would al-

ways push towards cooperation, due to the combination of a complex fitness

landscape and genotype-phenotype mapping, this high fitness is not always

achieved. Even more the behaviour on which the evolutionary runs stabilize

seem to be in an almost deterministic way depending on a set of parame-

ters. One could consider α an environmental parameter defining the difficulty

2This is probably due to the fact that we have used a constant size for the tournament
of the selection procedure, this changes the selection pressure for small population sizes.
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Figure 6.1: Proportion of evolutionary runs that have stabilized on the multi-
cellular state after 200 generations, for different values of α.
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Figure 6.2: Proportion of evolutionary runs that have stabilized on the multi-
cellular state after 1000 generations, for different values of α.
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Figure 6.3: Proportion of evolutionary runs that have stabilized on the multi-
cellular state after 200000 fitness evaluations, for different values of α.
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Figure 6.4: Proportion of evolutionary runs that have stabilized on the multi-
cellular state for varying number of generations, for different values of α, for
a population size of 250.
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Figure 6.5: Proportion of evolutionary runs that have stabilized on the multi-
cellular state for varying number of generations, for different values of α, for
a population size of 500.
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Figure 6.6: Proportion of evolutionary runs that have stabilized on the multi-
cellular state for varying number of generations, for different values of α (full
data).
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(a) A colony with periodic
behaviour where communi-
cation is correlated to the
state.

(b) A colony where the “in-
dividualistic” state has not
totally disappeared (notice
that only the “individualis-
tic” cells are communicat-
ing).

(c) A stable colony, with
only transient differenti-
ated communication.

Figure 6.7: Snapshots of some simulations. Left in each pair (a, b & c): the
statuses of the cells, here the cells are either in “red” or “green” state or in
blue for the “individualistic” state and the whole multicellular organism is
rewarded for building a checker-board-pattern. Right in each pair (a, b & c):
cells which are “communicating” with their neighbours are coloured in blue
depending on the “amount” of communication.
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of cooperation in that environment (or the fitness gain of being a coopera-

tive colony). In that case one could say that evolution is not only quantified

by absolute fitness, but also by the computational complexity of the way of

achieving this fitness.

These kinds of results are not easily discovered through classical mod-

els of evolution. The problem the cells have to solve in this setup is similar

to the iterated prisoners dilemma, which is a much-studied model in game

theory Graham Kendall (2007). However, by bringing into the game the com-

plex genotype-phenotype mapping of the GRN controlling the artificial cell

some new conclusions have been possible. In most mathematical or game

theoretical approaches the system will always stabilize at the stable point

of highest pay-off, which in the case of this model design would have been

the multicellular peak. Of course one could design a model to take into ac-

count a parameter representing computational complexity and complexity of

the genotype-phenotype mapping, but as for the purpose of identification of

new hypothesis normal models would not have been able to show this kind of

behaviour. Also, in mathematical or game theoretical approaches, the coop-

erative or individualistic behaviours are fixed by the genotype, in the model I

presented in this chapter, they are partially determined by the genotype but

through a complex genotype-phenotype mapping, hence the cells can switch

their behaviour during their lifetime. This is very important to study, and

cannot easily be done with more classical models.

The fact that evolution is not only driven by fitness but also by the

computational complexity is of course not new. Gould has been battling with

Dawkins for a long time about the importance of what he calls “developmental

constraints”, the idea that a goat might be “fitter” with some eyes behind his

head, but the complexity of achieve this new adaptation is far too big to ever

happen. I think everybody agrees that this is the case, the main question here

is how important in our evolutionary history has this been, and I think the

kind of models I presented in this chapter and the next can help towards this.

Still have we come with this experiment any closer to understanding

the evolution of multicellularity or the design of multicellular computational

systems? We have been able to show that in this setup complexity of multi-

cellularity has a role, but many things are still un-answered and I don’t think

we got any closer to developing multicellular computational system.

Explicit fitness driven systems often have one major problem, one can
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only get what one puts in. For example, in this system there is no conflict

at the lower level, simply because even though it is a multi-layered system,

there is no evolution at the cell level during simulation time, the conflict is

only at the level of competing colonies. A model is defined by its assumptions

and in fitness driven systems many assumptions will be taken when the fitness

function is designed, the system will not evolve policing if there is no lower

level conflict, this can be useful if you want to study a very specific point of a

problem, so to minimize side effects, but I want to, in a first time, get a global

idea of the workings of the evolution of multicellularity, for this the best (in

my humble opinion) is an implicit fitness driven system as I will present in the

next chapter.
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Chapter 7

Filament World Experiment

“If you try and take a cat apart to see how it works, the first

thing you have on your hands is a non-working cat.”

Douglas Adams

After having used an explicit fitness function driven system in the pre-

vious chapter, in this chapter we will propose a framework allowing the study

of evolution of multicelled interaction in an implicit (or natural) fitness driven

system.

