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Abstract

Absence epilepsy is a neurological disorder that commonly occurs in children

[44]. Some studies [14] have shown that absence seizures predominantly origi-

nate either in the thalamus or the cerebral cortex. Some cerebellar nuclei (CN)

neurons project to these brain areas, as explained further in Fig. 2.6 in Chap-

ter 2. Also, some CN neurons have been observed to show modulation during

the absence seizures [41]. This indicates that they somehow participate in the

seizure and hence are referred to as "participating neurons" in this thesis. In

this research, I demonstrate how machine learning techniques and computer

simulations can be applied to investigate the properties and the input condi-

tions present in these participating (CN) neurons. My investigation found a

sub-group of CN neurons, with similar interictal spiking activity, spiking ac-

tivity between the seizures, that are most likely to participate in seizures. To

investigate the input conditions present in the CN neurons that produce this

type of interictal activity, I used a morphologically realistic conductance based

model of an excitatory CN projection neuron [66] and optimised the input pa-

rameters to this model using an Evolutionary Algorithm (EA). The results of

the EA revealed that these participating CN neurons receive a synchronous

and bursting input from Purkinje cells and bursting input with long inter-

vals(approx. 500ms) from mossy fibre. The same interictal activity can also

be produced when the Purkinje cell input to the CN neuron is asynchronous.

The excitatory input in this case also had long interburst intervals but there is

a decrease in excitatory and inhibitory synaptic weight. Surprisingly, a slight

change in these input parameters can change the interictal spiking pattern to

an ictal spiking pattern, the spiking pattern observed during absence seizures.

I also discovered that it is possible to prevent a participating CN neuron from

taking part in the seizures by blocking the Purkinje cell input.
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Chapter 1

Introduction

Contents
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1.1.3 Absence Epilepsy . . . . . . . . . . . . . . . . . . . . . 6

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Contributions to Knowledge . . . . . . . . . . . . . . . 10

1.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . 12

1.1 Motivation

Machine learning methods are used to analyse data, in this case neuro-

scientific data taken from in vitro or in vivo experiments, recorded

using a variety of techniques. Computer simulations of mathematical models

of the nervous system are used to aid in understanding and to make predic-

tions about the operation of the nervous system at various levels of detail. In

my research, I use a combination of machine learning methods and computer

simulations to investigate the role of the cerebellar nuclei (CN) in absence

epilepsy. In the following sub-sections, first, I give a brief overview of machine

learning, computer simulations and their applications in neuroscience. Then
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I detail my motivation behind the study of the CN neurons with respect to

absence epilepsy.

1.1.1 Machine Learning

Machine learning algorithms are rapidly gaining popularity in many diverse

fields such as robotics, pharmacy, astronomy, data mining, image processing,

which contain many problems that involve analysing large amounts of data

and extracting useful information from the data.

Machine learning algorithms can be divided into three main categories:

unsupervised learning algorithms, supervised learning algorithms and rein-

forcement learning algorithms. In this research, I implement two of these

methods as listed below:

• Unsupervised Learning Algorithms: Unsupervised learning algo-

rithms are capable of finding naturally occurring patterns or groups in

unlabelled data. The patterns are learnt entirely from the features of

the data based on the similarities of the features. These algorithms are

very useful in cases where information about the data is limited and we

do not have the knowledge of the number of groups present in the data.

• Supervised Learning Algorithms: These algorithms require that

the data are labelled. Each data item/input in the data has an output

which may be a class label or a numeric value. Typically, a supervised

learning algorithm is able to predict the class or the numeric output

of unseen data based on the learning it has done on the associations

or relationships between the input and the output of already available

data.

In this research, I use an unsupervised learning algorithm to perform clus-

tering in order to investigate a dataset obtained from different types of CN
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neurons: some of which alter their output during absence seizures and some

which do not, as explained further in Section 1.1.3. Further, I use a super-

vised learning algorithm to perform non-linear regression on the features of

the interictal activity. Interictal activity refers to the spiking activity of the

CN neuron in between the absence seizures. The point of this is that it may be

important to predict the likelihood of the CN neuron modulating its spiking

output during absence seizures.

1.1.1.1 Application of Machine Learning Methods in Neuroscience

In the field of neuroscience, much useful information is difficult to obtain. For

example, when extracellular recordings are taken from a neuron of an awake

animal, the electrode picks up the spikes emitted not just by the neuron

of interest but also from the neighbouring neurons. Filtering out only the

desired spikes from the recording is not always an easy task. The spikes from

different types of neuron can be recognised in this mix due to the fact that

each type of neuron fires spikes which have a distinctive shape and may vary

in amplitude when compared to the spikes from other neurons. Unsupervised

and supervised machine learning algorithms can be used in this task to group

the spikes into different clusters based on the features that measure or describe

the shape and amplitude of the spikes.

Machine learning algorithms can also be used to classify different types of

neurons based on their firing characteristics instead of the spike shape. In a

recent paper, Gert Van Dijck and collaborators [19] showed that a Gaussian

Process Classifier can be used to identify Purkinje Cells, Golgi cells, granule

cells, mossy fibres and basket/stellate cells based on the features describing

the spiking activity of the neurons. The advantage of using this method is

that the models developed using the firing characteristics can be standardised

and used across different laboratories. This is difficult in the previous method
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as the spike shape is dependent on several factors such as the type of electrode

used or the geometric positioning of the electrode when recording.

Machine learning algorithms have also been used in the modeling of neu-

rons and neurological processes by fitting parameters to experimental data.

Traditionally, computational models of neurons were tuned by using methods

such as hand tuning [51] or brute force [6, 22]. However, studies have shown

that machine learning methods can accomplish the same task with less diffi-

culty. For instance, Huys et al. [36] have used machine learning methods for

smoothing of and parameter estimation of single cell models from noisy bio-

physical recordings. Montes et al. [49] have used machine learning methods

to model the behaviour of synapses.

Machine learning algorithms have also found applications in EEG analy-

sis. Some neurological diseases and conditions such as epilepsy and cerebral

ischemia, which may be a result of stroke, can be diagnosed by the means of

EEG analysis. The detection of specific EEG waveform patterns are key to

this process and can be improved by the application of machine learning al-

gorithms. For instance, Support Vector Machines Machine(SVMs) have been

shown to be able to detect the EEG patterns which are indicative of seizures

[25]. Also, SVMs, k-Nearest Neighbours (kNNs) and Deep Belief Nets (DBNs)

has been used by classify and detect special EEG patterns which are indica-

tive of abnormal brain activity [11], such as spike and sharp wave, generalised

periodic epileptiform (GPED) and triphasic, periodic lateralized epileptiform

discharge (PLED) and eye blinks [73].

The identification of different EEG patterns by machine learning algo-

rithms have also led to their use in the development of brain-computer in-

terfaces [62, 50]. Brain-computer interfaces (BCIs) decode the brain’s EEG

activity and generate computer commands which allow the user to control

computational devices without physically touching them. To create a BCI,

the EEG activities associated with different physical movements have to be
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learnt. To learn the EEG pattern associated with a particular physical move-

ment, the physical movement is performed a number of times and the corre-

sponding EEG signal is recorded. A machine learning algorithm then analyses

these training samples and learns the EEG pattern associated with that par-

ticular physical movement. Once the pattern is learnt, the BCI can be used

to convert intentions to actions.

1.1.2 Application of Computer Simulations in Neuro-

science

Computer simulations may involve modelling a single neuron or a collection

of neurons that are as realistic as possible. These computer models enable

us to conduct a large variety of simulations and test hypotheses which may

not be experimentally testable or may involve experiments that are difficult

to conduct.

An integrate and fire model of a neuron was created by Lapique [8] as

early as 1907 and this model is used widely even to this day. The biopyhsical

mechanisms of how an action potential is initiated and propagated was mod-

elled by Hodgkin and Huxley and was published as a series of 5 papers in 1952

[30, 29, 31, 32, 33]. Since then, there have been many advances in this field.

Several models of neurons such as the Purkinje cell [16], cerebellar nuclei (CN)

neurons [66] and so on have been developed. These neuronal models are very

detailed. They are morphologically realistic, that is, the neuron models were

reconstructed from the morphologies of actual neurons. The morphology of

the CN neuron model was reconstructed with the help of a software package

called Neurolucida (MBF Bioscience, Williston, VT USA). Also, the electro-

physiological properties of the neuron were modeled using software such as

GENESIS [7] or NEURON [28]. Active channels were introduced and the

channel densities were distributed in the model such that the spiking output
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of the neuron model matched the spiking behaviour observed in actual neu-

rons. In the Purkinje cell model, 10 different voltage dependent channels,

which included a fast and persistent Na+ channel, 3 voltage dependent K+

channels, T-type and P-type Ca2+ channels and Ca2+ activated K+ channels,

described by Hodgkin-Huxley equations were introduced in the model. The

Purkinje cell model is also able to produce the simple and complex spikes as

observed in real Purkinje cells. The CN neuron model was similarly modelled

to resemble an actual CN neuron in morphology and spiking behaviour. This

model is described in detail in Chapter 2 section 2.4. With the help of these

models, many research questions are being explored such as the mechanism

of pattern recognition by Purkinje cells [65], rate and time coding of Purkinje

cell pauses by the cerebellar nuclei [67, 17], to name a few.

1.1.3 Absence Epilepsy

Absence Epilepsy, or petit mal, is characterised by a sudden onset of brief

non-convulsive seizures accompanied by an increase in muscle stiffness. The

term "absence" epilepsy was coined by Calmeil in 1984 [68]. This type of

epilepsy was so named because the physical symptoms that were associated

with other type of eplilepsies, such as convulsions and foaming at the mouth,

were absent. This type of epilepsy is also referred to as ’childhood epilepsy’

since it is predominantly found in children [12] and in approximately 70% of

the cases the disorder recedes as the child approaches adolescence. Though it

is not considered as serious as the other convulsive types of epilepsy, people af-

fected by this disorder experience approximately 200 or more brief (approx.10

seconds) seizures per day, which can affect their quality of life and learning.

Some studies [14] suggest that the absence seizures primarily originate

either in the thalamus or the cerebral cortex. The Cerebellar Nuclei (CN)

neurons, which provide the main output from the cerebellum, have upstream
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Figure 1.1: (A ) shows spike-and-wave discharges (SWDs) observed during absence
epilepsy in a human (B) shows the SWDs induced in a cat obtained by infusion
of convulsants to cortex either in the intact thalamocortical system (top) or after
removal of the thalamus (bottom). Source: [18]

connections to the thalamus and the cerebral cortex, as discussed further in

Chapter 2: Section 2.3.1. However, the role of the CN neurons in absence

epilepsy remains unexplored.

The absence seizures are identified by the appearance of spike-and-wave

discharges (SWDs) in the electroencephalogram (EEG). A SWD is a partic-

ular type of EEG pattern which is observed during the occurrence of absence

seizures. The EEG pattern may appear slightly different in different animal

species as shown in the Fig. 1.2, but it typically consists of a regular, repeating

pattern of a spike followed by a wave.

The SWDs observed in the tottering mice, in our experiment, were as

shown in the bottom panel of Fig. 1.1 (a) and (b). The recordings in the

top panels of Fig. 1.1 (a) and (b) are taken from the CN neurons of tottering

mice recorded simultaneously with the EEG. Tottering mice, an established
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Figure 1.2: The top panels in both (a) and (b) show extracellular recordings taken
from a CN neuron of a tottering mouse and the bottom panels in (a) and (b) show a
simultaneous EEG recording. (a) The CN neuron’s spikes show phase-locked spiking
with the spikes of the SWDs in the EEG. (b) the CN neuron shows no change in its
spiking behaviour and does not phase-lock its spikes with the spikes of the SWDs
in the EEG.

exemplar of absence epilepsy, suffer from hundreds of absence seizures per day.

They are called tottering mice as a genetic defect in these mice causes their

cerebellum to dysfunction [21] which in turn affects their motor skills causing

them to walk unsteadily.

Interestingly, when extracellular recordings from CN neurons from these
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Figure 1.3: Some CN neurons in the tottering mice showed phase-locked firing
with the SWDs in the EEG during absence seizures. Here, a CN neuron is shown
firing during the wave portions of the SWDs and pausing during the spikes in the
SWDs (shown by the red dotted lines). Source: [41]

tottering mice [41] were recorded simultaneously with the EEG, some CN

neurons showed a phase-locked firing pattern with the SWDs as shown in

Fig.1.1 (a) and Fig. 1.3. In Fig. 1.3, the CN neuron shows a burst of spikes

during the wave part of the SWD and a pause in firing during the spike of

the SWD [41]. This phase-locking with the SWDs in the EEG is sometimes

slightly shifted in phase but still follows a pattern of firing and pausing as

dictated by the SWDs. This shows that these neurons in some sense are

participating in the seizures since their firing pattern changes. Other CN

neurons do not show this behaviour during these seizures as shown in Fig.

1.1(b). I therefore refer to the former group of neurons as "participating" and

the latter group as "non-participating". The measures FFT based Z-score

and modulation frequency, defined in Chapter 3, quantify the phase-locking

activity and decide if the CN neuron is "participating" or "non-participating".

I also perform clustering in Chapter 4, to analyse the properties of CN neurons

that participate in absence seizures.
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1.2 Objectives

My objectives are:

• To analyse, with the help of machine learning methods, the properties

of CN neurons that participate in absence seizures.

• To investigate, with the help of a CN neuron model, the input conditions

leading to the spike patterns found in the CN neurons that participate

in absence seizures.

• To investigate the change in input conditions that moves the CN neuron

spiking pattern from an interictal spiking pattern, observed in between

the absence seizures, to an ictal spiking pattern, observed during absence

seizures.

1.3 Contributions to Knowledge

There has been recent interest in using machine learning to analyse neuronal

data. I have shown that many interesting features of neuronal data can

be found using both supervised and unsupervised data analysis techniques.

Moreover, I have shown that the parameter space of model neurons can be

successfully explored using evolutionary algorithms.

I have two major contributions to the knowledge: the first is the result of

my investigation into how interictal spiking activity can characterise partici-

pating and non-participating CN neurons. I use a clustering method, Growing

Neural Gas (GNG), that discovered properties of the type of CN neuron that

is more likely to participate in absence seizures. Interestingly, these participat-

ing CN neurons were located primarily in the lateral and interpositus region

of the cerebellum.The CN neurons in these regions are known to project to

the thalamus and cerebral cortex, as shown in the Fig. 2.6 in Chapter 2, so
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changing the output of these neurons can affect the propagation of the ab-

sence seizure. Secondly, I used computerised optimisation (an Evolutionary

Algorithm) to discover the most important factors in the input conditions

leading to CN neuron spike patterns present during the interictal periods of

the participating CN neurons.

Specifically I discovered that :

• There were five key input parameters: Purkinje cell synchronicity, in-

hibitory interburst interval, inhibitory burst duration, excitatory inter-

burst interval and inhibitory synaptic weight, that affected the simula-

tion of the spiking activity, giving an activity similar to that observed in

the interictal periods of real participating CN neurons. In other words,

a participating CN neuron receives a synchronous and bursting input

from the Purkinje cells and a bursting input from the mossy fibre with

long intervals(approx. 500ms) in between bursts during the interictal

periods.

• It is possible to simulate the interictal activity of participating CN neu-

rons when the input from the Purkinje cell is not synchronous. In this

case, the input parameters: excitatory interburst interval, inhibitory

synaptic weight and excitatory synaptic weight are the key parameters

which affect the CN neuron’s participation in absence seizures. The most

interesting point to note in this experiment is that when the Purkinje

cell input is asynchronous, the excitatory input to the CN neuron should

be reduced (supported by the decrease in excitatory synaptic weight) to

achieve the desired results.

• Instead of a dramatic change in input conditions of the participating

CN neurons, a small change, that is, a change in the duration of the

interburst interval of the excitatory input, is sufficient to change the

output from an interictal spiking pattern to an ictal spiking pattern.
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• It is possible to stop a participating CN neuron from participating in

absence seizures by blocking the Purkinje cell input to the CN neuron.

• It is possible to predict the FFT based Z-score, a measure that quantifies

the phase-locking behaviour of the CN neuron’s spikes with the spikes of

the SWDs in the EEG during absence seizures as explained in Chapter

3: Section 3.1, from the interictal activity of the CN neuron.

1.4 Overview of the Thesis

This section lists the upcoming chapters in this thesis and gives a brief overview

of each chapter.

• Chapter 2: Background. This chapter gives the background on the

topics such as absence epilepsy, cerebellum, CN neurons and the CN

neuron model. This chapter lays the foundation needed to understand

the rest of the thesis.

• Chapter 3: Electrophysiological Data and Feature Extraction.

In this chapter, the measures used to label the CN neuron as Participat-

ing or Non-participating based on the extent of phase-locking of the CN

neuron’s spikes with the spikes of the SWDs in the EEG during absence

seizures, are defined. Further, the various measures used to describe

the interictal and ictal spiking activity of the CN neurons are explained.

Also, a time series analysis of the spike-trains, using these measures, is

done to visualise the different types of spiking patterns observed during

and in between seizures in the CN neuron spike-trains.

• Chapter 4: Analysis of Clustering Interictal data. In this chap-

ter, I use an unsupervised machine learning algorithm: Growing Neural

Gas(GNG), to cluster the interictal spike-train data of the CN neuron,
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in order to analyse the properties of the CN neurons that participate in

absence seizures.

• Chapter 5: Regression. In this chapter, I use Gaussian Regression

to determine if the two measures: FFT based Z-score and modulation

frequency of the CN neuron can be predicted by the interictal activity

of the CN neuron.

• Chapter 6: Computer Simulations and Evolutionary Algorithm.

In this chapter, I use a CN neuron model, described in Chapter 2, to

study the input conditions in the CN neuron which produce spiking ac-

tivity that is similar to the interictal activity of CN neurons that are

most likely to modulate their spiking activity during seizures. Since

the problem involves multi-parameter optimisation, I implemented an

Evolutionary Algorithm (EA) to search the input space for all possible

configurations of the input conditions that can produce the desired re-

sults. I also used the EA to investigate the change in input conditions

in the CN neuron model when the spiking activity changes from inter-

ictal to ictal spiking pattern. Furthermore I used the EA to study the

conditions required to stop a participating CN neuron from taking part

in the absence seizures.

• Chapter 7: Conclusion. This chapter summarises the conclusions

drawn from each experiment and the contributions to knowledge pro-

vided by this research. This chapter also explores possible extensions

to this research in the future. Also, a list of publications written by me

during the course of my PhD is provided.
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This chapter gives a brief overview of topics such as absence epilepsy, the

cerebellum, CN neurons and gives the background needed to understand

the experiments later on in the thesis.

2.1 Absence Epilepsy

Absence epilepsy is a neurological disorder commonly observed in children

[44]. "Typical absence seizures are marked by brief staring spells, unrespon-

siveness to external stimuli and stiffness in the body" [14] . The seizures start

and end abruptly and last only for a few seconds (approximately 10 seconds)



16 Chapter 2. Background

with the person experiencing the seizures resuming normal activity after the

seizures without knowledge of the seizure occurring. Absence seizures can

be detected in the electroencephalogram (EEG) where they appear as spike-

wave discharges (SWDs), which have a frequency of 2.5-4Hz in humans [13]

and about 6-9Hz in mice models. An example of the spike-wave-discharges

observed in the tottering mice during absence epilepsy is shown in Fig. 1.1 in

Chapter 1.

The most recent classification of epileptic seizures as stated by the Interna-

tional League Against Epilepsy(ILAE)[5] broadly divides all epileptic seizures

into either generalised or focal seizures. Generalised seizures occur and spread

so rapidly that it is often difficult to identify the focal point (the origin) of

the seizures and they generally engage both hemispheres of the brain. Even

though the seizures, in this type of epilepsy, may appear localised, their onset

location may vary. Focal seizures, on the other hand, "usually originate within

networks and are limited to one hemisphere" [5]. Also, the onset region for

the seizure is consistent from one seizure to another [5]. Absence seizures are

classified by ILAE as generalised.

2.1.1 Etiology

Seizures can occur as a result of genetic, structural, metabolic, immune, in-

fectious or other unknown disorders. Absence seizures have been attributed

to genetic defects present in the patient. A study by Jouvenceau et al. [39]

showed that the mice exemplars, see 2.1.2, which are afflicted by ataxia and

absence epilepsy have mutations in the P/Q type channel in common. Fur-

ther, the study found that the same mutations may also exist in humans

having absence epilepsy. The mutation responsible for absence epilepsy in

these patients is present in the CACANA1A gene. This gene is responsible

for encoding the pore-forming subunit of the P/Q-type Ca2+ channel, which
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is a high-voltage-gated calcium channel that is present at synaptic terminals

and responsible for the release of neurotransmitter[52].

2.1.2 Rodent Exemplars

Since the absence seizures occur mainly in children and usually recede by

adulthood with limited consequences, and due to the similarities between the

human and animal absence seizures, the experiments are conducted mostly

on animals. The symptoms of absence epilepsy are identical in humans and

the animal exemplars except for the frequency of SWDs. After several animal

species were examined, it was noticed that the frequency of the SWDs was

species dependent.

There are several established rodent models of absence epilepsy such as:

Genetic Absence Epilepsy Rats from Strasbourg (GAERS)[71, 46], WAG/Rij

rats[37] and several mice models such as tottering mice[53], leaner, lethargic

and stargazer mice. Unlike the rat exemplars, the mice models also exhibit

other neurological symptoms such as ataxia and lethargic behaviour apart

from absence epilepsy. For my study, the tottering mice were used. The

tottering mice exhibit hundreds of spontaneous seizures per day while in an

awake state. The tottering mice are characterised by a loss of function of P/Q-

type of calcium channels. As mentioned before, the mutation is present in the

gene that encodes the Ca2+ channel. The P/Q-type voltage gated calcium

channels are mainly distributed in the Purkinje cell terminals and possibly

in the cerebellar nuclei (CN) neurons. In a study conducted by Hoebeek

et al.[34], Purkinje cell terminals of tottering mice and wild type mice were

observed during different stages of development. The presence of the mutation

produced abnormalities in the Purkinje cells that started when the tottering

mice were 3-5 weeks old and lasted through their adult life. The Purkinje

cells terminals were enlarged and the number of vacuoles, whorled bodies and
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mitochondria were higher in number compared to the wildtype mice. Although

the latency of the Purkinje cell’s inhibition to the postsynaptic neurons was

unaltered when compared to the wildtype mice, the output of the CN neurons,

which receive the inhibitory input from Purkinje cells, was higher in frequency

and irregularity.

2.1.3 Potential Foci

As mentioned in section 2.1, absence epilepsy is classified as a generalised type

of epilepsy, that is, the seizures in this type of epilepsy initiate and spread so

rapidly that it is difficult to pin point the area of origin (also called focus).

However, recordings of different regions of the brain, in a study by Danober

et al.[14] on absence seizures and other studies [27, 12], have revealed that

the cortex and the thalamus play a predominant role in the development of

absence seizures. Neither the thalamus nor the cortex are able to sustain the

SWDs that underlie the seizures on their own. So the communication between

these two regions or, in other words, the thalamo-cortical network is strongly

linked to absence seizures.

The thalamo-cortical network is made up of connections between the cere-

bral cortex, the relay nuclei situated in the dorsal thalamus and the reticular

nucleus of the ventral thalamus. It has been observed that the rhythmic os-

cillations that are required for the generation of SWDs are created in the

thalamus [14, 12]. It has been hypothesised that the SWDs may be gener-

ated due to excessive thalamic oscillations due to hypersynchronization. In

this case, the main reason for the generation of the SWDs is attributed to

the thalamus. The cortex can also be the leading cause for the generation of

SWDs as shown by Gloor et al. [27] when they induced generalised epilepsy

in cat by the injection of pencillin. They noticed that the hyperexcitable

cortical neurons, brought about by the injection of penicillin, slowly trans-
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Figure 2.1: shows the location of the cerebellum and its connection to the thalamus
and cerebral cortex. The output of the cerebellum projects to the thalamus. The
thalamus in turn projects to the primary motor cortex and the premotor cortex
areas. The cerebellum also receives input from the primary motor cortex through
the Pons. Source: [40].

formed natural occurring oscillations underlying physiological processes, that

occur before slow-wave sleep and during periods of quite wakefulness, in the

thalamus, into SWDs.

Some studies have shown [57, 4] that direct stimulation of either the tha-

lamus or the cerebral cortex is able to suppress the SWDs. Another possible

way of controlling the generation of SWDs is by modulating the input to the

thalamus and the cerebral cortex. The cerebellum, in particular the cerebellar

nuclei (CN) neurons that form the main output of the cerebellum, are located

in a very interesting position with respect to the thalamus and the cerebral

cortex as shown in Fig. 2.1. The output of the CN neurons project to the

ventral thalamus where the reticular nuclei are present and they therefore also
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project indirectly to the cerebral cortex; these connections are explained in

detail in section 2.3.1 and also depicted in Fig.2.1. Also, there is a feedback

loop from the cerebral cortex to the cerebellum through the pontine nuclei

which eventually acts as input to the CN neurons. Due to the unique loca-

tion of the CN neurons and our collaborator’s initial observation that some

CN neurons showed phase-locked spiking with spikes of the SWDs during the

absence seizures, we hypothesized that the output from the CN neurons may

play a role in the absence seizures and that it may be possible to control or

alleviate the seizures by modulating the output of the CN neurons.

To study the role of the CN neurons in absence epilepsy, it is first impor-

tant to understand the cerebellum, its organisation, the different types of CN

neurons, and their connection to the thalamus and the cerebral cortex. These

topics are discussed in the following sections.

2.2 Cerebellum

The cerebellum is situated at the back of the brain under the occipital and

temporal lobes and forms a small separate structure as shown in Fig. 2.2.

It is densely packed with neurons (more than 50% of the neurons found

in the whole brain) which are arranged in a regular, repeating pattern. The

cerebellar cortex can be divided into three regions: lateral hemisphere, inter-

mediate hemisphere and the vermis, based on the input and output projections

as shown in Figure 2.3. By observing the output of these three regions, it is

apparent that the cerebellum plays an important role in motor planning and

execution. The cerebellum receives extensive information from the premo-

tor cortex, motor cortex and the spinal chord and brainstem. Although the

cerebellum does not initiate movement, it is thought to act as fine tuner by

reconciling the differences between the plans and execution of movement.

The cerebellum is made up of three layers: the cerebellar cortex which
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Figure 2.2: shows the location of the cerebellum. The cerebellum is located below
the occipital and temporal lobes of the brain and forms a small separate structure.
The enlarged figure of the horizontal cross section of the cerebellum shows the
location of the cerebellar nuclei. Source:[42].

is the outer grey matter, the internal white matter and the cerebellar nuclei

which are discussed further in section 2.3. The cerebellar cortex itself consists

of three layers: the molecular layer, the Purkinje cell layer and the granular

layer. The molecular layer forms the outermost part of the cerebellar cortex

and contains two types of inhibitory interneurons, the stellate and the basket

cells. The excitatory axons of the granule cells from the granular layer and

Purkinje cell dendrites, whose cell bodies are located in the Purkinje cell layer,

are also present in this layer as shown in Figure 2.4. The Purkinje cell layer

is entirely made up of the cell bodies of Purkinje cells. The granular layer

contains Golgi cells, unipolar brush cells and granule cells. The axons of the

granule cells extend up to the molecular layer, split into parallel fibres as

seen in Figure 2.4 and provide input to the Purkinje cell dendrites and the

molecular layer interneurons. The Purkinje cell axons extend through the
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(a)

(b)

Figure 2.3: (a) & (b) show a superior (top) view of the cerebellum. They show
that the cerebellum can be divided into three regions: lateral, intermediate and
vermis, based on the input and the output projections to and from each region.
Source: [40]

.
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Figure 2.4: shows the three layers of the cerebellar cortex. The molecular layer
contains basket and stellate cells. The Purkinje cell layer is made up of Purkinje cell
somata. The granular layer contains Golgi cells and granule cells. Source: modified
from [40].

white matter and provide an inhibitory input to the CN neurons. In between

the Purkinje cell layer and the granular layer, spindle shaped cells, called the

Lugaro cells, can be found. These Lugaro cells taper at both ends and relay

information from the Purkinje cells to the cells in both the molecular layer

(basket and stellate cells) and granular layer (Golgi cells).

2.3 Cerebellar Nuclei Neurons

Almost all output from the cerebellar cortex is processed by the CN neurons,

with the exception of the flocculonodular lobe, a part of the cerebellar cortex

whose output projects to the lateral and medial vestibular nuclei in the brain

stem. Each CN neuron receives two types of input: excitatory input and



24 Chapter 2. Background

Figure 2.5: shows the different inputs to the CN neuron. The CN neuron receives
excitatory inputs from the mossy fibres and climbing fibres, and inhibitory input
from the Purkinje cells. The diagram also shows how the other cells in the cerebellar
cortex indirectly affect the input to the CN neuron and how they are involved in
the processing of information that comes into the cerebellum. Source: [42].

inhibitory input. A CN neuron receives excitatory input from the mossy

fibres, which originate from the spinal cord and brain stem and provide the CN

neuron with information that originates indirectly from the cerebral cortex.

Moreover, there is a second excitatory input through climbing fibres from the

inferior olive. The CN neuron also receives inhibitory input from the Purkinje

cells. The exact number of mossy fibres and Purkinje cells converging onto a

single CN neuron is not known. An early study estimated that 860 Purkinje

cells converge onto a single CN neuron [56], but more recent data indicate

that the Purkinje cell - CN neuron convergence ratio is closer to 50 [58]. The

other neurons of the cerebellar cortex also indirectly affect the input to the

CN neuron as shown in Figure 2.5.
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Figure 2.6: shows that the CN neurons located in different regions of the cere-
bellum project to different regions of the brain. The dentate nucleus present in the
lateral region of the cerebellum projects to the ventrolateral nuclei in the thalamus
which in turn project to the primary and premotor cortex. The CN neurons present
in the intermediate region of the cerebellum project to the red nucleus and the
thalamus Source:[40].

2.3.1 Types of Cerebellar Nuclei Neurons

The cerebellar nuclei neurons can be classified into different types based on

different criteria. One way to classify the CN neurons is based on the their lo-
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Figure 2.7: (A) & (B) show the morphology of non-GABAergic (GAD-) CN neu-
rons. (C) & (D) show the morphology of GABAergic (GAD+) CN neurons. GAD-
neurons appear larger and have more complex dendritic structure than GAD+ neu-
rons. However, when morphometric parameters are compared, as shown in Fig. 2.8,
it is clear that there is an overlap in the morphometric measures of GAD+ and
GAD-. The arrowheads indicate the axon of the CN neuron and the inset shows the
existence of spines on the dendrites. Source: [70].

cation in the cerebellum. As explained previously with the help of Figure 2.3,

the cerebellum can be divided into three regions based on the input and output

projections: lateral, intermediate and the vermis. The lateral hemisphere of

the cerebellar cortex projects to the dentate nucleus, the intermediate hemi-

sphere provides input to the interposed nucleus and the vermis projects to

the fastigial nucleus. The output of the dentate nuclei projects to the neurons

present in the ventrolateral nuclei in the thalamus that in turn project to the

motor and premotor cortices, which are involved in motor planning as shown

in Fig. 2.6. The motor planning areas, the premotor area and the supple-

mentary motor areas, project to the primary motor cortex. Therefore, the
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output from the dentate nuclei is often assumed to influence the execution of

fine movements. The interposed nuclei project to the red nucleus and also

to the ventrolateral nuclei in the thalamus. However, in this case, the cells

in the thalamus project directly to the motor cortex. Hence, the output of

the interposed nuclei influences the motor system more quickly. Therefore,

the output from the interposed nuclei is thought to influence the execution

of quick movements. A small portion of the fastigial nuclei also project to

the thalamus and the primary cortex but the majority of the output from the

fastigial nuclei project to the vestibular nuclei and reticular formation, which

influence posture and balance. The dentate, interposed and fastigial nuclei

are terms used for CN in humans; the corresponding nuclei are called lateral,

interpositus and medial CN, respectively, in mice. Henceforth in this thesis, I

will be referring to the terminology for CN neurons used for mice.

In 1977, Chan-Palay [9] showed an alternate way to classify CN neurons

based on morphological differences. Six different types of CN neurons were

identified using these criteria. However, recent studies [70, 69] have suggested

that the morphological differences alone are not sufficient to categorise the dif-

ferent types of CN neurons as even the neurons that have similar morphologies

exhibit different electrophysiological and intrinsic properties.

Based on the transmitter content and the connectivity of the neurons,

studies by Hillman and Fredette [10, 23] showed that the CN neurons can also

be classified as excitatory projection neurons that project to the red nucleus

and thalamus and have the neurotransmitter glutamate, that is, they are

glutamatergic, inhibitory projection neurons that project to the inferior olive

and have the neurotransmitter GABA (they are GABAergic) and CN neurons

that form local circuits that are also GABAergic.

Further, a study was conducted by Uusisaari et. al [70] where glutamate

decarboxylase 67-green fluorescent protein (GFP) knock-in mice were used to

identify GABAergic and non-GABAergic CN neurons. The GABAergic neu-
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Figure 2.8: shows the comparison of morphometric measures for GAD+ (green)
and GAD- (black) neurons. The circles indicate the actual individual values observed
in each case. (A) shows the soma size of GAD+ and GAD- neurons. (B) shows the
distribution of primary dendrites. The mean and Standard Error are shown by the
horizontal bars (C) & (D) show the number of dendrites and branches crossing the
30µm circle around the soma centre. (E1) & (E2) show the membrane capacitance
Cm for each neuron plotted against soma size and dendritic distance respectively.
Larger neurons have a larger value of Cm. (F) shows the Gaussian distribution of
the Cm value for both GAD+ and GAD- CN neurons. The bin size is 15pF . The red
line shows the Gaussian distribution over both GAD+ and GAD- combined. Based
on the combined Gaussian curve, only cells with a Cm > 150pF can be identified as
GAD- cells without any doubt. Source: [70]
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rons are indicated by GAD+ and the non-GABAergic neurons by GAD- in

Fig. 2.7. The morphology of the GAD- neurons is shown in Fig. 2.7(A) and

(B) and that of GAD+ is shown in Fig 2.7(C) and (D). From the figures, it

is clear that the GAD+ and GAD- cells exhibit a variety of dendritic mor-

phologies. Both types were found to have local and distal connections. Even

though GAD- neurons (presumed glutamatergic neurons) exhibited larger cell

bodies and more complex morphologies, a more detailed study of the mor-

phology of the GAD+ and GAD-, as shown in Fig. 2.8, revealed that the

distinction between GAD+ and GAD- neurons is not that clear since there

is an overlap between the GAD+ and GAD- neurons in most of the morpho-

metric measures. The graphs in 2.8(E1)&(E2) suggest that there is a positive

correlation between soma size and the membrane capacitance Cm. The graph

2.8(F) shows that it is possible to predict the type of CN neuron from Cm

only if the value of Cm > 150pF . Therefore, morphometric parameters alone

cannot determine the type of CN neuron.

A more recent publication from the same author [69] revealed further sub-

types of CN neurons in the lateral cerebellar nuclei. In the previous studies,

the different types of CN neurons were identified by the presence of certain

proteins, called marker proteins, on the cell membrane. For instance, glu-

tamic acid decarboxylase (GAD67) is an enzyme which produces GABA and

is a marker for GABAergic neurons. Similarly, glycine transporter (GlyT2)

is a marker for glycinergic neurons. In recent studies [69], transgenic mouse

lines which express green fluorescent protein (GFP), a protein that causes the

Aequorea Victoria jellyfish to glow, under the control of GAD67 and GlyT2

promoters are used. A promoter is a region of the DNA which promotes

transcription. The GFP gene is inserted downstream of these promoters in

the transgenic mice. This makes these cells glow in the presence of light en-

abling easy detection. Using this method,they identified 5 sub-types in the

lateral cerebellar nuclei: GAD negative Large (GADnL), GAD negative Small
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Figure 2.9: shows that there are two separate information flow loops: the olivo-
cortico-nucleo-olivary (OCNO) loop shown to the left and the mossy fiber-cortico-
nucleo pathway shown to the right. The red lines show excitatory connections and
the green lines inhibitory connections. The GADnL neurons receive excitatory con-
nections from the mossy fibers where as the GAD+IO receive excitatory connections
from the climbing fibers originating from the inferior olive. Source:[69].

(GADnS), GAD positive (GAD+), GLY-I (Glycenergic cells), and GAD pos-

itive projecting to the inferior olive (GAD+IO). The GAD+IO neurons are

similar to the GAD+ neurons but are separated out into a different type be-

cause these neurons are very small compared to the other GAD+ neurons

and they project to the inferior olive. The GADnL, GADnS, GAD+ are all

spontaneously firing neurons where as GLY-I and GAD+IO do not fire spon-

taneously. The projections and the inputs to each sub-type of CN neuron, as
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shown in Fig. 2.9, reveal that there are two separate information flows: the

olivo-cortico-nucleo-olivary (OCNO) loop (left) and the mossy fiber-cortico-

nucleo pathway. Moreover, the GLY-I neurons project to the cerebellar cor-

tex. With this new information, again the morphometric parameters were

compared. However, even with this additional information, it was still clear

that the CN neurons cannot be differentiated based on morphology alone.

In our study, we do not have any information about the detailed electro-

physiology or the morphology of the CN neurons from which the data were

collected. Our information is limited to the recording location of the CN neu-

ron in the cerebellum and the extracellular spike times. As explained further

in chapter 4, we try to identify the type of CN neuron that is most likely to

participate in absence seizures based on the interictal spiking patterns of the

CN neurons alone.

2.4 CN Neuron Model

The CN neuron model used in this study is a multi-compartmental conductance-

based model of an excitatory CN projection neuron. This model was imple-

mented in NEURON by Luthman et al. [43], who translated it from its

original implementation in GENESIS [66]. The morphology of the CN neuron

model, as shown in Figure 2.10, was reconstructed from a biocytin stained

CN neuron using Neurolucida (MicroBrightField, Inc.) as detailed in [64].

The passive parameters for the model were determined with the help of a

genetic algorithm [64]. The model contains nine active conductances, which

were selected based on experimental studies of CN neurons. These channels,

as detailed in [66], were a fast sodium current, a mixture of fast Kv3 and slow

Kv2 delayed rectifiers, which form a TEA sensitive Kdr current, a tonic non-

specific cation current, a high-voltage activated (HVA) calcium current and

a purely calcium-gated potassium (Sk) current. According to [66], these six
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(a)

(b)

Figure 2.10: (a) A morphologically realistic, multi-compartmental conductance-
based model of an excitatory CN projection neuron.(b) The left column shows the
slice recording taken from a typical CN neuron. The right column shows that the
simulations produced from the CN neuron model match the spike-trains in the left
column with regard to spike shape and after hyperpolarization properties. [66].
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conductances were sufficient to match physiological spontaneous spiking and

responses to depolarizing current injection pulses. Moreover, to replicate the

rebound behaviour that followed strong hyperpolarization three more chan-

nels, a hyperpolarization-activated cyclic nucleotide gated (HCN) current, a

Cav3.1 low-voltage activated (LVA) calcium current and a persistent sodium

(NaP) current, were added to the model [66, 43]. The intracellular calcium

concentration, as detailed in [66, 43], was modelled as a sub membrane shell

with calcium inflow from the HVA current and an exponential decay with a

time constant of 70ms.

The CN neuron model receives excitatory input from 150 mossy fibre

synapses, 50 of which were placed in the soma and the remaining were dis-

tributed into randomly chosen dendritic compartments. The model also re-

ceives inhibitory input from 450 Purkinje cell synapses. Again, 50 of these

synapses were placed in the soma and the rest were distributed to randomly

chosen dendritic compartments. The spike-trains originating from the Purk-

inje cells and the mossy fibres were generated using a modification of NEU-

RON’s NetStim object, GammaStim, as detailed in [43]. The GammaStim

object provides the ability to set the irregularity of the spike-train produced.

The irregularity of the inputs are controlled via noise parameters during the

simulations as explained further in Chapter 6: Section 6.1.

2.5 Chapter Conclusions

Absence seizures are generalised seizures with a genetic etiology. Previous

studies [14, 12] have narrowed down the focal regions of the seizures to the

thalamus or the cerebral cortex. The CN neurons, which have afferent connec-

tions to both these regions, are placed in a strategic position and may provide

an alternate way to control and alleviate these type of seizures.
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As discussed in Chapter 1 (Section 1.1.3), some CN neurons in the dataset

collected by our collaborators in Rotterdam showed modulation in their

spiking behaviour, that is, the CN neurons phase-locked their spikes with the

spikes of the SWDs in the EEG during the occurrence of absence seizures,

where as some other CN neurons did not. The dataset [41] consisted of 220

spike-train recordings taken from CN neurons of 4 to 30-week-old tottering

mice of both genders.

To aid further analysis, first all of the CN neurons in the dataset had to be

labelled as "Participating", if they showed phase-locked spiking with the spikes

of the SWDs in the EEG during absence seizures, or "Non-participating"

otherwise. To do so, our collaborators in Rotterdam introduced three mea-

sures: Z-score of modulation amplitude, FFT based Z-score and modulation

frequency, which were used to measure the extent of phase-locking displayed
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by a CN neuron. The labelling revealed that more than 30% of the CN neu-

rons in the dataset were Participating. These measures are described in the

following section.

3.1 Measures to Characterise CN Neuron Par-

ticipation

Figure 3.1: (a) shows the scatterplot created by plotting the spikes of the CN
neuron with respect to the spikes in the SWDs in the EEG. Each spike in the SWD
corresponds to one row in the scatterplot. The zero on the x-axis of the scatterplot
indicates the time of peak of each spike of the SWD, and the spike times of the CN
neuron relative to this spike are plotted on the scatter plot. The red dots along
the y-axis show the different seizures observed in the spike-train. (b) shows the
peri-stimulus time histogram (PSTH) created based on the scatterplot, with a bin
size of 5ms.
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Figure 3.2: shows the activity of a CN neuron whose activity is not phase-locked
with the spikes of the SWDs. (a) As in Fig. 3.1, the top panel shows the scatterplot
created by plotting the spikes of the CN neuron with respect to the spikes in the
SWDs in the EEG. Each spike in the SWD corresponds to one row in the scatterplot.
The zero on the x-axis of the scatterplot indicates the time of peak of each spike of
the SWD, and the spike times of the CN neuron relative to this spike are plotted on
the scatter plot. The red dots along the y-axis show the different seizures observed in
the spike-train. (b) shows the peri-stimulus time histogram (PSTH) created based
on the scatterplot, with a bin size of 5ms.

First, a scatter plot was created for each spike-train that plots the oc-

currence of the CN neuron spikes in relation to the spikes of the SWDs, as

shown in the Fig. 1.3, in the EEG during the absence seizures, as shown in

the top panel of Fig. 3.1. Each seizure in the spike-train is indicated by the

red dot along the y-axis. For each row in the scatter plot, the zero on the

x-axis indicates the time of the peak of each SWD in the seizure. The spike-

times of the CN neuron relative to this peak are plotted on either side. Then,
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using the scatterplot, a peri-stimulus time histogram (PSTH) is created with

a bin-width of 5ms as shown in the bottom panel of Fig. 3.1. This PSTH

can be used to derive the three measures: Z-score of modulation amplitude,

modulation frequency and FFT based Z-score used to quantify the CN neuron

participation in absence seizures.

The vertical distance between the peak and the trough near the time = 0

in the PSTH gives the modulation amplitude. When a CN neuron’s activity

is phase-locked with the spikes of the SWDs the peaks are sharper and the

height of the peak near t = 0 is considerably higher as shown in the Fig. 3.1

than when it is not phase-locked as shown in Fig. 3.2. The mean power at

seizure frequency(6-9Hz), which is the hallmark frequency of absence seizures

in rodents, is obtained by performing a Fast Fourier Transform (FFT) on

the PSTH. The peak of the power spectrum after FFT gives the dominant

frequency at which the cell is modulating. A Z-score value greater than or

equal to 1.96 in the SWD frequency range tells us that the cell is likely phase-

locked to SWDs rather than showing a particular firing pattern by chance.

The FFT gives a value (power) per frequency bin so that the mean power at

seizure frequency is literally the summed value of all bins between 6 and 9 Hz

divided by the number of bins.

Further, we need to assess if these two values are significant. To do so, we

calculate the Z-score of these values. The Z-score is calculated by subtracting

the mean from the value and dividing it by the standard deviation. The Z-

score calculates how far the values are located from the mean. If they are

within two standard deviations (<1.96) of the mean, then they could have

been derived by any configuration of ISIs in the PSTH, that is, they were

derived by chance. In statistics, when the mean of a population is unknown,

random samples are picked to create a sample of the population and the mean

of this sample is accepted as the mean. Since the mean in this case is also

not known, the ISIs in the PSTH are shuffled and the modulation amplitude
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and mean power at seizure frequency is calculated for each iteration. If the

sample size is big, then the estimated mean is closer to the actual mean of

the population. Therefore, the shuffling process is repeated 500 times. The

mean and standard deviation calculated from these 500 iterations are then

used to calculate the Z-score of modulation amplitude and FFT based Z-score.

The modulation frequency is determined by fitting a sine wave to the PSTH.

When we construct a PSTH of CN cell action potentials triggered on the

spike in a SWD it will only show peaks and troughs at SWD frequency if

that cell is phase locked to the SWDs. If not modulated at all, we see a

figure where all bins have approximately the same value as shown in Fig. 3.2.

It is however possible that a cell bursts at for instance 3 times the seizure

frequency or by chance a few pauses occurred around the spikes in SWDs.

This may result in a significant Z-score of modulation amplitude even though

the cell is not really modulated by SWDs. The FFT based Z-score is a stricter

measure for modulation because it implies that is does not just show some

modulation but it shows consistent modulation matching the frequency of the

SWDs. A CN neuron was deemed to participate in the seizure if the Z-score of

the modulation amplitude and the FFT based Z-score were signficantly higher

than expected by chance, that is they should be greater or equal to 1.96 and

the modulation frequency should be between 6-9 Hz. It was found that all

the CN neurons which had a significant Z-score of modulation amplitude also

had a significant FFT based Z-score. Therefore the two measures FFT based

Z-score and modulation frequency were deemed sufficient to determine if the

CN neuron participated or not.
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3.2 Measures to Characterise CN Neuron Spike-

trains

Once all the CN neurons in the dataset were labelled by our collaborators as

participating or non-participating, I set out to find the differences between the

participating and the non-participating CN neurons. To do so, I compared

the spike-trains of both types of neurons during seizures (ictal activity) and

in-between seizures (interictal activity). However, I found that it was very

difficult to characterise the spiking activity of the CN neurons just by visual

analysis. Therefore, I applied several quantitative measures to characterise

the spike-trains. The measures used are listed in the following section

1. mean_CV2 and CV :

Figure 3.3: shows the value given by the measures CV and CV2 for the three spike
trains. The measure CV, quantifies the top two spike trains as highly irregular and
the bottom spike train as regular. The measure CV2, also quantifies the top spike
train as irregular and the bottom one as regular. However, it is able to detect the
local regularity of the middle spike train
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These two measures are used to characterise the regularity of a spike

train. The coefficient of variation (CV), calculated as shown in Eq. 3.1,

captures the regularity of the entire spike train. For a Poisson process,

the CV of a spike train is 1 and for a completely regular spike train, the

CV is 0 as shown for the top and the bottom spike trains in the Fig.

3.3.

CV =
std(ISIs)

mean(ISIs)
(3.1)

However, this measure is unable to capture the presence of local regu-

larity in an highly irregular spike train as shown in middle spike train of

Fig. 3.3. To capture this information, Holt et al. [35] introduced a new

measure called CV2, also represented as CV 2. CV2 calculates the reg-

ularity between two consecutive ISIs only. Eq. 3.2 shows how the CV2

is calculated for the consecutive ISIs Ii and Ii+1. Then, as a measure of

local regularity for the entire spike train, the mean CV2 for all adjacent

ISIs is calculated.

CV 2 =
2|Ii+1 − Ii|
Ii+1 + Ii

(3.2)

2. log-interval entropy: measures the predictability of the ISIs. Log-

interval entropy is calculated as shown in [19]. First, the ISIs (in ms) are

expressed as their natural logarithm counterparts. Then, a histogram of

the logeISI is created with a bin width of 0.02loge(time). To lessen the

effects of the arbitrary choice of bin width, a Gaussian convolution is

performed. The width of the Gaussian kernel is one-sixth of the standard

deviation of the ISIs. The entropy of the histogram p(Ii) with N bins is

calculated as:

Ent =
N∑

i=1

p(Ii)log2p(Ii) (3.3)
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3. firing rate: measures the frequency of CN neuron firing. This is calcu-

lated as the number of spikes divided by the duration of the observation

period.

4. permutation entropy: The predictability of the actual value of ISIs

is important and given by the log-interval entropy. Additionally, there

may be information in the order in which these ISIs occur, for instance

larger ISIs followed by smaller ones, and this may show the existence

of some repetitive patterns in the spike-train. This is detected with the

help of the measure: permutation entropy. If there exist some repeated

ISI patterns in the spike-train, the permutation entropy is low, closer to

zero. Permutation entropy is calculated as shown in [3].

5. mean ISI: This measure gives the average value of ISI observed in the

spike-train.

6. mode ISI: A histogram of the ISIs is created with the bin centres at

every 10ms. Then, the bin with the maximum number of ISIs is taken

as the mode ISI.

7. median ISI: To get the median value of the ISI, the ISIs are sorted in

an ascending order and the ISI in the middle of the list is picked. If the

total number of ISIs is an even number the mean of the two ISIs in the

middle of the list is considered as the median.

8. burst index: If two consecutive ISI’s appear less than 3ms apart, they

are considered to be part of a burst. The burst index is the ratio of

number of burst-spikes to the number of non-burst spikes [26].

9. pause index: An ISI greater than or equal to 50ms indicates a pause

in firing [26], and the pause index measures the ratio of the number of

ISIs larger or equal to 50ms to the number of ISIs below 50ms.
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10. pause ratio: This is similar to the pause index, however, the sum of

the ISIs is considered for the calculation of the ratio [26].

11. burst-like spike ratio: This measure is defined as the percentage of

100ms time windows with more than 10 spikes [26]. This measure is used

to describe fast spiking activity that may not necessarily be considered

a burst.

To determine the measures: mode ISI, burst index, pause index and

burst-like spike ratio, some arbitrary parameters such as bin size of 10

ms for mode ISI, time window of 3 ms for burst index, 50 ms for pause

index and 100 ms for burst-like spike ratio were used. These values were

selected based on experimentally observed values that could separate

the ictal and interictal parts of the spike-trains of participating neurons,

which was necessary to conduct the experiments listed in Chapter 6,

section 6.3.3 and 6.3.4.

3.3 Time Series Analysis

After selecting the measures to characterise the spiking activity of the spike-

trains, I set out to conduct a cursory time-series analysis of the spike-trains.

This was done in order to observe the temporal variation of the measures

described in Section 3.2 during the ictal and interictal activity in participating

and non-participating neurons.

The time series analysis was conducted by calculating all the measures

given in section 3.2 for a 1 second wide time-window of the spike-train, then

sliding the window by 0.75 seconds and calculating the same measures again

for the next 1 second window. By plotting the measures for each 1 second win-

dow, a gradual change of the measures can be seen for the entire spike-train.

Fig. 3.4 and Fig. 3.5 show the change of the measures, for a participat-
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ing neuron and a non-participating neuron, respectively, when the time series

analysis is carried out for the spike-train. In these figures, the interictal activ-

ity, spiking activity between the absence seizures (2 seconds before and after

the seizure), is shown in blue and the ictal activity, spiking during the absence

seizure, is shown in red.

The comparison of the two plots, Fig. 3.4 and Fig. 3.5, showed that the

participating neuron had a high CV, high log-interval entropy and was more

bursty when compared to the non-participating neuron. However, when all

the spike-trains were analysed, the separation between participating and non-

participating neurons was not as clear as initially anticipated. For example,

as shown in Fig. 3.6, there were some CN neurons which showed a spiking

pattern similar to the participating neurons, that is, they exhibited a high

CV (>0.5), high log-interval entropy and were bursty but these CN neurons

did not participate in the absence seizures. Similarly, I observed CN neurons

which had a low CV and low burstiness but they participated in absence

seizures. In order to study more systematically, whether the CN neurons

can be divided into two classes: participating and non-participating, based

on their electrophysiological properties, I conducted clustering on the dataset

which is explained further in Chapter 4.

3.4 Chapter Conclusions

Each CN neuron in the dataset was labelled as Participating or Non-participating

with the help of the measures FFT based Z-score and modulation frequency.

The labelling of the data revealed than more than 30% of the neurons in the

dataset were Participating. In order to characterise the spiking behaviour

of the CN neurons, several measures were defined. A cursory time-series

analysis of the Participating and Non-participating neurons, using these mea-

sures, showed that many participating CN neurons had a high CV and high
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Figure 3.4: shows a time series analysis of a participating neuron. The subplots
show the values of the different measures calculated over a 1 second sliding time
window with a 0.25 second overlap. The red lines indicate the periods during the
absence seizures and the blue lines indicate the periods in between the seizures. This
spike-train shows a high CV, high log-interval entropy and high burstiness.



46 Chapter 3. Electrophysiological Data and Feature Extraction

0 20 40 60 80 100 120 140
0

1

2

m
e

a
n

C
V

2

0 20 40 60 80 100 120 140
0

2

4

C
V

0 20 40 60 80 100 120 140
0

5

lo
g

−
in

te
rv

a
l

e
n

tr
o

p
y

0 20 40 60 80 100 120 140
0

100

200

fi
ri
n

g
ra

te

0 20 40 60 80 100 120 140
0

2

4

p
e

rm
u

−
ta

ti
o

n
e

n
tr

o
p

y

0 20 40 60 80 100 120 140

500
1000
1500
2000

m
e

a
n

IS
I

0 20 40 60 80 100 120 140

500
1000
1500
2000

m
e

d
ia

n
IS

I

0 20 40 60 80 100 120 140
0

1000

2000

m
o

d
e

IS
I

0 20 40 60 80 100 120 140
0

5

10

p
a

u
s
e

in
d

e
x

0 20 40 60 80 100 120 140
0

0.5

b
u

rs
t

in
d

e
x

0 20 40 60 80 100 120 140
0

2

4

p
a

u
s
e

ra
ti
o

0 20 40 60 80 100 120 140
0

50

100

b
u

rs
t−

lik
e

s
p

ik
e

 r
a

ti
o

time(s)

Figure 3.5: shows a time series analysis of a non-participating neuron. The sub-
plots show the values of the different measures calculated over a 1 second sliding
time window with a 0.25 second overlap. The red lines indicate the periods during
the absence seizures and the blue lines indicate the periods in between the seizures.
This spike-train shows a low CV, low log-interval entropy and low burstiness.



3.4. Chapter Conclusions 47

10 20 30 40 50 60 70 80
0

1

2

m
ea

n
C

V
2

10 20 30 40 50 60 70 80
0

2

4

C
V

10 20 30 40 50 60 70 80
0

5

lo
g−

in
te

rv
al

en
tr

op
y

10 20 30 40 50 60 70 80
0

100

200

fir
in

g
ra

te

10 20 30 40 50 60 70 80
0

2

4

pe
rm

u−
ta

tio
n

en
tr

op
y

10 20 30 40 50 60 70 80
0

1000

2000

m
ea

n
IS

I

10 20 30 40 50 60 70 80
0

1000

2000

m
ed

ia
n

IS
I

10 20 30 40 50 60 70 80
0

1000

2000

m
od

e
IS

I

10 20 30 40 50 60 70 80
0

5

10

pa
us

e
in

de
x

10 20 30 40 50 60 70 80
0

0.5

bu
rs

t
in

de
x

10 20 30 40 50 60 70 80
0

2

4

pa
us

e
ra

tio

10 20 30 40 50 60 70 80
0

50

100

bu
rs

t−
lik

e
sp

ik
e 

ra
tio

time(s)

Figure 3.6: shows a time series analysis of a non-participating neuron. The sub-
plots show the values of the different measures calculated over a 1 second sliding
time window with a 0.25 second overlap. The red lines indicate the periods during
the absence seizures and the blue lines indicate the periods in between the seizures.
This spike-train shows a high CV, high log-interval entropy and high burstiness but
the neuron was not deemed to participate in seizures.
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log-interval entropy and they were more bursty, when compared to the non-

participating neurons. However, I found that no measure could clearly classify

the Participating and Non-participating neurons into two distinct groups.
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In the previous chapter, the measures FFT based Z-score and modulation

frequency were used to characterise the CN neurons as "Participating", if

the FFT based Z-score >=1.96 and modulation frequency was between 6-9Hz,
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and "Non-participating" otherwise. The analysis revealed that the dataset

had more than 30 percent of neurons which were participating. While 30

percent is a significant percentage, it also indicates that not all CN neurons

alter their spiking behaviour during the absence seizures. The next step was

to analyse the properties of the CN neurons which participate.

4.1 Clustering

"Clustering is the process of grouping together unlabelled data items based on

similarity" [38]. Jain et al. [38] describe clustering as "an unsupervised clas-

sification of patterns (observations, data items, feature vectors) into groups

(clusters)". A good clustering technique ensures that the "members of a clus-

ter are more similar to each other than they are to members of other clusters"

[74, 38].

Clustering is different from supervised learning algorithms, where each

data item is associated with a label and the main aim is to label the unseen,

newly encountered data based on the learning done on the labeled data. Since I

also use supervised learning on my data, in Chapter 5, the supervised learning

method is explained further in that chapter together with an explanation of

how I applied it to my data, with the help of Gaussian Process Regression, a

supervised learning algorithm.