One of the major problems of looking at evolution with defined fitnesses

is the huge amount of assumptions taken. The results of a study will be greatly

biased by the fitness function and landscape. When the prisoner’s dilemma is

used in evolutionary game theory to study the evolution of cooperation, the

values in the reward matrix and the operators will fully define the dynamics of

the system. We make assumptions about what the players want to “optimize”

and the behaviour the system will have will depend on that. The problem

with making assumptions about fitness is that in a natural environment it is

extremely difficult to actually know what fitness is, and what actually gets

optimized.

One way to remedy this problem is not to assume a specific fitness

function, but let the environment in which the entities that can evolve drive

evolution: a so-called natural, ecological or implicit fitness driven system (I will

use those terms interchangeably). There still is a great amount of assumptions

to be clarified, but the assumptions in this case will not be about what the cells
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will “optimize”, but about the environment they evolve in, these are usually

much easier to visualize and understand.

In such a system individuals will “be born”, “reproduce” (sometimes),

and “die” (more or less young). A population of such individuals will interact

between each other, and with the environment. This will influence how “well”

they live, how often they reproduce, how young they die, or any other pa-

rameter of their lives, and, if the individuals fit to what is needed for natural

selection to occur, the population will evolve. In this kind of system very little

is assumed about the evolution itself (the main assumptions about evolution

will be on the details of reproduction), so any conclusion about evolutionary

dynamics will be independent of a specific evolutionary theory paradigm. The

results will still be dependent on the assumptions made about the environment

though.

One downside of these kinds of models is a certain difficulty of study.

In an explicit-fitness driven system, the fitness itself is the most important

quantity to study and contains usually the information one was looking for.

Yet in an implicit-fitness driven system it can be very difficult to understand

what is happening in the system, and to understand why some things are

happening.

We will try to minimize the problem of the inherent complexity of an

implicit-fitness driven system, by designing a setup that is as simple as possi-

ble at the top level (cells interact with cells in a filament with no movement

allowed, they live, reproduce, and die), yet to have enough complexity of be-

haviour and possibilities for evolution a complex layer behind the simple one

(each cell will be controlled by a GRN). This kind of setup allows to encap-

sulate and unpack different levels of study when it is needed, e.g. study at a

population level with simple population statistics, but if interesting phenom-

ena appear, the possibility of in depth study (genomic studies, or expression

analysis for example) is still there.

To further help, we have designed a set of easily understood measures

to detect the appearance of multicelled interactions and hopefully multicellu-

larity.
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7.1 The Setup

The base scenario is a reasonably simple abstraction of evolution of cell colonies:

The experiment has two main phases: the evolution of a single-celled organ-

ism, and the evolution of the descendants of that evolved single cell in an

environment allowing interaction between cells. The single cell is evolved to

perform two tasks in parallel: one task representing metabolism, one repre-

senting a reproductive cycle. The metabolism task comprises processing some

information the cell gets from the outside world in an appropriate fashion (in

our case, to determine which of two 4-bit numbers coming from the environ-

ment is greater). The reproductive cycle is modelled as a simple a sequence

of protein activations the cell has to perform in a certain order. We evolve

a cell performing these tasks with the help of a simple Genetic Algorithm.

Once a reasonably good single cell has been evolved, we use it as a seed in a

one-dimensional cellular array, and we let it reproduce freely, with mutation.

It still has to perform the metabolism task or get penalised, and each time

a reproductive cycle is performed a new cell, with an inherited genome de-

scribing its GRN (that has possible mutated), is inserted next to the mother

cell. The capacity to communicate is given to the cells of this growing cellular

filament. We hypothesise that under certain conditions multicelled coopera-

tion (and multicellularity) will be easily detectable with some very instinctive

measures.

7.2 Extension of the Methods

7.2.1 Extension of the GRN Model

7.2.1.1 Metabolism Task

Our artificial cells have to perform two distinct tasks, one representing a re-

productive cycle (see section 7.2.1.2) and a task representing the general pro-

cessing of environmental information a cell does. This second task we will call

metabolic task, we call it so because it will represent the ‘life maintaining’

process of the cell, not because it produces any ‘biomass’. The ‘maintaining

task’ in a biological organism is highly complex so for our purpose we will

have to simplify and abstract away. We will see the metabolic task simply as

a non-trivial computation the cell has to perform using some information it
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gets from the environment. We arbitrarily chose a comparison of two random

numbers for this computation, but any number of different computations could

have been considered.