4.1.1 Steps in Clustering:

The process of clustering typically consists of four steps [74] as depicted in

Fig. 4.1:

1. Feature selection and extraction: The first task when it comes

to clustering data, is representation of data. A proper representation of

the data can improve the results of clustering considerably. A dataset
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Figure 4.1: Typical steps in the clustering process. Source:[74].

is composed of a number of data items which have to be grouped into

different clusters. Thus the dataset can be represented as a vector of

data items that is, X is the dataset, X = (x1,x2, ....,xn), where xi is

a single data item. A single data item xi is itself composed of several

components which describe the data item. So, xi = (xi1, ...x
i
d), where d

is the dimensionality of the data space. These components are called

features. Features such as firing rate, mode ISI, burst-like spike ratio and

so on, explained in Chapter 3: Section 3.2, can either be Quantitative

(continuous, discrete, interval values) or Qualitative (nominal that is

unordered, ordinal). Once the data are represented by means of the

features, the next step is Feature selection. "Feature selection is the

process of identifying the most effective set of features for clustering"

[38]. This set may be the entire set of features available or a subset.

The final set of features used for clustering is typically decided by the

method of trial and error as indicated by the reverse arrows in Fig. 4.1.

If the existing set of features are not able to provide satisfactory results,

some of the features may be transformed to give rise to new features.

This process is called Feature Extraction [38].
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2. Clustering Algorithm Design or Selection: After the publication

of "Principles of taxonomy" by Sokal and Sneath in 1963 [63], the pop-

ularity of clustering algorithms increased in various fields such as im-

age processing, pattern recognition, archaeology, biology, astrophysics,

mathematics to name a few. Since the fields using the clustering algo-

rithms are so diverse, many algorithms to cluster data have also emerged.

Due to the availability of such a large number of algorithms, the process

of selecting the most appropriate clustering algorithm can become a bit

overwhelming for the user. Some clustering methods are more effective

with a particular type of dataset than others. There are many ways to

classify clustering algorithms. Jain et. al [38] have depicted one way

to broadly classify the different clustering algorithms based on the ap-

proach used for clustering, as shown in Fig. 4.2. The different types of

clustering algorithms shown in this figure are briefly reviewed in Section

4.2.

3. Cluster Validation : Due to the nature of the clustering algorithms,

all clustering algorithms may find clusters which may or may not corre-

spond with our intuitive notion of a cluster. It is therefore very impor-

tant to evaluate whether the clusters produced by the clustering algo-

rithm are actually valid. There is no definitive method in the literature

to determine if the clusters produced are valid. This process is very sub-

jective and based on the domain knowledge of the user. However, it is

possible to determine by means of statistical methods that the clusters

produced were not a case of chance.

4. Result Interpretation : The final step in clustering is result interpre-

tation. At this point, the user analyses the clusters formed and deter-

mines if the resulting clusters contribute to knowledge about the original

data. The results achieved at this stage may not be the final set of clus-
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Figure 4.2: Classification of different clustering methods depending on the ap-
proach used for clustering . Source: [38].

ters but the interim results may serve to provide information about the

effectiveness of feature set, proximity measures and the algorithm used

for clustering.

4.2 Types of Clustering algorithms

Jain et al. classify clustering algorithms into two main categories : Hierarchi-

cal and Partitional.

4.2.1 Hierarchical Clustering

Hierarchical clustering algorithms perform clustering by grouping the data

into a series of nested partitions. This nesting of the partitions is usually

represented by a dendogram. Hierarchical clustering algorithms can be divi-

sive or agglomerative. In the divisive method, all the data items are assigned

to a single cluster. The clustering recursively divides this cluster into fur-

ther partitions. In the agglomerative approach, each data item is initially
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assigned to a cluster or a partition. Then, the closest clusters are merged

to form bigger clusters. The proximity of the clusters can be calculated in

different ways, and this has given rise to variations in hierarchical cluster-

ing algorithms such as the single-link and the complete-link algorithms. In

both algorithms, the proximity of the clusters is determined by the distance

between all possible pairs of data items, one drawn from each cluster. In

single-link algorithms, this proximity is determined by the minimum of all

distances calculated and in complete-link, the proximity is the maximum of

all the distances. In both cases, if the proximity between two clusters is below

a certain distance threshold, they are merged to form a single cluster. Hier-

archical clustering algorithms are advantageous in cases were the number of

clusters is not known prior to clustering. The main drawback of hierarchical

algorithms is that they are inefficient when large multi-dimensional datasets

are considered.

4.2.2 Partitional Clustering

Partitional clustering algorithms, unlike the Hierarchical clustering algorithms,

produce a single partition of the data. The partitional algorithms are more

advantageous than the hierarchical algorithms when the dataset is large or

where speed of execution is a criteria. However, the disadvantage of parti-

tional clustering algorithms is that most partitional algorithms rely on the

prior knowledge of the user about the number of clusters possible in the data.

Also, the clustering output can change based on the initial placement of the

cluster centres. The algorithms usually have to be run multiple times and the

clustering output which is most meaningful to the user has to be selected.
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4.2.2.1 Error Based Algorithms

The squared error clustering algorithms work by initially deciding on the num-

ber of output clusters. Then, a number of cluster centres, equal to the number

of output clusters, are placed optimally in the data. Each pattern in the data

is assigned to the cluster whose cluster centre is closest to the pattern. On the

next iteration, new cluster centres are picked and the process is repeated. The

clustering process is repeated until the clusters are stable. A popular squared

error clustering algorithm method is the K-means clustering algorithm.

4.2.2.2 Graph Theoretic Algorithms

In graph theoretic clustering algorithms, a graph structure is constructed by

constructing a minimal spanning tree of the data. A minimal spanning tree

connects together all the vertices of the graph such that the sum of the dis-

tances between all the vertices is minimised. Then, the edges with the length

exceeding a certain limit are deleted to create the clusters. Martinez and

Schulten [48] introduced a graph theoretic method which was later adapted

to create the Growing Neural Gas (GNG) algorithm by Fritzke [24]. These

two methods are explained in detail in Section 4.3.

4.2.2.3 Mixture Resolving Algorithms

Mixture resolving algorithms are parametric methods which assume that the

data to be clustered is drawn from one of the known distributions (e.g. Gaus-

sian distribution) and the task is to find the parameters of these distributions.

These methods make very strong assumptions about the data distribution, and

the estimations of the parameters is not trivial. Expectation Maximization is

a well-known mixture resolving algorithm.
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4.2.2.4 Mode Seeking Algorithms

Mode seeking clustering algorithms, unlike the mixture resolving algorithms,

are non-parametric algorithms. No prior knowledge of the number of clusters

is necessary in this case. The most popular mode seeking algorithm is the

mean shift clustering algorithm. The number of clusters centres are deter-

mined by identifying the locations in the data where the data is more dense.

The "modes" of the data points are identified by using a kernel density es-

timator and by computing its gradient. Then, the data points are moved

towards the "modes" to which they are closest to. The final clusters consist

of the data points that converge to the same mode.

4.3 Growing Neural Gas Algorithm

Growing Neural Gas (GNG) [24] is a partitional (graph theoretic) type of clus-

tering algorithm. As explained earlier, most partitional clustering algorithms

are based on the assumption that the number of output clusters are known to

the user. However, in many real world problems, very little information about

the data is available. This is also the case in our data, we know that there

exist different types of CN neurons but we do not have information about

how many types of CN neurons are actually present in our dataset. However,

GNG overcomes this disadvantage and is able to find clusters without having

to know the number of output clusters beforehand. This flexibility along with

speed of execution gave GNG considerable advantage over other algorithms

during our clustering algorithm selection process.

4.3.1 Background

Growing Neural Gas is an algorithm based on the principles of Competitive

Hebbian Learning (CHL) as given in[47] and Neural Gas (NG) [48]. In CHL, as
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described by Martinez [47], a fixed number of centres are first placed randomly

in the high-dimensional data space, P(ξ). Then, for each data item, the two

closest centres to the data item are connected by an edge. The proximity

of the centres is measured using Euclidean distance. The resulting graph

shows a "Delaunay triangulation" [54] with respect to the centres as shown

in Fig. 4.3. Using this graph, a second graph called an "induced Delaunay

triangulation" is constructed as shown in Fig.4.3. The "induced Delaunay

Triangulation" graph is basically obtained by retaining only the edges whose

common Voronoi edges lie (at least partially) in an area where P(ξ)>0.

(a) (b)

Figure 4.3: (a) shows the "Delaunay Triangulation" (thick lines) produced by
creating an edge between the points who have adjacent Voronoi polygons (thin lines)
(b) the "induced Delaunay Triangulation"(shaded area) is produced by retaining
only the edges whose common Voronoi edges lie (at least partially) in an area where
P(ξ)>0. Source: [24].

However, the results of CHL are influenced by the placement of the cen-

tres. Only the centres which are close to some inputs are connected by edges,

the rest are not used. These centres are called "dead units". To make the

placement of the centres more efficient, Martinetz and Schulten developed the

NG algorithm. The NG algorithm uses an adaptation parameter, k which
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has an adaptation strength of s. Initially k is set to a high value. For every

input signal, x, k nearest centres are moved towards x by a value of s. Af-

ter every iteration, the adaptation parameter k and s are decreased so that

finally only the nearest centre to x is moved by a small amount s. After the

application of NG algorithm, to effectively place the centres, the CHL algo-

rithm can now be executed to produce the "induced Delaunay Triangulation".

Martinetz and Schulten also showed that it is possible to combine the two al-

gorithms to run concurrently. However, this produced the problem of edges

which were invalidated because of the movement of centres. To remove these

edges, Martinetz and Schulten introduced edge aging, whereby obsolete edges

were deleted. Although the combination of CHL and NG was an effective way

to find clusters in the data, some problems existed in the practical implemen-

tation. The number of centres and the number of adaptation steps for the NG

algorithm had to be determined beforehand. If the parameters used did not

produce the expected result, repeated runs with different values for the pa-

rameters were necessary. Bernd Fritzke showed that his algorithm, GNG [24],

could eliminate these problems. The GNG algorithm is explained in detail in

Algorithm 2 in Appendix A. GNG follows the same basic principles of CHL

and NG. The nodes are placed in the input space where P(ξ)>0. The joining

of the nodes via edges creates the "Delaunay Triangulation" as in CHL. The

concept of edge aging gets rid of obsolete edges as the algorithm progresses.

GNG implements "soft competition" that is when a node wins, not only the

winning node is moved closer to the data point but also its neighbours are

moved closer to the data point although to a slightly lesser degree. Resetting

the edge age to zero every time a node wins ensures that the edges closest

to the input data points do not age much and hence are not deleted. The

local error variable for each node indicates where there is a need to insert a

new node. All the nodes which do not have edges emanating from them are

removed after every iteration, thus ensuring that there are no "dead units".
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4.3.2 Implementation

As mentioned before, there are typically four steps in the clustering process.

The following sub-sections detail how each step was applied to our dataset.

4.3.2.1 Feature Selection and Extraction

The first step of clustering is the representation of the dataset, feature selection

and extraction. The data that was available to me originally was in the

form of a vector for each CN neuron, indicating the spike times of the CN

neuron from which it was recorded. I also had the EEG that was recorded

simultaneously and the start and stop times of the absence seizures. This

vector could not be used directly for clustering. So I had to extract features

which describe the spike-time vectors more effectively. As detailed in the

previous chapter these features were mean_CV2, CV, log CV, log-interval

entropy, permutation entropy, firing rate, mode ISI, mean ISI, median ISI,

min ISI, burst index, burst-like spike ratio, pause index, pause ratio. The

spike trains were initially divided into ictal and interictal parts depending

on the times when the corresponding EEG showed spike-wave-discharges of

6-9Hz. Then the previously mentioned features were calculated separately

for the ictal and interictal parts of each spike train. Then, I used only the

interictal features for clustering. After clustering, I labeled the neurons as

participating or non-participating. The purpose of using only the interictal

features, the features which show the actual spiking nature of the neuron when

not affected by seizure activity, is to see if different groups of CN neuron are

present in the data and if after labelling, some pure clusters emerge. If some

purely participating clusters emerge, that will indicate that the CN neurons

with certain interictal spiking properties are more likely to modulate their

output during absence seizures.

A strong negative or positive correlation between the features used for
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clustering can affect the distance measures and hence clustering [38]. There-

fore, a correlation matrix was constructed between the features of interictal

parts of the spike-trains as shown in Table 4.1. Only subsets of the feature set

consisting of not strongly correlated parameters were considered for clustering.

mean-
_CV2

CV log CV log-
interval
en-
tropy

firing
rate

permu-
tation
en-
tropy

mean
ISI

mode
ISI

median
ISI

min
ISI

pause
index

burst
index

pause-
ratio

burst-
like
spike
ratio

mean_CV2 1.0 0.7 -0.9 0.8 -0.2 -0.2 0.1 0.0 -0.2 -0.4 -0.1 0.2 -0.1 0.0
CV 0.7 1.0 -0.6 0.8 0.1 0.0 -0.1 -0.3 -0.5 -0.5 -0.2 0.3 -0.2 0.2
log CV -0.9 -0.6 1.0 -0.6 0.5 0.6 -0.6 -0.4 -0.1 0.0 -0.3 0.0 -0.2 0.2
log-interval
entropy

0.8 0.8 -0.6 1.0 0.1 0.1 -0.2 -0.3 -0.5 -0.6 -0.3 0.2 -0.3 0.2

firing rate -0.2 0.1 0.5 0.1 1.0 0.8 -0.8 -0.7 -0.7 -0.6 -0.5 0.4 -0.3 0.8
permutation
entropy

-0.2 0.0 0.6 0.1 0.8 1.0 -1.0 -0.9 -0.8 -0.7 -0.8 0.2 -0.6 0.5

mean ISI 0.1 -0.1 -0.6 -0.2 -0.8 -1.0 1.0 1.0 0.8 0.8 0.8 -0.2 0.7 -0.5
median
ISI

0.0 -0.3 -0.4 -0.3 -0.7 -0.9 1.0 1.0 0.9 0.9 0.9 -0.2 0.7 -0.5

mode ISI -0.2 -0.5 -0.1 -0.5 -0.7 -0.8 0.8 0.9 1.0 0.9 0.8 -0.2 0.7 -0.4
min ISI -0.4 -0.5 0.0 -0.6 -0.6 -0.7 0.8 0.9 0.9 1.0 0.9 -0.2 0.8 -0.4
pause
index

-0.1 -0.2 -0.3 -0.3 -0.5 -0.8 0.8 0.9 0.8 0.9 1.0 -0.1 0.9 -0.2

burst index 0.2 0.3 0.0 0.2 0.4 0.2 -0.2 -0.2 -0.2 -0.2 -0.1 1.0 -0.1 0.5
pause ratio -0.1 -0.2 -0.2 -0.3 -0.3 -0.6 0.7 0.7 0.7 0.8 0.9 -0.1 1.0 -0.1
burst-like
spike
ratio

0.0 0.2 0.2 0.2 0.8 0.5 -0.5 -0.5 -0.4 -0.4 -0.2 0.5 -0.1 1.0

Table 4.1: shows the correlation matrix between all the features of the interictal
parts of the spike trains.The features used for clustering should not have a strong
positive correlation(>0.7) or a strong negative correlation (<-0.7) as this can affect
the proximity measures in the clustering algorithm [38]. Therefore, subsets of fea-
tures considered for clustering were made of features that are not strongly correlated
to each other. The highlighted cells in the table show that the features mode ISI,
burst-like spike ratio and CV, which are the features used for our final results, are
not strongly correlated.

If the original values of the features are used directly for GNG clustering,

the features which have a larger range will minimise the effect of the features

with smaller ranges. Therefore, before clustering, the feature vectors have to

be normalised by taking a Z-score of the original values, that is the mean of

the feature is subtracted from the data item value and this is divided by the

standard deviation of the feature. This ensures that undue importance is not

given to larger range features during clustering.
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4.3.3 GNG Clustering Results and Cluster Validation

A number of subsets consisting of different combinations of not strongly cor-

related features were used to perform GNG clustering. The GNG algorithm

produced a large number of clusters (approximately 60), which was not very

easy to analyse. To simplify the analysis of the clusters, I applied hierarchi-

cal agglomerative clustering to the existing clusters, where the clusters whose

centres were less than a certain threshold value apart were joined together

into a single cluster. The joining process was stopped when further joining of

the clusters resulted in more impure clusters, that is clusters having a mix of

participating and non-participating neurons. To determine the purity of the

clusters I designed a cluster purity algorithm which is detailed in Algorithm 1.

After the implementation of this algorithm, I discovered that the concept of

cluster purity and algorithms to calculate it already existed [45]. The thresh-

old value was increased in increments of 0.1 and the resulting cluster purity

was plotted against the threshold value as shown in Fig.4.4(b). Even though

a high cluster purity is desired, we cannot pick a threshold value solely on this

criterion. We have to select a threshold value which gives us a manageable

number of clusters without affecting the cluster purity to a large extent. The

dotted line in Fig.4.4(b) shows the threshold value (1.1) which we used for the

final results. This value was selected because at this point the number of clus-

ters is manageable and as seen in Fig.4.4(b), a further increase in threshold

value reduces the cluster purity considerably.

From the set of features, the final set of features I used for our clustering

were CV, mode ISI and burst-like spike ratio. The final clustering result is

shown in Fig.4.4(a). This set of features was selected because this combination

of features proved to be the most effective in separating the "participating"and

"non-participating" neurons into different clusters.
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Figure 4.4: (a)shows GNG clustering of the CN neuron activity using CV, mode
ISI, burst-like spike ratio. The results are shown in a 2D projection using PCA. The
crosses (+) indicate cells that have a significant FFT based Z-score and a modulation
frequency between 6-9Hz. The circles (o) represent cells that do not have a significant
FFT based Z-score or their modulation frequency does not lie between 6-9Hz. (b)
shows the cluster purity for each threshold value. The cluster purity value indicates
the amount of mixing of the two classes of neurons, participating indicated by (+)
in (a) and non-participating indicated by (o) in (a), that is present in the clusters.
A high cluster purity value indicates that the clusters are predominantly made up
of the same class of neurons. The dotted line indicates the value selected for the
final clustering result.
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Figure 4.5: shows the mean and standard deviation of each measure - CV, mode
ISI, burst-like spike ratio for each cluster. The clusters are colour-coded as in Fig.
4.4.
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1. In the dataset, identify the number of clusters present.

2. For each cluster, the maximum number of data items belonging to the
same class gives the purity index of the cluster.
purity index = max(numclass1, numclass2, ..., numclassn)

3. A weighted purity index for a cluster is calculated by multiplying the
purity index by the cluster size.

4. Calculate the weighted purity index for all the clusters. The sum of all
weighted purity indices is equal to the weighted average.

5. cluster purity = weighted average/total cluster size.

Algorithm 1: Cluster Purity

4.3.4 Visualisation of GNG Results

The original GNG algorithm gives as output a set of nodes, and the informa-

tion about which nodes are connected by edges. As the number of data points

is large, the graph that was produced using this information was not easy to

analyse. Also, it was difficult to ascertain which data points belonged to the

same cluster. To facilitate this, the GNG algorithm was modified to output

the winner node information for each datapoint. After that, I designed a cus-

tom MATLAB routine to determine which data points belonged to the same

cluster and coloured each cluster in a different colour. Then a 2D projection of

the results, using Principal Component Analysis (PCA), was done to visualise

the results. The 2D projection using PCA was particularly helpful in visual-

ising the results when the number of dimensions was greater than 2, that is,

when more than 2 features were considered for clustering. The "participating"

neurons are indicated by crosses (+) and the non-participating neurons are

indicated by circles (o) in Fig.4.4(a). The different colours in the Fig.4.4(a)

indicate the different clusters.
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Figure 4.6: (a) shows the plot of edge age against the number of clusters for
different threshold values. The graphs in all the subplots are mostly flat indicating
that the edge age parameter has no effect on the number of clusters which result
from the GNG algorithm. (b) shows the plot of maximum number of nodes against
the number of clusters for different threshold values.
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4.3.5 Free Parameters of GNG

Free parameters, unlike other parameters and constants which are constrained

by a domain, can assume any value and can be adjusted by the user to a value

that may give more meaningful results. There are two free parameters in the

GNG algorithm - edge age and maximum number of nodes. For the original

run, a value of 88 (which is a default value for edge age) and 1000 were used

for edge age and maximum number of nodes, respectively. To verify that

these parameters did not have an effect on the number of resulting clusters,

a series of experiments were conducted using different values of edge age and

maximum number of clusters. The graphs in Fig. 4.6(a) show the plots of

number of clusters for different edge age values. Each subplot depicts the

resulting graph when a different threshold value was used. The graphs show

that for each edge age value, the number of clusters formed, for different

threshold values, is approximately the same. Therefore, the value of edge age

has no influence on the number of resulting clusters. A similar experiment

is performed using different values for the maximum number of nodes. The

graphs in Fig. 4.6(b) show the resulting number of clusters for each value of

maximum number of nodes, for different threshold values. The graphs show

a smaller number of clusters for values of 100 to 300, but after that a plateau

is noticed. This indicates that, at a value less than 300, the GNG algorithm

runs out of nodes to insert resulting in a smaller number of clusters. This

is an incomplete result. Therefore it is best to set the maximum number of

nodes parameter to a value higher than 300 in this scenario.

4.3.6 Location of recording(interpositus, medial or lat-

eral)

After the clusters were finalised, it was interesting to see if we could determine

the location of the CN neurons in the cerebellum that were more likely to
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Figure 4.7: shows the number of neurons in each cluster, the total number of
neurons that participate in absence seizures in each cluster and the number of "non-
participating" neurons. Additionally for each cluster, the number of medial, lateral
and interpositus neurons is given. The clusters are colour coded as in Fig. 4.4. The
numbers (highlighted in columns: Participating neurons, Non-participating neurons,
medial, lateral and interpositus neurons) suggest that in each cluster that has purely
participating neurons, the neurons are predominantly recorded from the interpositus
or lateral region. This suggests that interpositus and lateral CN neurons are more
likely to participate in absence seizures.

participate in absence seizures. So, I formed a table for each cluster detailing

the total number of neurons in each cluster, the total number participating and

non-participating neurons. The clusters are color-coded as in Fig. 4.4. Next,

for each cluster, I counted how many neurons are situated in the medial, lateral

or interpositus for participating and non-participating neurons. We can see

from this table that the clusters which have purely participating neurons have

a greater number of interpositus or lateral CN neurons. This suggests that

CN neurons in the interpositus or lateral region are more likely to modulate

their spiking behaviour during absence seizures.
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4.4 Chapter Conclusions

Some CN neurons modulate their spiking activity during absence seizures.

The clustering results show that there are some purely participating clusters

indicating that CN neurons having properties similar to the CN neurons in

these clusters are more likely to participate in absence seizures. Interestingly,

the analysis of the location of recording of the neurons in these purely partici-

pating clusters revealed that these neurons were predominantly located in the

interpositus or the lateral nuclei of the cerebellum. As discussed in Chapter

2, Section 2.3.1, the cerebellar nuclei in these regions project to the thalamus

and the cerebellar cortex.
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In the previous chapter, I used an unsupervised machine learning algorithm

- GNG, to find clusters in the dataset. In this chapter, I explore another

facet of machine learning: supervised learning.

As mentioned in Chapter 1: Section 1.1.1, a supervised learning algorithm

requires the data to be labelled. The data in this case are made up of input-

output pairs. The inputs which may be in the form of a numeric vector are

called features. The output vectors corresponding to these input vectors are

called targets. In other words, we have samples from a function f : Rn −→ Rm

and the aim of the supervised learning algorithm is to discover/approximate

this function.
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So, if there are N input vectors and N corresponding targets, the input-

output pairs, where the input vector has d dimensions, can be denoted as

shown in the Table 5.1. If the target yi is an integer or real value, the learning

Inputs Targets

x1 y1

x2 y2

. .

. .

. .
xN yN

Table 5.1: shows that the N input vectors and the corresponding N targets.

problem is called regression. If the target yi is a label, the learning problem

is termed as classification. The Iris dataset [20] is an excellent example of a

classification problem. In this dataset, the inputs to the classifier are the sepal

length, sepal width, petal length and petal width of the flower. Based on these

inputs, the species of the flower l.setosa, l.versicolor or l.virginica, has to be

predicted. The outputs or the targets in this dataset, which is the particular

species of the flower, are clearly not numeric values. However, even if, for

simplicity of representation, numeric values such as 1, 2 and 3 are assigned to

represent the different species, still this would not be a regression problem as

the numeric values are just a representation of the original class label and do

not hold any meaning by themselves. If, for the same Iris dataset, the inputs

were sepal length, sepal width, petal length and species and we had to predict

the petal width of the flower, then this problem would be a regression problem

as the petal width of the flower is a real number.

I use a popular supervised learning algorithm, called Gaussian Processes

(GP), to perform non-linear regression in order to predict the measures FFT

based Z-score and modulation frequency, which are discussed in Chapter 3,
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from the interictal activity of the CN neuron. These measures are used to

determine if a CN neuron is likely to participate in absence seizures.

I chose Gaussian Processes (GP) to perform non-linear regression as it pro-

vides some advantages over the traditional regression models. Most regression

models are parametric in nature that is, they work by assuming a relationship

or a function between the input and the target or output. There are a lot

of functions available, for example, splines, polynomials, fourier series and so

on. It is tedious to try and fit the data to all possible types of function and to

adjust the free parameters associated with the function to get the best results

in each case. Also, there is the problem of overfitting, that is, if I tune the

free parameters of the function too much so that the function fits the existing

data perfectly but has limited flexibility, the prediction for the unseen data

can be poor. The predictions are better if the function fits the data well but

not too well.

Gaussian Processes overcomes the problems of overfitting as it is non-

parametric in nature. GP assumes that the function defining the relationship

between the input and output pairs is unknown and the data are produced

from a (potentially infinite) set of functions, with a Gaussian distribution in

the function space [1]. Since, it is a gaussian distribution, the mean and the

covariance function are crucial to GP. If the mean function is zero, "the targets

are entirely generated from a joint distribution of mean zero and a covariance

function" [1]. The covariance function defines how the similarity between the

datapoints is calculated.

5.0.1 Prediction using a GP model

This section shows how the prediction process in a GP model works. Consider

a set of input vectors, X=x1...xN where N is the number of input vectors,

and the corresponding output vectors are given by y1...yN . As also shown in



72 Chapter 5. Regression

[1], the covariance matrix (K) between all the input vectors x is calculated as

shown below

K =




k(x1,x1) k(x1,x2) ........ k(x1,xN)

k(x2,x1) k(x2,x2) ........ k(x2,xN)

........ ........ ........ ........

k(xN ,x1) k(xN ,x2) ........ k(xN ,xN)




where k(xi,xj) shows the similarity between xi and xj. If now a new input

vector x∗ is added to the input space, then the corresponding y∗ is predicted

using the Eq. 5.1

E[y∗] = kT∗ (K + σ2
nI)
−1y (5.1)

where k∗ is the covariance vector between x∗ andX, I is an identity matrix,

σ2
n is "the variance of an identically distributed Gaussian noise" [1]. The

Gaussian noise is added to the covariance function to make it more flexible.

y is the output vector.

From the Eq.5.1, it is easy to see that the value for y∗ is nothing but "a

weighted average of the values of y with the weights being determined by the

covariance of the x∗ with X" [1]. However, the weights are not just equal

to the distance between the points, but given by a Gaussian function of the

distance as shown in Fig. 5.1(a).

Ashrafi et al. [1] give a simple example of how a GP regression works.

In this case, there is dataset consisting of two points: the first point is

(x1,y1)=(1,2) and the second one is (x2,y2)=(3,4). "The task is to predict

the corresponding value of y for a new value of x∗" [1]. The simplest approach

is just to take the weighted value of existing ys weighted by the distance of

the new point from the existing point. y∗ = (d(x∗, x1)y1 + d(x∗, x2)y2)/2.

In actual fact, in a Gaussian Process the distance is put through a Gaussian
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Figure 5.1: (a) shows that the prediction (green line) is a result of a Gaussian
function of the weights at 1 (blue line) and 3 (red line). The prediction line passes
very close to the actual values of y (shown by the black bars) when the data points
are well separated and the Gaussian weights at 1 and 3 have minimal influence on
each other. (b) shows that the prediction is over-estimated when the data-points
are closer to each other and both the weights at 1 and 3 contribute heavily to the
prediction.(c) the solution to the over-estimation is to force the weights to zero
whenever the prediction passes through a data point. This time the prediction is
correct. (d) shows that the variance of the prediction can also be calculated as
shown by the purple line. It is clear that the variance at the actual data-points is
zero and increases as we move away from the data-points. Source: [1].
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function so that distant points have less impact.

In the Fig. 5.1(a), the Gaussian weights of x = 1 are shown by the blue

line, and the Gaussian weights at x = 3 are shown by the red line. The

prediction of y due to these two weights is shown by the green line. When the

data points are well separated, as in Fig. 5.1(a), the prediction line is shown to

pass very close to the actual values of y (shown by the black bars). However,

if the data points are closer to each other as shown in the Fig.5.1(b), the y

value is over-estimated. This happens because both the Gaussian weights at

x=1 and x=2 contribute heavily to the prediction. To resolve the issue of

overestimation, the Gaussian weights are forced to zero whenever they pass

through any data points. The new prediction is as shown in Fig. 5.1(c).

It is also possible to derive a variance for the prediction y∗ as shown by

the purple line in Fig. 5.1(d). The variance of y∗ is given by the Eq. 5.2

var[y∗] = k(x∗, x∗)− kT∗ (K + σ2
nI)
−1k∗ (5.2)

where k(x∗, x∗) is the variance of x∗.

From Eq. 5.2, it is clear that if the new data-point is closer to an exist-

ing data-point, the weights are higher and consequently the variance is lower.

If the new data-point is located further away from existing data-points, the

Gaussian weights have minimal influence on the new data-point and the vari-

ance in this case is higher.

5.0.2 Covariance Functions

The selection of the covariance function is very important to the GP as it

determines the type of functions that make up the prior and it determines

how the closeness between the input data points is calculated. A covariance

function is an example of a kernel, which is a function that takes two inputs,

scalar or vector, and produces a real value as output. A function has to satisfy
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some conditions in order to be considered a kernel. The conditions the kernel

K needs to satisy are:

For any x and y,

• The function should be symmetric, K(x, y) = K(y, x).

• The function should be maximal when its two inputs are identical (af-

ter all the kernel is trying to measure similarity) that is, K(x, x) >=

K(x, y).

• it should be non-negative, K(x, y) >= 0.

• it should be a continuous function, that is, a small change in x or y (or

both), should produce a small change in K(x, y) that is :
∂K

∂x
and

∂K

∂y
are always finite.

Rasmussen et. al [59] give a list of some commonly used covariance functions

as shown in Fig 5.2. The most frequently used function to do a GP regression

Figure 5.2: shows some commonly used covariance functions in GP. The r value is
calculated as the absolute distance between two points x and x′ that is r = |x−x′|.
l is the length-scale and σ is the standard deviation of the signal. The column S
indicates whether the function is stationary. Source: [59]
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Figure 5.3: shows some random functions taken from a GP with a rational
quadratic covariance function with different values for α and l=1. Source:[59]

is the Squared-exponential (SE) covariance function. It is given by the Eq.

5.3

k(xp, xq) = exp(−(xp − xq)2

2l2
) (5.3)

Since this function is dependent on xp − xq, this covariance function is

stationary. The SE function basically states that the data points influence

each other more if they are close to each other and not so much if they are

further away.

Another popular covariance function is the Rational Quadratic Covariance

(RQ) function shown in Fig. 5.3. It is given by the Eq. 5.4

kRQ(xp, xq) = (1 +
(xp − xq)2

2αl2
)−α (5.4)

This covariance function is similar to adding several SE covariance kernels

which have varying length-scales given by l. The hyperparameter α determines

the extent of variation (large or small variations) in the function. If α is very
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Figure 5.4: shows the effect of hyperparameter values on GP modeling. The data
points observed are marked by +, the solid line shows the underlying mean function
and the grey area around the function shows the errorbars or 2 standard devations.
(a) l=1, σ2f= 1 and σ2n=0.1 (b) l=0.3, σ2f= 1.08 and σ2n=0.00005 (c) l=3, σ2f= 1.16
and σ2n=0.89. Source: [59].

large, then the RQ kernel is equivalent to the SE kernel.

In my regression experiments, I found that the RQ covariance function gave

me the best result in predicting FFT based Z-score and modulation frequency

as discussed in Section 5.3.
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5.0.3 Hyperparameters

The equation given for the Squared- Exponential (SE) covariance function in

Eq. 5.3 is based on the assumption that the observations made are noise-free.

However, adding noise to the covariance function is more realistic and provides

a more robust model. The Eq. 5.3 can be re-written as shown in Eq. 5.5

kn(xp, xq) = σ2
fexp(−

(xp − xq)2

2l2
) + σ2

nδpq (5.5)

where l is the length-scale, σ2
f is the signal-variance and σ2

n is the noise variance

multiplied by δpq (Kronecker delta) which has a value of 1 when p and q are

equal and zero otherwise [1]. The length-scale parameter, l, determines the

smoothness of the functions.

Rasmussen et al. [59] explain the effect of these hyperparameters with the

help of a simple example as shown in Fig. 5.4. In Fig. 5.4(a), the length-scale

parameter is set to 1. The values for σ2
f and σ2

n is determined as 1 and 0.1

respectively by a model selection method such as cross-validation or marginal

likelihood. The error bars show 2 standard deviations. It can be seen that the

function is smooth and the errorbars are smaller where data are present and

larger where there is no data. If the value for the length-scale was changed

to 0.3 but the x-axis and the other parameters was maintained the same, the

function line will become more wiggly in appearance.

However, if the value for the hyperparameter, l is changed to 0.3, and

the other parameters are set by picking the optimal parameters as dictated

by a model selection method such as marginal likelihood or cross-validation,

then we would see a function as seen in Fig. 5.4(b). The parameters σ2
f and

σ2
n would take the value of 1.08 and 0.00005 respectively. The lower value

for noise is due to the higher value of σ2
f , that is, there is greater flexibility

for the signal, so a higher value for the noise is not required. Also, any sharp

variations in the data, which was previously attributed to noise, is now entirely
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attributed to the variation in the underlying function, therefore the errors bars

in between the data points rapidly move away.

In contrast, if the length-scale is too long as in Fig. 5.4(c), with the value

of l = 3, the noise value selected by using a model selection method is 0.89

and the alpha is set as 1.16. In the case of a longer length-scale, much of

the variance is attributed to noise, so the function itself varies very little as

shown by the smooth function of Fig. 5.4(c). This example illustrates that

the selection of the correct values for the hyperparameters is crucial to GP

modeling. In this example, if a model selection method such as cross-validation

is used, it would chose the hyperparameter values as shown in Fig. 5.4(a) as

this function gives the best fit.

5.1 Model Selection

In Fig. 5.4, we can see that a lot of variation is possible in the type of

function produced even when the same covariance function is used for GP

modeling. Therefore, we need a way to compare different models produced by

GP modeling and select the model best suited to predict unseen data. The

most commonly used method to compare models produced by GP modeling

is cross-validation.

5.1.1 Model Building and Testing

To select the model for GP regression, the dataset is divided into n segments.

The first n− 1 segments form the training set and the nth segment is chosen

as the test set. The training set and the test set should be disjoint, that

is, no rows found in the training set should appear in the test set. The GP

regression modeling is carried out on the training set. During the training,

the GP model learns the relationship between the input and its corresponding
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targets. The covariance function and the hyperparameters are selected for the

GP model in this stage.

Once the training is complete, unseen data in the test set are now presented

to the model. The performance of the model is determined by calculating the

mean square error (MSE) between the predicted and the actual target values.

This process is repeated n times by shuffling the segments in the test and

training set such that each segment in the data set has an opportunity to be

the test set once. The GP model which produces the least MSE for the n

trials is selected as the final version of the model.

5.2 Measuring Performance of a Classification

Task

Apart from performing regression, I also perform classification on the results

produced by the GP regression model by using the assumption that a CN

neuron is likely to participate if its FFT based Z-score >=1.96 and modulation

frequency is between 6-9 Hz, as explained further in the Section 5.3. Here, I

explain how the performance of the classification results is measured.

In a classification task where there are two equally sized classes, measuring

performance is straight forward. You simply report accuracy, the proportion

of the test data that you accurately classify. For example, a classifier that is

right 80% of the time is definitely better than one that gets it right 60% of

the time. However most tasks, including mine, do not have balanced classes

and simply reporting accuracy may be misleading. For example, if one class

has 98% of the data, and the other class has the remaining 2%, then the

performance of 80% is not good at all and may actually be worse than the

accuracy of 60%. The reason for this, is that simply by making the useless

prediction that everything is in the majority class will give you an accuracy
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Predicted Positives Predicted Negatives

Actual Positives True Postive (TP) False Negative (FN)

Actual Negatives False Positive (FP) True Negative (TN)

Table 5.2: shows a confusion matrix

of 98% without telling you anything about the real class of the data.

To facilitate the discussion, we describe our test data as consisting of pos-

itive and negative examples of our class of interest (for example, participating

neurons). For the case of so-called unbalanced data, as my data is, specialised

measures must be used. I primarily use the F-score, and to obtain this a

confusion matrix should be constructed. For this, the four measures: True

Positive, True Negative, False Positive and False Negative need to be found.

A prediction can be either correct or incorrect. A correct prediction for an

item of positive class is called a True Positive (TP). In fact, the four cases can

be identified as shown in the Table 5.2 and as shown in [60]. Based on this

confusion matrix the values for Accuracy, Recall, Precision can be calculated

as shown in the Equations 5.6 , 5.7 and 5.8; also shown in[60].

Accuracy =
True Positives+ True Negatives

Total no. of items
(5.6)

Recall =
True Positives
Actual Positives

(5.7)

Precision =
True Positives

Predicted Positives
(5.8)

where Actual Positive is True Positives + False Negatives and Predicted
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Item No. Class Label Model A Results Model B Results

1 + + -
2 - + -
3 + + +
4 + + -
5 - + -
6 + - -

Table 5.3: Example data

Positives is True Positives + False Positives.

For example, consider the unbalanced data shown in the Table 5.3. The

data consists of 6 items, out of which 4 are actual positives and 2 are actual

negatives. Now, suppose the classifier predicts 3 of the actual positives as

positives and none of negatives are correctly identified, then the confusion

matrix can be formed as shown in Table 5.4.

Predicted Positives Predicted Negatives

Actual Positives (4) TP = 3 FN = 1

Actual Negatives (2) FP = 2 TN = 0

Table 5.4: shows an example (Model A results in Table 5.3) of a confusion matrix
for good Recall and poor Precision.

Now, from the confusion matrix, the following measures can be calcu-

lated. Firstly, "Recall measures the proportion of the actual positives that

are predicted" [60], in this case 75% (3 of 4), and the "Precision measures

the proportion of positive predictions that are correct" [60] which is 60% (3

of 5). To interpret this, our predictor is good at recalling the True Positives
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but does this at cost of the prediction by predicting too many positives.

However, if for the same data the classifier predicts only 1 of the actual

positives as positive and identifies both of the actual negatives as negative

the confusion matrix would be as shown in the Table 5.5. The Recall in this

case is poor at 25% (1 of 4). However, the Precision is excellent at 100%.

This predictor is also not good as it is not good at recalling True Positives.

Obviously a good balance is needed between good Recall and Precision and a

Predicted Positives Predicted Negatives

Actual Positives (4) TP =1 FN = 3

Actual Negatives (2) FP = 0 TN = 2

Table 5.5: shows an example(Model B results in Table 5.3) of a confusion matrix
for good Precision and poor Recall.

normal way of combining them is to use the F-Score, calculated as shown in

Eq. 5.9 and [60], which rewards both high Recall and high Precision. Fig. 5.5

shows how the F-score penalises poor Precision and poor Recall compared to

a measure which calculates the average of Precison and Recall.

F − score = 2×Recall × Precision
Recall + Precision

(5.9)

5.3 Results

The purpose of using a GP model in my research is to predict the two mea-

sures: FFT based Z-score and modulation frequency from the interictal activ-
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Figure 5.5: (a) shows the value of F-score for different values of Precision and
Recall. The F-score is low for poor Precision values even when the Recall values
are high. That is F-score penalises poor Precision and poor Recall. (b) shows
the average. This measure is not a good measure because it does not penalise low
values of Recall or Precision and does not reward high Recall values even when the
Precision is high as shown by the red line. The main point is that when we have a
precision of 0, the F-score says that the classifier is useless whereas the average says
it is still useful.

ity of the CN neurons. Since both the measures are continuous values, the

prediction of the values is a regression problem.

I constructed two separate GP models: one to predict the FFT based

Z-score and the other to predict the modulation frequency. The measures,

as detailed in Chapter 3: Section 3.2, which describe the interictal activity

of the CN neurons were selected as the features to the GP model. We used

subsets consisting of different combinations of these features. For each of these

combinations, the GP regression was performed using different covariance

functions, listed in Fig. 5.2, and different values for hyperparameters.

The hyperparameters were selected using the method of cross-validation

as detailed in Section 5.1. That is, the data set which consisted of 208 rows

of data was divided into 5 segments: out of which 4 segments were used for

training and the remaining segment was used as the test set. The process was

repeated 5 times such that each segment had the chance to be the test set.

For the five runs, the Pearson correlation coefficient r was calculated for the
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Figure 5.6: shows a coarse grid search for the best values for hyperparameters:
length-scale and signal-variance when alpha =0.1 using the cross-validation method.
The colormap shows the values for the Pearson correlation coefficient r. We can
see that the r value is the best in region where signal-variance >10 and length-
scale<0.01. Also, a high value for r was observed when length-scale >100 and
signal-variance is between 1-10. This is a snapshot of the search conducted for
the hyperparameter values. This search was also done for different values of alpha
ranging from 10−3 to 10+3. Further, a fine grid search was conducted in areas where
the r value was the highest.

actual vs. the predicted value of FFT based Z-score. The r value was taken

as the measure of performance of the GP model.

To select the values for the hyperparameters, first, a coarse grid search

was conducted with the values for each hyperparameter: length-scale, signal-

variance and alpha, consisting of logarithmic values, that is, for each power

of 10 ranging from 10−3 to 10+3. Fig. 5.6 shows a snapshot of the search con-

ducted for the best values for the hyperparameters: length-scale and signal-

variance, when the hyperparameter alpha=0.1. The colormap in Fig. 5.6

shows the range of r values. We observe that a high r value is obtained when

the signal-variance >10 and length-scale<0.01. Also, a high value of r is no-
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F−Score= 0.78

Figure 5.7: shows the plot of actual vs. predicted value of FFT based Z-score
produced by the GP model. I was able to achieve a good prediction rate (Pearson
correlation coefficient) (r) of 0.62. Further, I created a confusion matrix on the
assumption that a FFT based Z-score of 1.96 or higher was required for the CN
neuron to participate. The 1.96 threshold is shown by the pink lines. I classified the
CN neurons that were actually participating and were predicted as participating as
true positive (TP), the CN neurons that were actually not participating and were
identified as such as true negative (TN). The CN neurons which were either par-
ticipating or non-participating but were incorrectly identified as non-participating
and participating were termed as False Negative (FN) and False Positive (FP) re-
spectively. I achieved a precision of 0.66 which means that 66% of the CN neurons
which were identified as participating were actually participating. Also I achieved a
recall of 0.95 which means I identified 95% of the neurons of the total participating
neurons.

ticed when length-scale >100 and signal-variance is between 1-10. This figure

does not show the entire search conducted and is merely a snapshot when

alpha=0.1. Further, a logarithmic search was also conducted for different val-
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ues of alpha for each power of 10 in the range of 10−3 to 10+3. Finally, a

fine grid search was conducted in the areas where coarse grid search showed

a higher value for r. We were able to achieve the best r value (r=0.62) when

signal-variance was 1, length-scale was 120 and alpha was 0.1.

The combination of features that gave us the best prediction for FFT based

Z-score were mean_CV2, CV, burst-like spike ratio and permutation entropy.

The covariance function that gave the best results was the Rational Quadratic

covariance function, which has been explained in Section 5.0.2. As shown in

Fig. 5.7, the r value, the Pearson correlation coefficient [55], which calculates

the correlation between the actual and predicted FFT based Z-score was 0.62.

This value shows that there is a good correlation between the actual and the

predicted value. Also, this correlation was not a matter of chance as the

p-value of the Pearson correlation coefficient was significantly less than 0.05.

Further, I created a confusion matrix based on the assumption that a CN

neuron with a FFT based Z-score greater than or equal to 1.96 is likely to

participate in the seizure activity. The threshold of 1.96 is shown by the

pink lines in Fig. 5.7. This means that CN neurons that have been correctly

identified as participating that is the predicted and the actual FFT based Z-

score was greater than or equal to 1.96, are classified as true positive (TP).

The CN neurons which have been correctly identified as non-participating

form the true negatives (TN). The CN neurons that have been incorrectly

identified as non-participating or participating are classified as false negative

(FN) and false positive (FP) respectively. The values for accuracy, recall,

precision and F-score are calculated using the equations 5.6, 5.7, 5.8 and

5.9. Using this classification method, I achieved a precision of 0.66 and a

recall of 0.95. This means that 66% of the neurons that were identified as

participating were actually participating and 95% of the total neurons that

were participating were correctly identified.

The prediction of the second measure modulation frequency proved to be
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Figure 5.8: shows a plot of actual vs. predicted value of modulation frequency
produced by the GP model. Here, the predicted value of the FFT based Z-score
produced by the previous experiment, as shown in the Fig. 5.7, is used as an input
along with the feature CV. I was able to get an average value of r = 0.50 for this
prediction. Further, a confusion matrix is produced on the assumption that a CN
neuron with a modulation frequency between 6-9Hz is likely to participate. Even
though the precision is 0.94, that is almost all the CN neurons that were identified
as participating were actually participating, the recall was low which means that
only 36% of the total CN neurons which were actually participating were correctly
identified.

more challenging. All the existing features or any combination of the features

for any covariance function was not able to get good prediction rates. Inter-

estingly, when I combined the predicted value of FFT based Z-score produced

by our GP model with the CV I was able to get better results. I initially

thought that this is a novel way of prediction. However, this concept of using

the output of one classifier as an input to another had been explored before
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Figure 5.9: shows the plot of actual vs predicted value of modulation frequency
produced by the GP model. The main difference between this result and the result
shown in Fig. 5.8 is that instead of the predicted value of FFT based Z-score used
as input to the GP model, I use the actual values. When the actual values of FFT
based Z-score are used, we see an improvement in the r value.

by Wolpert in 1992 and is called stacking [72]. I achieved an r value of 0.50

with p<0.05 as shown in the Fig. 5.8. Further, instead of using the predicted

value of FFT based Z-score, if I used the actual values, I was able to get a

slightly better prediction rate. The r value in this case increased to 0.60 with

p<0.05 as shown in Fig. 5.9. The covariance function used for this GP model

was the Rational Quadratic covariance function, which is the same covariance

function used in the prediction of FFT based Z-score. I did a coarse grid search

followed by a fine grid search to find the best value for the hyperparameters.

The value of hyperparameters that gave the best result was: length-scale=76,
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signal-variance =75 and alpha=0.01.

As before, I also created a confusion matrix based on the assumption

that a CN neuron with a modulation frequency between 6 to 9 Hz is likely

to participate. The classification in this case was not that successful. Even

though our precision value was 0.94 and 0.98 for the predicted and the actual

value of FFT based Z-score, as shown in Fig. 5.8 and Fig. 5.9 respectively,

that is almost all neurons that were identified as participating were actually

participating, the recall value was low which meant approximately 64% of the

total CN neurons which were participating were not correctly identified.

5.4 Chapter Conclusions

In this chapter, I explored supervised learning and I attempted to predict the

values of FFT based Z-score and modulation frequency from the measures that

describe the interictal activity of the CN neurons. I got a good prediction rate

of r=0.62 for FFT based Z-score and r=0.50 for modulation frequency) by the

GP models I have constructed. However, if co-efficient of determination (r2)

is taken into consideration, it can be seen that the proportion of the variance

explained by the GP model in case of FFT based Z-score is just 38%. This

means that even though the correlation between the predicted and observed

values is significant, it is not strong.
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The analysis of the clustering results, Chapter 4: Section 4.3.3, showed

me that there is a difference in the interictal spiking patterns of partic-

ipating and non-participating neurons. So, I set out to investigate the input
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conditions in the CN neurons that produce the spiking patterns observed dur-

ing the interictal periods in the participating neurons. The motivation behind

this study was not only to gain an understanding of the input conditions in

the participating neurons during the interictal periods but also to investigate

the change that occurs in the input conditions when the CN neuron output

shifts from an interictal spiking pattern to an ictal spiking pattern.

6.1 CN Neuron Model

In order to simulate a CN neuron and to reproduce the interictal spiking pat-

tern of a participating neuron, I used a morphologically realistic conductance-

based model of an excitatory CN projection neuron; for details about the CN

neuron model, see Chapter 2: Section 2.4.

As shown in Fig. 2.9 in Chapter 2, the GADnL CN neuron, which is an

excitatory CN projection neuron, receives excitatory input from mossy fibres

and inhibitory input from Purkinje cells. In the CN neuron model, I use the

parameters listed below, with the realistic ranges of values shown, to set the

characteristics of the excitatory and the inhibitory input.

• Inhibitory input frequency [0 - 200Hz]

• Excitatory input frequency [0 - 200Hz]

• Inhibitory noise [0 - 1]

• Excitatory noise [0 - 1]

• Inhibitory burst duration [0 - 500ms]

• Excitatory burst duration [0 - 500ms]

• Inhibitory interburst interval [0 - 500ms]
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• Excitatory interburst interval [0 - 500ms]

• Inhibitory burst randomness [0 - 100%]

• Excitatory burst randomness [0 - 100%]

• Purkinje cell synchronicity [1, 5, 15, 45, 90, 150, 225, 450]

• Mossy fibre synchronicity [1, 5, 15, 30, 75, 150]

• Inhibitory synaptic weight [0 - 300%]

• Excitatory synaptic weight [0 - 300%]

The first two parameters are used to set the firing rate of the input from the

Purkinje cells and the mossy fibres. The noise parameters are used to set the

irregularity of Purkinje cell and mossy fibre firing. A noise value of 0 ensures

that the input is completely regular, that is, the interspike intervals (ISIs) do

not vary and correspond to the inverse of the specified mean firing rate. A

noise value of 1 means that the ISIs are drawn from a gamma distribution

of the chosen order with the mean ISI corresponding to the inverse of the

specified mean rate [43]. The ISI is calculated as shown in the equation 6.1.

ISI = (1− x)y + xyz (6.1)

where, x is the irregularity setting, y is the desired mean ISI and z is a random

number between 0 and 1 drawn from a gamma distribution of specified order.

The gamma distribution in these set of experiments was set to the default

value of 3.

The burst duration and burst interval parameters indicate the length of

the bursts and the intervals between the bursts, respectively. The burst ran-

domness parameters indicate if the occurrence of the bursts across the inputs

is synchronous. All the parameters, except Purkinje cell synchronicity and
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mossy fibre synchronicity, are real valued numbers. The Purkinje cell syn-

chronicity and the mossy fibre synchronicity determine the number of Purk-

inje cells and the number of mossy fibres converging on to the CN neuron.

According to the current literature, the number of Purkinje cells and, in par-

ticular, mossy fibres converging onto a single CN neuron is unclear. Therefore,

the number of Purkinje cells converging on to our CN neuron model is set to

range from [1-450] and the number of mossy fibres to range from [1-150]. If

the value of convergence is set to 1, it is equivalent to having a totally syn-

chronous input. The synaptic weight parameters determine the strength of

the connection between the CN neuron and the neuron providing the input.

For each simulation, I varied the values of these input parameters and

then recorded the resulting spike train produced by the CN neuron model.

Next, I calculated the measures CV, mode ISI and burst-like spike ratio, see

Chapter 3: Section 3.2, for the output of the simulation and then projected

the result onto the clusters created by the application of the GNG algorithm

to the experimental data, see Chapter 4: Section 4.3.3. If the output of the

simulation was projected onto a purely participating cluster, I would have

managed to replicate the interictal spiking pattern of a CN neuron that par-

ticipates in absence seizures. Thus, the aim of this experiment was to find the

combination of input parameter values which would place the output into a

participating cluster. Since there are multiple input parameters that need to

be optimised, this is a problem which can be solved effectively using Evolu-

tionary Algorithms.

6.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are based on the concept of Darwinian evolu-

tion [15] and apply the principle of "survival of the fittest" to find solutions

to complex optimisation and computational problems.
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Figure 6.1: Typical steps in an evolutionary algorithm
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Since the basis of EAs is derived from biology, many biological terminolo-

gies such as chromosomes, genes, genotype etc. are used in the algorithms.

In the context of an EA, a chromosome represents a candidate solution, also

known as an individual. Genes are parts of the chromosome which are respon-

sible for certain traits of the individual. In this case, the set of parameters

that characterise the input to the CN neuron model, listed in Section 6.1, is

the chromosome and each parameter represents a gene. The configuration of

the genes in the chromosome forms the genotype.

An evolutionary algorithm typically comprises of the steps shown in Fig.

6.1. The EA starts by instantiating a population of genotypes. The genes for

each genotype in this initial population are selected randomly from the range

of values that each gene is limited to. The genotypes are then converted into

phenotypes by means of a mapping function. Next, the performance of this

phenotype or individual in providing a solution to the problem is evaluated.

The function which evaluates the performance of the phenotype is called the

fitness function. The fitness function assigns each individual with a fitness

value proportionate to its performance.

Once all the individuals have been evaluated, the best performing indi-

viduals are picked. Often, the strategy of elitist selection is used, and these

individuals are copied directly to the next generation without any modifica-

tions. The rest of the individuals, for the next generation, are generated by

the application of crossover and mutation operators.

Crossover is analogous to a process that happens during sexual reproduc-

tion where the genes of two parents are exchanged to create the offspring.

Exchange of the genes from the parents can occur, for instance, at a single

point in the genotype, at two-points, or at random locations. Fig. 6.2 (a), (b)

and (c) show an example of a single-point crossover, two-point crossover and

a version of uniform crossover, respectively.

Sometimes, in the offspring there are copying errors that occur when the
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(a)

(b)

(c)

Figure 6.2: (a) single-point crossover (b) two-point crossover (c) a version of
uniform crossover. The downward pointing arrows in (a) and (b) indicate crossover
points.
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Figure 6.3: shows the process of mutation. Sometimes copying errors occur when
the gene is being copied from a parent to the child. The example shows that a bit
gets flipped during the copy process.

genes are copied from the parent to the child. This is called mutation. How-

ever, the probability of mutation is very small. Fig. 6.3 shows an example of

mutation where a bit gets flipped when a gene is being copied from the parent

to the child. Crossover and mutation operators introduce more variability in

the population.

The following subsections explain how each step of the EA as shown in

Fig. 6.1 was implemented in my work.

6.2.1 Initial Population

As mentioned before, the parameters that make up the genotype and their

domain are defined in the list in Section 6.1. For the initial population, 100

genotypes are constructed by picking a random value, from the domain, for

each parameter. However, additional care is taken so that the majority of the

initial population(90%) is made of CN neurons that do not receive a bursting

excitatory or inhibitory input. This restriction is put into place because it is

unusual for the CN neurons to receive a bursting input from Purkinje cells or

mossy fibres. The genotypes are then transformed into phenotypes with the

help of the CN neuron model, see Section 6.1.
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6.2.2 Fitness Function

After the transformation of the genotype into its phenotype, simulations are

carried out for the CN neuron model and the output spike train is recorded.

The measures CV, mode ISI and burst-like spike ratio, chapter 3: section 3.2,

are calculated for the spike-train produced by the simulation and this output

is projected onto the cluster space produced by GNG, see chapter 4, section

4.3.3. The aim of this part of the study is to produce an individual whose

output datapoint is positioned in the cluster whose spiking pattern is to be

replicated. For example, in order to replicate the interictal spiking pattern of

a participating CN neuron, the output of the simulation should be placed into

a purely participating cluster.

After the selection of the cluster relevant to the experiment, the fitness of

the individual is then determined by the distance between the output of the

simulation and the centre of the selected cluster. The closer the output is to

the cluster centre, the higher is the fitness of the corresponding individual.

In the first two experiments, listed in 6.3.1 and 6.3.2, the cluster selected

for fitness determination is a purely participating cluster, based on the inter-

ictal activity of the CN neurons. However, in the next set of experiments,

listed in 6.3.3 and 6.3.4, the cluster created from the ictal counterparts of

the purely participating cluster, used in 6.3.1 and 6.3.2, is selected for fitness

determination.

6.2.3 Selection

Once the fitness function has assigned each individual with a fitness value,

10% of the best performing individuals are picked and copied to the next

generation without any modifications. This process is known as elitism. The

rest of the new population is generated by applying crossover and mutation

operators on the individuals of the previous population, as explained in the
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following sub-sections.

6.2.4 Crossover

All the individuals from the previous population, even the best 10% already

selected for the new population, are eligible for crossover. However, I want the

fitter individuals to have a higher probability of getting selected for crossover

than the weaker ones. This is implemented by the method of Roulette Wheel

Selection[2].

This method is similar to the roulette wheel, used in casinos. The slots

in the traditional roulette wheel are uniformly distributed and each slot has

an equal probability of getting selected. However, in this case, since I want

the fitter individuals to have a higher probability of getting selected, the fitter

individuals are allocated more slots. The number of slots allocated to each

individual is proportionate to its fitness. In this manner, by spinning the

roulette wheel, two individuals or parents are selected. Additional care is

taken to ensure that the parents are picked from different segments of the

roulette wheel, that is, they are different individuals.

The crossover produces two offspring using a version of uniform crossover,

explained with the help of Fig. 6.2(c). The number of parameters and the

actual parameter to be crossed over in each case were randomly selected from

the number of parameters available.

6.2.5 Mutation

The genotypes of the crossed over individuals are then subjected to mutation.

The probability of mutation is set to a very low value at 2%. In the case of

mutation, the parameter is varied by setting it to a new value drawn from

a Gaussian probability distribution around its current value. In case of the

integer-valued parameters, convergence of the Purkinje cells and mossy fibres,
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the nearest value in the list to the mutated value is selected.