In our implementation, the information the environment gives to the cell

is modelled as two new 4-bit random numbers at each time step. Those 8 bits

of information are transmitted to the cell directly as proteins; 8 predefined

proteins of the cell are switched to the state of the binary values of the 8

environmental bits. And the task the cell has to perform is to recognise when

the first value of the two 4-bit binary numbers encoded in those 8 bits is

strictly larger then the second. One predetermined protein of the cell is the

output protein and is checked after one update of the GRN (for example if

the two numbers are 13 and 7, e.g. ’1101’ and ’0111’ in binary, at a time step

i, the output protein would have to be ’1’ at time step i + 1, because 13 is

larger than 7). This task, done at each time step, represents the ever-ongoing

adaptations and computations a cell has to perform during its lifetime (West-

Eberhard, 2003). If the cell does not perform well enough at this task it will

get either a bad fitness in the case of the GA evolution or will get a drastic

energy penalty if in the filament environment. We chose this specific task

rather than a more “biological” task mostly for sake of simplicity (no need

for parametrization) and abstraction. Again, one could have chosen any kind

of non-trivial information processing task, with information input from the

outside world (here the two 4-bit numbers) and expected behaviour depending

on it.

7.2.1.2 Reproductive Cycle

In any biological cell, life is directed by a reproductive cycle, which generally

ends with mitosis, the dividing of the cell into two daughters (each of which

inherits its genetic traits from the parent cell). Inspired by this, our cells will

also have a simplified abstracted reproductive cycle. These kinds of cycles

have been evolved successfully in GRN controlled models.

This cycle is controlled by 5 proteins1. The cell has to cycle through a

(arbitrarily chosen) designed pattern of expression of these proteins to be able

to reproduce. So to start the reproductive cycle the cell has to have those five

1A number selected empirically after test experiments have shown that longer cycles take
too long to evolve.
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Table 7.1: The Reproductive Cycle
1st step ’11100’
2nd step ’01110’
3rd step ’00111’
4th step ’10011’
5th step ’11001’

proteins set to ’11100’, and to continue it has to cycle onwards to ’01110’ and

finish with after the fifth step in ’11001’ (Table 7.1).

7.2.2 Fitness for the GA

To compute the fitness of each individual in the GA, the GRN of each individ-

ual is run for 100 time steps during which three different values are recorded.

The first value recorded, f1, is how far each cell advanced into its reproductive

cycle. So if the cell achieved only step 1 followed immediately by step 2 of

the cycle during a run, its fitness f1 = 2; the cell has to start with step 1,

else its fitness is f1 = 0, f1 becomes maximal when all five steps have been

done in order. The second component of the fitness, f2, is the accuracy of the

computation of the metabolism task, if the cell got the right answer 78 times,

its fitness f2 = 0.78. The third fitness is the number of partial reproductive

cycles of the maximum size the cell achieved, so if that cell with f1 = 2 did 10

partial cycles of size 2, it would have f3 = 10.

To know which of two individuals has the higher fitness we compare

successively the three fitnesses; so f1 is the most important component, if f1 is

higher for one of the individuals, that individual’s global fitness is the better

one. So the global fitness prioritises complete reproductive cycling over the

accuracy of the metabolism and prioritises metabolism over the number of

reproductive cycles.

7.2.3 The Cell Filament

For the second part of the experimental setup the evolutionary environment,

we let cells reproduce and evolve freely in a one-dimensional filamentous cell

array, growing from a selected single cell of the GA, which will be the initial

leftmost cell. The cells and environment will be updated synchronously. At

78



Table 7.2: Energies
Emax maximum/birth energy
Emeta cost of wrong metabolism computation
EGRN running cost of the GRN
En

pop population-dependent energy penalty

each time step all the cells of the filament will get the same random 8 bits of

environmental information for their metabolism task.

This arrangement could potentially allow for multicelled interaction and

ultimatively multicellularity to emerge.

7.2.3.1 Reproduction

Each time any cell completes two reproductive cycles a new cell is created and

placed directly to the right of the mother cell in the filament. This daughter

cell is a copy of the mother cell but may be mutated similarly as in the GA.

No crossover is applied.

7.2.3.2 Energies

To get an abstraction of a living colony of simple cells, the cells need to die.

For this purpose the fitness of the GA has been replaced by a set of energy

consumptions (Table 7.2). Each cell is born with a fixed amount of energy

Emax. Each time a cell gets the metabolism computation wrong it will lose a

certain fixed amount of energy Emeta. Added to that each bit of change (from

0 to 1 or 1 to 0) in the proteins of a cell costs one single unit of energy, so the

operating energy cost of the GRN EGRN is the Hamming distance between the

protein expression levels at time t and t + 1. At every time step the energy

level of each cell gets updated, and if a cell runs out of energy it is removed

from the environment.

7.2.3.3 Communication

If we want the cells to show cooperation and differentiation we presumably have

to give them means of communication. For the purpose, we use a communi-

cation protocol similar to a one-step diffusion. In particular, we use the OR-

unconstrained communication protocol studied in (Buck and Nehaniv, 2008a).
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Each cell has four emitting proteins and four respective receiving proteins. If

one of the cell’s emitting proteins is active the respective receiving protein of

its neighbouring cells gets activated.

7.2.3.4 Limiting Growth

A first series of exploratory experiments showed that growth had to be limited

since the population dynamics of the system as described are exponential.