Once the new population is formed, the whole process of fitness determina-

tion, selection, crossover and mutation is repeated in a loop until the objective

of the EA is achieved.

6.3 Evolutionary Algorithm Results

6.3.1 First Run

In the first experiment, I set out to replicate the interictal firing pattern and

to find the input conditions leading to output spike patterns observed in the

CN neurons that take part in absence seizures. To replicate the interictal

firing pattern of a participating CN neuron, I have to place the target for

the output datapoint, derived by calculating the measures CV, mode ISI and

burst-like spike ratio for the output spike train, into a purely participating

cluster. So, I selected the cluster shown by black crosses(+) in Fig. 6.3.1(a),

which consisted entirely of participating neurons, and I modified the fitness

function to use the centre of this cluster as the target and executed the EA.

As explained in Chapter 1: Section 1.1.3, participating neurons are the

CN neurons which phase-lock their spiking activity with spikes in the EEG

during absence seizures. There are four purely participating clusters in the

clustering result, as shown in the Fig. 4.4, and any one of them could have

been chosen as the target for the EA. However, I chose the black cluster as the

target cluster for this experiment because it was the most stable cluster when I

performed hierarchical agglomerative clustering using different threshold val-

ues, to reduce the large number of clusters produced by GNG as explained in

Chapter 4: Section 4.3.3.

When the simulations were run, I observed that the fitness value for an

individual, given the same input, was slightly different for each run of the
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Figure 6.4: (a) shows the clusters created by the GNG algorithm on experimental
data. The crosses (+) indicate participating CN neurons and circles (o) indicate
non-participating neurons. The different colours indicate different clusters. The
centre of the black cluster, indicated by the black dot, is chosen for the fitness
function of the EA. The output of every 5th generation is shown by the grey dots
and the arrows indicate the direction of their movement. (b) shows the evolution
of values for each parameter that makes up the genotype. There is evolutionary
pressure on the values Purkinje cell synchronicity, excitatory interburst interval and
inhibitory interburst interval, indicating that the CN neurons that participate in
absence seizures receive a bursting and synchronous input from Purkinje cells.
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Input parameters Normalised cross correlation
Inhibitory frequency 0.65
Excitatory frequency 0.54

Inhibitory noise -0.48
Excitatory noise -0.53

Purkinje cell synchronicity 0.89
Mossy fibre synchronicity -0.45

Inhibitory interburst interval -0.71
Inhibitory burst duration -0.71

Inhibitory burst randomness 0.34
Excitatory interburst interval -0.94
Excitatory burst duration 0.44

Excitatory burst randomness 0.27
Inhibitory synaptic weight 0.84
Excitatory synaptic weight 0.39

Table 6.1: shows the normalised cross correlation of each input parameter’s mean
time series with the mean of the time series representing the distance from clus-
ter centre. The input parameters whose cross correlation is strong are highlighted.
The results show that the input parameters Purkinje cell synchronicity, inhibitory
interburst interval, inhibitory burst duration, excitatory interburst interval and in-
hibitory synaptic weight show a strong correlation.

simulation. This was due to the noise that was inherently present in the model.

To minimise the effects of this, when determining the fitness of an individual

in the EA, I ran the simulation for each individual ten times and used the

average fitness value of the ten runs as the true fitness of the individual.

As shown in Fig. 6.4 (a), the output of the best individual in the first

generation was located very far from the cluster centre. The best individual

of every fifth generation is indicated by a grey dot in the Fig. 6.4 (a) and

the movement of the output as the generations progress is indicated by the

arrows. The progression of the input parameters for the best individual and

the mean value of the parameter for the population, for each generation, is

indicated by the red and the blue lines as shown in the subplots of Fig. 6.4(b).

The average value of the parameters is considered for our analysis as it is a

better indicator of the trend than the best value, which is erratic, due to the
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Figure 6.5: (a) interictal spiking activity recorded from a participating CN neuron
(b) spike-train produced by the best individual of the last generation of the EA
explained in section 6.3.1.
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Figure 6.6: The blue bars show the mean of different measures, listed in chapter 3
section 3.2, calculated for the interictal parts of the spike-trains of participating CN
neurons, shown by the black (+) in Fig. 6.4(a). The error bars show the standard
deviation observed for each corresponding measure. The red bar shows the values
for the same measures which were calculated for the spike-train produced by the
best individual of the evolutionary algorithm explained in section 6.3.1.
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inherent stochastic nature of our CN neuron model.

The results show that there is an evolutionary pressure on some of the

parameters, in that there is a noticeable trend over the generations as the best

individual moves closer to the centre of the desired cluster. These parameters

are: Purkinje cell synchronicity, which reduces over time; excitatory interburst

interval, which increases over time; and inhibitory interburst interval, which

also increases.

Further, I calculated the cross correlation between the time series repre-

senting the mean of each input parameter and the time series representing

the mean distance to the cluster centre as shown in table 6.1. This cross-

correlation is done to verify our analysis and to bring to notice the param-

eters that are important, which may not be immediately evident during vi-

sual analysis of the graphs. Cross-correlation measures the similarity between

two signals at different time lags. Consider two signals x and y. The cross-

correlation between these two signals is calculated as shown in Eq. 6.2 where

l is the time lag, µx, µy are the mean of x and y and σx, σy are their standard

deviations respectively . The time-lag accounts for the similarity between the

two signals if one of the signals is shifted in time to the left or right. In this

experiment, I want to see if a change in an input parameter corresponds to a

change in the fitness of the individual. So, I calculate the cross-correlation of

the time-series with zero lag only.

r =
∑

i

[(xi − µx)(yi+l − µy)]/σxσy (6.2)

.The input parameters that showed a strong cross-correlation, either positive

or negative, are highlighted in the table. These parameters are: Purkinje

cell synchronicity, inhibitory synaptic weight, which show a strong positive

cross-correlation, and excitatory interburst interval, inhibitory interburst in-

terval and inhibitory burst duration, which show a strong negative cross-
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correlation. Interestingly the two highest correlations, and probably the two

clearest graphical trends, are the Purkinje cell synchronicity and the excita-

tory interburst interval from the mossy fibre.

Also, I compared the interictal spiking pattern of a participating neuron

belonging to the black cluster, which was recorded extracellularly from a par-

ticipating CN neuron of a mouse, shown in Fig. 6.5(a), with the spiking

pattern produced by the best individual of the last generation of the EA, as

shown in Fig. 6.5(b). It can be seen that the spiking patterns are similar.

Also, I compared the mean values of all the measures, described in Chapter

3, that characterise the interictal spiking pattern of the CN neurons in the

black cluster, shown by the blue bars in Fig. 6.6, to the corresponding values

of the spike train produced by the best individual of the last generation of the

EA, shown by the red bars in Fig. 6.6. The comparison shows that the values

of the experimental data and the simulation data are close. This provides

additional confirmation that the interictal spiking pattern of a participating

neuron has been reproduced with the help of the EA.

6.3.2 Clamping Purkinje Cell Synchronicity

Further, I wanted to explore if there are other input conditions that can place

the output of the simulation in the centre of the participating cluster. Also, the

possibility of a CN neuron receiving an asynchronous input is more biologically

plausible. So, I stopped the parameter: Purkinje Cell synchronicity, from

evolving by clamping it at 450, and I allowed the other input parameters to

evolve as before during the second EA run. As in the first EA run, the black

cluster is the target cluster for the purpose of fitness calculation.

As shown in Fig. 6.7(a), it is still possible to reach the centre of the

participating cluster. However, when the Purkinje cell input is asynchronous,

some changes in the cross-correlation between the time series representing the
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Figure 6.7: (a) shows that the output of the simulations, indicated by the grey
dots, can still move to the centre of the selected participating cluster, shown by the
black dot, when the Purkinje cell synchronicity is clamped at 450. (b) shows the
evolution of parameters when the Purkinje cell input is clamped at its maximally
asynchronous value, that is, 450. In this case, there is an evolutionary pressure on
the mossy fibre input to be more synchronous along with a bursting excitatory and
inhibitory input.
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mean of the input parameters for each generation and the time series showing

the mean of the distance from the cluster centre can be noticed as shown in

the table 6.2.

The parameters: excitatory interburst interval and inhibitory synaptic

weight are still important, as in the previous run, as indicated by the cross-

correlation values in table 6.2. However, the parameters inhibitory interburst

interval and inhibitory burst duration are no longer important. The change

that was most interesting was that the mean excitatory synaptic weight,

which showed a weak cross-correlation value in the first run, now showed a

strong positive cross-correlation with the mean distance from the cluster cen-

tre. Again the highest correlation was with the excitatory interburst interval

from the mossy fibre.

Input parameters Normalised cross correlation
Inhibitory frequency 0.62
Excitatory frequency 0.50

Inhibitory noise 0.13
Excitatory noise 0.41

Purkinje cell synchronicity 0
Mossy fibre synchronicity -0.17

Inhibitory interburst interval -0.38
Inhibitory burst duration 0.57

Inhibitory burst randomness -0.65
Excitatory interburst interval -0.94
Excitatory burst duration 0.67

Excitatory burst randomness 0.52
Inhibitory synaptic weight 0.78
Excitatory synaptic weight 0.74

Table 6.2: shows the normalised cross correlation of each input parameter’s mean
time series with the mean of the time series representing the distance from the cluster
centre. The input parameters whose cross correlation is strong are highlighted.
When the Purkinje cell synchronicity is clamped, the input parameters excitatory
interburst interval, inhibitory synaptic weight and excitatory synaptic weight show
a strong correlation (one negative and the other two positive).
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6.3.3 Input Conditions for Ictal Spiking Activity

In the previous experiments, I explored the input conditions required for the

CN neuron model to produce a spiking pattern similar to the interictal activity

in CN neurons that participate in absence seizures. The next step was to

investigate the changes that occur in the input conditions when the same CN

neuron changes its spiking behaviour from an interictal to an ictal spiking

pattern.

The initial position for this EA is the centre of the black cluster. So, I

instantiated the genotypes of the first generation of the EA with the genes

of the best individual of the first run of the EA, shown in Fig. 6.4. Then,

I plotted the ictal counterparts of the black interictal cluster onto the same

cluster space, shown by cyan squares in the Fig. 6.8(a). The distance to the

centre of this cluster, shown by the cyan asterisk(*) in Fig. 6.8(a), was used

to determine the fitness of the individuals. The objective of the EA was to

move the output of the simulation from the interictal cluster centre to the

ictal cluster centre.

When the EA was run for some generations, the output of the simulation,

shown with the help of grey dots in Fig. 6.8(a), indeed showed movement

from the interictal cluster centre to the ictal cluster centre. The evolution of

the parameters is shown by the subplots in Fig. 6.8(b). I expected to see a

drastic change in some of the parameters that characterise the input, when

the spiking pattern changed from interictal to ictal spiking. Surprisingly, this

was not the case; a small change in the parameters was sufficient to change

the interictal spiking to an ictal spiking pattern. As before, I also calculated

the cross-correlation between the time series showing the mean of the input

parameters and the time series showing the mean distance from the cluster

centre. Only the excitatory interburst interval showed a good cross-correlation

value as shown in the table 6.3.
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Figure 6.8: (a) the cyan squares represent the ictal counterparts of the CN neurons
in the black cluster. The cyan asterisk (*) is the centre of this ictal cluster and also
the target for fitness calculation. The grey dots show the position of the output
datapoint for every 5th generation. The arrows show the progression of the output
datapoint. (b) shows the evolution of parameters for 25 generations. I expected a
drastic change in the parameters when the output moves from the interictal cluster
centre to the ictal cluster centre. However, the plots show that this is not the case
and the changes that occur in the parameters are subtle.
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(a)

(b)

10 mV

500ms

Figure 6.9: (a) ictal spiking pattern recorded extracellularly from a participating
CN neuron. (b) spike-train produced by the best individual of the last generation
of the EA explained in section 6.3.3.
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Figure 6.10: The blue bars show the mean of different measures, listed in chapter
3 section 3.2, calculated on the ictal parts of the spike-trains of participating CN
neurons, shown by the cyan (�) in Fig. 6.8(a). The error bars show the standard
deviation observed for each corresponding measure. The red bar shows the values
for the same measures which were calculated on the spike-train produced by the
best individual of the evolutionary algorithm explained in sub section 6.3.3.
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Input parameters Normalised cross correlation
Inhibitory frequency 0.31
Excitatory frequency 0.35

Inhibitory noise -0.32
Excitatory noise 0.49

Purkinje cell synchronicity 0.35
Mossy fibre synchronicity -0.21

Inhibitory interburst interval -0.43
Inhibitory burst duration 0.02

Inhibitory burst randomness 0.01
Excitatory interburst interval -0.64
Excitatory burst duration 0.28

Excitatory burst randomness -0.29
Inhibitory synaptic weight 0
Excitatory synaptic weight 0

Table 6.3: shows the normalised cross correlation of each input parameter’s mean
time series with the mean of the time series representing the distance from cluster
centre. The input parameters whose cross correlation is strong are highlighted. In
this case, only the excitatory interburst interval showed a moderate correlation.

As before, I also assessed whether I have replicated the ictal spike train

pattern by comparing the ictal spike trains recorded from a participating CN

neurons from a mouse, shown in Fig. 6.9(a) with the spike train produced

by the best individual of the last generation of the EA, shown in Fig. 6.9(b).

We can see that both spike trains, the spike train recorded from the tottering

mice and the one derived from our simulation, show repeated bursts. The

actual values for the measures that I use to characterise the spiking activity

of a CN neuron, as listed in Chapter 3, were also compared for these spike

trains as shown in Fig. 6.10, where the blue bars represent the experimental

data and the red bars represent the simulation data. The comparison shows

that the values for the measures in both cases are close.
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6.3.4 Blocking the Purkinje Cell Input

Next, it was interesting to investigate if it is possible to prevent the CN neu-

rons in the black interictal cluster from participating in the absence seizures.

The EA was set up similarly to the previous experiment, that is, the fitness

function optimised input conditions so that the output, when projected onto

the cluster space, would move closer to the ictal cluster centre, shown by the

cyan asterisk (*) in Fig. 6.11. Again, the EA was instantiated with the genes

of the best individual of the last generation of the first run, so that the output

of the simulation was placed near the centre of the interictal cluster.

The only difference in the setup of this EA when compared to the previ-

ous experiment was that the Purkinje cell input to the CN neuron model was

blocked by forcing the inhibitory synaptic weight to zero. This gave a very

interesting result. Even after the EA was run for the same number of gener-

ations as the previous EA run had used to move the best individual to the

centre of the ictal cluster, the output of the simulations in this new run never

reached the ictal cluster centre but moved to a different interictal cluster. Im-

portantly, this suggests that by blocking the Purkinje cell input, perhaps the

CN neurons, which have been shown likely to participate in seizures, could be

stopped from participating.

6.4 Chapter Conclusions

I found through the execution of the EA, as shown in the subsection 6.3.1, that

the input parameters, Purkinje cell synchronicity, inhibitory and excitatory

interburst interval, inhibitory burst duration and inhibitory synaptic weight

play a key role in producing a spiking pattern similar to the interictal activity

of participating neurons. In plain words, the CN neuron should receive a

synchronous and bursting input from Purkinje cells and a bursting input from
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Figure 6.11: (a) shows the movement of the output of the simulation when the
Purkinje Cell input is blocked by forcing the inhibitory synaptic weight to zero.
(b) shows the evolution of input parameters for 25 generations. It can be seen
both from (a) and the distance from cluster centre subplot in (b) that the output
datapoint never reaches the cluster centre if the Purkinje cell input to the CN neuron
is blocked.
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mossy fibres.

When the Purkinje cell input is forced to be asynchronous, as this is more

biologically plausible, the mean of the input parameters, excitatory interburst

interval, inhibitory synaptic weight and excitatory synaptic weight show a

strong cross-correlation (negative for excitatory interburst interval and posi-

tive for the other two) with the mean distance from the cluster centre.

A small change in the input conditions of these CN neurons is sufficient

to change their firing pattern from interictal to ictal. Interestingly, these

CN neurons can be stopped from participating in the absence seizures by

blocking the input from Purkinje cells. Perhaps this is something that can be

investigated biologically on real mice in the laboratory.
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The main objective of this research was to demonstrate how machine learn-

ing and computational modelling can be used to analyse problems in

neuroscience. To do so, I have employed a variety of techniques such as spike

train analysis, clustering, regression analysis, an evolutionary algorithm and

computational modelling to investigate the pathology of mutant mice which

exhibit absence seizures. The most interesting aspect of this research is that it

combines experimental data, extracted from awake head-restrained mice, and

theoretical work to find solutions to the problem at hand. At the beginning

of the research I planned to find answers to the following questions:

• What are the properties of CN neurons that participate in absence

seizures?

• What are the input conditions present in the CN neurons that are mostly

likely to participate in seizures?

• What changes in the input conditions are required to change the output

spiking pattern of a Participating CN neuron from an interictal spiking

pattern to an ictal spiking pattern?
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To answer these questions, I used a combination of machine learning tech-

niques and computational modelling. In fact, I have shown that many in-

teresting features of neuronal data can be found using both supervised and

unsupervised data analysis techniques. Moreover, I have shown that the pa-

rameter space of model neurons can be successfully explored using evolution-

ary algorithms.

I have presented two major contributions to knowledge: the first is the

result of my investigation into how interictal spiking activity can characterise

participating and non-participating CN neurons. I used a clustering method,

Growing Neural Gas (GNG), that discovered properties of the type of CN

neuron that are more likely to participate in absence seizures. Interestingly,

these participating CN neurons were located primarily in the lateral and inter-

positus region of the cerebellum. Secondly, I used computerised optimisation

(an Evolutionary Algorithm) to discover the most important factors in the

input conditions present during the interictal periods of the participating CN

neurons.

Specifically I discovered that :

• There were five key input parameters, Purkinje cell synchronicity, in-

hibitory interburst interval, inhibitory burst duration, excitatory inter-

burst interval and inhibitory synaptic weight, that resulted in the simu-

lation of the spiking activity giving an activity similar to that observed in

the interictal periods of real participating CN neurons. In other words,

a participating CN neuron receives a synchronous and bursting input

from the Purkinje cells and a bursting input from the mossy fibre with

long intervals (approx. 500ms) in between bursts during the interictal

periods.

• It is possible to simulate the interictal activity of participating CN neu-

rons when the input from the Purkinje cell is not synchronous. In
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this case, the input parameters excitatory interburst interval, inhibitory

synaptic weight and excitatory synaptic weight are the key parameters

which affect the CN neuron’s participation in absence seizures. The most

interesting point to note in this experiment is that when the Purkinje

cell input is asynchronous, the excitatory input to the CN neuron should

be reduced (supported by the decrease in excitatory synaptic weight) to

achieve the desired results.

• Instead of a dramatic change in input conditions of the participating

CN neurons, a small change is sufficient to change the output from an

interictal spiking pattern to an ictal spiking pattern.

• It is possible to stop a participating CN neuron from participating in

absence seizures by blocking the Purkinje cell input to the CN neuron.

• It is possible to predict the FFT based Z-score, a measure that quantifies

the phase-locking behaviour of the CN neuron’s spikes with the spikes of

the SWDs in the EEG during absence seizures as explained in Chapter

3 (Section 3.1), from the interictal activity of the CN neuron.

7.1 Future Work

There are many possible extensions to this research such as:

• I discovered that by blocking the Purkinje cell input to the CN neuron,

we can prevent the Participating CN neuron from taking part in absence

seizures. This result can be experimentally tested.

• In this research, I investigate the input conditions required to simulate

the interictal activity of a participating CN neuron using a CN neuron

model which does not have any P/Q channel mutations related to ab-

sence seizures. The P/Q type channel mutations have been observed in
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Purkinje cells terminals of the tottering mice and there is evidence that

these P/Q type channels are also present in the CN neuron [61]. This

experiment can be further extended to study the effect of P/Q type

channel mutations in the CN neuron by introducing these additional

channels in the CN neuron model.

• Also, the inhibitory input to the model can be changed so that the input

from a Purkinje cell incorporates both simple and complex spikes. At

present, the CN neuron model receives only simple spikes from Purkinje

Cells. From this experiment, we can determine if the complex spikes are

instrumental to the input synchronisation from the Purkinje cell and

hence the CN neuron’s participation in absence seizures.

• We could also extend the research to investigate the effect of the CN

neuron input on neural activity in the thalamus, both in the absence

and presence of epileptic seizures.

7.2 List of Publications

During the course of my PhD, I presented my work at several conferences

and I was also able to co-author a journal paper with our collaborators in

Rotterdam. Here is the list of the conference papers, articles and abstracts

that were published. The first two publications are not related to the work

discussed in this thesis, but are based on the work completed as part of my

Master’s degree. The full versions of the publications can be found in the

appendix.

• Alva, P., De Sousa, G., Torben-Nielsen, B., Davey, N., Adams, R. and

Steuber, V. (2012). Comparing developmental approaches to generate

neuronal morphologies for pattern recognition. Front. Comput. Neu-

rosci. doi: 10.3389/conf.fncom.2012.55.00212
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319–326. doi:10.1007/978-3-642-40728-4_40

• Alva, P., Kros, L., Maex, R., De Zeeuw, C. I., Adams, R., Davey, N.,

Steuber, V., Hoebeek, F. E. (2013). A potential role for the cerebel-

lar nuclei in absence seizures. BMC Neuroscience, 14(Suppl 1), P170.

doi:10.1186/1471-2202-14-S1-P170

• Alva, P., Kros, L., Eelkman Rooda, O.H.J., De Zeeuw, C. I., Adams,

R., Davey, N., Hoebeek, F. E., Steuber, V. (2014). Combining ma-

chine learning and simulations of a morphologically realistic model to

study modulation of neuronal activity in cerebellar nuclei during absence

epilepsy. BMC Neuroscience, 15(Suppl 1), P39. doi:10.1186/1471-2202-

15-S1-P39

• Kros, L., Eelkman Rooda, O. H. J., Spanke, J. K., Alva, P., van Dongen,

M. N., Karapatis, A., Tolner, E. A., Strydis, C., Davey, N., Winkelman,

B. H. J., Negrello, M., Serdijn, W. A., Steuber, V., van den Maagden-

berg, A. M. J. M., De Zeeuw, C. I. and Hoebeek, F. E. Absence seizures

stopped by closed-loop activation of cerebellar output. FENS Forum

Abstr 2014. OpenURL
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136 Appendix A. Growing Neural Gas Algorithm

• Place two nodes, na and nb, randomly in the multi-dimensional data
space

• Connect na and nb by an edge. Assign a variable, age, to the newly
created edge. This variable determines when an edge is to be removed.

• Select a data point, d, from the data and find the node nearest to the
data point. Assign this node, w, as the winner and the second nearest
node the second-winner, s.

• Increment the age of all the edges emanating from w and s

• Add the squared distance between w and d to the local variable of w,
error.

• Move the node w and its immediate neighbours towards d by a value
determined by the constants α and β respectively.

• If w and s are connected by an edge, reset the age of the edge to zero.
If they are not connected by an edge, create an edge and initialise the
age of the edge to zero

• Remove all edges with an age greater than the constant Dmax

• Remove all the nodes that do not have edges emanating from them.

• Repeat the steps 3-9. If the number of data points sampled is an
integer multiple of the parameter λ, then insert a new node as follows:

• Select the node with the greatest error value ne. Place the new node
nn halfway between the nodes ne and its neighbour nf , with the
highest error value.

• Remove the original edge connecting ne and nfand connect the new
node nn to the nodes ne and nf by edges.

• Decrease the error variables of ne and nf by a quantity specified by δ.
Initialize the error variable of nf by the new error value calculated for
the node ne

• Decrease all the error variables by the constant d.

• Execute steps 3 to 11 until the maximum numbers of nodes have been
inserted or a performance criteria has been met.

Algorithm 2: Growing Neural Gas Algorithm



Appendix B

Publications



Evolution of Dendritic Morphologies Using

Deterministic and Nondeterministic Genotype
to Phenotype Mapping

Parimala Alva1, Giseli de Sousa1,2, Ben Torben-Nielsen3, Reinoud Maex4,
Rod Adams1, Neil Davey1, and Volker Steuber1

1 STRI, University of Hertfordshire, Hatfield, UK
{p.alva2,r.g.adams,n.davey,v.steuber}@herts.ac.uk

2 Federal University of Santa Catarina, Brazil
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Abstract. In this study, two morphological representations in the geno-
type, a deterministic and a nondeterministic representation, are com-
pared when evolving a neuronal morphology for a pattern recognition
task. The deterministic approach represents the dendritic morphology
explicitly as a set of partitions in the genotype which can give rise to
a single phenotype. The nondeterministic method used in this study
encodes only the branching probability in the genotype which can pro-
duce multiple phenotypes. The main result is that the nondeterministic
method instigates the selection of more symmetric dendritic morpholo-
gies which was not observed in the deterministic method.

Keywords: pattern recognition, evolutionary algorithm.

1 Introduction

A variety of neurons are present in the brain and different types of neurons
exhibit distinct dendritic morphologies. Recent work has shown that dendritic
morphologies affect the back propagation of action potentials, synaptic integra-
tion and other aspects which have implications for the proper functioning of the
neuron[5,7]. However, a clear understanding of the computational implications
of dendritic structure does not exist. One approach to try to understand how the
dendritic structure is related to function is to optimize the dendritic morphology
of a neuronal model for a particular task using an Evolutionary Algorithm. The
best individuals produced as a result of the evolution can act as an indicator as
to which features of the dendritic morphology are important for that particular
function.

In previous work, de Sousa[2] presented an algorithm, hereafter referred to as
the de Sousa algorithm, where the dendritic morphology best suited for a pattern
recognition task was studied. The purpose of the present study is to verify if
the results obtained by the de Sousa algorithm are not merely a consequence

V. Mladenov et al. (Eds.): ICANN 2013, LNCS 8131, pp. 319–326, 2013.
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of the way the algorithm is implemented and if they do indeed show general
properties of neurons which are best suited for pattern recognition. This is done
by applying a different algorithm, the Torben-Nielsen algorithm[1] which uses a
nondeterministic method of genotype to phenotype mapping as opposed to the
deterministic genotype to phenotype mapping used in the de Sousa algorithm, to
the same task of pattern recognition in neurons. It is interesting to see if the two
different methods for specifying morphology in the genotype highlight the same
features of a dendritic morphology as being important for pattern recognition.

2 Pattern Recognition in Neurons

The pattern recognition capability of neurons enables them to distinguish be-
tween learned and novel patterns. In this study, a simple one-shot Hebbian
Learning[9] has been used in the neuronal models: if the N binary patterns to be
learned are xµ (μ is 1..N), then the weight at synapse i is given by wi =

∑
µ
xµ
i .

In the recall phase, a set of novel patterns are presented along with the stored
patterns. As a consequence of the change in the synaptic weights, the neuronal
model produces a higher amplitude of Excitatory Post Synaptic Potentials (EP-
SPs) for the stored patterns than for the novel patterns (see [8]).

3 Methods

The steps followed by the two algorithms, the de Sousa algorithm and the modi-
fied Torben-Nielsen algorithm, are depicted in Fig. 1. We use the term ’modified’
because the original algorithm developed by Ben Torben-Nielsen to evolve neu-
ronal models for co-incidence detection could not be used as-is for comparison
with the results of the de Sousa algorithm. Some modifications were necessary to
ensure a fair comparison between the two algorithms. The modifications made
to the algorithm are listed here:

1. The algorithm was modified to generate fixed size trees. The number of
terminal nodes, length, diameter, tapering of the compartments, and other
parameters relating to the pattern recognition task were set to the values
used in the de Sousa algorithm.

2. In the original algorithm, the branch probability at every bifurcation point
was a function of the distance of the bifurcation point from the soma of the
neuronal model. This was changed and a new method (see Section 3.1) was
implemented to give us more variation in the genotypes produced.

3. The ability of the branch to bifurcate, extend or terminate at every branch
point was restricted to bifurcate or terminate in order to produce trees with
fixed sized compartments.

4. The original algorithm ensures that a single genotype maps to a single phe-
notype by fixing the random seed used in each optimization run. In the
modified version of the algorithm, a single genotype can map to a range of
phenotypes.
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Fig. 1. Steps of the evolutionary algorithm followed by the de Sousa Algorithm (a)
and the modified Torben-Nielsen algorithm (b). The de Sousa Algorithm represents
the morphology of the neuronal model as partitions in the genotype while the modified
Torben-Nielsen algorithm encodes only the branching probability in the genotype.

A detailed description of each step of the Evolutionary Algorithm pertain-
ing to the de Sousa algorithm and the modified Torben-Nielsen algorithm is
presented in the following sub-section.

3.1 Genotype Representation

The de Sousa algorithm encodes the exact branching pattern of the dendritic
tree in the genotype. The branching pattern of the phenotype is represented as
a set of partitions using the method proposed by Van Pelt and Verwer [3].