Therefore the population either exponentially grows or dies out, and, as the

memory of the computer systems running the simulations is not infinite, the

growth of the population had to be limited, reflecting finiteness of resources

as in biological evolution.

To limit the growth of the population of cells, two systems have been

implemented. The first one is a hard cap on the population size, if the pop-

ulation increases above a certain cap, random cells are decimated until the

population is below the cap again. This strategy is implemented so that the

simulation does not run out of memory. The second system is inspired from

population dynamics. We added to the energy calculation a population-size

dependent energy penalty (Table 7.2). At every time step each cell incurs

an energy penalty En
pop = n/κ, where n is the size of the population at that

time step, and κ, an empirically set parameter which determines a certain

maximum population size dependent on the actual implicit fitness of the pop-

ulation. This, in effect, is a model of logistic growth in population dynamics

(Roughgarden, 1979). The parameter κ is set so that this maximum popula-

tion size is reasonably stable (no risk of extinction) but leaving enough space

for the population to become more efficient without reaching the hard capped

maximum size.

7.3 Measures and Results

7.3.1 The Single Cell

To evolve the single cell we use the GA as described earlier with a population

size of 1000, random initial genomes 10000 bits long and a mutation rate

of 0.0001. The evolutionary process achieves reasonably good individuals:

f1 = 5, exhibiting the 5-step full reproductive cycle; f2 ' 0.7, so that the
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metabolism task is performed correctly most of the time; f3 varying between 1

and 24 (25 being the possible maximum for f1 = 5). Evolution reliably yields

genomes with cells able to complete the full reproductive cycle (at least once)

and completing the metabolic task reasonably well. These evolved individuals

serve the purpose of providing seed cells to study the emergence of cooperation

and differentiation in the multicellular filamentous setting.

7.3.2 The Filament World

7.3.2.1 Experimental Setup

In this step of the experiment we inject a single pre-evolved seed cell (Section

7.3.1 into the filament world, and let it evolve freely in this context as described

earlier. Not all the genomes are adequate for this evolution: when we add

communication the GRNs of some pre-evolved cells are disrupted and are not

able to reproduce any more, and therefore the colonies are not viable. So we

select viable single cells, and study free evolution in the resulting filamentous

colonies.

We will concentrate in this analysis only on the most interesting run

discovered, similar runs where available with less strong effects. The results

we present here are set in an environment with: Emax = 5000, Emeta = 500,

κ = 15, and a mutation rate of 0.0001 (no cross-over). We study two different

filamentous colonies, one with communication (experimental condition) and

one without communication (control experiment), starting with the same ini-

tial cell. The experiments ended when all the cells of the filament were dead

(extinction) or ran until a maximal time limit is reached (in this case around

5.105 time steps).

7.3.2.2 Effects of a Multicelled Environment

Our model can be analysed with many different approaches. One could study

genome evolution and phylogenies, expression patterns of the GRN, or popu-

lation dynamics for example. Many methods used in biology can be applied

with little modification, and the added benefit being that the data used would

be complete. For this first study instead of such detailed analysis that would

only be justified for particularly interesting evolutionary runs, we will use and

present here only population statistics using our new measures. With this
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kind of statistics one can recover information about the evolution of a filament

rapidly, and evidence of multicelled interaction can be easily spotted.

7.3.2.3 Measures

To study the evolution of this system a number of possible population statis-

tics could be considered: number of cells over time, life expectancy, average

number of offspring, efficiency of the metabolic computation, etc. In this study

we look more precisely at three measures: life expectancy, average number of

offspring, and proportion of reproducers, where 4500-time-steps windows are

used for these rolling averages and the data for all the cells which died in each

period are used. For the two first of those measures (life expectancy and num-

ber of offspring) we will also compute derivate measures representing the effect

of the colony on the individual. To compute those measures, each time a cell

dies we rerun it in isolation (i.e. without any communication) from its neigh-

bours (we still remove the energy lost from the population dependent penalty

term though) and then measure the dead cell’s life expectancy and number of

offspring. We will call these measures individual potential life expectancy and

individual potential number of offspring. These potentials can be smaller or

greater than the actual measure in the multicellular environment. If they are

smaller they would mean that the cells live longer and/or have more offspring

if they get some information from neighbouring cells the can potentially inter-

act with and conversely. We also could have used already existing measures

for artificial life systems such as the ones presented in Mark et al. (1992), but

the adaptation of these onto a complex model like ours needs a great number

of simplification which could make the data difficult to analyse.

The life expectancy measure gives us an idea of how well the metabolic

task is performed and how efficiently the GRN is used (the EGRN term), if we

compare it to the individual potential life expectancy we could detect any kind

of cooperative computation and metabolism. The average number of offspring

should be varying around one due to the population limiting term, but by

comparing to the individual potential number of offspring one can detect the

presence of population and growth control organised at a population or local

level. The last statistic studied is the proportion of cells having one or more

offspring during their life time; this should help us to detect whether any kind
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Figure 7.1: Evolution of average cell lifetime (measured over rolling 4500 time-
step windows): Multicellular filament with (left) and without inter-cellular
communicative ability (right). The red lines being the individual potential life
expectancy as described in section 7.3.2.2

of germ/soma differentiation could be happening2.