The modified Torben-Nielsen algorithm uses a nondeterministic method of
genotype to phenotype mapping. In this method, the morphology of the entire
dendritic tree is specified only by a branching probability, a number between 0
and 1, in the genotype. Other morphological parameters similar to the de Sousa
algorithm may also be encoded in the genotype but in the results presented here
we kept them fixed.
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Algorithm 1. The modified Torben-Nielsen Algorithm for genotype to pheno-
type mapping.

while(number of terminal nodes < 128)

{

traverse the bottom ply of the tree from left to right

for(each node visited)

{

bifurcate or terminate according to branching probability

}

if(no node chooses to bifurcate)

{

force the last node visited to bifurcate

}

}

3.2 Genotype to Phenotype Mapping

The genotype to phenotype mapping in the de Sousa algorithm is fairly straight-
forward. The partitions in the genotype dictate the morphology of the phenotype.
At every bifurcation point, a partition specifies the number of terminal nodes
in the right and left sub-tree. In the modified version of the Torben-Nielsen
algorithm, the branching probability which is part of the genotype affects the
morphology of the phenotype produced. For example, a branching probability
value of 0.75 means that at every branch point, the branch has 0.75 probability of
bifurcating and 0.25 probability of terminating. Different branching probabilities
give rise to different types of dendritic trees in terms of asymmetry and mean
depth. The asymmetry index as given by Van Pelt et al.[4] indicates the overall
shape while the mean depth metric [2] indicates the average distance between
the synapse and the soma of the neuronal model. Figure 2b shows the variation
of asymmetry index and mean depth of the phenotypes for sample branching
probability values of 0.25, 0.50, and 0.75. From this figure, we can observe that
the same branching probability, or the same genotype, can produce a range of
phenotypes that vary in terms of asymmetry index and mean depth. Algorithm
1 shows the detailed steps followed in the generation of the phenotype from the
genotype using the modified Torben-Nielsen algorithm.

Note that in Algorithm 1 the tree is likely to be skewed to the right, a desirable
feature because we wanted also to have asymmetrical trees in our population.
The higher frequency of dendritic trees having an asymmetry index of 0.99, as
shown in Fig. 2a, is also a result of the forced bifurcation of the last visited
node as shown in Algorithm 1. Figure 2b shows the variation of asymmetry
index and mean depth of the phenotypes for sample branching probability values
of 0.25, 0.50, and 0.75. The tree morphology which is a result of genotype to
phenotype mapping, in case of both algorithms, is converted into a neuronal
model using the NEURON simulator software[6]. The neuronal model has a
membrane capacitance (Cm) of 0.75 μF/cm2, an axial resistance(Ra) of 150Ωcm,
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Fig. 2. (a)Histogram showing the distribution of asymmetry indices of the dendritic
trees for a branching probability of 0.25 when the modified Torben-Nielsen algorithm
is used. (b) Mean and Standard Deviation Graphs showing the range of the asymmetry
index and mean depth for sample branching probabilities of 0.25, 0.50, 0.75.(c) Three
different tree structures, each having a different asymmetry index (the first row below
the tree) and mean depth (second row), produced from the same genotype having a
branching probability of 0.75.

a specific membrane resistance (Rm) of 30 kΩcm2 and a leak reversal potential
of Eleak=-70 mV. Each compartment of the neuronal model is of equal length
and diameter with no tapering. Since this study is limited to studying passive
neuronal models, active conductances are not applied to the model.

3.3 Fitness Function

Since the neuronal models used in this study are passive, the response of the neu-
ronal model to the pattern presented is measured by the amplitude of the EPSPs
produced in the soma. The ability of the neuron to distinguish between stored
and new patterns is determined by the signal to noise ratio of the amplitudes of
the EPSP produced by stored and novel patterns (see [8]).

3.4 Genetic Variation

In case of both algorithms, a process of selection is applied to the population to
select the best 10 % of the individuals to be propagated to the next generation.
As is normally the case, selection, crossover and mutation are applied to the
population to produce the next generation.
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4 Results

To evaluate the morphology of the dendritic tree best suited for pattern recogni-
tion, we observe the change of asymmetry index and mean depth of the dendritic
trees. Details of calculation of the metrics, asymmetry index and mean depth,
have been given in [2].

4.1 Results of the de Sousa Algorithm

The change of values of the fitness as well as the two morphological metrics
are observed over 60 generations of the de Sousa algorithm as shown in Fig.
3a. The initial population for this experiment is biased to consist mainly of
asymmmetric morphologies. However, a huge drop in the asymmetry index and
mean depth values are observed within the first few generations indicating that
neuronal models with more symmetrical morphologies and lower mean depth
perform better. However, this does not mean that the asymmetry index and
fitness are inversely correlated over the whole range of asymmetry indices. After
the dendritic trees achieve an asymmetry index of about 0.4, a further reduction
in asymmetry does not increase the fitness of the dendritic trees. When dendritic
trees with similar asymmetry index were binned together and their mean depth
values evaluated as shown in Fig. 3c, it was noticed that the dendritic trees with
asymmetry indices of about 0.4 and lower had very similar values of mean depth.
This may explain the plateau in the fitness value after an asymmetry index of
0.4 was reached, and it suggests that perhaps mean depth is a better indicator
of pattern recognition performance than asymmetry index.

4.2 Results of the Modified Torben-Nielsen Algorithm

The same experiment, where the initial population was biased to consist mainly
of asymmetric morphologies, was executed for the modified Torben-Nielsen al-
gorithm. As shown in Fig. 3b, the results of the experiment follow the same
pattern as for the de Sousa algorithm in the case of fitness and mean depth
values. The main difference was the change of the asymmetry index of the den-
dritic trees. In the de Sousa algorithm, the asymmetry index remains at a value
of about 0.4 and does not reduce further as this value of asymmetry index is
sufficient to produce the best individual for pattern recognition. However, with
the modified Torben-Nielsen algorithm, the asymmetry index of the dendritic
trees reduces to a value of around 0.2 at the end of 100 generations. This is a
consequence of the nondeterministic approach used in this study, which gener-
ates a new tree instantiation each time a new individual is passed to the next
generation. As shown in Fig. 2a and Fig. 2b, a single genotype can map to dif-
ferent phenotypes that vary in asymmetry index and mean depth. Since there
is a considerable variation in the type of phenotype produced by a single geno-
type, there is an additional pressure on the Evolutionary Algorithm to select a
genotype such that all resulting phenotypes perform well. This forces the algo-
rithm to select genotypes which produce, on average, more symmetrical trees



Deterministic Versus Nondeterministic Tree Optimization 325

0 10 20 30 40 50 60
5

50

30

  
  
  
  
  
  
s
/n

  
  
  
  
  

(a
v
g

 1
0
 t

ri
a
ls

) 

0 10 20 30 40 50 60
0.4

0.7

0.99

a
s
y
m

 i
n

d
e
x

0 10 20 30 40 50 60
7

35

64

generations       
(a)        

m
e
a
n

 d
e
p

th

 

 

best individual
average population

0 20 40 60 80 100

16
33

58

s
\n

(a
v

g
 1

0
 t

ri
a

ls
)

0 20 40 60 80 100

0.2

0.6

0.99

a
s

y
m

 i
n

d
e

x

0 20 40 60 80 100
7

35

65

m
e

a
n

 d
e

p
th

generations       
       (b)        

 

 

best individual

average population

0 10 20 30 40 50 60 70
0.2

0.4

0.6

0.8

1

 mean depth  
(bin size = 1)

(c)

a
s

y
m

 i
n

d
e

x
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than their counterparts which show mixed asymmetry values. The final outcome
of this experiment reinforces the results produced by the de Sousa algorithm
that symmetrical neuronal morphologies which have low mean depth values are
well suited for pattern recognition.

5 Conclusion

Previous work [2] has shown that a Genetic Algorithm will reduce the mean
depth of the dendritic tree in order to improve the pattern recognition per-
formance. Here we demonstrate that the same principle applies with a different
morphological specification, namely a nondeterministic mapping of the genotype
to the dendritic tree morphology. The nondeterministic method of genotype to
phenotype mapping showed that when a single genotype can map to an array
of phenotypes, the criterion for the selection of genotypes was more stringent,
which led to the selection of genotypes that gave rise to more symmetrical mor-
phologies. Symmetric morphologies have a smaller mean depth and therefore
lead to less variance in responses and a higher signal to noise ratio. However,
in real neurons we do not always find this symmetric morphology because the
morphology of a real neuron is governed by other factors such as the need to
form synaptic contacts in certain locations.
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Absence seizures are characterized by a temporary lapse
of consciousness, which typically lasts up to ten seconds,
and they are accompanied by spike-wave discharges
(SWDs) in cerebral electroencephalogram (EEG) record-
ings. The oscillatory activity that underlies cortical SWDs
has been shown to often originate from a specific focus

that can be located in various brain regions, such as the
cerebral cortex, thalamus or hippocampus [1]. Yet, the
role of the cerebellum, which is anatomically connected
to each of these potential foci, is unknown. Here, we
used Cacna1atottering (tg) mice, an established model for
absence epilepsy characterized by a loss-of-function of
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Figure 1 K-Means clustering showing two distinct clusters for ictal and inter-ictal data. The two variables, principal component 1 and
principal component 2 are derived by PCA of CV, CV2 and PE of ictal and inter-ictal data.
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calcium channels [3], to study how the cerebellar activity
changes during absence seizures. Given that recent evi-
dence shows that cerebellar Purkinje cells in tottering
mice exhibit an altered expression of calcium channels
[2] and structurally abnormal synapses in the cerebellar
nuclei (CN), it is our hypothesis that the cerebellar out-
put, which is dominated by neurons in the CN, changes
during absence seizures.
In the present study, we analysed extracellular spike

trains of CN units, and simultaneous EEG recordings, in
ten awake head-restrained mice. The recordings were par-
titioned into equal-length segments of 900 ms and,
depending on whether spike-wave discharges occurred in
the EEG or not, considered as ictal or inter-ictal data. The
metrics considered for analysis were the CV, CV2, firing
rate and permutation entropy (PE). When a one-dimen-
sional analysis of the metrics for ictal and inter-ictal data
was conducted, it was noted that a single metric was not
sufficient to differentiate between the ictal and inter-ictal
data. Therefore, the three variables, CV, CV2 and PE, were
combined to form two new variables, Principal Compo-
nent 1 and Principal Component 2 (Figure 1), using Prin-
cipal Component Analysis (PCA). The two new variables,
Principal Component 1 and Principal Component 2, were
then subjected to cluster analysis using K-Means cluster-
ing having two centers. Firing rate was not considered for
PCA and clustering as better results were achieved while
excluding it.
The result, shown in Figure 1, depicts two distinct clus-

ters for ictal and inter-ictal data. The confusion matrix for
this data denotes true positive where predicted ictal data
match actual ictal data (95.7%), true negative where pre-
dicted inter-ictal data match actual inter-ictal data (70%),
false positive for actual ictal data incorrectly predicted as
inter-ictal data (4.3%), and false negatives for actual inter-
ictal data incorrectly predicted as ictal data (30%). The
F-score achieved by this classification was 0.84. The
separation between the ictal and inter-ictal data could
further be improved by the application of Support Vector
Machines (SVMs). We are currently using a conductance
based model of a CN neuron to study which conditions
can result in spike patterns associated with seizures.
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Epileptic absence seizures are characterized by synchro-
nized oscillatory activity in the cerebral cortex that can be
recorded as so-called spike-and-wave discharges (SWDs)
by electroencephalogram. Although the cerebral cortex
and the directly connected thalamus are paramount to this
particular form of epilepsy, several other parts of the
mammalian brain are likely to influence this oscillatory
activity. We have recently shown that some of the cerebel-
lar nuclei (CN) neurons, which form the main output of
the cerebellum, show synchronized oscillatory activity dur-
ing episodes of cortical SWDs in two independent mouse
models of absence epilepsy [1]. The CN neurons that
show this significant correlation with the SWDs are
deemed to “participate” in the seizure activity and are
therefore used in our current study designed to unravel
the potential causes of such oscillatory firing patterns.
Initially, we set out to study if different types of CN neu-

rons are more prone to show modulated firing patterns
during seizure activity. We applied Growing Neural Gas
(GNG) [2], an unsupervised clustering algorithm, on the
interictal activity, i.e., firing patterns recorded in between
seizures, using the measures CV, log-interval entropy, per-
mutation entropy and firing rate. Three main groups of
neurons were found by the clustering algorithm, in which
the neurons were predominantly participating in the sei-
zures. These can be seen on Figure 1 as the green, yellow
and pale blue crosses (+). Moreover, these three clusters
have the highest CV (and therefore more irregular) and

higher log-interval entropy (more unpredictable). Further,
we used a Gaussian Process Regression model [3] to pre-
dict the extent of participation of the neurons in the sei-
zure activity, based on two measures: Z-score of mean
power at seizure frequency (6-9Hz) (FFT based Z-score)
and modulation frequency. These characterize the extent
to which CN neurons phase-lock their spiking activity to
the spikes in the EEG during seizures. We achieved a good
prediction rate (r = 0.56, p < 0.05 for FFT based Z-score;
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Figure 1 shows 2D projection, using principal component analysis,
of the clusters formed as a result of GNG clustering of the CN
neuron interictal activity using CV, Log-Interval Entropy, Firing rate
and Permutation Entropy. The crosses (+) indicate cells that
participate in the seizure and (o) indicate the cells that do not
participate based on the measures, FFT based Z-score and
modulation frequency. The black dot indicates the output from the
computer simulations
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r = 0.45, p < 0.05 for modulation frequency) using this
method. Also, we are using a compartmental model of a
CN neuron with realistic morphology [4] to investigate the
input conditions that can generate interictal activity found
in the participating neurons. Our results indicate that
bursting in the Purkinje cell or mossy fiber input can
cause behavior that is similar to the interictal activity
found in participating neurons. The black dot in Figure 1
shows the output from the CN neuron model, provided
with a bursting Purkinje cell input, when it is subjected to
clustering with the experimental data. Desynchronization
of the burst occurrence in the input did not alter the posi-
tion of the data point drastically[0]. Currently, we are in
the process of applying an evolutionary algorithm to
explore in detail the input conditions that can that lead to
the spiking behavior that is associated with seizures.
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RESEARCH ARTICLE

Cerebellar Output Controls Generalized
Spike-and-Wave Discharge Occurrence

Lieke Kros, PhD,1 Oscar H. J. Eelkman Rooda, MD, MSc,1

Jochen K. Spanke, MSc,1 Parimala Alva, MSc,2 Marijn N. van Dongen, PhD,3

Athanasios Karapatis, BEng,3 Else A. Tolner, PhD,4 Christos Strydis, PhD,1

Neil Davey, PhD,2 Beerend H. J. Winkelman, PhD,5 Mario Negrello, PhD,1

Wouter A. Serdijn, PhD,3 Volker Steuber, PhD,2

Arn M. J. M. van den Maagdenberg, PhD,4,6

Chris I. De Zeeuw, MD, PhD,1,5 and Freek E. Hoebeek, PhD1

Objective: Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized
spike-and-wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modula-
tion of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical
oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures.
Methods: Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering,
which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording
single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically
increased or decreased CN neuron activity could modulate GSWD occurrence as well as short-lasting, on-demand
CN stimulation could disrupt epileptic seizures.
Results: We found that a subset of CN neurons show phase-locked oscillatory firing during GSWDs and that manipu-
lating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of
the c-aminobutyric acid type A (GABA-A) agonist muscimol increased GSWD occurrence up to 37-fold, whereas
increasing the frequency and regularity of CN neuron firing with the use of GABA-A antagonist gabazine decimated
its occurrence. A single short-lasting (30–300 milliseconds) optogenetic stimulation of CN neuron activity abruptly
stopped GSWDs, even when applied unilaterally. Using a closed-loop system, GSWDs were detected and stopped
within 500 milliseconds.
Interpretation: CN neurons are potent modulators of pathological oscillations in thalamocortical network activity dur-
ing absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies
should be evaluated.

ANN NEUROL 2015;77:1027–1049

Absence epilepsy is among the most prevalent forms

of generalized epilepsy among children and is char-

acterized by sudden periods of impaired consciousness

and behavioral arrest.1,2 Like other types of generalized

epilepsies, absence seizures are electrophysiologically

defined by oscillatory activity in cerebral cortex and the

thalamic complex.3 Thalamocortical oscillations are pri-

marily caused by excessive cortical activity and can be

identified in the electrocorticogram (ECoG) as general-

ized spike-and-wave discharges (GSWDs).3,4 The under-

lying excessive cortical activity not only excites thalamic

neurons, but also provides potent bisynaptic inhibition
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by means of cortical axonal collaterals to the inhibitory

reticular thalamic nucleus.3,5–7 Excess tonic c-aminobutyric

acid (GABA)-mediated inhibition in thalamus may also

contribute to absence seizures.3,7,8 Oscillatory cortical activ-

ity thereby poses a dual excitation–inhibition effect on

thalamic neurons, which drives thalamocortical network

oscillations.5,7–9

Recent studies in several rodent models indicate

that direct stimulation of thalamic nuclei10 or cerebral

cortex11 can be effective in disrupting thalamocortical

oscillations and thereby stopping generalized oscillations

in thalamocortical networks, such as GSWDs. Apart

from direct interventions in thalamus and cortex, tha-

lamic afferents can affect the balance in excitation and

inhibition and thereby potentially mediate thalamocorti-

cal oscillations. One of the initial stimulation sites to

prevent seizures in epileptic patients was the cerebellar

cortex.12–18 Yet, as shown in 3 controlled, blind stud-

ies,19–21 the impact of these cerebellar surface stimula-

tions was highly variable and probably reflects

irregularities in the converging inputs from superficial

and deeper parts of the cerebellar cortex neurons to the

cerebellar nuclei (CN).22

Given the considerable divergence of excitatory axo-

nal projections from the CN to a wide range of motor,

associative, and intralaminar thalamic nuclei,4,6,23–29 we

considered this region an ideal candidate to effectively

modulate thalamocortical oscillations. We hypothesized

that altering the firing patterns of CN neurons should

affect GSWD occurrence. To test this hypothesis, we uti-

lized homozygous tottering (tg) mice that frequently show

absence seizures and harbor a P601L missense mutation in

the Cacna1a gene that encodes the pore-forming a1A-subu-

nit of voltage-gated CaV2.1 Ca21 channels.30,31 Once we

established that tg CN neurons showed oscillatory action

potential firing patterns comparable to that found in rat

models for absence epilepsy,32 we assessed the effect of

increasing or decreasing CN neuronal firing on GSWD

occurrence by local pharmacological interventions using

modulators of GABAA-mediated neurotransmission. In

addition, we generated a closed-loop detection system for

on-demand optogenetic stimulation to stimulate CN neu-

rons with millisecond precision. Finally, to exclude the

possibility that our design of intervention is tailored to the

specific pathophysiology of tg mice, we extended our key

experiments to an unrelated mouse model for absence epi-

lepsy: the C3H/HeOuJ inbred mouse line.33

Materials and Methods

All experiments were performed in accordance with the Euro-

pean Communities Council Directive. Protocols were reviewed

and approved by local Dutch experimental animal committees.

Animals
Data were collected from 4- to 30-week-old homozygous and

wild-type littermates of natural mutant tg mice and 8- to 10-

week-old inbred C3H/HeOuJ mice. Male and female tg and

wild-type littermates were bred using heterozygous parents.

The colony, which was originally obtained from Jackson Labo-

ratory (Bar Harbor, ME), was maintained in C57BL/6NHsd

purchased from Harlan Laboratories (Horst, the Netherlands).

Conformation of the presence of the tg mutation in the

Cacna1a gene was obtained by polymerase chain reaction using

50-TTCTGGGTACCAGATACAGG-30 (forward) and 50-

AAGTGTCGAAGTTGGTGCGC-30 (reverse) primers (Euro-

gentech, Seraing, Belgium) and subsequent digestion using

restriction enzyme NsbI at the age of postnatal day (P) 9 to

P12. Male inbred C3H/HeOuJ mice were purchased from

Charles River Laboratories (Wilmington, MA).

Experimental Procedures

SURGERY. Mice were anesthetized with isoflurane (4% in

0.5l/min O2 for induction and 1.5% in 0.5l/min O2 for main-

tenance). The skull was exposed, cleaned, and treated with

OptiBond All-In-One (Kerr Corporation, Orange, CA) to

ensure adhesion of a light-curing hybrid composite (Charisma;

Heraeus Kulzer, Hanau, Germany) to the skull to form a pedes-

tal. Subsequently, five 200lm Teflon-coated silver ball tip elec-

trodes (Advent Research Materials, Eynsham, UK) or five 1mm

stainless steel screws were subdurally implanted for cortical

recordings by ECoG. Four of the electrodes were bilaterally

positioned above the primary motor cortex (11mm anterior-

posterior [AP]; 61mm medial - lateral [ML] relative to

bregma) and primary sensory cortex (21mm AP; 6 3.5mm

ML). A fifth electrode was placed in the rostral portion of the

interparietal bone to serve as reference (21mm AP relative to

lambda). The electrodes and their connectors were fixed to the

skull and embedded in a pedestal composed of the hybrid com-

posite or dental acrylic (Simplex Rapid; Associated Dental

Products, Kemdent Works, Purton, UK). To enable optogenetic

control of neuronal activity in CN, a subset of tg and C3H/

HeOuJ mice received 2 small (�0.5mm in diameter) cranioto-

mies in the interparietal bone (22mm AP relative to lambda;

61.5–2mm ML) to initially accommodate the injection pipette

and later the optical fibers. CN were stereotactically injected

bilaterally with 100 to 120nl of the AAV2-hSyn-

ChR2(H134R)-EYFP vector (kindly provided by Dr K. Dei-

sseroth [Stanford University] through the Vector Core at the

University of North Carolina) at a rate of �20nl/min 3 to 6

weeks prior to recordings. To allow electrophysiological record-

ings from CN neurons, all mice received bilateral craniotomies

(�2mm diameter) in the occipital bone without disrupting the

dura mater. Finally, a dental acrylic recording chamber (Simplex

rapid) was constructed. The exposed tissue was covered with

tetracycline-containing ointment (Terra-cortril; Pfizer, New

York, NY) and the recording chamber was sealed with bone

wax (Ethicon, Somerville, NJ). After surgery, the mice recovered

for at least 5 days (or 3 weeks in the case of virally injected

ANNALS of Neurology

1028 Volume 77, No. 6



mice) in their home cage and were allowed two �3-hour ses-

sions on consecutive days during which the mice were left

undisturbed to accommodate to the setup.

ELECTROPHYSIOLOGICAL RECORDINGS. During the

accommodation session, the animals’ motor behavior was visu-

ally inspected for behavioral correlates of the oscillatory cortical

activity during episodes of GSWDs. No consistent patterns of

movement were identified during such epileptic activity, as

described before in tg and other rodent models of absence epi-

lepsy.30,32,34 Recordings were performed in awake, head-fixed

animals, lasted no longer than 4 consecutive hours, and were

performed during various times of day. No consistent pattern

was identified in ECoG frequency spectra with respect to the

day–night cycle.35 While being head-restrained, mice were able

to move all limbs freely. Body temperature was supported using

a homeothermic pad (FHC, Bowdoin, ME). For extracellular

single unit recordings, custom-made, borosilicate glass capilla-

ries (outer diameter 5 1.5mm, inner diameter 5 0.86mm,

resistance 5 8–12MX, taper length 5�8mm, tip diameter-

5�1lm; Harvard Apparatus, Holliston, MA) filled with 2M

NaCl were positioned stereotactically using an electronic pipette

holder (SM7; Luigs & Neumann, Ratingen, Germany). CN

were localized by stereotactic location as well as the characteris-

tic sound and density of neuronal activity.36 To record from

medial CN (MCN), electrodes were advanced through vermal

lobules 6 to 7 with 0� jaw angle relative to the interaural axis

to a depth of 1.6 to 2.4mm. To record from interposed nuclei

(IN), electrodes were advanced through the paravermal or hem-

ispheric part of lobules 6 to 7 using a yaw angle of �10� rela-

tive to the interaural axis to a depth of 1.8 to 2.7mm. To

record from lateral CN (LCN), electrodes were advanced

through the paravermal or hemispheric part of lobules 6 to 7

using a yaw angle of �25� relative to the interaural axis to a

depth of 2.7 to 4mm. A subset of electrophysiological recording

sites was identifiable following Evans blue injections (see below)

and confirmed the accuracy of our localization technique.

ECoGs were filtered online using a 1 to 100Hz band pass filter

and a 50Hz notch filter. Single unit extracellular recordings and

ECoGs were simultaneously sampled at 20kHz (Digidata

1322A; Molecular Devices, Axon Instruments, Sunnyvale, CA),

amplified, and stored for offline analysis (CyberAmp & Multi-

clamp 700A, Molecular Devices).

PHARMACOLOGICAL MODULATION OF CN NEURONAL

ACTION POTENTIAL FIRING. To bilaterally target the CN

for pharmacological intervention, their location was first deter-

mined as described above, after which we recorded 1 hour of

"baseline" ECoG. Next, a borosilicate glass capillary (Harvard

Apparatus; tip diameter 5�5lm) filled with 1 of the follow-

ing mixtures replaced the recording pipette to allow high spa-

tial accuracy of the injection: to decrease CN neuronal action

potential firing, we applied 0.5% muscimol (GABAA-agonist;

Tocris Bioscience, Bristol, UK) dissolved in 1M NaCl (Sigma-

Aldrich, St Louis, MO); to increase CN neuronal action

potential firing, we applied 100mM gabazine (GABAA- antago-

nist; Tocris) dissolved in 1M NaCl; or 1M NaCl for sham

injections. The experimenter was blinded for the solutions

injected. The solution was bilaterally administered to CN by

pressure injections of �150nl at a rate of �50nl/min, follow-

ing which 1 hour of postinjection ECoG was recorded. As an

additional control, similarly sized injections of saline with

either gabazine or muscimol were administered to lobules 6

and 7 and Crus I and Crus II of the cerebellar cortex. The

drugs were injected superficially (0.7–1mm from the surface)

to avoid spread to the CN. The locations of the injections

were identified with the use of electrophysiological recordings

and stereotactic coordinates, and most (19 of 26) CN injec-

tions were histologically confirmed using the fluorescence of

Evans blue (1% in 1M saline supplied to the injected solu-

tion; Supplementary Fig).37 To verify the effects of muscimol,

gabazine, and vehicle, we recorded extracellular activity in the

injected area during 20 to 50 minutes after the injections.

Immediately after acquiring the postinjection ECoG, an over-

dose of sodiumpentobarbital (0.15ml intraperitoneally) was

administered allowing transcardial perfusion (0.9% NaCl fol-

lowed by 4% paraformaldehyde in 0.1M phosphate buffer

[PB]; pH 5 7.4) to preserve the tissue for histological verifica-

tion of the injections.

OPTOGENETIC STIMULATION OF CN NEURONS. Optic

fibers (inner diameter 5 200lm, numerical aperture 5 0.39;

Thor labs, Newton, NJ, USA) were placed �200lm from the

injection site and connected to 470nm or 590nm light-emitting

diodes (LEDs; Thor labs), or �200lm above the brain, that is,

in the "wrong location." Light intensity at the tip of the

implantable fiber was 550 6 50lW/mm2 (measured after each

experiment). Activation of LEDs by a single 30- to 300-

millisecond pulse was triggered manually (open-loop) or by a

closed-loop detection system (as described below). In each

mouse, 4 stimulation protocols were used: (1) bilateral stimula-

tion (470nm), (2) unilateral stimulation (470nm), (3) bilateral

stimulation (590nm), and (4) bilateral stimulation (470nm)

with optical fibers outside of the CN (to exclude potential

effects of visual input on the GSWD occurrence.30,32 After the

last experimental session, animals were sedated and perfused (as

described above) to preserve tissue for histological verification

of channelrhodopsin-2 (ChR2) expression.

IMMUNOFLUORESCENCE. After perfusion, the cerebellum

was removed and postfixed in 4% paraformaldehyde in 0.1M

PB for 1.5 hour, placed in 10% sucrose in 0.1M PB at 4�C

overnight, and subsequently embedded in gelatin in 30%

sucrose (in 0.1M PB). Embedded brains were postfixed for 2.5

to 3 hours in 30% sucrose and 10% formaldehyde (in Milli-Q;

Millipore, Billerica, MA) and placed overnight in 30% sucrose

(in 0.1M PB) at 4�C. Forty-micrometer-thick transversal slices

were serially collected for immunofluorescent 40,6-diamidino-2-

phenylindole (DAPI) staining. To confirm correct localization

of the injections, fluorescence was assessed with images captured

using a confocal laser scanning microscope (LSM 700; Zeiss,

Lambrecht, Germany) at 555nm (Evans blue), 405nm (DAPI),

and 488 to 527nm (green fluorescent protein/yellow fluorescent

protein range) and optimized for contrast and brightness

Kros et al: Cerebellar impact on GSWDs
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manually (Zen 2009 software, Zeiss). The fluorescent images

were captured using a tile-scan function of the Zen software

with a 310 objective and have been optimized for representa-

tion using Adobe Illustrator (Creative Suite 6; Adobe Systems,

San Jose, CA).