We apply these statistics for both kinds of colonies: communicating and

non-communicating.

7.3.2.4 Results and Analysis

At first sight there is no evolution of multicellularity, there is no major shift

after stabilization in Figure 7.3. The use of information coming from neigh-

bouring cells is not trivial so a colony of cells might well discard or reduce as

much as possible the effect of communication so as not to disrupt the opera-

tion of its individual cells. But examining the individual potentials we have

presented in section 7.3.2 can refine this analysis. We can notice that indeed

there is no effect of communication on life expectancy (figure 7.1), as both

curves are very close, but there are some spikes for the individual potential

number of offspring. For the control setting individual potential number of

offspring never reaches below the actual number of offspring, yet in the colony

2If this measure lowers significantly it would mean that a certain proportion of the
population is not reproducing, and possibly doing the metabolic task for the reproducing
(germ) cells.

83



Figure 7.2: Evolution of average number of offspring per cell (measured over
rolling 4500 time-step windows): Multicellular filament with (left) and without
inter cellular communicative ability (right). The red lines being the individual
potential number of offspring as described in section 7.3.2.2

Figure 7.3: Evolution of proportion of cells reproducing (measured over rolling
4500 time-step windows): Multicellular filament with (left) and without inter
cellular communicative ability (right).
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of cells able to communicate large spikes drop as low as 0.4, which hints to

some sort of indirect multicelled behaviour (see Section 2.4.1). With the sets

of statistics available we are able to comment on those spikes. First it is not

related to a drop in individual potential life expectancy (life expectancy and

number of offspring are related, as if the cell lives longer it has a higher prob-

ability to reproduce more), as we can see from the graphs in figure 7.1. A

second comment is that they are not related to some kind of differentiation as

the proportion of reproducers in figure 7.3 is very close to one (meaning that

almost all cells in the filament reproduce). This is consistent with a hypothesis

that the cells are ‘experimenting’ with some kind of birth regulation. Without

analysis in depths of the GRNs in the cells of the filament during those spikes,

we can not know exactly what kind of control this might be (but the model

is very adequate for this kind of in depth analysis) but one can hypothesise

one of three main processes: (1) a “green beard” kind of control (Dawkins,

1976), meaning that the cells use communication to recognise each other and

don’t cooperate with cells which do not signal appropriately and hence block

the reproduction of such cells, or (2) a population control, where the cells try

to control the growth of the population so as not to overuse the environment,

or (3) cells prevent badly mutated cells (“cancer” cells) from reproducing. We

can also notice that the spikes are not unique, more than one of diverse ampli-

tudes occur. This also could hint at a typical cheater appearance: some sort

of cooperative behaviour appears and gets invaded by a phenotypes disrupting

and abusing the cooperators until no cooperator is left. This type of evolu-

tionary dynamics can cycle, as another (or eventually the same) cooperative

behaviour invades again, and so on.

7.4 Conclusion

In this experiment we have first evolved a viable cell able to perform a repro-

ductive cycle and an abstraction of house-keeping metabolism, and then let

this cell seed a simple multicelled environment where under free evolution with

the potential for inter-cellular communication, we have seen that without an

ability to communicate the cells are stuck in an evolutionary stasis, whereas

with the ability to communicate the colony of cells appear to “experiment”

with birth regulation behaviours and/or diverse communicative behaviours.

But the main contribution of this study is an intuitive artificial life
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framework for the study of evolution of multicelled behaviour and (possibly)

multicellularity, complete with a set of generally applicable measures allowing

easy identification of cooperative behaviour, and more in-depth analysis. The

measures defined in section 7.3.2.2, allow to detect automatically if a colony of

cells evolved some sort of multicelled cooperation, and reduces greatly the need

for anthropocentric observations of behaviour (as is often the case in artificial

life models). It is also possible with such system to do any kind of phylogenetic

studies (phylogenetic trees, Manhattan plots...), network analyses, contextual

analyses, application of Price’s equations, as one would like to for a biological

system.

One can get data from this model that are not available (or at least not

without painstaking efforts) in biology, data that can be fitted to mathematical

models of varying complexity. This is one issues of mathematical models,

there simply is not enough data available to confirm any particular model of a

phenomena. Models like the one presented here can help fill this gap. However

one has to be careful, certain assumptions have been taken in this model as

well which can differentiate it qualitatively from biology

We also hope that with further studies of parameters and better evolved

single cells we might be able to observe complete differentiation of reproduc-

tive (cells only performing the reproductive cycle) and soma (cells only doing

the metabolism task) cells. This framework can be extended to many more

complex population dynamics if we introduce perturbation of the environment,

cell movement and migration, breaking up and fusing of different filaments,

diverse metabolic tasks, sexual behaviour (exchange of genetic material), etc.