Data Analyses

OFFLINE GSWD DETECTION. To accurately determine start

and end of absence GSWDs and the locations of ECoG spikes

(negative ECoG peaks during episodes of GSWDs), a custom-

written GSWD detection algorithm (LabVIEW, National

Instruments, Austin, TX) was used. In short, we detected those

time points in the ECoG for which the first derivative of the

filtered ECoG traces (3rd order Butterworth 1Hz high pass)

changed polarity. The amplitude differences between each point

and both its neighbors were summed to detect fast, continuous

amplitude changes and potential GSWDs with a manually set

amplitude threshold. Series of GSWDs were marked when: (1)

5 threshold-exceeding data points appeared within 1 second

and (2) each of the intervals between the points was <300

milliseconds. Furthermore, we separated GSWDs by applying

the following 4 rules: (1) a point is the first spike of a GSWD

episode if there are no other spikes in the previous 300 milli-

seconds, (2) a point is the last spike of a GSWD episode if

there are no other spikes in the next 350 milliseconds, (3) the

inter-GSWD episode interval is �1 second, and (4) the mini-

mal GSWD duration is 1 second.

GSWD DEFINITION. An ictal period is defined as starting at

the first ECoG spike of a GSWD and ending at the last ECoG

spike. Unless stated otherwise, spike-and-wave discharges that

lasted >1 second and appeared in both M1 and S1 were con-

sidered GSWDs.

An interictal period is defined as the time in between

GSWDs starting 2 seconds after 1 GSWD and ending 2 sec-

onds before the next GSWD.

DETECTION OF ACTION POTENTIALS IN EXTRACELLULAR

RECORDINGS. Extracellular recordings were included if activ-

ity was well isolated and held stable for >100 seconds. Action

potential detection in extracellular traces was performed using

threshold-based analyses with customized MATLAB (Math-

Works, Natick, MA) routines incorporating principal compo-

nent analysis of the spike waveform or with the MATLAB-

based program SpikeTrain (Neurasmus, Erasmus MC Holding,

Rotterdam, the Netherlands).

GSWD-RELATED FIRING PATTERN MODULATION. A

custom-written algorithm in LabVIEW was used to assess

whether CN neurons showed GSWD-modulated firing patterns

during GSWDs in the ECoG of the contralateral primary sen-

sory cortex (in the case of medial CN neurons) or primary

motor cortex (in the case of interposed or lateral CN neurons).

The minimum duration per episode was set at 2 seconds to

construct GSWD-triggered raster plots and peri-GSWD time

histograms (PSTHs) with a 5-millisecond bin width, which

allowed us to determine: (1) modulation amplitude: the ampli-

tude difference between the peak and trough near t 5 0; (2)

modulation frequency: frequency of the sine wave that fits the

PSTH best; and (3) mean power at GSWD frequency: a fast

Fourier transform (fft) between 6 and 9Hz (GSWD frequency

range). Next, the interspike intervals (ISIs) used for this PSTH

were randomly shuffled 500 times and converted into a new

PSTH with 5-millisecond bin width to create normal distribu-

tions of modulation amplitude and mean power at GSWD fre-

quency. Z scores were calculated for the real and shuffled data

by applying: Z 5 (X 2 m)/r, where X 5 the value based on the

original PSTH, m5 the mean of the bootstrapped normal dis-

tribution, and r 5 its standard deviation (SD). Cells were iden-

tified as GSWD modulated if: (1) the modulation amplitude

was significantly higher than expected by chance (Z� 1.96,

p� 0.05), (2) the cell modulated at GSWD frequency (6–

9Hz), and (3) the mean power at GSWD frequency was signifi-

cantly higher than expected by chance (Z� 1.96, p� 0.05).

Because all CN neurons that showed significant Z scores of

mean power at GSWD frequency also showed significantly

higher modulation amplitudes, the former was used for further

analyses. The term Z score refers to mean power at GSWD fre-

quency unless stated otherwise.

COHERENCE. To determine the spectral coherence between the

activity of a CN neuron and the ECoG signal during GSWDs, a

custom-written MATLAB routine was used. The extracellular signal

was time-binned at 1-millisecond precision, convolved with a

sinc(x)-kernel (cutoff frequency 5 50Hz) and downsampled to

290 Hz. The ECoG signal was directly downsampled to 290 Hz.

The magnitude squared coherence was calculated per GSWD epi-

sode using Welch’s averaged, modified periodogram method and is

defined as: Cxy(f)5|Pxy(f)|
2/Pxx(f)*Pyy(f) with the following parame-

ters: window 5 290 (Hamming), noverlap 5 75%, length of fft

(nfft) 5 290, sampling frequency 5 290 (due to the window size,

only GSWDs> 1.5 seconds were considered). The coherence value

per GSWD was defined as the maximum coherence in the 6 to 9Hz

frequency band; a weighted average per cell based on GSWD dura-

tion was used.

FIRING PATTERN PARAMETERS. Firing patterns parameters

were assessed using custom-written LabVIEW-based programs

calculating firing frequency, coefficient of variation (CV) of

ISIs 5 rISI/mISI, CV2 5 2|ISIn11 2 ISIn|/(ISIn11 1 ISIn), and

burst index 5 number of action potentials within bursts/total

number of action potentials in a recording, where a burst is

defined as �3 consecutive action potentials with an ISI� 10

milliseconds. CV reports regularity of firing throughout the

whole recording and CV2 quantifies the regularity of firing on

a spike-to-spike basis.38 Firing pattern parameters were specifi-

cally calculated for ictal and interictal periods.

REGRESSION ANALYSES OF INTERICTAL CN ACTIVITY. To

evaluate whether there is a type of CN neuron that is predis-

posed for ictal phase-locking during GSWDs, we analyzed the

neurons’ interictal activity using a custom-made MATLAB

routine, aiming to probe the predictability of the ictal activ-

ity. We used Gaussian process regression,39 which is
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considered to be among the best nonlinear regression meth-

ods, to determine whether the GSWD modulation of the

activity was predictable from the interictal activity of the neu-

rons. The measures that enabled the prediction of the modu-

lation amplitude most accurately were CV, log-interval

entropy, firing frequency, and permutation entropy. The inter-

ictal parts of the extracellular recordings were divided into 1-

second bins. To calculate the log-interval entropy, in which

entropy measures the predictability of a system, first a natural

logarithm of the intervals, in milliseconds, was taken to con-

struct a histogram with a bin width of 0.02 loge (time). Fur-

thermore, a Gaussian convolution was performed using a

kernel of one-sixth SD of the log(ISIs).

The entropy of the ISI histogram p(Ii) was calculated by:

EntðIÞ52
XN

i51

pðIiÞlog2pðIiÞ (1)

Furthermore, we analyzed the permutation entropy,

which is calculated as the predictability of the order of neigh-

boring ISIs rather than the actual values of the ISIs.40

NORMALIZED GSWD OCCURRENCE AND DURA-

TION. GSWDs were detected using the offline ECoG detec-

tion algorithm described above. Total number of GSWDs and

average GSWD duration were calculated and normalized to

baseline values.

ASSESSMENT OF CELLULAR RESPONSES TO OPTOGE-

NETIC STIMULATION. Action potentials were detected as

described above. A custom-written LabVIEW program was used

to construct light-triggered raster plots and peri–stimulus time

histograms with a 5-millisecond bin width. Changes in CN

neuronal firing rate upon optical stimulation were subsequently

determined by calculating the total number of action potentials

during light pulses divided by the total length of the pulse and

compared with the baseline firing rate (calculated from the total

recording time excluding the optogenetic stimulation). In the

current study, we consider differences in action potential firing

rate exceeding 25% as responsive.

ASSESSMENT OF IMPACT OF OPTOGENETIC CEREBELLAR

OUTPUT STIMULATION ON GSWDS. The start and end of

seizures were identified using the offline GSWD detection

method described above. A custom-written LabVIEW program

was used to assess the effectiveness of optogenetic stimulation

in stopping GSWDs. Only light pulses triggered prior to the

natural end of the seizure were used for analysis. The time dif-

ference between the light pulse and the end of the seizure was

calculated. The seizure was considered "stopped by the optoge-

netic stimulation" when this time difference did not exceed 150

milliseconds. Mean power at GSWD frequency (6–9Hz) was

calculated using FFT of the ECoG signal recorded during 1-

second or 0.5-second (in the case of closed-loop optogenetic

stimulation) time periods before and after the light pulse. Aver-

aged responses to light pulses are represented per animal and

per stimulus condition by averaging complex Morlet wavelets of

4-second windows ranging from 2 seconds before to 2 seconds

after the stimulus.

ASSESSMENT OF ONSET OF OPTICAL CEREBELLAR NUCLEI

STIMULATION RELATIVE TO GSWD CYCLE. The time dif-

ference between the onset of stimulation and the last spike

before stimulation was calculated and divided by the median

length of 1 GSWD during that episode, representing 1 cycle of

360�. The outcome was subsequently multiplied by 360. Note

that the optogenetic stimuli were not initiated with a fixed

delay after the occurrence of an ECoG spike; the delay

depended on the visual interpretation and reaction speed of the

experimenter (for manual activation of the LED) or on the

closed-loop detection system for which the delay depends on

the variability of the ECoG directly prior to the GSWDs (see

below and van Dongen et al41).

CLOSED-LOOP GSWD DETECTION. The GSWD detection

system has been implemented using a real-time, digital wavelet-

filter setup. The analog pre-filter used for digitization has 4

functions: (1) amplification, (2) offset injection to match the

signal to the input range of the analog to digital converter

(ADC), (3) artifact removal by using a second-order 0.4Hz

high-pass filter, and (4) antialiasing by means of a second-order

23.4Hz low-pass filter. The filter is realized using discrete com-

ponents on a prototype printed circuit board (PCB). Following

the PCB, the wavelet filter functionality is implemented on a

TI Sitara AM335x ARM microprocessor (Texas Instruments,

Dallas, TX). It first digitizes the signal from the analog filter

with its integrated ADC using a sampling frequency of 100Hz.

Subsequently the signal is filtered using a wavelet filter and the

GSWD episode is detected using signal thresholding. Upon

detection an output LED is switched on to stimulate the target

area in the cerebellum. Wavelet filters have previously been suc-

cessfully applied for real-time GSWD detection.42 Here we

applied a complex Morlet wavelet at 6.7Hz that resembled a

GSWD. The wavelet filter was implemented as a finite impulse

response filter by truncating the ideal complex Morlet wavelet

as described earlier.43 Using the 2 thresholds that are set man-

ually during a recording session, the GSWDs are detected dur-

ing a positive, high-threshold crossing and the detection is

ended upon a negative, low-threshold crossing.

STATISTICAL ANALYSES. Statistical differences in firing pat-

tern parameters between independent groups of CN neuronal

recordings (eg, from tg mice, their wild-type littermates,

GSWD-modulated and non–GSWD-modulated, before and

after gabazine injection) were determined using multivariate

analyses of variance (MANOVAs) with firing frequency, CV,

CV2, and burst index as dependent variables and group as

independent variable. When a MANOVA showed a significant

result, post hoc analyses of variance (ANOVAs) were used to

assess contributions of individual firing pattern parameters with

Bonferroni corrected p-values.

Differences in coherence value between GWSD-

modulated and non–GWSD-modulated cells were assessed

using unpaired samples t tests. Cochran and Cox adjustment
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for the standard error of the estimate and the Satterthwaite

adjustment for the degrees of freedom were used because equal-

ity of variances was not assumed.

Differences in normalized number of GSWD episodes

and their duration between traces pre- and postinjection of

either muscimol, gabazine, or saline were tested by using

nonparametric Friedman ANOVAs with 1 within-subjects

factor (ie, time period) with 2 levels (baseline and

postinjection).

Differences in mean power at 6 to 9Hz before and after

a light pulse were tested using values from all individual pulses

by use of repeated measures analysis of covariance (ANCOVA)

with 1 within-subjects factor (ie, period) with 2 levels (before

and after light pulse) and mouse number added as covariate to

correct for variance in the within-subject factor explained by

variance between mice. To test whether the time difference

between the last ECoG spike before optogenetic stimulation

and the subsequent spike deviates from the median interval

between 2 ECoG spikes in "stopped seizures," a similar statisti-

cal approach was used. A repeated measures ANCOVA was

used with 1 within-subject factor with 2 levels, both and ECoG

spike intervals. Mouse number was again added as covariate.

Because the number of seizures not terminated by the optoge-

netic stimulation was low, a nonparametric Friedman ANOVA

was used to test the same difference.

To determine whether the phase angle of the optogenetic

stimulation onset was related to the success rate of stopping

GSWDs, we compared the phase angle distribution of success-

ful attempts to that of the unsuccessful attempts. We tested for

significant differences between these distributions using the

nonparametric 2-sample Kuiper test.

A p-value� 0.05 (a) was considered significant unless

Bonferroni correction was used; in that case, a p-value of

a/n was considered significant. Two-tailed testing was used

for all statistical analyses and all were performed using

SPSS 20.0 software (IBM, Armonk, NY). Exact information

and outcomes regarding statistical testing are depicted in

Tables 1 to 7.

Results

GSWD-Related CN Neuronal Activity
We first investigated whether CN neuronal activity and

ECoG were correlated during spontaneous episodes of

GSWDs in awake head-fixed homozygous tg mice (Fig

1). We found no significant differences in GSWD occur-

rence (t24 5 20.002, p 5 0.998) and GSWD duration

(t24 5 0.195, p 5 0.847) between male and female tg

mice, which is in line with data from other experimental

animal models of absence epilepsy (reviewed by van Luij-

telaar et al44). Therefore, we grouped data of both gen-

ders. GSWDs appeared simultaneously in bilateral

primary motor (M1) and sensory cortices (S1) at

7.6 6 0.6Hz with an average duration of 3.6 6 1.4 sec-

onds (n 5 17 mice). The GSWD frequency and appear-

ance were comparable to earlier reports of awake tg and

other rodent models of absence epilepsy.30,32,34,45 During

these GSWDs, action potential firing of a subset of CN

neurons was phase-locked to GSWDs. A typical GSWD-

modulated CN neuron showed oscillatory action poten-

tial firing at GSWD frequency; repetitive firing was

observed during the wave in the ECoG, whereas the

spike was accompanied by a pause in CN neuronal activ-

ity. These GSWD-modulated CN neurons showed signif-

icantly increased coherence with ECoG during seizures

(p� 0.001; see Table 1). In each CN type (MCN, IN,

and LCN), a substantial portion of the recorded CN

neurons showed GSWD-modulated firing, with the high-

est percentage (73%; 49 of 67 neurons) in the IN and

35% (35 of 100 neurons) and 44% (19 of 43 neurons)

in the MCN and LCN, respectively. We found no statis-

tical difference (p 5 0.512) in the phase of modulation

of neuronal firing relative to the GSWD cycle for these 3

nuclei.

To assess whether GSWD-modulated CN neurons

differed from non-modulating CN neurons in baseline

activity, we compared their interictal firing patterns. Dur-

ing interictal periods GSWD-modulated CN neurons

showed a higher firing frequency and a more irregular,

burstlike firing pattern compared with non-modulated

neurons (p-values< 0.01), and both modulated and non-

modulated groups showed a more irregular firing pattern

and increased burst index compared to CN neurons

recorded from wild-type littermates (p-values< 0.01; see

Fig 1G, Table 1). Gaussian process regression39 revealed

that in tg mice interictal CN neuronal firing was corre-

lated with the ictal firing pattern; 94% of neurons that

phase-locked their activity to GSWDs could be predicted

correctly, based on their interictal firing pattern (see Fig

1H). These data indicate that a large subset of neurons

within each CN consistently shows seizure-modulated

activity, that is, that these GSWD-modulated CN neu-

rons are different from non-modulated neurons in basic,

interictal firing patterns and that GSWD-related modula-

tion can be predicted based on these interictal firing

patterns.

Impact on GSWD Occurrence of
Pharmacological Interventions That Modulate
CN Action Potential Firing
CN neurons provide excitatory input to thalamic neu-

rons4,6,23–29 and thereby potentially contribute to the

excitation–inhibition balance that sets thalamic activity

patterns. Excess tonic inhibition of thalamic activity has

been linked to the occurrence of absence seizures,3,7,8

and therefore we hypothesized that a decrease in CN

output in tg should increase the occurrence of GSWDs,
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TABLE 1. CN Action Potential Firing

Tested Data Compared Groups N p t or F-value Statistical Test

Differences in phase relation between CN modulation and GSWD cycle

Phase relation MCN 100 0.512 F(2,100) 5 0.674 Watson–Williams
multiple sample test

IN 67

LCN 43

Differences in CN neuronal action potential firing

Coherence tg GSWD-modulated 103 <0.001a t(195.9) 5 13.35 Independent
samples t test

tg non-modulated 107

Overall Wild type 94 <0.001a F(4,192) 5 68.72 MANOVA
(Pillai’s trace)

tg GSWD-modulated
interictal

103

Firing frequency Wild type 94 0.095 F(1,195) 5 2.81 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

Coefficient of variation Wild type 94 <0.001a F(1,195) 5 58.88 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

CV2 Wild type 94 <0.001a F(1,195) 5 34.63 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

Burst index Wild type 94 <0.001a F(1,195) 5 230.86 ANOVA (Bonferroni)

tg GSWD-modulated
interictal

103

Overall Wild type 94 <0.001a F(4,196) 5 16.66 MANOVA
(Pillai’s trace)

tg non-modulated
interictal

107

Firing frequency Wild type 94 0.092 F(1,199) 5 2.86 ANOVA
(Bonferroni)

tg non-modulated
interictal

107

Coefficient of variation Wild type 94 <0.001a F(1,199) 5 15.13 ANOVA (Bonferroni)

tg non-modulated
interictal

107

CV2 Wild type 94 <0.01a F(1,199) 5 6.79 ANOVA (Bonferroni)

tg non-modulated
interictal

107

Burst index Wild type 94 <0.001a F(1,199) 5 37.99 ANOVA (Bonferroni)

tg non-modulated
interictal

107
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whereas increased CN output should have the opposite

effect. To test this, we locally applied (see Fig 2, Supple-

mentary Fig) either GABAA-agonist muscimol, which

stopped CN neuronal action potential firing (no statisti-

cal comparison was possible due to complete cessation of

action potential firing), or GABAA-antagonist gabazine

(SR-95531), which consistently increased the frequency

(p< 0.01) and regularity of CN neuronal firing

(p< 0.001; see Table 2). Upon bilateral CN injections

with muscimol, the occurrence of GSWDs increased by

160 to 3,700% postinjection (p< 0.01; recorded for 60

minutes; peak of seizure occurrence 34.5 6 16.5 minutes

after injection; n 5 10). In contrast, bilateral CN injec-

tions with gabazine significantly reduced the occurrence

of GSWDs (p< 0.05; first seizure occurred 32.5 6 17.4

minutes after injection; n 5 10) and bilateral sham injec-

tions did not change GSWD occurrence (p 5 0.18). The

duration of GSWDs was not significantly changed fol-

lowing muscimol, gabazine, or saline injections in the

CN (muscimol: p 5 0.21; gabazine: p 5 0.32; saline:

p 5 0.41). As a control, we also injected similar quanti-

ties of gabazine or muscimol into the cerebellar cortex;

this had no significant effect on the GSWD occurrence

(p 5 0.66 and 0.32, respectively) or duration (p 5 0.66

for both gabazine and muscimol injections). Thus, phar-

macological manipulation of neuronal activity in the

CN, but not the cerebellar cortex, is highly effective in

modulating the occurrence of GSWDs in tg mice. Nota-

bly, we observed that muscimol and gabazine were most

effective when the injections were in the IN and/or LCN

(no statistical difference in impact on GSWD-occurrence

after IN and/or LCN injections; p 5 0.70; Mann–Whit-

ney U test) compared to injections in the MCN (p 5 0.07

for muscimol and p< 0.05 for gabazine; see Supplemen-

tary Fig, Table 3). To study whether these differences in

impact of pharmacological interventions aimed at the

MCN or the IN and LCN were due to a variable effect on

neuronal activity, we also performed single unit recordings

in the injected CN. Regardless of the injected nucleus,

muscimol effectively silenced all action potential firing

and gabazine consistently increased the firing frequency

and the regularity of action potential firing (all p-val-

ues< 0.01 for firing frequency, CV, and CV2; see Table

4). These findings indicate that although effects of musci-

mol and gabazine on the neuronal activity were similar

throughout all CN, the effect of manipulating activity in

the IN and LCN seems to exert a larger impact on

GSWD-occurrence in the mutants than targeting the

TABLE 1: Continued

Tested Data Compared Groups N p t or F-value Statistical Test

Overall tg GSWD-modulated
interictal

103 <0.001a F(4,205) 5 17.84 MANOVA (Pillai trace)

tg non-modulated interictal 107

Firing frequency tg GSWD-modulated
interictal

103 <0.001a F(1,208) 5 16.31 ANOVA (Bonferroni)

tg non-modulated interictal 107

Coefficient of variation tg GSWD-modulated
interictal

103 <0.01a F(1,208) 5 7.12 ANOVA (Bonferroni)

tg non-modulated interictal 107

CV2 tg GSWD-modulated
interictal

103 <0.01a F(1,208) 5 9.47 ANOVA (Bonferroni)

tg non-modulated interictal 107

Burst index tg GSWD-modulated
interictal

103 <0.001a F(1,208) 5 62.6 ANOVA (Bonferroni)

tg non-modulated interictal 107

Corresponds to Figure 1.
aStatistically significant.
ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave discharge; IN 5 interposed nuclei;
LCN 5 lateral cerebellar nuclei; MANOVA 5 multivariate analysis of variance; MCN 5 medial cerebellar nuclei.
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MCN. Instead, pharmacological interventions in the CN

of wild-type littermates (n 5 2) did not evoke GSWD-epi-

sodes (data not shown).

Although it has been shown that pharmacological

interventions can have sex-specific differences in animal

models of epilepsy46 that may contribute to the variability

of the current results, our ECoG recordings did not

show a trend toward a sex-specific impact of CN-specific

muscimol or gabazine application (see Fig 2F–H). This

finding was corroborated by the finding that muscimol

was equally effective in stopping CN action potential

FIGURE 1

FIGURE 1: Cerebellar nuclei (CN) neuronal action potential
firing patterns are modulated during generalized spike-and-
wave discharges (GSWDs). (A) Schematic of recording sites
for electrocorticogram (ECoG) from primary motor (M1) and
sensory (S1) cortices and extracellular single unit CN neuro-
nal (CNN) recordings (Th 5 thalamus, hpc 5 hippocampus).
(B) ECoG from M1 and S1 with GSWD episodes (horizontal
lines), indicating absence seizures. (C) Zoom of M1 episode
outlined in B and simultaneously recorded action potential
firing of a single CN neuron. (D; top panel) Zoom of out-
lined M1 and CNN recording in C. Red lines align ECoG
spike with pause in CNN action potential firing. Bottom
panel: Compass plot of phase difference between ECoG
spike and modulated CNN action potential firing.
IN 5 interposed nuclei; LCN 5 lateral CN; MCN 5 medial CN.
(E) Raster plot and accompanying peri–spike-and-wave dis-
charge time histogram of CNN action potentials (AP) for 3
consecutive seizures (t 5 0 is aligned with each ECoG spike).
(F) Distribution of absolute Z scores of mean power at
GSWD frequency as determined by fast Fourier transform
for MCN, IN, and LCN. Note that none of the negative Z
scores was below 21.96, and therefore showing absolute Z
scores does not change the number of data points below
and above the 1.96 cutoff score (corresponding to p < 0.05;
horizontal dashed line). Total number of recorded neurons:
MCN, n 5 100; IN, n 5 67; LCN, n 5 43. (G) Bar plots repre-
senting firing frequency, coefficient of variation, coefficient
of variation 2 (CV2), and burst index for CN neurons
recorded in wild-type littermate (n 5 94; black) and seizure-
modulated (n 5 103; light gray) and non-modulated CN neu-
rons recorded in tg (n 5 107; dark gray). For clarity, we trun-
cated the negative error bars. **p < 0.01, ***p < 0.001
(multivariate analysis of variance, post hoc analyses of var-
iance with Bonferroni correction; see Table 1). (H) Result of
the Gaussian process regression to predict the Z score from
interictal activity parameters (CV, firing frequency, log-
interval entropy, and permutation entropy) represented as a
confusion matrix. The prediction is characterized as being a
true positive (tp) when the predicted Z score is >1.96 (dot-
ted line) and the actual Z score is >1.96. A true negative
(tn) is scored when both predicted and actual Z scores are
<1.96. False positive (fp) and false negative (fn) refer to
neurons that have been incorrectly predicted as GSWD
modulated and GSWD non-modulated, respectively. Note
that we were able to achieve a precision of 0.70 and a recall
of 0.94, which means that 70% of CN neurons (n 5 210) that
were predicted as GSWD modulated actually were GSWD
modulated, and 94% of all GSWD-modulated neurons have
been identified correctly by the model. The Pearson correla-
tion coefficient (r) between the predicted Z score and the
actual Z score was 0.56 with p £ 0.05.
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firing in both male and female mice. Together, these

effects indicate that in the tg animal model of absence

epilepsy CN output forms an integral component of the

neuronal networks involved in generalized epilepsy and

may operate as a potent modulator of GSWD occur-

rence, irrespective of the gender.

Optogenetic Stimulation of Cerebellar Nuclei
The promising impact of long-lasting pharmacological

interventions at the level of the cerebellar output

prompted us to explore whether short-lasting neuromodu-

lation would be equally effective in stopping GSWDs,

that is, whether disrupting oscillatory CN neuronal activ-

ity immediately stops GSWDs. To test this hypothesis,

we virally expressed light-sensitive ChR2 cation channels

in CN neurons (see Fig 3). The optically evoked altera-

tion of CN neuronal firing (see below; Fig 5A) had a

robust effect on GSWD occurrence, in that most if not

all episodes abruptly stopped within 150 milliseconds of

the onset of bilateral stimulation (n 5 4; presented per

mouse: 76% [male], 84% [female], 92% [female], and

100% [female] stopped) and in that the power at GSWD

frequency was significantly reduced (p< 0.001; see Fig 3,

Table 5). Moreover, unilateral optical stimulation of CN

FIGURE 2

FIGURE 2: Bimodal modulation of generalized spike-and-
wave discharge (GSWD) occurrence by pharmacological
manipulation of cerebellar nuclei (CN) neuronal (CNN) action
potential firing. (A) Confocal image of coronal cerebellar
slice with bilateral muscimol injections (blue 5 40,6-diami-
dino-2-phenylindole (DAPI); red 5 Evans blue indicating the
injection sites; IN 5 interposed nucleus; IV 5 4th ventricle;
LCN 5 lateral CN; MCN 5 medial CN). (B) Examples of CNN
recordings before and after bilateral muscimol (top) and
gabazine (bottom) injections. (C) Bar plots for the impact of
gabazine on CNN firing as quantified by the difference
between pre- and postgabazine injections (n 5 81 and
n 5 55, respectively) in firing frequency, coefficient of varia-
tion, median CV2, and burst index; **p < 0.01, ***p < 0.001
(multivariate analysis of variance, post hoc analyses of var-
iance [ANOVAs] with Bonferroni corrections; see Table 2).
(D; top) Representative electrocorticogram (ECoG) of pri-
mary motor cortex (M1) ECoG before and after muscimol
injection; (bottom) representative M1 ECoG before and
after gabazine injection. (E) Time course of the effects of
muscimol (left) and gabazine (right) on the average number
of GSWD episodes (bin size 5 5 minutes). (F, G) Normalized
number of seizures (F) and normalized seizure duration (G)
before and after muscimol (left) and gabazine (right) injec-
tions (1 hour each) for bilateral injections in all CN (n 5 10
for both gabazine and muscimol), in IN/LCN (n 5 6 for mus-
cimol and 5 for gabazine), and in MCN (n 5 4 for muscimol
and 5 for gabazine). Note that for quantification of the sei-
zure duration after gabazine injection, only 9 mice are
included in all CN and 4 mice in the IN/LCN group, because
1 mouse did not show any GSWDs postinjection. Blue dots
indicate data recorded from male mice and red dots from
female. *p < 0.05, **p < 0.01 (Friedman ANOVAs and Mann–
Whitney U tests; see Tables 2 and 3). (H) Normalized num-
ber of GSWD episodes (left) and normalized GSWD episode
duration (right) for control experiments; saline injections in
the CN and muscimol and gabazine injections in superficial
cerebellar cortical areas.
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neurons proved equally effective in stopping GSWDs in

all recorded cortices, regardless of the laterality (n 5 3

females; presented per mouse: 89%, 92%, and 100%

stopped; power reduction: p< 0.001). Bilateral cerebellar

stimulation was ineffective when a different wavelength

(590nm) was applied (n 5 3 females; presented per

TABLE 2. Impact of Pharmacological Manipulations on CN Firing and GSWD Occurrence

Tested Data Compared Groups N p F Statistical Test

Effects of bilateral CN gabazine injections on CNN activity

Overall tg pregabazine 81 <0.001a F(4,131) 5 39.83 MANOVA (Pillai’s trace)

tg postgabazine 55

Firing frequency tg pregabazine 81 <0.001a F(1,134) 5 37.15 ANOVA (Bonferroni)

tg postgabazine 55

Coefficient of variation tg pregabazine 81 <0.001a F(1,134) 5 61.21 ANOVA (Bonferroni)

tg postgabazine 55

CV2 tg pregabazine 81 <0.001a F(1,134) 5 117.63 ANOVA (Bonferroni)

tg postgabazine 55

Burst index tg pregabazine 81 <0.01a F(1,134) 5 8.71 ANOVA (Bonferroni)

tg postgabazine 55

Effects of pharmacological manipulations of CN neurons on GSWDs

GSWD occurrence tg presaline CN 6 0.180 Friedman’s ANOVA

tg postsaline CN

tg premuscimol CN 10 <0.01a Friedman’s ANOVA

tg postmuscimol CN

tg pregabazine CN 10 <0.01a Friedman’s ANOVA

tg postgabazine CN

tg premuscimol cortex 5 0.655 Friedman’s ANOVA

tg postmuscimol cortex

tg pregabazine cortex 5 0.317 Friedman’s ANOVA

tg postgabazine cortex

GSWD duration tg presaline CN 6 0.414 Friedman’s ANOVA

tg postsaline CN

tg premuscimol CN 10 0.206 Friedman’s ANOVA

tg postmuscimol CN

tg pregabazine CN 10 0.317 Friedman’s ANOVA

tg postgabazine CN

tg premuscimol cortex 5 0.655 Friedman’s ANOVA

tg postmuscimol cortex

tg pregabazine cortex 5 0.655 Friedman’s ANOVA

tg postgabazine cortex

Corresponds to Figure 2C, F–H.
aStatistically significant.
ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; CNN 5 CN neuronal; GSWD 5 generalized spike-and-wave discharge;
MANOVA 5 multivariate analysis of variance.
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mouse: 0%, 0%, and 5% stopped; power reduction:

p 5 0.37) or when the optical fiber was placed outside

the CN region (n 5 3 females; presented per mouse: 0%,

5%, and 8% stopped; power reduction: p 5 0.28).

The type of seizure detection and on-demand

stimulation described above renders the procedure con-

ceptually unsuitable for clinical implementation in that

it would require constant online evaluation and decision

making by medics.47 Therefore, we developed a brain–

machine interface (BMI) approach by engineering a

closed-loop system for online detection of GSWDs and

subsequent optogenetic stimulation.41 Using offline

analysis, we optimized the performance of a wavelet-

based GSWD detection filter up to an accuracy of

96.5% and a median latency of 424 milliseconds.

When applied online, this on-demand, closed-loop

stimulation proved efficient in detecting and stopping

GSWDs; bilateral optical stimulation of ChR2-

expressing CN neurons stopped 93.4% of GSWDs and

unilateral stimulation stopped 91.8% of GSWDs, which

is also represented by the GSWD frequency power

reduction (n 5 3 female; p< 0.001; see Fig 3E, F, Table

5). Together, these data highlight that in a clinically

applicable BMI setting single pulse stimulation of CN

TABLE 3. Impact of Local Pharmacological Manipulations on GSWD Occurrence

Tested Data Compared Groups N p Statistical Test

GSWD occurrence pre vs post tg premuscimol IN/LCN 6 <0.05a Friedman’s ANOVA

tg postmuscimol IN/LCN

tg premuscimol MCN 4 <0.05a Friedman’s ANOVA

tg postmuscimol MCN

tg pregabazine IN/LCN 5 <0.05a Friedman’s ANOVA

tg postgabazine IN/LCN

tg pregabazine MCN 5 <0.05a Friedman’s ANOVA

tg postgabazine MCN

GSWD occurrence medial vs lateral CN tg postmuscimol IN/LCN 6 0.067 Mann–Whitney U test

tg postmuscimol MCN 4

tg postgabazine IN/LCN 5 <0.01a Mann–Whitney U test

tg postgabazine MCN 5

GSWD duration pre vs post tg premuscimol IN/LCN 6 0.102 Friedman’s ANOVA

tg postmuscimol IN/LCN

tg premuscimol MCN 4 1.00 Friedman’s ANOVA

tg postmuscimol MCN

tg pregabazine IN/LCN 5 1.00 Friedman’s ANOVA

tg postgabazine IN/LCN

tg pregabazine MCN 5 0.180 Friedman’s ANOVA

tg postgabazine MCN

GSWD duration medial vs lateral CN tg postmuscimol IN/LCN 6 0.352 Mann–Whitney U test

tg postmuscimol MCN 4

tg postgabazine IN/LCN 5 0.413 Mann–Whitney U test

tg postgabazine MCN 5

Corresponds to Figure 2F–G.
aStatistically significant.
ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave discharge; IN 5 interposed nuclei;
LCN 5 lateral cerebellar nuclei; MCN 5 medial cerebellar nuclei.
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TABLE 4. Impact of Local Pharmacological Manipulations on CN Spiking Activity

Tested Data Compared Groups N p F-value Statistical Test

Overall tg pregabazine IN/LCN 40 <0.001a F(4,62) 5 12.41 MANOVA (Pillai’s trace)

tg postgabazine IN/LCN 27

Firing frequency tg pregabazine IN/LCN 40 <0.01a F(1,65) 5 8.80 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

Coefficient of variation tg pregabazine IN/LCN 40 <0.001a F(1,65) 5 23.18 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

CV2 tg pregabazine IN/LCN 40 <0.001a F(1,65) 5 25.13 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

Burst index tg pregabazine IN/LCN 40 <0.01a F(1,65) 5 10.22 ANOVA (Bonferroni)

tg postgabazine IN/LCN 27

Overall tg pregabazine MCN 41 <0.001a F(4,64) 5 40.55 MANOVA (Pillai’s trace)

tg postgabazine MCN 28

Firing frequency tg pregabazine MCN 41 <0.001a F(1,67) 5 37.53 ANOVA (Bonferroni)

tg postgabazine MCN 28

Coefficient of variation tg pregabazine MCN 41 <0.001a F(1,67) 5 60.04 ANOVA (Bonferroni)

tg postgabazine MCN 28

CV2 tg pregabazine MCN 41 <0.001a F(1,67) 5 153.36 ANOVA (Bonferroni)

tg postgabazine MCN 28

Burst index tg pregabazine MCN 41 0.614 F(1,67) 5 0.61 ANOVA (Bonferroni)

tg postgabazine MCN 28

Overall tg pregabazine IN/LCN 40 <0.001a F(4,76) 5 6.28 MANOVA (Pillai’s trace)

tg pregabazine MCN 41

Firing frequency tg pregabazine IN/LCN 40 0.438 F(4,79) 5 0.61 ANOVA (Bonferroni)

tg pregabazine MCN 41

Coefficient of variation tg pregabazine IN/LCN 40 0.037 F(4,79) 5 4.51 ANOVA (Bonferroni)

tg pregabazine MCN 41

CV2 tg pregabazine IN/LCN 40 0.494 F(4,79) 5 0.47 ANOVA (Bonferroni)

tg pregabazine MCN 41

Burst index tg pregabazine IN/LCN 40 <0.001a F(4,79) 5 13.53 ANOVA (Bonferroni)

tg pregabazine MCN 41

Overall tg postgabazine IN/LCN 27 <0.001a F(4,50) 5 4.29 MANOVA (Pillai’s trace)

tg postgabazine MCN 28

Firing frequency tg postgabazine IN/LCN 27 0.344 F(4,53) 5 0.91 ANOVA (Bonferroni)

tg postgabazine MCN 28

Coefficient of variation tg postgabazine IN/LCN 27 �0.001a F(4,53) 5 13.55 ANOVA (Bonferroni)

tg postgabazine MCN 28

CV2 tg postgabazine IN/LCN 27 <0.01a F(4,53) 5 10.16 ANOVA (Bonferroni)

tg postgabazine MCN 28

Burst index tg postgabazine IN/LCN 27 0.801 F(4,53) 5 0.64 ANOVA (Bonferroni)

tg postgabazine MCN 28

aStatistically significant.
ANOVA 5 analysis of variance; IN 5 interposed nuclei; LCN 5 lateral cerebellar nuclei; MANOVA 5 multivariate analysis of var-
iance; MCN 5 medial cerebellar nuclei.



neurons suffices to stop GSWDs and that unilateral

stimulation is sufficiently powerful to disrupt bilateral

thalamocortical oscillations.

Key Findings Are Replicated in an Unrelated
Mouse Model of Absence Epilepsy
To exclude the possibility that our current findings in tg
are unique to their pathophysiology,30,48,49 we repeated

key experiments in C3H/HeOuJ, an inbred strain with an

absence epilepsy phenotype33 that is unrelated to tg.

Extracellular recordings in awake ECoG-monitored C3H/
HeOuJ mice confirmed that a smaller but substantial

portion (35%) of CN neurons showed phase-locked

action potential firing and significant coherence with

ECoG (p< 0.001) during GSWDs and that this oscilla-

tory firing was more irregular than their interictal firing

pattern (p< 0.001; Fig 4, Table 6). Similar to tg mutants

(see Fig 2), C3H/HeOuJ mice showed significantly more

seizures following local muscimol injections into CN

(p< 0.05; see Fig 4, Table 6). Moreover, also in C3H/

HeOuJ mice optogenetic stimulation reliably stopped

GSWD episodes (n 5 3; presented per mouse: 82%,

87%, and 91% stopped) and both bilateral and unilateral

stimuli significantly reduced power at GSWD frequency

(p< 0.01 and p< 0.001, respectively); the closed-loop

detection and intervention system reduced the GSWD

frequency power (p< 0.001 for bilateral and p< 0.05 for

unilateral stimulation); and neither optical stimulation at

590nm nor stimulation outside of CN significantly

reduced the GSWD frequency power (p 5 0.43 and

p 5 0.81, respectively). Thus, the main findings from

CN treatment of absence seizures in tg could be repli-

cated in C3H/HeOuJ mutants.

Optogenetic Stimulation of Presumptively
Excitatory CN Neurons Affects GSWDs
To investigate the mechanism underlying the potent

interruption of GSWDs by optogenetic stimulation of

CN in tg and C3H/HeOuJ, we quantified the responses

of CN neurons to bilateral optical stimulation. In C3H/

HeOuJ and tg injected with AAV2-hSyn-ChR2(H134R)-

EYFP, 33 of 50 responsive cells (66%) showed increased

action potential firing, whereas 17 (34%) showed

decreased firing (see Fig 5A). A further 16 recorded neu-

rons showed no response to optical stimulation. This

variety of responses is in line with the properties of the

construct that was used to transfect CN neurons with

ChR2. Because human synapsin (hSyn) is not specific to

a certain type of neuron,50 both excitatory and inhibitory

CN neurons expressed ChR2. Excitatory responses can

FIGURE 3

FIGURE 3: Optogenetic stimulation of cerebellar nuclei reli-
ably stops generalized spike-and-wave discharges (GSWDs).
(A) Confocal image of sagittal brain section showing
channelrhodopsin-2 (ChR2) expression in cerebellar nuclei
(CN) with projections to the thalamus (M1, S1 represent pri-
mary motor and sensory cortex, respectively). (B) Represen-
tative electrocorticogram (ECoG) of bilateral M1 (left M1
[lM1], right [rM1], and left S1 [lS1] recording), which exem-
plifies how bilateral optogenetic stimulation (470nm light
pulse of 100 milliseconds indicated by the vertical blue bar)
stops GSWDs in all recorded cortices. (C) Mean ECoG wave-
let spectrogram of contralateral M1 for all bilateral (n 5 25;
left panel) and unilateral stimuli (n 5 11; right panel) pre-
sented to a single mouse at 470nm. (D) As in C for (left)
590nm stimuli (n 5 36) and (right) stimulation at 470nm out-
side of CN (n 5 18). (E; right) Typical example of the effect
of bilateral closed-loop stimulation on GSWD recorded in
contralateral M1 and S1 and (left) mean ECoG wavelet spec-
trogram of all unilateral stimuli (n 5 44) presented to 1
mouse. (F) ECoG theta-band power before and after open-
loop (bilateral: 3 females, 1 male, n 5 178; unilateral: 3
female, n 5 43) stimulations with the wrong wavelength
(590nm; 3 females, n 5 107) and stimulations outside the
CN (3 females; n 5 185) as well as the responses to closed-
loop stimulation at 470nm in the CN (bilateral: 3 females,
n 5 227; unilateral: 3 females, n 5 49). ***p < 0.001
(repeated measures analysis of covariance; see Table 5).
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be recorded from neurons that express ChR2, and inhibi-

tory responses can be recorded from neurons that do not

express ChR2 but that receive input from ChR2-positive

inhibitory neurons, but neurons devoid of ChR2 expres-

sion either in their membrane or synaptic afferents will

not show any response.

Next, we questioned to what extent the impact of

optogenetic stimulation of CN neuronal action potential

firing depends on the phase of the thalamocortical oscil-

lations, that is, to what extent the disruption of GSWD-

modulated CN firing was evoked during cortical excita-

tion (the ECoG spike) and/or cortical inhibition (the

ECoG wave).51 Because we did not design our stimula-

tion protocol to be activated with a fixed delay relative

to the GSWDs, we could answer this question by com-

paring the phase values of the onset of effective stimuli

relative to the spike-and-wave cycle in M1 and S1 corti-

ces with those of ineffective stimuli (see Fig 5). For both

M1 and S1, success rates were lowest when the stimulus

was applied up to 60� before the peak of a spike (ie,

300�–360� in Fig 5C lower panels), but the overall dif-

ferences of these distributions did not reach statistical sig-

nificance (M1: p 5 0.13; S1: p 5 0.29). However,

effective stimuli evoked a significant shortening

(p< 0.01) of the interval between the last 2 ECoG

spikes, which is indicative of an excitatory effect on corti-

cal activity (Fig. 5D),51 and the timing of the last ECoG

spike could be predicted by the time of the stimulus

onset relative to the spike-and-wave cycle (p< 0.001; see

Fig 5E, Table 7). Together, our combined electrophysio-

logical and optogenetic data indicate that optogenetic

CN stimulation is most effective when applied during

the "wave" of the GSWD, during which cortical neurons

are normally silent.

Discussion

In this study, we show that in 2 unrelated mouse models

of absence epilepsy the activity of CN neurons can be

utilized to modulate the occurrence of GSWDs. We pro-

vide evidence that pharmacological interventions at the

level of CN can exert slow, but long-term, effects and

that optogenetic stimulation of CN neurons can exert

fast, short-term control. The different dynamics of these

experimental approaches, with converging outcomes,

align with the hypothesis that CN neurons can control

the balance of excitation and inhibition in the thalamus,

thereby resetting the oscillatory activity in thalamocorti-

cal loops. In both tg and C3H/HeOuJ strains of mice, a

substantial subset of CN neurons showed phase-locked

action potential firing during GSWDs, which is in line

with a previous study of oscillating cerebellar activity

during GSWDs in WAG/Rij and F344/BN rats.32 We

observed that 35% of neuronal recordings in the MCN

showed GSWD-modulated patterns, whereas the portions

TABLE 5. Effect of Optogenetic CN Stimulation on GSWD-Related Power

Tested Data Compared Groups N p F-value Statistical Test

Open-loop bilateral 470nm tg prestimulation 178 <0.001a F(1,176) 5 74.87 Repeated measures ANCOVA

tg poststimulation

Open-loop unilateral 470nm tg prestimulation 43 <0.001a F(1,41) 5 35.25 Repeated measures ANCOVA

tg poststimulation

590nm tg prestimulation 107 0.367 F(1,65) 5 0.82 Repeated measures ANCOVA

tg poststimulation

470nm outside CN tg prestimulation 185 0.283 F(1,65) 5 1.16 Repeated measures ANCOVA

tg poststimulation

Closed-loop bilateral
470nm

tg prestimulation 227 <0.001a F(1,65) 5 456.3 Repeated measures ANCOVA

tg poststimulation

Closed-loop unilateral
470nm

tg prestimulation 49 <0.001a F(1,65) 5 97.58 Repeated measures ANCOVA

tg poststimulation

Corresponds to Figure 3.
aStatistically significant.
ANCOVA 5 analysis of covariance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave discharge.
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of GSWD-modulated neurons in the IN and LCN were

higher (73% and 44%, respectively). Except for an ana-

tomical evaluation of the local density of large and small

soma-diameter CN neurons in the mouse brain52 and

computational studies on the clustering analysis of CN

neuronal action potential firing in tg,53,54 few experimen-

tal data are available that allow us to unequivocally pin-

point the type(s) of CN neurons responsible for

modification of GSWD activity. With respect to the

extracellular recordings, we presumably recorded mostly

FIGURE 4: Modulation of phase-locked cerebellar nuclei (CN) neuronal (CNN) activity stops generalized spike-and-wave dis-
charges (GSWDs) in C3H/HeOuJ mice. (A) Simultaneously recorded primary motor (M1) and sensory (S1) cortex electrocortico-
grams (ECoGs) and CNN activity. (B) Raster plot and peri–stimulus time histogram of single CNN activity (t 5 0 indicates each
ECoG spike). AP 5 action potential; SWD 5 spike-and-wave discharge. (C) Summary bar plots representing the mean differences
in firing pattern parameters between interictal and ictal periods (n 5 28). ***p < 0.001 (repeated measures analysis of variance
[ANOVA] with Bonferroni corrections; see Table 6). (D) Representative M1 ECoG before and after muscimol injection and (E)
corresponding normalized seizure occurrence and duration. *p < 0.05 (Friedman ANOVA; see Table 6). (F–H) Open-loop (top)
and closed-loop (bottom) optogenetic stimulation stops GSWDs as shown by: (F) typical example trace; (G) ECoG wavelet spec-
trogram averaged over all bilateral open-loop (n 5 11; top panel) stimuli in a single mouse and over all unilateral closed-loop
stimuli (n 5 18; bottom panel) in another mouse; and (H) ECoG theta-band power before and after optical stimulation for bilat-
eral open-loop stimuli (n 5 3 mice, n 5 19 stimulations; top left panel), unilateral open-loop stimuli (n 5 3 mice, n 5 19 stimula-
tions), bilateral closed- loop stimuli (n 5 3 mice, n 5 46 stimulations), and unilateral closed-loop stimuli (n 5 3 mice, n 5 30
stimulations). *p < 0.05, **p < 0.01 ***p < 0.001 (repeated measures ANCOVA; see Table 6).

ANNALS of Neurology

1042 Volume 77, No. 6



TABLE 6. Neuronal Firing and Effect of CN Manipulations on GSWD Occurrence

Tested Data Compared Groups N p t or F-value Statistical Test

Differences in CN neuronal action potential firing

Coherence C3H/HeOuJ
GSWD-modulated

28 <0.001a t(66.6) 5 5.92 Independent samples
t test

C3H/HeOuJ
non-modulated

51

Firing frequency C3H/HeOuJ
GSWD-modulated ictal

28 0.138 F(1,27) 5 2.34 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

Coefficient of variation C3H/HeOuJ
GSWD-modulated ictal

28 0.708 F(1,27) 5 0.14 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

CV2 C3H/HeOuJ
GSWD-modulated ictal

28 <0.001a F(1,27) 5 21.35 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

Burst index C3H/HeOuJ
GSWD-modulated ictal

28 <0.001a F(1,27) 5 15.64 Repeated measures
ANOVA (Bonferroni)

C3H/HeOuJ
GSWD-modulated
interictal

Effects of pharmacological manipulations of CN neurons on GSWDs

GSWD occurrence C3H/HeOuJ premuscimol 4 <0.05a Friedman’s ANOVA

C3H/HeOuJ postmuscimol

GSWD duration C3H/HeOuJ premuscimol 4 0.317 Friedman’s ANOVA

C3H/HeOuJ postmuscimol

Effects of optogenetic CN stimulation on GSWD-related power

Open-loop bilateral 470nm C3H/HeOuJ
prestimulation

37 <0.01a F(1,35) 5 8.17 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Open-loop unilateral 470nm C3H/HeOuJ
prestimulation

19 <0.001a F(1,17) 5 20.32 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

590nm in CN C3H/HeOuJ
prestimulation

47 0.809 F(1,45) 5 0.06 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation
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from CN neurons with a large soma-diameter,55 which

incorporates mainly excitatory glutamatergic neurons,56

but in the MCN also inhibitory glycinergic projection

neurons.57 Interestingly, GSWD-modulated CN neurons

also showed characteristic firing patterns during the peri-

ods in between seizures. During these interictal periods,

they fired at higher frequencies with a more irregular and

burstlike pattern than the CN neurons that did not

comodulate with GSWDs. Thus, the interictal firing pat-

tern of CN neurons in tg and C3H/HeOuJ mice appears

to reliably predict whether these cells will show oscilla-

tions phase-locked to GSWDs during seizures.

Pharmacological manipulation of neuronal activity

in the cerebellum proved effective when the injections of

muscimol or gabazine were aimed at the CN, but not

when the cerebellar cortex was targeted.

We found that gabazine application was effective in

reducing GSWD occurrence in all CN, with the most

pronounced effects in IN and LCN. Along the same line,

muscimol injections in IN and LCN evoked the biggest

increase in GSWD occurrence. Effects of MCN injec-

tions were smaller but still significant. Because we know

little about the density of individual types of neurons

throughout the murine MCN, IN, and LCN,52,56 and

considering the similarity in effects of gabazine and mus-

cimol on neuronal activity in these nuclei, we cannot

draw a firm conclusion about a potentially differential

effect of either gabazine or muscimol on the respective

nuclei. These data raise the possibility that the difference

in impact on GSWD occurrence between manipulation

of MCN versus that of IN and LCN does not reflect a

difference in intrinsic activity, but rather a difference in

their efferent projections to the brainstem, midbrain, and

thalamus.24 Although all CN have been shown to project

to a wide range of thalamic subnuclei, such as the ven-

trolateral, ventromedian, centrolateral, centromedian, and

parafascicular nuclei,24,58 and thereby connect to a vari-

ety of thalamocortical networks, the impact of IN and

LCN has been shown to focus on the primary motor

cortex, whereas MCN impact more diffusely on thalamo-

cortical networks.59

CN axons that project to the thalamus have been

shown to originate from glutamatergic neurons, which

synapse predominantly perisomatically and evoke sub-

stantial excitatory responses.4,6,23–29 Upon CN injections

with muscimol, we must in effect have substantially

reduced the level of excitation of thalamic neurons and

thereby disturbed the balance of inhibition and excitation

in thalamocortical networks in favor of inhibition. One

of the main consequences of hyperpolarizing the mem-

brane potential of thalamic neurons through this inhibi-

tion is activation of hyperpolarization-activated

depolarizing cation currents (Ih) and CaV3.1 (T-type)

Ca21 channel currents, which typically results in the

burstlike action potential firing that can drive GSWDs in

thalamocortical networks.7,8,60,61 Moreover, in tg tha-

lamic relay neurons show increased T-type Ca21 channel

currents,62 which probably act synergistically with the

decreased excitation following muscimol treatment, likely

further increasing GSWD occurrence. In contrast, when

TABLE 6: Continued

Tested Data Compared Groups N p t or F-value Statistical Test

470nm outside CN C3H/HeOuJ
prestimulation

56 0.425 F(1,54) 5 0.65 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Closed-loop bilateral 470nm C3H/HeOuJ
prestimulation

46 <0.001a F(1,44) 5 14.20 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Closed-loop unilateral 470nm C3H/HeOuJ
prestimulation

30 <0.05a F(1,28) 5 4.60 Repeated measures
ANCOVA

C3H/HeOuJ
poststimulation

Corresponds to Figure 4.
aStatistically significant.
ANCOVA 5 analysis of covariance; ANOVA 5 analysis of variance; CN 5 cerebellar nuclei; GSWD 5 generalized spike-and-wave
discharge.

ANNALS of Neurology

1044 Volume 77, No. 6



we applied gabazine to CN, the balance of inhibition

and excitation in the thalamocortical networks probably

shifted toward excitation and thereby may have prevented

the activation of Ih and T-type Ca21 channel currents,

reducing the occurrence of burst firing and GSWDs.

The successful application of short periods of optogenetic

excitation of CN neurons not only confirmed the

deoscillating impact of gabazine, but further refined it by

revealing that GSWDs can be most efficiently stopped

when the interval between ECoG spikes, that is, wave-

length of the oscillations, is instantly shortened and

thereby reset. Given the relatively low success rate of

optogenetic stimulation in the period just preceding the

"spike" state of the GSWDs, which reflects the excitation

state of the thalamocortical relay neurons, it is parsimo-

nious to explain the effective resetting through optimal

interference during the inhibitory or "wave" state of the

GSWD.51 This explanation centered on the resetting

hypothesis argues against the possibility that GSWDs

were terminated by optogenetic activation of the CN

neurons that were inhibited. Regardless of the net effect

of CN stimulation on thalamocortical networks, the cur-

rent approach proved equally effective when applied

bilateral or unilateral. Most likely, instantly resetting the

balance of excitation and inhibition in thalamocortical

relay neurons on one side of the brain will also engage

the other side through combined ipsi- and contralateral

projections from the CN to the thalamus and through

interthalamic and intercortical connections.6,24,63

It remains to be established to what extent the cur-

rent findings for absence epilepsy can help to treat epi-

leptic patients suffering from other types of seizures. Our

findings on the impact of optogenetic manipulation of

CN firing patterns on GSWD occurrence seem to sup-

port the (pre)-clinical studies that apply deep brain stim-

ulation (DBS)64,65 in the CN may be an option to treat

epilepsy patients. So far, only 3 clinical studies applying

electrical DBS to the CN have been reported, which is

in contrast to the dozens of studies performed to investi-

gate the therapeutic use of cerebellar surface stimulation

(as reviewed by Krauss and Koubeissi66). Although

FIGURE 5

FIGURE 5: Excitatory impact of optical cerebellar nuclei (CN)
stimulation on cortical activity stops generalized spike-and-
wave discharge (GSWD) episodes. (A; left panels) Peri–stimu-
lus time histogram and raster plot indicating increased (top)
or decreased (bottom) action potential (AP) firing for individ-
ual CN neurons evoked by 470nm light pulses (blue bars).
Right panels: Scatterplots represent the individual changes in
CN neuronal firing following optical stimulation: (left)
increased firing (n 5 33); (right) decreased firing (n 5 17).
Black and blue bars indicate mean firing frequency when the
470nm light-emitting diode was turned off or on, respec-
tively. (B) Examples of stopped (left) and continuing (right)
GSWD episodes upon optogenetic stimulation. Black hori-
zontal arrows represent the median time interval between
electrocorticogram (ECoG) spikes, which correspond to 1
cycle of cortical oscillation, here represented as 360�. Green
and red vertical arrows represent the onset of the light stim-
ulus. (C) Rose plots of the start of successful and unsuccess-
ful optical stimulation in the 360� GSWD cycle for both
primary motor cortex (left) and primary sensory cortex
(right). (D) Comparison between the median and the last
interval (between the last 2 ECoG spikes) for stopped and
continuing GSWD episodes. ***p < 0.001 (repeated measures
ANCOVA; see Table 7). (E) Scatterplot representing the pre-
dictability of the stimulus-related time interval between
GSWDs by the phase of stimulation onset. p < 0.001 (linear
regression analysis; see Table 7).
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initially promising, the clinical studies on the effects of

cerebellar surface stimulation reported inconsistent

results,12–21 which may partially be due to suboptimal

placement of electrodes. Unlike the current results, which

show a regional preference for the effect of lateral CN

stimulation on GSWD occurrence, it was recently shown

that manipulating Purkinje cells in the medial cerebellum

is most effective in controlling kainate-induced temporal

lobe epilepsy.67 So far, the studies that applied DBS at

the level of CN in an uncontrolled fashion report highly

effective decreases in the level of seizures (corresponding

to class IC and IIIA of the Engel scale68) in a low num-

ber of patients characterized with various types of epi-

lepsy.69–71 Apart from the coherence in location of

stimulation (laterally located nucleus dentatus), these

studies used a wide variety in CN stimulus regimes,

ranging from 3 minutes per day to continuous electrical

stimulation for 12 to 14 hours per day. It appears that

high-frequency stimulation (>50Hz), but not low-

frequency stimulation (1–40Hz), is most effective when

applied to the cerebellar dentate nucleus. In the present

study, we found that the increase in CN neuronal action

potential firing frequency upon optogenetic stimulation

was highly variable (see Fig 4), and thus our current

results do not provide any ground for a conclusion on

whether low- or high-frequency stimulation would be

advantageous to stop GSWD episodes. However, our

results do provide sufficient data to conclude that the

temporal precision determines the level of efficiency, for

example, by stimulating with short pulses as soon as an

epileptic event starts to occur and if possible in a proper

temporal relation with respect to the inhibitory wave of

the GSWDs.

Because absence epilepsy is a commonly prevalent

but in essence a benign form of generalized epilepsy,1

DBS will not very likely be considered as a serious

option. However, patients diagnosed with other forms

of epilepsy who do not benefit sufficiently from medi-

cation may be eligible for (cerebellar) DBS.47 Currently,

the options for applying DBS are limited; only the

anterior thalamic nucleus is currently described in the

US Food and Drug Administration guidelines to treat

intractable epilepsy, and although promising, the out-

come is limited and can result in cognitive and emo-

tional problems.72,73 Given the powerful impact of CN

stimulation on thalamocortical activity that is shown in

the present study, we hypothesize that CN stimulation

may also exert very positive effects in these other, more

severe kinds of epilepsies.
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