Finally, extensions of this kind of artificial life systems may help us to gain

some insight into the grey areas of major evolutionary transitions (Buss, 1987;

Maynard Smith and Szathmáry, 1995; Okasha, 2006), and perhaps move be-

yond and complement the traditional paradigms for the study of evolution.
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Chapter 8

Summary and Conclusion

“[A] curious aspect of the theory of evolution is that everybody

thinks he understands it.”

Jacques Monod (1975)

Computers have been getting faster and faster over the last decades,

but not only that, they have also become more complex, more networked and

more ubiquitous. This leads to one of the major problems of computer sciences

nowadays: how can we use and program these complex distributed networks of

processing power? This problem is not only in the realm of computer sciences,

new technologies like nanomachine, and bioengineering struggle with similar

issues.

There is one process that we know of that has been designing “pro-

grams” for this kind of systems for millions of years: evolution. Multicellular

organisms populate the earth; cooperation and division of labour are present at

every level of the evolutionary tree. And what are multicellular organisms but

extremely complex highly distributed systems? If one could harness the power

of evolution to build artificial “multicellular” entities, one would have made a

great leap toward using all the processing power available to us nowadays.

The problem is that the evolution of multicellularity is not very well un-

derstood, mostly from the aspect of dynamics. During the course of this thesis

research, I have tried to address certain issues about the evolutionary theory

surrounding the evolution of multicellularity and its application to computer

sciences. How can we evolve computational multicelled or multicellular sys-

tems? What are the necessary conditions? What happens during a transition
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in evolution?

8.1 Context and Methodology

In Chapter 2, I have presented a survey of the actual state of evolutionary

theory. Noticeably the theories and frameworks for the study of evolution of

complex adaptations, such as those qualified as major transitions in evolu-

tion like the advent of multicellularity. I then argue how computer sciences

have a two-fold link with certain of these issues: an utilitarian need, and as a

modelling tool; explicitly, computer sciences could be greatly helped if evolu-

tion could be harnessed as a development tool for highly complex distributed

computational systems, and also, conversely computer science models could

provide modelling tools that would greatly improve upon the actual (mostly

mathematical) modelling paradigms used in evolutionary theory.

I followed then with a presentation (Chapter 3) of how computer science

has addressed these engineering and modelling aspects so far. I presented

algorithms that have been inspired by biology and evolution, these are used in

engineering as well as for the modeling of biological processes. Some of these

tools have also been used (as optimization tools, as well as modelling tools)

in my practical work (Sections 4 to 7). In Section 3.4, I present some models

that study evolutionary theory with methodologies closer to informatics than

biology.

It is important, if we want to transfer knowledge on questions of evo-

lution, that the biology and computer science communities share a common

language. If computational models are too abstract, it can be very difficult for

a biologist to exchange and use the information gained, hence it is important

to think about designing models that can be compared and presented to biol-

ogy and its research community. On the other hand many models are limited

in the levels of complex behaviour they can evolve. The levels of complex

behaviours models can evolve are important, both for the computer scientist,

and the biologist. The computer scientist wants to evolve complex systems as

an engineer, and the biologist wants to understand the evolution of complex

behaviour and adaptations. Yet the search for complexity often has a draw-

back: the complexity of analysis. So there has to be a trade-off between the

complexity of possible behaviours, and the ease of analysis.

88



8.2 Experiments on Multicelled Systems

In the next few chapters I presented a set of models and methodologies to

address these points. Chapter 4 presented the main tools I use to build my

experiments: an artificial cell model (Section 4.1), a genetic regulatory network

model (Section 4.1.1), and evolutionary algorithms (Section 4.2). These tools

address one of the previously mentioned points: cross-disciplinarity. Even

though they are algorithmic tools, they are reasonably easily understood by

biologists.

In the first experiment (Chapter 5), I have presented a model that uses

more or less standard computational paradigms to create a multicelled system

to colour graphs, as an experimental scenario for the evolution of multicelled

cooperation. I use this experiment to show some of the classical problems

of standard optimization methods (GAs, for example): the problems of scal-

ability, fitness, and adaptability. Standard optimization metaheuristics can

usually handle very small multicellular entities in a not too dynamical envi-

ronment, but will fail if the number of cells is too high or the environment is

changing permanently too much; this is what I call the scalability and adapt-

ability problems. The issue with fitness is that one wants massively parallel

distributed systems to be very versatile, but designing a fitness function to

emulate the needed versatility is unrealistic. I use this experiment also as a

test bed for certain engineering choices for the follow-up models (mostly about

the implementation of communication). I argue as conclusion that to improve

and evolve complex distributed systems, it would be very helpful to under-

stand in which conditions, and how, multicellularity can evolve, and how this

can be controlled, how it interacts with multicellular development, growth and

policing.

The second experiment, presented in Chapter 6, is an endeavour to ap-

proach the question of the necessary conditions for evolution of multicelled

cooperation, as well as the relationship of cooperating and non-cooperating

cells. I have also used this experiment to study the topology of the genotype-

phenotype mapping of my artificial cell; verifying whether the mapping is

complex enough for interesting evolutionary behaviours without it being too

much. I have evolved clonal colonies of artificial cells where cells can behave

in a cooperative or non-cooperative manner, both behaviours contributing to

different competing fitnesses. I have here shown that the fixation of one or
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the other behaviour is not especially dependent on population size (number

of colonies involved with the genetic algorithm), but more on environmental

variables, and the difficulty (computationally speaking) of the cooperative be-

haviour. This could not have been shown by standard population dynamics

systems.

The last experiment (Chapter 7) is a setup that ties the lessons of the

two first experiments together with the conclusions of Chapters 2 and 3. Ar-

tificial cells evolve freely in a setting where multicellularity can evolve. It has

no explicit fitness function1, no predefined fitness and levels of selection, and

only natural selection acts. It is understandable by biologists, and tools de-

veloped for biology can be used to analyse it. Some novel measures have also

been developed that are specific to artificial life models. These are population

dynamics measures (life expectancy, and average number of offspring), but ap-

plied to cells that I can make “live again” without their cellular environment,

hence without communication (which is quite difficult in biology). These have

allowed to show that some form of cooperative multicelled control of repro-

duction evolved, which had not been foreseen. This model has allowed us to

show that it is possible to design models that have the three characteristics

identified in our methodological goals: they evolve complex behaviours, are

easy to understand (by a wide variety of scientists), and are easily analysable

(with a wide variety of tools and at different levels).

8.3 Contribution to Research Questions

In this work I have endeavoured to close in on the first research question of

a strategy for finding new ways to design massively parallel computational

systems, and this starting question led me to the evolution of multicellular-

ity. I concluded from my literature reviews (Chapters 1 to 3) and my first

experiment (Chapter 5) that genetic algorithms of a standard type are not

especially adequate to evolve multicellular systems, hence emerged the idea

to evolve multicellularity itself as it happened in biology. To develop com-

putational multicellular system we need to understand multicellularity itself.

The design of massively parallel computational systems and the understand-

ing of the evolution of multicellularity requires a “cell” with sufficiently rich

1Beyond these used to evolve the initial cells in isolation, before the actual experiment
begins.
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dynamical and evolutionary potential. Discrete genetic regulatory networks

(GRNs) as a basis for studying the evolution of cooperative differential multi-

cellularity are motivated and introduced, and a cell model containing desired

characteristics is presented (Chapter 4).

These thoughts led to the second research question I have addressed

with this work: understanding the details and mechanisms of the evolution of

multicellularity; or more specifically: how to evolve multicellularity in an arti-

ficial systems? Chapters 6 and 7 present two such starting points: one using a

fitness driven model that has two explicit levels of organisation, each driving

different measures of fitness; and one where artificial cells evolve freely without

the constraint of a fitness function, they just interact with their environment

and neighbouring cells. These models show novel ways how questions about

the evolution of multicellularity do not have to be studied the more traditional

way, and that Artificial Life style models can help greatly the understanding

of these questions and artificial life.

With this research I have first shown the importance of new method-

ologies for the study of evolution, and more particularly the evolution of mul-

ticellularity. This is important both for computer science to develop new

computational tools, and for biology. The new methodologies requires models

that are be cross-disciplinary, have the potential of highly complex behaviour,

and easy to analyse . I also have presented two models that share those char-

acteristics. These have shown behaviours and results (understandable both by

computer scientists and biologists) that would not have been predictable by

the standard methodologies used in the field of evolutionary theory.

8.4 Remaining Issues and Future Work

The research done during this thesis has shown that it is important and possi-

ble to design new types of models for the evolution of multicellularity: models

that show a large possibility of complex behaviour, and that are understand-

able by biologists and computer scientists alike. But there still is a long road

ahead.

Even though the filament-like setup (Chapter 7) did show some evi-

dence suggesting cooperation, they are far from conclusive. This is one of the

major problems of this sort of models: because the goal is not “hard-coded”

into the system (with a fitness function, or otherwise), one can never be sure
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when, which, or even if one will get an interesting result. Nevertheless, one

can use measures like those developed in chapter 7 to detect relevant activity.

One can put in all the “ingredients” for the evolution of some interesting be-

haviour, but might have forgotten the “pinch of salt”, and find nothing. Hence

this kind of models does need to be played with extensively, for interesting re-

sults to happen. But once interesting results have been found (even better if

repeatable), in depth analysis, unimaginable to biologists can be done.

To dodge this issue, one could use models like the one in Chapter 6,

where the “evolution of multicellularity” is very scaffolded with two fitness

functions and the GA. These kinds of models are closer to the more traditional

mathematical models of evolution. It is very easy to see the effect of certain

variables on the outcome, but such models, with the rich internal structure

of cells and interaction between them, can show more complex behaviours

than mathematical models. Yet the information you get from them is difficult

to transfer due to the nature of the model, it would be difficult to fit real

biological data to them like it would for a mathematical model, or even to

compare it (in a qualitative way) to biological systems, as is often done with

other Artificial Life systems. Nevertheless, they can be a fast and easy way to

try out some hypothesis, or parameters, before building more elaborate models

(like the filament setup).

One difficult issue that this thesis did not resolve, is the complete clos-

ing of the circle, how to apply the gained knowledge to computer sciences to

build efficient and effective massively parallel computational systems. One of

the motivations of this thesis is to understand evolution of cooperation and

multicellularity better so that we can apply these understandings to computer

sciences and the design (or evolution) of massively parallel computational sys-

tems; this part is deep and (sadly) has not been achieved by anyone, yet. That

does not mean, though, that this return loop will never be possible, the lessons

one can get from this kind of models will be exceedingly helpful for computer

sciences, evolutionary theory, biology, and medicine (especially oncology).

However the road to gain this kind of insights is still long and twisty,

there is still too much to discover on how multicellularity evolves. One of the

first results that would have to be achieved next would be to have a model

that shows full division of labour, for example, using a model similar to the

one presented in Chapter 7 where the cells would evolve that either perform

reproduction or the computational task. These simulations can then be studied
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in depth with all possible tools so that the driving forces of this evolution can

be well understood. The next steps would be to do similar studies but changing

some of the starting assumptions: adding sexual reproduction, mobility, lateral

gene transfer, genes with different functions, inheritable protein levels, etc; and

then see how these different assumptions influence the way multicellularity

evolves. These results should allow us to get a much better understanding

of the driving forces behind the evolution of multicellularity (and maybe even

other major transitions). This better understanding would be of immense help

for the design of computational multicellular systems, and the main biological

applications: the understanding of cancer and of development.

But the applications do not stop here, similar approaches to those in

this thesis can also be used for different questions in evolutionary theory, such

as the evolution of the first replicators or the evolution of sex. Most of the

major transitions in evolution are still very badly understood, and the more

mainstream modelling methods tend to be inadequate to study them, however

new Artificial Life methodologies, like the ones presented in this thesis will be

needed and will eventually lead to some of the answers to these questions.
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Appendix A

List of Published Papers

A.1 Effect of Multi-Level Fitnesses on the De-

velopment of Multicellular Artificial Or-

ganisms

“Effect of Multi-Level Fitnesses on the Development of Multicellular Artificial

Organisms” (Buck and Nehaniv, 2006b) was presented at the 7th German

Workshop in Artificial Life (GWAL-7), July 2006, in Jena, Germany. This

paper presents an early version of the artificial cell presented in chapter 4,

which used a continuous GRN, and used for an experiment very similar to the

one presented in 6.

A.2 Discrete Developmental Genetic Regula-

tory Networks for the Evolution of Coop-

eration

“Discrete Developmental Genetic Regulatory Networks for the Evolution of

Cooperation” (Buck and Nehaniv, 2006a) was presented at the AAAI Fall

Symposium (October 13-15, 2006, Arlington, Virginia) on the Developmental

Systems track. This paper presents the first version of the discrete GRN used

for the artificial cell across this thesis. It is used in a preliminary version of

the experiment of chapter 6.

94



A.3 Colouring graphs using a GRN/cell-based

system

“Colouring graphs using a GRN/cell-based system” (Buck and Nehaniv, 2007)

was presented at 7th International Workshop on Information Processing in Cell

and Tissues (IPCAT), August 2007, in Oxford, UK. The work presented here

was some preliminary work to chapter 5.

A.4 Communication and complexity in a GRN-

based multicellular system for graph colour-

ing

“Communication and complexity in a GRN-based multicellular system for

graph colouring” (Buck and Nehaniv, 2008a) is an extended version of (Buck

and Nehaniv, 2007) it has been published in BioSystems in 2008. The results

presented in chapter 5 are based on the results presented in this journal paper.

A.5 Looking for Evidence of Differentiation

and Multicellular Cooperation

“Looking for Evidence of Differentiation and Multicellular Cooperation” (Buck

and Nehaniv, 2008b) was presented at the 8th German Workshop in Artificial

Life (GWAL-8), July-August 2008, in Leipzig, Germany. The work presented

here was some preliminary work to chapter 7.

A.6 Looking for Evidence of Differentiation

and Cooperation: Natural Measures for

the Study of Evolution of Multicellular-

ity

“Looking for Evidence of Differentiation and Cooperation: Natural Measures

for the Study of Evolution of Multicellularity” is an extended version of (Buck
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and Nehaniv, 2009) it has been published in Advances in Complex Systems in

2009. The results presented in chapter 7 are based on the results presented in

this journal paper.
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